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Abstract

This paper describes an algorithm to extract adaptive and quality 3D méshetly from volumetric imag-
ing data. The extracted tetrahedral and hexahedral meshes arevelyarsed in the Finite Element Method
(FEM). A top-down octree subdivision coupled with the dual contourinthogtis used to rapidly extract
adaptive 3D finite element meshes with correct topology from volumetric imadgtag The edge con-
traction and smoothing methods are used to improve the mesh quality. The maibutantris extending
the dual contouring method to crack-free interval volume 3D meshing witlhirfeaensitive adaptation.
Compared to other tetrahedral extraction methods from imaging data, ourdrgetherates adaptive and
quality 3D meshes without introducing any hanging nodes. The algorithrodessuccessfully applied to
constructing the geometric model of a biomolecule in finite element calculations.

Key words: adaptive and quality mesh, correct topology, feature sensitive adagptiasinging node.

1 Introduction

The development of finite element simulations in medicineletular biology and engineering
has increased the need for quality finite element meshekouddih there has been tremendous
progresses in the area of surface reconstruction and 3D efjgommodelling, it still remains a
challenging process to generate 3D meshes directly frongimgadata, such as Computed To-
mography (CT), Magnetic Resonance Imaging (MRI) and Signethbee Function (SDF). The
imaging data/ is given in the form of sampled function values on rectilingads,V = {F (i, j,k)

|1, j,kare indices ok, y, zcoordinates in a rectilinear grid.We assume a continuous functibns
constructed through the trilinear interpolation of sardplalues for each cubic cell in the volume.

For accurate and efficient finite element calculations, iinigortant to have adaptive and quality
geometric models with minimal number of elements. The sidibject may have complicated
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volume rendering

Fig. 1. Adaptive tetrahedral meshes are extracted from a CT-scamheaietric data(UNC Head). De-
pending on the selected isovalues, different meshes of a skin and askabnstructed. The number of
tetrahedra can be controlled by choosing a user specified error tdeftatt - (b) 935124, (c) 545269, (d)
579834, (e) 166271). Note that the extracted mesh has no crack dnahgimg node.

topology. Figure 21 shows an interval volume between twsusgaces from the SDF volumetric
data of a knee. The two surfaces have the same topology ime~&fi(d), while the topology of
the inner surface may be different from the topology of theepane (Figure 21(b)). In this paper,
we present a comprehensive approach to extract tetratettdiexahedral meshes directly from
imaging data.

F(©)={x¥2) :Fxy2=c} (1)
IF(GLGZ) = {<X7y7 Z) S0 < F(Xayv Z) < GZ} (2)

Given volumetric imaging datay; anda, (a; < 02) represent two isovalues, each of which
defines a boundary isosurface (Equation (1)) of an intertainae (Equation (2)). The main steps
to extract tetrahedral/hexahedral meshes for the intenlaime, g, between the two isosurfaces
are as follows:

(1) Preprocessing — volumetric denoising and isovaluectele
(2) Adaptive 3D meshing with correct topology and featuresprvation.
(3) Quality improvement

Noise often exists in imaging data, especially in CT and MRad&he bilateral prefiltering cou-
pled with anisotropic diffusion methods [5] is applied tomsth the volumetric data. Accurate
gradient estimation can also be obtained. The Contour Spedt] provides quantitative metrics
of a volume to help us select two suitable isovalues for therval volume. If the imaging data
has no noise (for example, SDF data) and two isovalues aea givdefine the interval volume,
the preprocessing step can be skipped.

We extend the idea of dual contouring to interval volumeateddralization and hexahedralization
from volumetric Hermite data (position and normal inforiroa). Dual Contouring [30] analyzes
those edges that have endpoints lying on different siddseokbsurface, callesign change edge
Each sign change edge is shared by four (uniform case) oe (adaptive case) cells, and one
minimizer is calculated for each of them by minimizing a gfded Quadratic Error Function



(QEF) [24]. The QEF is defined as follows:

QEF[Y = (- (x— pi)) 3)

wherep;, nj represent the position and unit normal vectors of the ietgisn point respectively.
For each sign change edge, a quad or a triangle is constiagthnecting the minimizers. These
guads and triangles provide an approximation of the isaserf

Each sign change edge belongs to a boundary cell. We presgsteamatic way to tetrahedralize
the volume in the boundary cell. For uniform grids, it is e&syleal with the interior cells. We
only need to decompose each cell into five tetrahedra. Thatimdaase is more complicated. In
order to avoid introducing hanging nodes, which are syriptbhibited in finite element meshes,
we design an algorithm to tetrahedralize the interior cepjehding on the resolution levels of all
its neighbors. Figure 1 shows an example of adaptive tedrahmeshes extracted from a scanned
CT data. As a byproduct, the uniform hexahedral mesh extraetgorithm is simpler. We analyze
each interior vertex (a grid point inside the interval vok)mvhich is shared by eight cells. One
minimizer is calculated for each of them, and those eighimiirers construct a hexahedron.

Reconstructing a mesh with correct topology is importantdocurate finite element calcula-
tions. We guarantee the resulting 3D mesh is topologicallywvalent to the real interval volume
Ir(a1,02). The topology of the 3D mesh is preserved during the simplifim process. Unlike
the dual contouring method [30], we use a different errocfiom based on the function differ-
ence normalized by gradients. The function approximatestiximum difference between coarse
and fine level isosurfaces to decide the level of adapti\dging this error measurement and a user
specified error tolerance, we can identify octree cells pfapriate levels which satisfy the thresh-
old criteria. The result shows the error function we usedgétature-sensitive adaptation as shown
in Figure 13 (d). Since we still use QEF for computing minimgvertices, we can also preserve
sharp edges and corners.

