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Abstract

This paper describes an algorithm to extract adaptive and quality 3D meshes directly from volumetric imag-
ing data. The extracted tetrahedral and hexahedral meshes are extensively used in the Finite Element Method
(FEM). A top-down octree subdivision coupled with the dual contouring method is used to rapidly extract
adaptive 3D finite element meshes with correct topology from volumetric imagingdata. The edge con-
traction and smoothing methods are used to improve the mesh quality. The main contribution is extending
the dual contouring method to crack-free interval volume 3D meshing with feature sensitive adaptation.
Compared to other tetrahedral extraction methods from imaging data, our method generates adaptive and
quality 3D meshes without introducing any hanging nodes. The algorithm hasbeen successfully applied to
constructing the geometric model of a biomolecule in finite element calculations.

Key words: adaptive and quality mesh, correct topology, feature sensitive adaptation, hanging node.

1 Introduction

The development of finite element simulations in medicine, molecular biology and engineering
has increased the need for quality finite element meshes. Although there has been tremendous
progresses in the area of surface reconstruction and 3D geometric modelling, it still remains a
challenging process to generate 3D meshes directly from imaging data, such as Computed To-
mography (CT), Magnetic Resonance Imaging (MRI) and Signed Distance Function (SDF). The
imaging dataV is given in the form of sampled function values on rectilinear grids,V = {F(i, j,k)
| i, j,k are indices ofx,y,zcoordinates in a rectilinear grid.}. We assume a continuous functionF is
constructed through the trilinear interpolation of sampled values for each cubic cell in the volume.

For accurate and efficient finite element calculations, it isimportant to have adaptive and quality
geometric models with minimal number of elements. The studied object may have complicated
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Fig. 1. Adaptive tetrahedral meshes are extracted from a CT-scannedvolumetric data(UNC Head). De-
pending on the selected isovalues, different meshes of a skin and a skullare constructed. The number of
tetrahedra can be controlled by choosing a user specified error tolerance (tet# - (b) 935124, (c) 545269, (d)
579834, (e) 166271). Note that the extracted mesh has no crack and nohanging node.

topology. Figure 21 shows an interval volume between two isosurfaces from the SDF volumetric
data of a knee. The two surfaces have the same topology in Figure 21(d), while the topology of
the inner surface may be different from the topology of the outer one (Figure 21(b)). In this paper,
we present a comprehensive approach to extract tetrahedraland hexahedral meshes directly from
imaging data.

SF(c)= {(x,y,z) : F(x,y,z) = c} (1)
IF(α1,α2)= {(x,y,z) : α1 ≤ F(x,y,z) ≤ α2} (2)

Given volumetric imaging data,α1 and α2 (α1 < α2) represent two isovalues, each of which
defines a boundary isosurface (Equation (1)) of an interval volume (Equation (2)). The main steps
to extract tetrahedral/hexahedral meshes for the intervalvolume,IF , between the two isosurfaces
are as follows:

(1) Preprocessing – volumetric denoising and isovalue selection.
(2) Adaptive 3D meshing with correct topology and feature preservation.
(3) Quality improvement

Noise often exists in imaging data, especially in CT and MRI data. The bilateral prefiltering cou-
pled with anisotropic diffusion methods [5] is applied to smooth the volumetric data. Accurate
gradient estimation can also be obtained. The Contour Spectrum [4] provides quantitative metrics
of a volume to help us select two suitable isovalues for the interval volume. If the imaging data
has no noise (for example, SDF data) and two isovalues are given to define the interval volume,
the preprocessing step can be skipped.

We extend the idea of dual contouring to interval volume tetrahedralization and hexahedralization
from volumetric Hermite data (position and normal information). Dual Contouring [30] analyzes
those edges that have endpoints lying on different sides of the isosurface, calledsign change edge.
Each sign change edge is shared by four (uniform case) or three (adaptive case) cells, and one
minimizer is calculated for each of them by minimizing a predefined Quadratic Error Function
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(QEF) [24]. The QEF is defined as follows:

QEF[x] = ∑
i
(ni · (x− pi))

2 (3)

wherepi, ni represent the position and unit normal vectors of the intersection point respectively.
For each sign change edge, a quad or a triangle is constructedby connecting the minimizers. These
quads and triangles provide an approximation of the isosurface.

Each sign change edge belongs to a boundary cell. We present asystematic way to tetrahedralize
the volume in the boundary cell. For uniform grids, it is easyto deal with the interior cells. We
only need to decompose each cell into five tetrahedra. The adaptive case is more complicated. In
order to avoid introducing hanging nodes, which are strictly prohibited in finite element meshes,
we design an algorithm to tetrahedralize the interior cell depending on the resolution levels of all
its neighbors. Figure 1 shows an example of adaptive tetrahedral meshes extracted from a scanned
CT data. As a byproduct, the uniform hexahedral mesh extraction algorithm is simpler. We analyze
each interior vertex (a grid point inside the interval volume) which is shared by eight cells. One
minimizer is calculated for each of them, and those eight minimizers construct a hexahedron.

Reconstructing a mesh with correct topology is important foraccurate finite element calcula-
tions. We guarantee the resulting 3D mesh is topologically equivalent to the real interval volume
IF(α1,α2). The topology of the 3D mesh is preserved during the simplification process. Unlike
the dual contouring method [30], we use a different error function based on the function differ-
ence normalized by gradients. The function approximates the maximum difference between coarse
and fine level isosurfaces to decide the level of adaptivity.Using this error measurement and a user
specified error tolerance, we can identify octree cells of appropriate levels which satisfy the thresh-
old criteria. The result shows the error function we use yields feature-sensitive adaptation as shown
in Figure 13 (d). Since we still use QEF for computing minimizing vertices, we can also preserve
sharp edges and corners.