The tetrahedral meshes extracted from volume data can nosdxt for finite element calcula-
tions directly, since some elements may have bad quality.eldge-ratio and Joe-Liu parameter
are chosen to measure the mesh quality. The edge contracétmd removes tetrahedra with
bad edge-ratios, and the smoothing method improves the mesdity measured by the Joe-Liu
parameters. We applied our algorithm to extracting a tettedd mesh from the accessibility func-
tion of a mouse acetylcholinesterase (MAChE) biomolecuie.@xtracted meshes have been used
for efficient and correct finite element calculation of awiiion problem [58] [57].

The remainder of this paper is organized as the followingtiBe 2 summarizes the related work
on quality 3D mesh generation; Section 3 reviews the pregasing step. Section 4 explains the
detailed algorithm for extracting tetrahedral/hexaherakhes from the interval volume; Section
5 describes a subdivision method for preserving correailtmy in the reconstructed mesh; Sec-
tion 6 talks about the feature sensitive error functionti®ad discusses the mesh quality improve-
ment. Section 8 shows some results and applications. THes&nofon presents our conclusion.



2 Previous Work

Isosurface Extraction In most cases, an isosurface is extracted in the form of pieedlinear
approximation for the modeling and rendering purpose. Thecking Cubes algorithm (MC) [38]
visits each cell in a volume and performs local triangulatiased on the sign configuration of the
eight vertices. To avoid visiting unnecessary cells, are¢éd algorithms [65] [3] minimizing the
time to search for contributing cells are developed. Theusaces of a function defined by the
trilinear interpolation inside a cubic cell may have a cacgied shape and topology which cannot
be reconstructed correctly using MC. The function valuesoéfand body saddles in the cell can
be used to decide the correct topology and consistent trlatign of an isosurface in the cell [42].
Lopes and Brodlie [37] provided a more accurate triangutatio

Main drawbacks of MC and its variants are (i) the producedmmeaniform, (ii) badly shaped tri-
angles are generated. and (iii) sharp features in the datachapreserved. An adaptive isosurface
can be generated by triangulating cells with different lev&/hen the adjacent cubes have differ-
ent resolution levels, the cracking problem will happenk&ep the face compatibility, the gravity
center of the coarser triangle is inserted, and a fan ofglemnare used to approximate the isosur-
face [64]. The chain-gang algorithm [32] was presenteddosurface rendering of super adaptive
resolution (SAR) and resolves discontinuities in SAR dats. $&ogressive multiresolution repre-
sentation and recursive subdivision are combined effelgtiand isosurfaces are constructed and
smoothed by applying the edge bisection method [45]. A sernfegave-front propagation technique
[66] is used to generate multiresolution meshes with gopéagatio.

The enhanced distance field representation and the extén@ealgorithm [31] can detect and
reconstruct sharp features in the isosurface. By combinuma&eNets [27] and the extended
Marching Cubes algorithm [31], octree based Dual Contour@®} ¢an generate adaptive isosur-
faces with good aspect ratio and preservation of sharpresté&lements in the extracted mesh
often have bad aspect ratio. These elements can not be uskditioelement calculations. The
grid snapping method reduces the number of elements in amépyated isosurface and also im-
proves the aspect ratio of the elements [41]. [7] studied toogenerate triangular meshes with
bounded aspect ratios from a planar point set. [40] propasealgorithm, called QMG, to trian-
gulate ad-dimensional region with a bounded aspect ratio.

Tetrahedral Mesh GenerationOctree based, advancing front based and Delaunay likeitpes
were used for tetrahedral mesh generation. The octreeitpehrecursively subdivides the cube
containing the geometric model until the desired resotusaeached [51]. Advancing front meth-
ods start from a boundary and move a front from the boundavgrds empty space within the
domain [36] [22] [50]. The Delaunay criterion is called ‘etygphere’, which means that no node
is contained within the circumsphere of any tetrahedra efrttesh. Delaunay refinement is to
refine the triangles or tetrahedra locally by inserting n@des to maintain the Delaunay crite-
rion. Different approaches to define new nodes were studief$2] [14]. Sliver exudation [15]
was used to eliminate those slivers. A deterministic atgori[14] was presented for generating a
weighted Delaunay mesh with no poor quality tetrahedraigiag slivers. Shewchuk [53] solved
the problem of enforcing boundary conformity by constrdiBelaunay triangulation (CDT). De-



launay refinement [52], edge removal and multi-face remopéimization algorithm [54] were
used to improve the tetrahedral quality. Shewchuk [55] pl@d some valuable conclusions on
guality measures for finite element method.

MC was extended to extract tetrahedral meshes betweendsuarfaces directly from volume data
[23]. A Branch-on-Need octree was used as an auxiliary datatste to accelerate the extraction
process . A different algorithm, Marching Tetrahedra (MWgs proposed for interval volume

tetrahedralization [43]. A multiresolution framework [68as generated by combining recursive
subdivision and edge-bisection methods. Since many 3Dctshgge sampled in terms of slices,
Bajaj et. al introduced an approach to construct triangulefase meshes from the slice data [1],
and tetrahedralize the solid region bounded by planar costand the surface mesh [2].

Hexahedral Mesh GenerationEppstein [18] started from a tetrahedral mesh to decompade e
tetrahedron into four hexahedra. Although this methodds/onany difficulties, it increases the
number of elements. There are four distinct methods forruastred all-hex mesh generation:
grid-based, medial surface, plastering and whisker wgavihe grid-based approach generates
a fitted 3D grid of hex elements on the interior of the volum@] [49]. Medial surface methods
involve an initial decomposition of the volume [46] [47]aBtering places elements on boundaries
first and advances towards the center of the volume [10] [8]isWén weaving first construct the
spatial twist continuum (STC) or dual of the hex mesh, therhtheelements can be fitted into the
volume using the STC as a guide [60].

Quality Improvement Algorithms for mesh improvement can be classified into tluaegories
[61] [44]: local coarsening/refinement by inserting/delgtpoints, local remeshing by face/edge
swapping and mesh smoothing by relocating vertices.