The tetrahedral meshes extracted from volume data can not beused for finite element calcula-
tions directly, since some elements may have bad quality. The edge-ratio and Joe-Liu parameter
are chosen to measure the mesh quality. The edge contractionmethod removes tetrahedra with
bad edge-ratios, and the smoothing method improves the meshquality measured by the Joe-Liu
parameters. We applied our algorithm to extracting a tetrahedral mesh from the accessibility func-
tion of a mouse acetylcholinesterase (mAChE) biomolecule. The extracted meshes have been used
for efficient and correct finite element calculation of a diffusion problem [58] [57].

The remainder of this paper is organized as the following: Section 2 summarizes the related work
on quality 3D mesh generation; Section 3 reviews the preprocessing step. Section 4 explains the
detailed algorithm for extracting tetrahedral/hexaheralmeshes from the interval volume; Section
5 describes a subdivision method for preserving correct topology in the reconstructed mesh; Sec-
tion 6 talks about the feature sensitive error function. Section 7 discusses the mesh quality improve-
ment. Section 8 shows some results and applications. The final section presents our conclusion.
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2 Previous Work

Isosurface Extraction In most cases, an isosurface is extracted in the form of piecewise linear
approximation for the modeling and rendering purpose. The Marching Cubes algorithm (MC) [38]
visits each cell in a volume and performs local triangulation based on the sign configuration of the
eight vertices. To avoid visiting unnecessary cells, accelerated algorithms [65] [3] minimizing the
time to search for contributing cells are developed. The isosurfaces of a function defined by the
trilinear interpolation inside a cubic cell may have a complicated shape and topology which cannot
be reconstructed correctly using MC. The function values of face and body saddles in the cell can
be used to decide the correct topology and consistent triangulation of an isosurface in the cell [42].
Lopes and Brodlie [37] provided a more accurate triangulation.

Main drawbacks of MC and its variants are (i) the produced mesh is uniform, (ii) badly shaped tri-
angles are generated. and (iii) sharp features in the data are not preserved. An adaptive isosurface
can be generated by triangulating cells with different levels. When the adjacent cubes have differ-
ent resolution levels, the cracking problem will happen. Tokeep the face compatibility, the gravity
center of the coarser triangle is inserted, and a fan of triangles are used to approximate the isosur-
face [64]. The chain-gang algorithm [32] was presented for isosurface rendering of super adaptive
resolution (SAR) and resolves discontinuities in SAR data sets. Progressive multiresolution repre-
sentation and recursive subdivision are combined effectively, and isosurfaces are constructed and
smoothed by applying the edge bisection method [45]. A surface wave-front propagation technique
[66] is used to generate multiresolution meshes with good aspect ratio.

The enhanced distance field representation and the extendedMC algorithm [31] can detect and
reconstruct sharp features in the isosurface. By combining SurfaceNets [27] and the extended
Marching Cubes algorithm [31], octree based Dual Contouring [30] can generate adaptive isosur-
faces with good aspect ratio and preservation of sharp features. Elements in the extracted mesh
often have bad aspect ratio. These elements can not be used for finite element calculations. The
grid snapping method reduces the number of elements in an approximated isosurface and also im-
proves the aspect ratio of the elements [41]. [7] studied howto generate triangular meshes with
bounded aspect ratios from a planar point set. [40] proposedan algorithm, called QMG, to trian-
gulate ad-dimensional region with a bounded aspect ratio.

Tetrahedral Mesh GenerationOctree based, advancing front based and Delaunay like techniques
were used for tetrahedral mesh generation. The octree technique recursively subdivides the cube
containing the geometric model until the desired resolution is reached [51]. Advancing front meth-
ods start from a boundary and move a front from the boundary towards empty space within the
domain [36] [22] [50]. The Delaunay criterion is called ‘empty sphere’, which means that no node
is contained within the circumsphere of any tetrahedra of the mesh. Delaunay refinement is to
refine the triangles or tetrahedra locally by inserting new nodes to maintain the Delaunay crite-
rion. Different approaches to define new nodes were studied [16] [52] [14]. Sliver exudation [15]
was used to eliminate those slivers. A deterministic algorithm [14] was presented for generating a
weighted Delaunay mesh with no poor quality tetrahedra including slivers. Shewchuk [53] solved
the problem of enforcing boundary conformity by constrained Delaunay triangulation (CDT). De-
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launay refinement [52], edge removal and multi-face removaloptimization algorithm [54] were
used to improve the tetrahedral quality. Shewchuk [55] provided some valuable conclusions on
quality measures for finite element method.

MC was extended to extract tetrahedral meshes between two isosurfaces directly from volume data
[23]. A Branch-on-Need octree was used as an auxiliary data structure to accelerate the extraction
process . A different algorithm, Marching Tetrahedra (MT),was proposed for interval volume
tetrahedralization [43]. A multiresolution framework [69] was generated by combining recursive
subdivision and edge-bisection methods. Since many 3D objects are sampled in terms of slices,
Bajaj et. al introduced an approach to construct triangular surface meshes from the slice data [1],
and tetrahedralize the solid region bounded by planar contours and the surface mesh [2].

Hexahedral Mesh GenerationEppstein [18] started from a tetrahedral mesh to decompose each
tetrahedron into four hexahedra. Although this method avoids many difficulties, it increases the
number of elements. There are four distinct methods for unstructured all-hex mesh generation:
grid-based, medial surface, plastering and whisker weaving. The grid-based approach generates
a fitted 3D grid of hex elements on the interior of the volume [48] [49]. Medial surface methods
involve an initial decomposition of the volume [46] [47]. Plastering places elements on boundaries
first and advances towards the center of the volume [10] [8]. Whisker weaving first construct the
spatial twist continuum (STC) or dual of the hex mesh, then thehex elements can be fitted into the
volume using the STC as a guide [60].

Quality Improvement Algorithms for mesh improvement can be classified into threecategories
[61] [44]: local coarsening/refinement by inserting/deleting points, local remeshing by face/edge
swapping and mesh smoothing by relocating vertices.

Laplacian smoothing, in its simplest form, relocates the vertex position at the average of the nodes
connecting to it. This method generally works quite well formeshes in convex regions. However,
it can result in distorted or even inverted elements near concavities in the mesh. [26] weighted the
contribution of each neighboring node in the average function. [19] constrained the node move-
ment in order to avoid the creation of invert elements. [39] discretized the Laplacian operator us-
ing Voronoi cells and the mixed Finite Element/Finite Volume method. The discretized format was
used to solve surface modelling problems using the finite difference method [67]. [33] and [29] de-
veloped methods to extend to anisotropic meshes. Instead ofrelocating vertices based on a heuris-
tic algorithm, people searched a optimization technique toimprove the mesh quality. The optimiza-
tion algorithm measures the quality of the surrounding elements to a node and attempts to opti-
mize it. The algorithm is similar to a minimax technique usedto solve circuit design problem [13].
The optimization-based smoothing yields better results while it is more expensive than Laplacian
smoothing. Therefore, [11] [21] [20] recommended a combined Laplacian/optimization-based ap-
proach, which uses Laplacian smoothing when possible and only uses optimization-based smooth-
ing when necessary. Physically-based simulations are usedto reposition nodes [35]. Anisotropic
meshes are obtained from bubble equilibrium [56] [9].
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3 Preprocessing

Since noise in imaging data influences the accuracy of the extracted meshes, it is important to
remove it before the mesh extraction process. The isotropicdiffusion method can remove noise,
but blurs features such as edges and corners. In order to preserve features during the process
of noise smoothing, anisotropic diffusion [63] was proposed by introducing a diffusion tensor.
Generally, a Gaussian filter is used to calculate the anisotropic diffusion tensor before smoothing,
but it also blurs features. Bilateral filtering [62], which isa nonlinear filter combining domain and
range filtering, was introduced to solve this problem. Anisotropic diffusion can be used for fairing
out noise in both surface meshes and functions defined on the surface [6] [17]. Here we use the
anisotropic diffusion method [5] to smooth noise. In order to obtain more accurate computation
of curvature and gradient for anisotropic diffusion tensor, the bilateral prefiltering combining the
domain and range filtering together is chosen instead of Gaussian filtering.

Fig. 2. The contour spectrum of the UNC human head

Mesh extraction from imaging data requires the selection ofsuitable boundary isosurfaces. We use
a user interface called Contour Spectrum [4] to find significant isosurfaces. The Contour Spectrum
computes quantitative properties such as surface area, volume, and gradient integral of contours in
real time, and helps to choose suitable isosurfaces by showing the related spectrum in a 2D plane.
For instance, we can obtain isosurfaces of a skin and a skull in CT scanned human head data
(Figure 2) by taking isovalues with the local maximum of the gradient integral. In the case of the
interval volume, the topology of inner and outer isosurfaces may need to be controlled depending
on the application. A contour tree [12] can be used to capturethe topological information on each
isosurface and help choose isosurfaces with desirable topology. For example, we can choose the
inner and outer isosurfaces with exactly the same topology by taking isovalues lying on the same
edges in a contour tree.
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4 3D Mesh Extraction

In this section, our goal is to tetrahedralize or hexahedralize the interval volume between two
isosurfaces by using an octree-based data structure. We describe in detail how to extract adaptive
tetrahedral meshes from volume data. First, we discuss the triangulation in 2D problems, then we
extend it to 3D tetrahedralization. A hexahedral mesh generation algorithm is presented at the end
of this section. Here are definitions used in the algorithm description:

Sign Change Edge:A sign change edge is an edge whose one vertex lies inside the interval
volume (we call it the interior vertex of this sign change edge), while the other vertex lies outside.

Interior Edge in Boundary Cell: In a boundary cell, those edges with both vertices lying inside
the interval volume are called interior edges.

Interior Face in Boundary Cell: In the boundary cell, those faces with all four vertices lying
inside the interval volume are called interior faces.

Interior Cell: Different from the boundary cell, all the eight vertices of an interior cell lie interior
to the interval volume.

4.1 Uniform Tetrahedral Mesh Extraction

For isosurface extraction, we only need to analyze boundarycells – those cells that contain sign
change edges, or those cells that contain the isosurface. There are four neighbor cubes which share
the same sign change edge. Dual Contouring generates one minimal vertex for each neighbor cube
by minimizing the QEF, then connects them to generate a quad.By marching all the sign change
edges, the isosurface is obtained. For tetrahedral mesh extraction, cells inside the interval volume
should also be analyzed besides the boundary cells.

Fig. 3. Uniform triangulation - the red curve represents the isocontour, green points represent minimizers.
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4.1.1 Uniform 2D Triangulation

Figure 3 is a uniform triangulation example of the area interior to the isocontour in two dimensions.
There are three different cases which need to be dealt with separately.

(1) Sign change edge – find the minimizers of the two cells which share the edge, then the two
minimizers and the interior vertex of the edge construct a triangle (blue triangles).

(2) Interior edge in boundary cell – find the QEF minimizer of the boundary cell, then the mini-
mizer and this interior edge construct a triangle (yellow triangles).

(3) Interior cell – decompose each interior cell into two triangles (pink triangles).

(h)

(d) (e) (f)

(b) (c)

(g)

(a)

������������������

Fig. 4. The case table of uniform tetrahedralization - the red vertex means itlies interior to the interval
volume, otherwise, it is outside. Green points represent minimizers. (a) - a sign change edge; (b)(c) - an
interior edge in a boundary cell; (d)(e)(f) - an interior face in a boundary cell; (g)(h) - an interior cell.

4.1.2 Uniform 3D Tetrahedralization

Compared to 2D triangulation, three dimensional tetrahedral meshing is more complicated. Figure
4 shows the case table of uniform tetrahedralization.

(1) Sign change edge – decompose the quad into two triangles,then each triangle and the interior
vertex of this edge construct a tetrahedron. In Figure 4(a),the red line represents the sign
change edge, and two blue tetrahedra are constructed.
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Fig. 5. A two dimensional example of cell subdivision for enforcing each cell to have at most one boundary
isocontour. When two boundary isocontours pass through the same cell, the cell is recursively subdivided
until each sub-cell contains at most one minimizer.