Laplacian smoothing, in its simplest form, relocates thexeposition at the average of the nodes
connecting to it. This method generally works quite wellfioeshes in convex regions. However,
it can result in distorted or even inverted elements neacaaties in the mesh. [26] weighted the
contribution of each neighboring node in the average fonctj19] constrained the node move-
ment in order to avoid the creation of invert elements. [38¢ktized the Laplacian operator us-
ing Voronoi cells and the mixed Finite Element/Finite Volemethod. The discretized format was
used to solve surface modelling problems using the finiferdihce method [67]. [33] and [29] de-
veloped methods to extend to anisotropic meshes. Insteatbehting vertices based on a heuris-
tic algorithm, people searched a optimization techniguefove the mesh quality. The optimiza-
tion algorithm measures the quality of the surrounding elets1to a node and attempts to opti-
mize it. The algorithm is similar to a minimax technique usedolve circuit design problem [13].
The optimization-based smoothing yields better resultsewhis more expensive than Laplacian
smoothing. Therefore, [11] [21] [20] recommended a comibinaplacian/optimization-based ap-
proach, which uses Laplacian smoothing when possible aydisas optimization-based smooth-
ing when necessary. Physically-based simulations are tosegbosition nodes [35]. Anisotropic
meshes are obtained from bubble equilibrium [56] [9].



3 Preprocessing

Since noise in imaging data influences the accuracy of thaaed meshes, it is important to
remove it before the mesh extraction process. The isotmifficsion method can remove noise,
but blurs features such as edges and corners. In order terpeefeatures during the process
of noise smoothing, anisotropic diffusion [63] was progbsg introducing a diffusion tensor.

Generally, a Gaussian filter is used to calculate the aoigmtdiffusion tensor before smoothing,
but it also blurs features. Bilateral filtering [62], whichasonlinear filter combining domain and
range filtering, was introduced to solve this problem. Atrigpic diffusion can be used for fairing

out noise in both surface meshes and functions defined orutfecs [6] [17]. Here we use the

anisotropic diffusion method [5] to smooth noise. In ordeiobtain more accurate computation
of curvature and gradient for anisotropic diffusion tensloe bilateral prefiltering combining the

domain and range filtering together is chosen instead of €&kaultering.

Fig. 2. The contour spectrum of the UNC human head

Mesh extraction from imaging data requires the selectiudfble boundary isosurfaces. We use
a user interface called Contour Spectrum [4] to find signiticgzsurfaces. The Contour Spectrum
computes quantitative properties such as surface araaneolnd gradient integral of contours in
real time, and helps to choose suitable isosurfaces by slgawe related spectrum in a 2D plane.
For instance, we can obtain isosurfaces of a skin and a gkulTi scanned human head data
(Figure 2) by taking isovalues with the local maximum of tlmadjent integral. In the case of the
interval volume, the topology of inner and outer isosurfacey need to be controlled depending
on the application. A contour tree [12] can be used to capghe¢opological information on each
isosurface and help choose isosurfaces with desirabldogypd-or example, we can choose the
inner and outer isosurfaces with exactly the same topolgggpking isovalues lying on the same
edges in a contour tree.



4 3D Mesh Extraction

In this section, our goal is to tetrahedralize or hexah&#ahe interval volume between two
isosurfaces by using an octree-based data structure. Walzes detail how to extract adaptive
tetrahedral meshes from volume data. First, we discussithmgulation in 2D problems, then we
extend it to 3D tetrahedralization. A hexahedral mesh gaiwar algorithm is presented at the end
of this section. Here are definitions used in the algorithscdption:

Sign Change Edge:A sign change edge is an edge whose one vertex lies insidentieal
volume (we call it the interior vertex of this sign change €davhile the other vertex lies outside.

Interior Edge in Boundary Cell: In a boundary cell, those edges with both vertices lyingdiasi
the interval volume are called interior edges.

Interior Face in Boundary Cell: In the boundary cell, those faces with all four vertices dyin
inside the interval volume are called interior faces.

Interior Cell: Different from the boundary cell, all the eight vertices ofiaterior cell lie interior
to the interval volume.

4.1 Uniform Tetrahedral Mesh Extraction

For isosurface extraction, we only need to analyze boundelly — those cells that contain sign
change edges, or those cells that contain the isosurfaeee @he four neighbor cubes which share
the same sign change edge. Dual Contouring generates omaahugrtex for each neighbor cube
by minimizing the QEF, then connects them to generate a @gadarching all the sign change
edges, the isosurface is obtained. For tetrahedral mesdcagn, cells inside the interval volume
should also be analyzed besides the boundary cells.

Fig. 3. Uniform triangulation - the red curve represents the isocontoegngpoints represent minimizers.



4.1.1 Uniform 2D Triangulation

Figure 3 is a uniform triangulation example of the area iotdp the isocontour in two dimensions.
There are three different cases which need to be dealt withrately.

(1) Sign change edge — find the minimizers of the two cells tvisitare the edge, then the two
minimizers and the interior vertex of the edge constructaatye (blue triangles).

(2) Interior edge in boundary cell — find the QEF minimizeriué boundary cell, then the mini-
mizer and this interior edge construct a triangle (yellaartgles).

(3) Interior cell — decompose each interior cell into twangles (pink triangles).

Fig. 4. The case table of uniform tetrahedralization - the red vertex meéias ihterior to the interval
volume, otherwise, it is outside. Green points represent minimizers. (ajgnaksange edge; (b)(c) - an
interior edge in a boundary cell; (d)(e)(f) - an interior face in a bomndell; (g)(h) - an interior cell.

4.1.2 Uniform 3D Tetrahedralization

Compared to 2D triangulation, three dimensional tetraHedeshing is more complicated. Figure
4 shows the case table of uniform tetrahedralization.