(2) Interior edge in boundary cell – find the QEF minimizers ofthe boundary cell and its bound-
ary neighbor cells, then two adjacent minimizers and the interior edge construct a tetrahedron.
In Figure 4(b)(c), the red cube edge represents the interioredge. (b) shows four minimizers to
construct four edges, each of which construct a tetrahedronwith the interior edge, so totally
four tetrahedra are constructed. While (c) assumes the cell below this boundary cell is interior
to the interval volume, so there is no minimizer for it. Therefore we obtain three minimizers,
and only two tetrahedra are constructed.

(3) Interior face in boundary cell – find the QEF minimizer of the boundary cell, then the interior
face and the minimizer construct a pyramid, which can be decomposed into two tetrahedra
(Figure 4(f)). Figure 4(d)(e)(f) show a sequence of how to generate tetrahedra when there
is only one interior face in the boundary cell. (d) analyzes four sign change edges, (e) deals
with four interior edges and (f) fills the gap.

(4) Interior cell – decompose the interior cube into five tetrahedra. There are two different decom-
position ways (Figure 4(g)(h)). For two adjacent cells, we choose a different decomposition
method to avoid the diagonal choosing conflict problem.

Our meshing algorithm assumes that there is only one minimizer point in a cell. This means two
different boundary isosurfaces of an interval volume can not pass through the same cell. Therefore,
we enforce every cell to have at most one boundary isosurfacebefore actual meshing of cells. If
a cell contains two boundary isosurfaces, we recursively subdivide the cell into eight identical
sub-cells until each sub-cell contains at most one boundaryisosurface as shown in Figure 5. The
detailed subdivision algorithm is described in Section 5.

4.2 Adaptive Tetrahedral Mesh Extraction

Uniform tetrahedralization usually generates an over-sampled mesh. Adaptive tetrahedral meshing
is an effective way to minimize the number of elements while preserving the accuracy requirement.
First, we split the volume data by using the octree data structure to obtain denser cells along the
boundary, and coarser cells inside the interval volume (Figure 7). The QEF value is calculated
for each octree cell. When the error toleranceε is selected, the octree is traversed in a bottom-up
manner to obtain the cells which satisfy the error tolerancerequirement. We call this set of cells to
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be leaf cells of the octree assuming we pruned unnecessary nodes from the tree.

Each leaf cell may have neighbors at different levels. An edge in a leaf cell may be divided into
several edges in its neighbor cells. Therefore it is important to decide which edge should be an-
alyzed. The Dual Contouring method provides a good rule to follow – we always choose the
minimal edge. Minimal edges are those edges of leaf cubes that do not properly contain an edge
of a neighboring leaf.

Similar to uniform tetrahedral mesh extraction, we need to analyze the sign change edge, the
interior edge/face in the boundary cell, and the interior cell. When we analyze boundary cells,
only minimal edges/faces are analyzed. Compared to the uniform case, the only difference is how
to decompose interior cells into tetrahedra without hanging nodes.

Hanging Node:a hanging node is one that is attached to the corner of one triangle but does not
attach to the corners of the adjacent triangles. Generally,a hanging node is a point that is a vertex
for some elements (e.g., triangle, quad, tetra, hexa), but it is not for its other neighbor elements
that share it. It lies on one edge or one face of its neighbors,for example, a T-Vertex.

(d) (e)

(c)

1
2

(b)(a)

3

Fig. 6. Hanging node removal - the red point is a hanging node. (a) - T-Vertex; (b) - merging two triangles;
(c) - splitting method. (d) and (e) show an example of hanging node removalby re-triangulating the interior
cell (pink). The red curve is the real isocontour, and green points areminimizer points for boundary cells.
(d) - the triangulation of the interior cell without considering the hanging node; (e) - the re-triangulation of
the interior cell to remove the hanging node.

Figure 6 shows two methods to remove hanging nodes - splitting and merging. In the T-Vertex
example (Figure 6a), there is a hanging node (red point). Only the right two triangles (Number
2 and 3) need to be modified if we use the merging method (Figure6b); while only the left one
(Number 1) needs to be modified if we intend to split the mesh (Figure 6c). In order to maintain
the accuracy, we adopt the splitting method in our algorithm.

Lemma: Only the interior cell needs to be modified if the splitting method is adopted.

Proof: All the leaf cells can be divided into two groups: the boundary cell and the interior cell.

(1) Interior cell – Since its neighbor cells may have higher resolution levels, hanging nodes are
unavoidable. In Figure 6d, there is a hanging node if we triangulate the interior cell as in the
uniform case. Figure 6e shows a re-triangulating method to remove the hanging node.

(2) Boundary cell – There are two rules for the sign change edgeand the interior edge/face in
boundary cells. The two rules guarantee that no hanging nodes need to be removed for the
boundary cell if only the splitting method is chosen.
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• Minimal Edge/Face Rule - only minimal edges/faces are chosen. This rule keeps the ana-
lyzed edges/faces owning the highest resolution level compared with their neighbors.

• Only one minimizer is generated for each leaf cell.

4.2.1 Adaptive 2D Triangulation

Fig. 7. Left: adaptive triangulation. The red curve represents the isocontour, green points represent minimiz-
ers. Right: The case table for decomposing the interior cell into triangles in 2D. Suppose the resolution level
of this cell isκ, and middle points appear on the shared edges if its neighbors have higherlevel thanκ. Red
points and red lines mean its neighbors have level (κ+1); green points and green lines mean its neighbors
have higher level than (κ+1). The case table can be easily generalized to any other adaptive cases.