(1) Sign change edge —decompose the quad into two trianigseach triangle and the interior
vertex of this edge construct a tetrahedron. In Figure 4f&)red line represents the sign
change edge, and two blue tetrahedra are constructed.
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Fig. 5. A two dimensional example of cell subdivision for enforcing eaghto have at most one boundary
isocontour. When two boundary isocontours pass through the same eadklthis recursively subdivided
until each sub-cell contains at most one minimizer.

(2) Interior edge in boundary cell — find the QEF minimizersheff boundary cell and its bound-
ary neighbor cells, then two adjacent minimizers and trexiot edge construct a tetrahedron.
In Figure 4(b)(c), the red cube edge represents the intedige. (b) shows four minimizers to
construct four edges, each of which construct a tetraheditbnthe interior edge, so totally
four tetrahedra are constructed. While (c) assumes thealelMihis boundary cell is interior
to the interval volume, so there is no minimizer for it. THere we obtain three minimizers,
and only two tetrahedra are constructed.

(3) Interior face in boundary cell —find the QEF minimizer lo¢ tooundary cell, then the interior
face and the minimizer construct a pyramid, which can be mgosed into two tetrahedra
(Figure 4(f)). Figure 4(d)(e)(f) show a sequence of how toagate tetrahedra when there
is only one interior face in the boundary cell. (d) analyzas fsign change edges, (e) deals
with four interior edges and (f) fills the gap.

(4) Interior cell—decompose the interior cube into fivegb&dra. There are two different decom-
position ways (Figure 4(g)(h)). For two adjacent cells, wease a different decomposition
method to avoid the diagonal choosing conflict problem.

Our meshing algorithm assumes that there is only one mieingaint in a cell. This means two
different boundary isosurfaces of an interval volume carpass through the same cell. Therefore,
we enforce every cell to have at most one boundary isosulfafm@e actual meshing of cells. If
a cell contains two boundary isosurfaces, we recursivebdiside the cell into eight identical
sub-cells until each sub-cell contains at most one boundasurface as shown in Figure 5. The
detailed subdivision algorithm is described in Section 5.

4.2 Adaptive Tetrahedral Mesh Extraction

Uniform tetrahedralization usually generates an overgadmesh. Adaptive tetrahedral meshing
is an effective way to minimize the number of elements whiksprving the accuracy requirement.
First, we split the volume data by using the octree data &tredo obtain denser cells along the
boundary, and coarser cells inside the interval volumeufeiy). The QEF value is calculated
for each octree cell. When the error toleralas selected, the octree is traversed in a bottom-up
manner to obtain the cells which satisfy the error toleraegairement. We call this set of cells to



be leaf cells of the octree assuming we pruned unnecessdegifimm the tree.

Each leaf cell may have neighbors at different levels. Anecdga leaf cell may be divided into
several edges in its neighbor cells. Therefore it is imprta decide which edge should be an-
alyzed. The Dual Contouring method provides a good rule tlmol we always choose the
minimal edge. Minimal edges are those edges of leaf cubésithaot properly contain an edge
of a neighboring leaf.

Similar to uniform tetrahedral mesh extraction, we needralyze the sign change edge, the
interior edge/face in the boundary cell, and the interidt. &%&hen we analyze boundary cells,

only minimal edges/faces are analyzed. Compared to therumidase, the only difference is how

to decompose interior cells into tetrahedra without haggiodes.

Hanging Node:a hanging node is one that is attached to the corner of onmegteidout does not
attach to the corners of the adjacent triangles. Geneealignging node is a point that is a vertex
for some elements (e.g., triangle, quad, tetra, hexa),thsitiot for its other neighbor elements
that share it. It lies on one edge or one face of its neighlborgxample, a T-Vertex.

() (b) /'//’ ‘\\\\»
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Fig. 6. Hanging node removal - the red point is a hanging node. (a)erfeX, (b) - merging two triangles;
(c) - splitting method. (d) and (e) show an example of hanging node rerhgvattriangulating the interior
cell (pink). The red curve is the real isocontour, and green pointmarienizer points for boundary cells.
(d) - the triangulation of the interior cell without considering the hangingen¢e) - the re-triangulation of
the interior cell to remove the hanging node.

Figure 6 shows two methods to remove hanging nodes - sgligid merging. In the T-Vertex
example (Figure 6a), there is a hanging node (red point)y @ right two triangles (Number
2 and 3) need to be modified if we use the merging method (Figb)yewhile only the left one
(Number 1) needs to be modified if we intend to split the mesgufie 6¢). In order to maintain
the accuracy, we adopt the splitting method in our algorithm

Lemma: Only the interior cell needs to be modified if the spliting method is adopted.
Proof: All the leaf cells can be divided into two groups: the bouydzell and the interior cell.

(1) Interior cell — Since its neighbor cells may have highe=alution levels, hanging nodes are
unavoidable. In Figure 6d, there is a hanging node if we gudette the interior cell as in the
uniform case. Figure 6e shows a re-triangulating methodntowre the hanging node.

(2) Boundary cell — There are two rules for the sign change @agethe interior edge/face in
boundary cells. The two rules guarantee that no hangingshoeed to be removed for the
boundary cell if only the splitting method is chosen.
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e Minimal Edge/Face Rule - only minimal edges/faces are choBeis rule keeps the ana-
lyzed edges/faces owning the highest resolution level @vatpwith their neighbors.
¢ Only one minimizer is generated for each leaf cell.

4.2.1 Adaptive 2D Triangulation
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Fig. 7. Left: adaptive triangulation. The red curve represents ther$ogn green points represent minimiz-
ers. Right: The case table for decomposing the interior cell into triangles.iB@fpose the resolution level
of this cell isk, and middle points appear on the shared edges if its neighbors have leig¢hank. Red
points and red lines mean its neighbors have lexel 1); green points and green lines mean its neighbors
have higher level thark(& 1). The case table can be easily generalized to any other adaptive cases

Figure 7(left) shows an example of how to triangulate theriot area of an isocontour. Similarly,
we need to analyze the following three problems:

(1) Sign change edge - if the edge is minimal, deal with it aséruniform case (blue triangles).