Figure 7(left) shows an example of how to triangulate the interior area of an isocontour. Similarly,
we need to analyze the following three problems:

(1) Sign change edge – if the edge is minimal, deal with it as inthe uniform case (blue triangles).
(2) Interior edge in the boundary cell – if the edge is minimal, deal with it as in the uniform case

(yellow triangles).
(3) Interior cell – Figure 7(Right) lists all the main cases ofhow to decompose an interior cell

into triangles. The case table can be easily generalized to any other adaptive cases. In order
to obtain triangles with good aspect ratio, we restrict the neighboring level difference to be
≤ 2.

Compared to the uniform case, the triangulation of interior cells is more complicated. All neigh-
bors of an interior cell need to be checked because the neighbor cells are used to decide if there are
any middle points on the shared edge. Suppose the resolutionlevel of this cell isκ. We group into
five cases according to the number of edges whose level is greater thanκ. Theith group means there
are numberi edges whose level is greater thanκ, wherei = 0, . . . ,4. For each subdivided edge, it
may be subdivided more than once, or the neighbor cell may have higher level than (κ+1). So we
need to search all the middle points on this edge by looking atthe resolution levels of the neighbor
cells. Figure 7(right) lists all the main cases of how to decompose the interior cell into triangles
according to its neighbors’ resolution levels. If all the four edges have already been subdivided,
then we can use the recursive method to march each of the four sub-cells with the same algorithm.
In this way, hanging nodes are removed effectively.
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(a)

(b) (c)

(d)

(e)

Fig. 8. The case table for decomposing the interior cell into tetrahedra whenthe neighboring level difference
is one – in (a∼ e), the left picture shows the triangulation format of one face according toFigure 7; the
right one shows how to decompose the cell into tetrahedra without hanging nodes. (a) - one subdivided
edge; (b)(c) - two subdivided edges; (d) - three subdivided edges; (e) - four subdivided edges. Any other
adaptive cases are easily generalized using the case table in Figure 7.

4.2.2 Adaptive 3D Tetrahedralization

For three dimensional adaptive tetrahedralization, we usethe similar algorithm with the uniform
case when we deal with the boundary cell.

(1) Sign change edge – if the edge is minimal, deal with it as inthe uniform case.
(2) Interior edge in the boundary cell – if the edge is minimal, deal with it as in the uniform case.
(3) Interior face in the boundary cell – identify all the middle points on the four edges, and

decompose the face into triangles by applying the same algorithm as in the adaptive 2D
case, then calculate the minimizer of this cell, each triangle and this minimizer construct a
tetrahedron.

(4) Interior cell – decompose each face of the cube into triangles, just as how to deal with the in-
terior cell for the adaptive 2D triangulation (Figure 7(right)), then insert a Steiner point at the
cell center. Each triangle and the Steiner point construct atetrahedron. Figure 8 shows how to
construct tetrahedra when the neighboring level difference is one. Sometimes pyramids are
constructed. In order to avoid the diagonal choosing conflict, we decide which diagonal is
chosen to decompose one pyramid into two tetrahedra according to the odd-even property of
the cell index.
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By using the above algorithm, we extract tetrahedral meshes from volumetric imaging data suc-
cessfully. Figure 9 (a) and (b) show the tetrahedral mesh of the human head model extracted from
653 volumetric data. The volume inside the skin isosurface is tetrahedralized.

Fig. 9. Tetrahedral/hexahedral meshes of the human head model - (a) and (b) show adaptive tetrahedral
meshes, (c) and (d) show the hexahedral meshes. (a): the tetrahedralization of the volume inside the head;
(b): a cross section of (a); (c): the hexahedralization of the volume between the human head and a sphere
boundary; (d): the hexahedralization of the volume inside the head.

4.3 Hexahedral Mesh Extraction

Finite element calculations sometimes require hexahedralmeshes instead of tetrahedral meshes.
Each hexahedron has eight points. In the tetrahedralization process, we deal with edges shared by
at most four cells. This means that we can not get eight minimizers for each edge. However, each
vertex within the interval volume is shared by eight cells. We can calculate a minimizer for each of
them. In the case of interior cells, we set the center point asthe minimizer. These eight minimizers
can then be used to construct a hexahedron. Figure 9 (c) and (d) show two hexahedral meshes for
the head model, which are used to solve electromagnetic scattering simulations in finite element
calculations.

5 Mesh Topology

Constructing an adaptive 3D mesh with correct topology playsan important role in accurate and
efficient finite element calculations. Our goals in this section are (i) meshing with correct topol-
ogy and (ii) topology preserving adaptive meshing. The topology of a mesh defined by an inter-
val volume depends on the topology of two boundary isosurfaces enclosing the interval volume.
Therefore we focus on the topology of an isosurface. We use the term ‘dual contour’ as a polygo-
nized isosurface extracted using the dual contouring method [30]. ‘Correct topology’ means that
an extracted dual contour is topologically equivalent to the real isosurface defined from an original
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Fig. 10. A two dimensional example on the recursive subdivision of a cubiccell in the finest level for
reconstructing a dual contour with correct topology.

(a) (b) (c) (d)

(e) (f)

Fig. 11. (a)-(d): An example of an ambiguous case for a finest-level cell. Both the front-right-up and
back-left-down vertices have the positive sign, all the other vertices have the negative sign. (a): A
non-manifold dual contour is generated in a cube with an ambiguous case. In this case, the real isosurface in
the cube is topologically equivalent to either two simple disks (b) or a tunnel (c) [37]. The topologically cor-
rect dual contours, (b) and (c), can be constructed by the simple subdivision of a cell in (a). (d) is displayed
in a different view angle from (c) to emphasize that the tunnel shape is correctly reconstructed. (e)-(f): A real
example (the human knee) on topologically correct reconstruction of a dual contour. (e): before subdivision,
(f): after subdivision. Note that non-manifolds in (e) are removed in (f).
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input function. ‘Topology preserving’ means the topology of a dual contour is preserved during
simplification.

Assume the functionF within a cubic cell is defined by the trilinear interpolationof the eight
vertex values. The sign of a vertex is defined to be positive when its value is greater than or equal
to an isovalue, and negative when its value is less than the isovalue. An isosurface within a cube,
defined asF(x,y,z) = α, may have different local topology depending on the configuration of
signs at the eight vertices and the isovalue. There are 28 sign configurations which can be reduced
into 14 cases using symmetry [38]. Several cases may have more than one local topology, and are
termed ambiguous. We refer to [37] for all the cases of different local topology of an isosurface
in a cube. When a case is ambiguous, the standard dual contouring method causes a non-manifold
at the minimizing vertex in the cube. This makes the topologyof the dual contour different from
that of the real isosurface. On the other hand, if a cube has noambiguity, then the real isosurface
is topologically equivalent to the dual contour, which is always a simple manifold. Whether a case
in a cube is ambiguous or not can be checked by collapsing eachedge which has two vertices with
the same sign into a vertex [30]. If the cube can be collapsed into an edge, then the cube has no
ambiguity and the topologically correct dual contour is generated in the cube. An example of a
cell with an ambiguous case is shown in Figure 11 (a) where thenon-manifold dual contour is
generated using a naive approach.

We use the recursive cell subdivision in the finest level to reconstruct a dual contour with correct
topology when the cell contains a non-manifold dual contour. The subdivision algorithm is very
similar with what we used for enforcing each cell to have at most one boundary isosurface. As
a first step, all boundary cells in the finest level are identified. If a cell contains a non-manifold
dual contour, we subdivide the cube into eight identical sub-cubes. The function values defined
on newly generated vertices are calculated by the trilinearinterpolation of the values at the eight
cube vertices. We recursively repeat this process for the sub-cubes containing a non-manifold dual
contour until each sub-cube contains a manifold dual contour. Figure 10 shows a 2D example.

We justify the correctness of the algorithm as follows. The function defined in a sub-cube is exactly
same as the original function because we use the trilinear interpolation. If a sub-cube has no
ambiguity and hence contains a manifold dual contour, then the topology of the dual contour in
the sub-cube is correct in the sense that the dual contour is topologically equivalent to the real
isosurface. Therefore, if every sub-cube contains a manifold dual contour, then the dual contour
in each sub-cube has correct topology. Since we recursivelysubdivide a cube until every sub-cube
has a manifold dual contour, the resulting dual contour within the finest cubic cell has correct
topology.

In this way, we can obtain a dual contour with correct topology from every finest cell in an octree
structure. Then we traverse the octree in a bottom-up mannerto get an adaptively simplified dual
contour. During the traverse from children cells to a parentcell, the topology of a dual contour can
change. This may not be desirable. The paper [30] described an algorithm to check whether the fine
dual contour is topologically equivalent to the coarse one or not. The sign of the middle vertex of
a coarse edge/face/cube must be the same as the sign of at least one vertex of the edge/face/cube
which contains the middle vertex. We restrict the octree simplification process to preserve the
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topology by using their algorithm.

Figure 11 shows an example of a finest-level cell with an ambiguous case. A non-manifold dual
contour is generated in the cell (a). However, the real isosurface in the cell can have either two
disks (b) or a tunnel shape (c)(d) depending on an isovalue. (b) and (c) show two results of a dual
contouring after the cell subdivision on (a). The tunnel shape is correctly reconstructed as shown
in (d). (e) and (f) show a real example on topologically correct reconstruction of a knee surface.

6 Feature Sensitive Adaptation

Finite element applications require a minimal number of elements while preserving important
features on boundary surfaces for efficient and accurate calculations. For a given precision re-
quirement, uniform meshes are always over-sampled with unnecessary small elements. Adaptive
meshes are therefore preferable.

The level adaptivity can be controlled manually by regions or automatically by using an error func-
tion and a tolerance. For example, in the calculation of ligand binding rate constants on mAChE
data (Figure 18), the geometric accuracy on the cavity area mostly affects the accuracy of the
calculation. Therefore, we refine the cavity area as much as possible, while keep coarse meshes
in other regions. In most cases, we want to control the level adaptivity with an error toleranceε.
For this purpose, we use an error function (Equation 5) whichapproximates the difference between
isosurfaces defined from two neighboring levels. Large geometric change of surfaces is considered
as features. The error is measured as large in a region which contains important features, therefore
the features are not easily lost during the process of adaptive simplification. Similar error metric is
used in [28]. The details of the difference approximation can be found in [59].

f(x)

x
x1 (x1+x2)/2 x2

u
v

Fig. 12. Sampling points for the feature sensitive error function (Left - Level (i); Middle - Level (i+1).)
and the isosurface error calculation in 1D (Right). In the right picture, thered curve represents the trilinear
function in Level (i) (it becomes to a straight line in 1D), and the green straight line represents the tangent
line of the trilinear function at the middle point.

In Figure 12, the left picture shows eight red vertices for resolution level (i), and the right picture
shows twelve green edge middle points, six blue face middle points and one yellow center point
besides those eight red vertices for level (i+1). For level (i), the eight red vertices’ function values
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are given, and a trilinear function is defined in Equation (4), from which the function values of
12 edge middle points (green), 6 face middle points (blue) and 1 center point (yellow) can be
obtained. For level (i+1), the function values of all vertices and all middle points are given. We
want to estimate the difference of the isosurface between the two neighboring levels.

f i(x,y,z)= f000(1−x)(1−y)(1−z)+ f001(1−x)(1−y)z
+ f010(1−x)y(1−z)+ f011(1−x)yz (4)
+ f100x(1−y)(1−z)+ f101x(1−y)z
+ f110xy(1−z)+ f111xyz

Error =∑ | f i+1− f i|

|∇ f i|
(5)

The error function is defined in Equation (5). The right picture of Figure 12 shows the calculation
of the isosurface errorU at the green middle point in 1D. The blue line segmentV represents the
difference of the function values at the middle point, orV = | f i+1− f i|. The isosurface errorU can
be computed byU = V/k, wherek is the slope of the green tangent line. In higher dimensions,the
slopek becomes the magnitude of the gradient. In Equation (5), we only need to sum the isosurface
error over all the middle points, including edge middle points, face middle points and the center
point, since the function values at the eight vertices are the same for the two neighboring levels.