(2) Interior edge in the boundary cell — if the edge is minindalal with it as in the uniform case
(yellow triangles).

(3) Interior cell — Figure 7(Right) lists all the main caseshofv to decompose an interior cell
into triangles. The case table can be easily generalizedyt@ther adaptive cases. In order
to obtain triangles with good aspect ratio, we restrict taghboring level difference to be
<2.

Compared to the uniform case, the triangulation of interalsas more complicated. All neigh-
bors of an interior cell need to be checked because the naiglells are used to decide if there are
any middle points on the shared edge. Suppose the resolewielof this cell isk. We group into
five cases according to the number of edges whose level itegtbark. Theit" group means there
are number edges whose level is greater thranwherei = 0,...,4. For each subdivided edge, it
may be subdivided more than once, or the neighbor cell mag higher level than+ 1). So we
need to search all the middle points on this edge by lookitigeatesolution levels of the neighbor
cells. Figure 7(right) lists all the main cases of how to depose the interior cell into triangles
according to its neighbors’ resolution levels. If all theifedges have already been subdivided,
then we can use the recursive method to march each of theudbwredls with the same algorithm.
In this way, hanging nodes are removed effectively.
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Fig. 8. The case table for decomposing the interior cell into tetrahedrathberighboring level difference
is one — in (a~ e), the left picture shows the triangulation format of one face accordifggiare 7; the
right one shows how to decompose the cell into tetrahedra without hangafesn(a) - one subdivided
edge; (b)(c) - two subdivided edges; (d) - three subdivided edggs four subdivided edges. Any other
adaptive cases are easily generalized using the case table in Figure 7.

4.2.2 Adaptive 3D Tetrahedralization

For three dimensional adaptive tetrahedralization, wethseimilar algorithm with the uniform
case when we deal with the boundary cell.

(1) Sign change edge — if the edge is minimal, deal with it abénuniform case.

(2) Interior edge in the boundary cell —if the edge is minindalal with it as in the uniform case.

(3) Interior face in the boundary cell — identify all the middoints on the four edges, and
decompose the face into triangles by applying the same idigomas in the adaptive 2D
case, then calculate the minimizer of this cell, each ti@agd this minimizer construct a
tetrahedron.

(4) Interior cell — decompose each face of the cube intogies) just as how to deal with the in-
terior cell for the adaptive 2D triangulation (Figure 7{iy), then insert a Steiner point at the
cell center. Each triangle and the Steiner point constrtetrahedron. Figure 8 shows how to
construct tetrahedra when the neighboring level diffeeeismne. Sometimes pyramids are
constructed. In order to avoid the diagonal choosing cdnfie decide which diagonal is
chosen to decompose one pyramid into two tetrahedra aogptaithe odd-even property of
the cell index.
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By using the above algorithm, we extract tetrahedral mesio@s ¥olumetric imaging data suc-
cessfully. Figure 9 (a) and (b) show the tetrahedral mesheohtiman head model extracted from
65° volumetric data. The volume inside the skin isosurfacetisbedralized.

(b)

Fig. 9. Tetrahedral/lhexahedral meshes of the human head model -d(élp)ashow adaptive tetrahedral
meshes, (c) and (d) show the hexahedral meshes. (a): the tetlaaidima of the volume inside the head,;
(b): a cross section of (a); (c): the hexahedralization of the volumedsetihe human head and a sphere
boundary; (d): the hexahedralization of the volume inside the head.

4.3 Hexahedral Mesh Extraction

Finite element calculations sometimes require hexahedeshes instead of tetrahedral meshes.
Each hexahedron has eight points. In the tetrahedralizptiocess, we deal with edges shared by
at most four cells. This means that we can not get eight ma@rsifor each edge. However, each
vertex within the interval volume is shared by eight cell& ¥8n calculate a minimizer for each of
them. In the case of interior cells, we set the center poitlt@sinimizer. These eight minimizers
can then be used to construct a hexahedron. Figure 9 (c) astdqa two hexahedral meshes for
the head model, which are used to solve electromagnetitesogt simulations in finite element
calculations.

5 Mesh Topology

Constructing an adaptive 3D mesh with correct topology piaysnportant role in accurate and
efficient finite element calculations. Our goals in this gecare (i) meshing with correct topol-
ogy and (ii) topology preserving adaptive meshing. The logp of a mesh defined by an inter-
val volume depends on the topology of two boundary isoseganclosing the interval volume.
Therefore we focus on the topology of an isosurface. We uséetim ‘dual contour’ as a polygo-
nized isosurface extracted using the dual contouring naefB@]. ‘Correct topology’ means that
an extracted dual contour is topologically equivalent tortmal isosurface defined from an original
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Fig. 10. A two dimensional example on the recursive subdivision of a ocdlicin the finest level for
reconstructing a dual contour with correct topology.

(@) (b) (©) (d)

(f)

Fig. 11. (a)-(d): An example of an ambiguous case for a finest-ledel Beth the front-right-up and
back-left-down vertices have the positive sign, all the other verticeg lla® negative sign. (a): A
non-manifold dual contour is generated in a cube with an ambiguous nahés tase, the real isosurface in
the cube is topologically equivalent to either two simple disks (b) or a tunhE 1§ The topologically cor-
rect dual contours, (b) and (c), can be constructed by the simplévgibd of a cell in (a). (d) is displayed
in a different view angle from (c) to emphasize that the tunnel shapersatlyrreconstructed. (e)-(f): A real
example (the human knee) on topologically correct reconstruction ofladatur. (e): before subdivision,
(f): after subdivision. Note that non-manifolds in (e) are removed in (f)
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input function. ‘Topology preserving’ means the topolodyacdual contour is preserved during
simplification.

Assume the functiofr within a cubic cell is defined by the trilinear interpolatiohthe eight
vertex values. The sign of a vertex is defined to be positiverwits value is greater than or equal
to an isovalue, and negative when its value is less than tivalise. An isosurface within a cube,
defined as-(x,y,z) = a, may have different local topology depending on the conéijan of
signs at the eight vertices and the isovalue. There &isigh configurations which can be reduced
into 14 cases using symmetry [38]. Several cases may hawe timam one local topology, and are
termed ambiguous. We refer to [37] for all the cases of dffiélocal topology of an isosurface
in a cube. When a case is ambiguous, the standard dual corgonethod causes a nhon-manifold
at the minimizing vertex in the cube. This makes the topolofjthe dual contour different from
that of the real isosurface. On the other hand, if a cube hasmimbguity, then the real isosurface
is topologically equivalent to the dual contour, which ways a simple manifold. Whether a case
in a cube is ambiguous or not can be checked by collapsingestgghwhich has two vertices with
the same sign into a vertex [30]. If the cube can be collapstdan edge, then the cube has no
ambiguity and the topologically correct dual contour is grated in the cube. An example of a
cell with an ambiguous case is shown in Figure 11 (a) wherentdimemanifold dual contour is
generated using a naive approach.

We use the recursive cell subdivision in the finest level tmnstruct a dual contour with correct
topology when the cell contains a non-manifold dual contdtie subdivision algorithm is very

similar with what we used for enforcing each cell to have astrame boundary isosurface. As
a first step, all boundary cells in the finest level are ideadifilf a cell contains a non-manifold

dual contour, we subdivide the cube into eight identicalsubes. The function values defined
on newly generated vertices are calculated by the trilirgarpolation of the values at the eight
cube vertices. We recursively repeat this process for thecabes containing a non-manifold dual
contour until each sub-cube contains a manifold dual cankagure 10 shows a 2D example.

We justify the correctness of the algorithm as follows. Tinection defined in a sub-cube is exactly
same as the original function because we use the trilingarpolation. If a sub-cube has no
ambiguity and hence contains a manifold dual contour, thertapology of the dual contour in

the sub-cube is correct in the sense that the dual contoop@dgically equivalent to the real

isosurface. Therefore, if every sub-cube contains a miahdoal contour, then the dual contour
in each sub-cube has correct topology. Since we recurssuddglivide a cube until every sub-cube
has a manifold dual contour, the resulting dual contour iwithe finest cubic cell has correct
topology.

In this way, we can obtain a dual contour with correct topglsgm every finest cell in an octree
structure. Then we traverse the octree in a bottom-up maorgeat an adaptively simplified dual
contour. During the traverse from children cells to a pacetit the topology of a dual contour can
change. This may not be desirable. The paper [30] describalfyarithm to check whether the fine
dual contour is topologically equivalent to the coarse anead. The sign of the middle vertex of
a coarse edge/face/cube must be the same as the sign oftatrieagrtex of the edge/face/cube
which contains the middle vertex. We restrict the octreep$ifination process to preserve the
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topology by using their algorithm.

Figure 11 shows an example of a finest-level cell with an aodaig case. A non-manifold dual

contour is generated in the cell (a). However, the real idasa in the cell can have either two

disks (b) or a tunnel shape (c)(d) depending on an isovaiyend (c) show two results of a dual

contouring after the cell subdivision on (a). The tunnelpEhis correctly reconstructed as shown
in (d). (e) and (f) show a real example on topologically correconstruction of a knee surface.

6 Feature Sensitive Adaptation

Finite element applications require a minimal number ofredats while preserving important
features on boundary surfaces for efficient and accurataileglons. For a given precision re-
quirement, uniform meshes are always over-sampled witlecgssary small elements. Adaptive
meshes are therefore preferable.

The level adaptivity can be controlled manually by regionawdomatically by using an error func-
tion and a tolerance. For example, in the calculation ofidyhinding rate constants on mMAChE
data (Figure 18), the geometric accuracy on the cavity arestlynaffects the accuracy of the
calculation. Therefore, we refine the cavity area as mucloasilple, while keep coarse meshes
in other regions. In most cases, we want to control the ledaptvity with an error tolerance
For this purpose, we use an error function (Equation 5) wapgroximates the difference between
isosurfaces defined from two neighboring levels. Large gaamchange of surfaces is considered
as features. The error is measured as large in a region wbithios important features, therefore
the features are not easily lost during the process of ageagitnplification. Similar error metric is
used in [28]. The details of the difference approximation lba found in [59].

f(X)

X

xI A2 x2

Fig. 12. Sampling points for the feature sensitive error function (Lefevel (i); Middle - Level (i+1).)
and the isosurface error calculation in 1D (Right). In the right picturetatecurve represents the trilinear
function in Level (i) (it becomes to a straight line in 1D), and the green sttdilge represents the tangent
line of the trilinear function at the middle point.

In Figure 12, the left picture shows eight red vertices f@ofation level (i), and the right picture
shows twelve green edge middle points, six blue face middietp and one yellow center point
besides those eight red vertices for level (i+1). For leNetlfe eight red vertices’ function values
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are given, and a trilinear function is defined in Equation {®)m which the function values of

12 edge middle points (green), 6 face middle points (blug) hrtenter point (yellow) can be

obtained. For level (i+1), the function values of all veescand all middle points are given. We
want to estimate the difference of the isosurface betweetwib neighboring levels.

f'(X,Y,2) = fooo(1—X) (1 —Y)(1—2) + foor(1—X)(1—Yy)z
+ for0(1—X)y(1—2) + fo12(1—x)yz 4)
+ fro0X(1 —y)(1—2) + froX(1—Y)z
+ f110¢Y(1—2) + faaaxyz

|fi+1_ fi|

TR ®)

Error =%

The error function is defined in Equation (5). The right pretof Figure 12 shows the calculation
of the isosurface errdd at the green middle point in 1D. The blue line segmémepresents the
difference of the function values at the middle pointyoe |f'+1 — fi|. The isosurface errat can
be computed b =V /k, wherek is the slope of the green tangent line. In higher dimensitbres,
slopek becomes the magnitude of the gradient. In Equation (5), Wergged to sum the isosurface
error over all the middle points, including edge middle psifiace middle points and the center
point, since the function values at the eight vertices agestime for the two neighboring levels.