Fig. 13. (a) , (b) : Tetrahedral meshes of (a) fandisk and (b) mechanical part. Note that sharp edges and
corners are accurately reconstructed ; (c) , (d) : the comparison of QEF ((c), 2952 triangles) and the feature
sensitive error function ((d), 2734 triangles). The facial features are better refined in (d).

We still use QEF to calculate minimizer points, which are connected to approximate the isosur-
faces, so we can also preserve sharp edges and corners as shown in Figure 13 (a) and (b). QEF and
the error function in Equation (5) are compared in controlling the level adaptivity for the human
head model (Figure 13, (c) and (d)), and Equation (5) yields more sensitive adaptivity for facial
features, like the areas of nose, eyes, mouth and ears. The feature sensitive adaptivity is important
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for finite element meshes to identify and preserve necessarygeometric and topological properties
of the object while minimizing the number of elements.

7 Quality Improvement

Poorly shaped elements influence the convergence and stability of the numerical solutions. Since
the extracted meshes may have such undesirable elements, weneed an additional step for mesh
quality improvement. First we need to define criteria to measure the mesh quality. Various func-
tions have been chosen to measure the quality of a mesh element. For example, Freitag [21] defined
poor quality tetrahedra using dihedral angles. George [25]chose the ratio of the element diameter
such as the longest edge over the in-radius. We use the edge-ratio, the Joe-Liu parameter [34], and
a minimum volume bound. These quality metrics are used to detect slivers and sharp elements
which need to be removed. With these measures, the mesh quality can be judged by observing the
worst element quality, and the distribution of elements in terms of their quality values.

• Edge-ratio: The edge-ratio of a tetrahedron is the ratio of the longest edge length over the
shortest edge length.

• Joe-Liu parameter: Let |s| denote the volume (which may be negative) of a givend-simplex
‘s’, vi(i = 0, ...,d) denote the vertices ofs, andei j denote the edges ofs that connectvi to v j . We
compute the Joe-Liu parameter of ad-simplexsas:

F(s,d) =
f (s,d)

g(s,d)
=

22(1− 1
d )×3

d−1
2 ×|s|

2
d

∑0≤i< j≤3 |ei j |2
(6)

For tetrahedral meshes,d is set to be 3.F(s,3) is normalized to yield maximal value of 1 for
the unit tetrahedron (with volume 1/6).

• Minimum volume bound: Calculate the volume for each tetrahedron and find the minimum
volume of the extracted mesh. This volume parameter needs tobe improved if the minimum
volume is less than a threshold (e.g. 10−4).

Fig. 14. A special case for the edge-contraction method. Left - the original mesh, the red edge is to be
contracted; Middle - the red edge is contracted; Right - the additional triangles are removed.

We perform iterative edge contractions to improve the worstedge-ratio. For each iteration, we
remove the tetrahedron with the maximum edge-ratio by contracting the shortest edge. We keep
removing the tetrahedron with the maximum edge-ratio untilthe maximum edge-ratio is below the
given threshold. During the edge contraction, we merge an interior vertex to a boundary vertex,
an interior vertex to another interior vertex, or a boundaryvertex to another boundary vertex. A
special case may occur when we contract edges as shown in Figure 14, where two blue triangles
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(left picture) degenerate into the same triangle, and whichshould also be removed from the mesh.
The special case can be detected by checking the number of elements sharing the same edge (2D)
or face (3D). If there are more than two elements sharing the same edge/face, then the special
case occurs. This can also be removed by contracting one shared edge. If edge contraction is not
enough to arrive the threshold, then the longest edge bisection method is used to continue reducing
the largest edge-ratio. But the number of vertices and the number of elements will increase.

In the mesh extraction process, a pyramid/diamond may be generated when we analyze the sign
change edge/the interior edge in boundary cells. There are two or three ways to decompose a
pyramid/diamond into tetrahedra, we compare the worst Joe-Liu parameters for different splitting
ways and choose the better one. This process is executed whenwe extract meshes, therefore our
mesh generation method tends to produce meshes with good overall quality.

Finally smoothing techniques are used to improve the Joe-Liu parameter and the minimum vol-
ume. The simplest discretization of the Laplacian operatorfor an interior node is the average of
all its neighbors. The new position of a boundary vertex is the average of all its boundary neigh-
bors derived from the discretized Laplace-Beltrami operator [39] [67]. Laplacian smoothing is an
efficient heuristic, but it is possible to produce an invalidmesh containing inverted elements or
elements with negative volume. We choose a ‘smart’ Laplacian smoothing [21], which relocates
the point only if the quality of the local mesh is improved.

Fig. 15. The histogram of edge-ratios (left) and Joe-Liu parameters (right) for mAChE and the human heart.
The number of tetrahedra at edge-ratio 40.0 represents the number of allthe elements, whose edge-ratios
are greater than 40.0.

The histogram of edge-ratios and Joe-Liu paramters (Figure15) shows the overall quality of ex-
tracted tetrahedral meshes for a biomolecule mAChE (Figure 18) and the heart model (Figure 19).
By comparing the two quality metrics before and after applying techniques of quality improve-
ment, we can see the worst parameters are improved significantly. Figure 16 shows the improve-
ment of the worst values of the edge-ratio, the Joe-Liu parameter and the minimum volume.
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Vertex Tetra Edge-ratio Joe-Liu Volume

Number Number (best, worst) (best, worst) (minimal, maximal)

mAChEb 124180 670642 (1.03, 1.19×104) (1.0, 6.24×10−4) (2.43×10−7, 9.40×106)

mAChEa 121670 656823 (1.03, 8.5) (1.0, 1.73×10−2) (1.40×10−4, 9.40×106)

Heartb 140425 689020 (1.02, 1.20×105) (1.0, 1.23×10−4) (4.88×10−8, 2.56×102)

Hearta 138072 676494 (1.02, 8.5) (1.0, 1.99×10−2) (4.39×10−4, 4.31×102)

Fig. 16. The comparison of the three quality criteria (the edge-ratio, the Joe-Liu parameter and the minimal
volume) before/after the quality improvement for mAChE and the human heart model. DATAb – before
quality improvement; DATAa – after quality improvement.