Fig. 13. (a) , (b) : Tetrahedral meshes of (a) fandisk and (b) méchigmart. Note that sharp edges and
corners are accurately reconstructed ; (c) , (d) : the compariso&EBf((2), 2952 triangles) and the feature
sensitive error function ((d), 2734 triangles). The facial featuredatter refined in (d).

We still use QEF to calculate minimizer points, which arerected to approximate the isosur-
faces, so we can also preserve sharp edges and corners asistiaogure 13 (a) and (b). QEF and
the error function in Equation (5) are compared in contngllihe level adaptivity for the human
head model (Figure 13, (c) and (d)), and Equation (5) yieldsensensitive adaptivity for facial

features, like the areas of nose, eyes, mouth and ears. atuedeensitive adaptivity is important
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for finite element meshes to identify and preserve neceggamnetric and topological properties
of the object while minimizing the number of elements.

7 Quality Improvement

Poorly shaped elements influence the convergence andtstabilhe numerical solutions. Since
the extracted meshes may have such undesirable elementeedean additional step for mesh
quality improvement. First we need to define criteria to mmeashe mesh quality. Various func-
tions have been chosen to measure the quality of a mesh eldfmesxample, Freitag [21] defined
poor quality tetrahedra using dihedral angles. GeorgedB6%e the ratio of the element diameter
such as the longest edge over the in-radius. We use the atigetihe Joe-Liu parameter [34], and
a minimum volume bound. These quality metrics are used tectlstivers and sharp elements
which need to be removed. With these measures, the mesityquaaiibe judged by observing the
worst element quality, and the distribution of elementseimts of their quality values.

e Edge-ratio: The edge-ratio of a tetrahedron is the ratio of the longegeddngth over the
shortest edge length.

e Joe-Liu parameter: Let |s| denote the volume (which may be negative) of a gidesimplex
‘s, vi(i=0,...,d) denote the vertices sf ande; denote the edges sthat connecy; to vj. We
compute the Joe-Liu parameter ofisimplexs as:

F(s.d)= f(sd) 2203 x 3% x|g|d )
" g(sd) Yo<i<j<3|ajl?

For tetrahedral meshed,is set to be 3F(s,3) is normalized to yield maximal value of 1 for
the unit tetrahedron (with volume 1/6).

e Minimum volume bound: Calculate the volume for each tetrahedron and find the minimum
volume of the extracted mesh. This volume parameter neelds tmproved if the minimum
volume is less than a threshold (e.g=1p

Fig. 14. A special case for the edge-contraction method. Left - the atigiesh, the red edge is to be
contracted; Middle - the red edge is contracted; Right - the additional tesmage removed.

We perform iterative edge contractions to improve the wedge-ratio. For each iteration, we
remove the tetrahedron with the maximum edge-ratio by ectitrg the shortest edge. We keep
removing the tetrahedron with the maximum edge-ratio ginéilmaximum edge-ratio is below the
given threshold. During the edge contraction, we merge tarior vertex to a boundary vertex,
an interior vertex to another interior vertex, or a boundaetex to another boundary vertex. A
special case may occur when we contract edges as shown ireFiguwhere two blue triangles
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(left picture) degenerate into the same triangle, and wslduld also be removed from the mesh.
The special case can be detected by checking the numbemnoéeie sharing the same edge (2D)
or face (3D). If there are more than two elements sharing dimeesedge/face, then the special
case occurs. This can also be removed by contracting onedskdge. If edge contraction is not
enough to arrive the threshold, then the longest edge msaoiethod is used to continue reducing
the largest edge-ratio. But the number of vertices and thebeuof elements will increase.

In the mesh extraction process, a pyramid/diamond may berged when we analyze the sign
change edge/the interior edge in boundary cells. Therevareot three ways to decompose a
pyramid/diamond into tetrahedra, we compare the worsLlo@arameters for different splitting
ways and choose the better one. This process is executedwehextract meshes, therefore our
mesh generation method tends to produce meshes with gooallayeality.

Finally smoothing techniques are used to improve the Jagghrameter and the minimum vol-

ume. The simplest discretization of the Laplacian operttoan interior node is the average of
all its neighbors. The new position of a boundary vertex esdtierage of all its boundary neigh-
bors derived from the discretized Laplace-Beltrami operd8] [67]. Laplacian smoothing is an

efficient heuristic, but it is possible to produce an invatiesh containing inverted elements or
elements with negative volume. We choose a ‘smart’ Laptasiaoothing [21], which relocates

the point only if the quality of the local mesh is improved.
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Fig. 15. The histogram of edge-ratios (left) and Joe-Liu parametefrg)fa@y mAChE and the human heart.
The number of tetrahedra at edge-ratio 40.0 represents the numbettrd alements, whose edge-ratios
are greater than 40.0.

The histogram of edge-ratios and Joe-Liu paramters (Figjbyeshows the overall quality of ex-
tracted tetrahedral meshes for a biomolecule mAChE (Fig8yadd the heart model (Figure 19).
By comparing the two quality metrics before and after apgytechniques of quality improve-
ment, we can see the worst parameters are improved significigure 16 shows the improve-
ment of the worst values of the edge-ratio, the Joe-Liu patanand the minimum volume.
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Vertex  Tetra Edge-ratio Joe-Liu Volume

Number Number (best, worst) (best, worst) (minimal, maxjma

mAChE> 124180 670642 (1.03,1.%40% (1.0,6.2410%) (2.43x10°7, 9.40x10°)
mAChE® 121670 656823 (1.03, 8.5) (1.0, 1YB02) (1.40x10 4, 9.40x10°)
HearP 140425 689020 (1.02,1.2A0°) (1.0,1.23<10°%) (4.88x10°8, 2.56x10?)
Hearf 138072 676494 (1.02, 8.5) (1.0, 1:990°2) (4.39x10°%, 4.31x10P)

Fig. 16. The comparison of the three quality criteria (the edge-ratio, theidgerameter and the minimal
volume) before/after the quality improvement for mMAChE and the human hearlmDATAP — before
quality improvement; DATA — after quality improvement.

8 Results and Applications

We have developed an interactive program for 3D mesh exiraeind rendering from volume
data. In the program, error tolerances and isovalues cahded interactively. Our results were
computed on a PC equipped with a Pentium Il 800 MHz processdrl GB main memory.

Our algorithm has been used to generate tetrahedral mesteesiolecular dataset (MAChE) and
the human heart model in two projects. We also tested ouritiigo on volumetric data from
CT scans, th&JNC Human HeadndPoly (heart valve)and signed distance volumes generated
from the polygonal surfaces of a human head and a knee. Figyrd8, 19, 1, 20, 21 and 22
provide information about datasets and test results. Théteeconsist of the number of tetrahedra,
extraction time, and corresponding images with respedfferent isovalues and error tolerances.
As a preprocessing, we calculate min/max values for each@cell to visit only cells contributing
to mesh extraction and to compute QEF values only in thoseataiun time. Extraction time in the
table includes octree traversal, QEF computation and betesh extraction, given isovalues and
error tolerance values for inner and outer surfaces as mmparameters. If we fix isovalues, and
change error tolerance interactively, the computed QEEuUsed and thus the whole extraction
process is accelerated. The results show that the mestctextrdime scales linearly with the
number of elements in the extracted mesh.

Figure 18 shows the extracted adaptive tetrahedral mestAGiE, which has been used as the
geometric model in solving the steady-state Smoluchowgiagon to calculate ligand binding
rate constants using the finite element method (FEM) [58]. [blie most important part in the
geometric structure of mAChE is the cavity, where fine meshesequired. We first find the
position of the cavity, then control the adaptivity accoglto it. The area of the cavity is kept the
finest level, while coarser meshes are obtained everywlsseAdter improving the mesh quality,
convergent results have been obtained in the finite elenadtulation, and they match with some
experimental results well.

A good geometric model of the human heart is important forsiheulation of the human cardio-
vascular system, which is very useful for the predictive itieé applications in cardiovascular
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Number of Tetrahedra (Extraction Time (unit : ms) )
(a) (b) (c) (d)
mMAChE Given 257 670642 (10891) — — —
Heart SDF 257 689020 (11110) - - -
Skin  CT 128 935124 (17406) 545269 (10468) - -
Skull CT 129 - - 579834 (10203) 166271 (3063)
Poly CT 257 - 276388 (5640) 63325 (1672) 14204 (672)
Head SDF 683 143912(2547) 76218 (1391) 40913 (766) 10696 (203)
Knee SDF 68 70768 (1360) 94586 (1782) 93330 (1750) 72366 (1406)

Dataset Type Size

Fig. 17. Datasets and Test Results. The CT data sets are re-sampled tio thieictree representation.
Rendering results for each case is shown in Figure 18, 19, 1, 20,d222anhe Skull and Skin isosurfaces
are extracted from the UNC Head model.

Fig. 18. mAChE — (a): the isosurface at 0.5 from the accessibility funatiynthe wire frame of the isosur-
face and an outer sphere; (c): a zoomed-in picture to show the refavigl;{d): the adaptive tetrahedral
mesh of the volume between the isosurface and an outer sphere. Therctherisosurface represents the
distribution of the potential function, the color map is»(-0.5) - red; [-0.5, 0.5] - white; (0.5,#) - blue.
Note the region around the cavity has fine meshes, while other areasehatinesty coarse meshes.

surgery. To extract 3D meshes from the surface heart modeidad by New York University, we
computed the signed distance function from the surface aladgperformed the mesh extraction
(Figure 19). An adaptive and quality tetrahedral mesh isaextd with correct topology and fea-
ture sensitive adaptation. Meshes are refined in the ardasaof valves, while coarse meshes are
kept for other regions.

Figure 20 and 21 show the resulting tetrahedral meshescéadiérom two signed distance func-
tion data with the size of 65 The results from CT data are shown in Figure 1 (skull, skir) 22
(heart valve). The number of elements in the extracted ngesbritrolled by changing error tol-
erance. It is clear that adaptive tetrahedral meshes aracted from the interval volume, and
facial features are identified sensitively and preserveglufe 20). In Figure 21, the sequence of
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(@) (b) (©) (d)

Fig. 19. Heart (SDF) — (a): the triangular surface of a human heartvaittes ( data courtesy from New
York University (NYU) ); (b): The tetrahedral mesh extracted fromFS&d the heart surface. The smooth
surface and the wire frame on the mesh is rendered; (c): the wire frathe ektracted heart model. Note
that the region of heart valves are refined; (d): Cross-section @fdhptive tetrahedral mesh.

images are generated by changing the isovalue of the inogurigce. The topology of the inner
isosurface can change arbitrarily.

9 Conclusion

We have presented an algorithm to extract adaptive andtg&id meshes directly from volu-
metric imaging data. By extending the dual contouring mettestribed in [30], our method can
generate 3D meshes with good properties such as no hangileg neharp feature preservation
and good aspect ratio. Using an error metric which is nozedliby the function gradient, the
resolution of the extracted mesh is adapted to the featemsitsvely. The resulting meshes are
useful for efficient and accurate finite element calculation
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