8 Results and Applications

We have developed an interactive program for 3D mesh extraction and rendering from volume
data. In the program, error tolerances and isovalues can be changed interactively. Our results were
computed on a PC equipped with a Pentium III 800 MHz processorand 1 GB main memory.

Our algorithm has been used to generate tetrahedral meshes for a molecular dataset (mAChE) and
the human heart model in two projects. We also tested our algorithm on volumetric data from
CT scans, theUNC Human HeadandPoly (heart valve), and signed distance volumes generated
from the polygonal surfaces of a human head and a knee. Figure17, 18, 19, 1, 20, 21 and 22
provide information about datasets and test results. The results consist of the number of tetrahedra,
extraction time, and corresponding images with respect to different isovalues and error tolerances.
As a preprocessing, we calculate min/max values for each octree cell to visit only cells contributing
to mesh extraction and to compute QEF values only in those cells at run time. Extraction time in the
table includes octree traversal, QEF computation and actual mesh extraction, given isovalues and
error tolerance values for inner and outer surfaces as run time parameters. If we fix isovalues, and
change error tolerance interactively, the computed QEF is reused and thus the whole extraction
process is accelerated. The results show that the mesh extraction time scales linearly with the
number of elements in the extracted mesh.

Figure 18 shows the extracted adaptive tetrahedral mesh of mAChE, which has been used as the
geometric model in solving the steady-state Smoluchowski equation to calculate ligand binding
rate constants using the finite element method (FEM) [58] [57]. The most important part in the
geometric structure of mAChE is the cavity, where fine meshes are required. We first find the
position of the cavity, then control the adaptivity according to it. The area of the cavity is kept the
finest level, while coarser meshes are obtained everywhere else. After improving the mesh quality,
convergent results have been obtained in the finite element calculation, and they match with some
experimental results well.

A good geometric model of the human heart is important for thesimulation of the human cardio-
vascular system, which is very useful for the predictive medicine applications in cardiovascular

20



Dataset Type Size Number of Tetrahedra (Extraction Time (unit : ms) )

(a) (b) (c) (d)

mAChE Given 2573 670642 (10891) – – –

Heart SDF 2573 689020 (11110) – – –

Skin CT 1293 935124 (17406) 545269 (10468) – –

Skull CT 1293 – – 579834 (10203) 166271 (3063)

Poly CT 2573 – 276388 (5640) 63325 (1672) 14204 (672)

Head SDF 653 143912 (2547) 76218 (1391) 40913 (766) 10696 (203)

Knee SDF 653 70768 (1360) 94586 (1782) 93330 (1750) 72366 (1406)

Fig. 17. Datasets and Test Results. The CT data sets are re-sampled to fit into the octree representation.
Rendering results for each case is shown in Figure 18, 19, 1, 20, 21 and 22. the Skull and Skin isosurfaces
are extracted from the UNC Head model.

Fig. 18. mAChE – (a): the isosurface at 0.5 from the accessibility function;(b): the wire frame of the isosur-
face and an outer sphere; (c): a zoomed-in picture to show the refined cavity; (d): the adaptive tetrahedral
mesh of the volume between the isosurface and an outer sphere. The coloron the isosurface represents the
distribution of the potential function, the color map is: (-∞, -0.5) - red; [-0.5, 0.5] - white; (0.5, +∞) - blue.
Note the region around the cavity has fine meshes, while other areas have relatively coarse meshes.

surgery. To extract 3D meshes from the surface heart model provided by New York University, we
computed the signed distance function from the surface dataand performed the mesh extraction
(Figure 19). An adaptive and quality tetrahedral mesh is extracted with correct topology and fea-
ture sensitive adaptation. Meshes are refined in the areas ofheart valves, while coarse meshes are
kept for other regions.

Figure 20 and 21 show the resulting tetrahedral meshes extracted from two signed distance func-
tion data with the size of 653. The results from CT data are shown in Figure 1 (skull, skin) and 22
(heart valve). The number of elements in the extracted mesh is controlled by changing error tol-
erance. It is clear that adaptive tetrahedral meshes are extracted from the interval volume, and
facial features are identified sensitively and preserved (Figure 20). In Figure 21, the sequence of
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Fig. 19. Heart (SDF) – (a): the triangular surface of a human heart withvalves ( data courtesy from New
York University (NYU) ); (b): The tetrahedral mesh extracted from SDF of the heart surface. The smooth
surface and the wire frame on the mesh is rendered; (c): the wire frame ofthe extracted heart model. Note
that the region of heart valves are refined; (d): Cross-section of theadaptive tetrahedral mesh.

images are generated by changing the isovalue of the inner isosurface. The topology of the inner
isosurface can change arbitrarily.

9 Conclusion

We have presented an algorithm to extract adaptive and quality 3D meshes directly from volu-
metric imaging data. By extending the dual contouring methoddescribed in [30], our method can
generate 3D meshes with good properties such as no hanging nodes, sharp feature preservation
and good aspect ratio. Using an error metric which is normalized by the function gradient, the
resolution of the extracted mesh is adapted to the features sensitively. The resulting meshes are
useful for efficient and accurate finite element calculations.
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Fig. 20. Head (SDF) – Isovaluesαin = -9,17464,αout = 0.0001; error tolerancesεin = 1.7, εout are listed
below each picture.

Fig. 21. Knee (SDF) – Error tolerancesεin = εout = 0.0001; isovaluesαout = -0.02838,αin are listed below
each picture.

Fig. 22. Heart Valve (Poly) – Isovaluesαin = 1000.0,αout = 75.0; error tolerancesεin = 0.0001,εout are
listed below each picture.
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