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Abstract

We contend that the power of reinforcement learning comes from its fundamental declarative nature, allowing a system
designer to consider what an agent’s objective is instead of the details of how this objective can ultimately be achieved.
This abstract provides some early design ideas for creating an end-user-oriented reinforcement-learning system based
on the trigger-action programming model. We propose a study designed to highlight the similarities and differences of
this end-user-based reinforcement-learning language to more established end-user trigger-action programming.
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1 Introduction

Historically, much of research within the reinforcement-learning community has been directed at applying and designing
algorithms to create intelligent agents that solve specific problems [Sutton and Barto, 1998]. In recent years, this approach
to reinforcement learning (RL) has produced exemplary results, with engineers being able to create agents that rival or
even surpass the best human-level performances on some problems [Mnih et al., 2015, Silver et al., 2016]. In contrast,
little effort has been put into studying how non-experts can interact with these systems.

An RL “programmer” needs to identify three things to the algorithm: (1) the actions an agent can take in the environment,
(2) the state variables of the environment the agent should be concerned with, and (3) the reward function, or more
simply, a goal that the agent should complete. That is, while RL researchers typically take actions, states, and goals as
given and focus on how to design agents that can take actions to achieve goal states, RL users are the ones responsible
for defining these parameters in the first place. Bad choices can lead to intractable learning problems because of either
under-specification (critical aspects of the problem are not accessible by the learner) or over-specification (too many
details are given to the learner, making learning and generalization difficult).

For some tasks and for some users, finding the right actions, states, and goals may be considerably easier than explicitly
articulating the choices the agent should make. For others, perhaps not. Our research objective is understanding where
that line might be.

Our baseline for comparisons is trigger-action programming [Ur et al., 2014, Huang and Cakmak, 2015, Zhang et al., 2020],
a methodology in broad use that allows end users to specify behaviors for data analysis, smart home devices, and other
applications. A trigger-action program (TAP) consists of a set of rules, each of which has a trigger (something that has
become true of the world) and action (an intervention that should be taken in response). Triggers can be primitive events
or a primitive event combined with one or more conditions. An example TAP rule in the home-automation domain is:
“If I arrive home (trigger event) while the indoor temperature is above 75 degrees (trigger condition) then turn on the
AC (action).” Existing research shows that end users with no programming experience are able to construct and interpret
TAPs, providing some support for the contention that this style of programming strikes a useful balance between ease of
use and expressive power.

In this work, we observe that the actions in TAP are analogous to the actions in RL, while the triggers are akin to states.
Thus, an RL task can be specified by a set of triggers (which constitute the learner’s states), actions (which constitute the
learner’s actions), and a special trigger (which acts as the learner’s goal).

2 Proposed Interface

Our interface is a modified version of the AutoTap project created by Zhang et al. [2019] to support the construction
of TAPs. We have repurposed this framework to provide actions and triggers for a scenario in which a mobile robot
is tasked with moving boxes throughout a house. We created two interfaces: TAP and RL. In both versions, users are
greeted with a page allowing them to create new rules that guide agent behavior using the associated programming
style.

In the TAP version, the user creates rules that pair a trigger and an action. (See Figure 1.)

B Your Current Rules

Add aNew Rule +

If & Therobotisinthe Entry then & Go througha door to the North

If a Therobotisinthe Kitchen then s Go through a door to the North

Figure 1: An example of a TAP ruleset in our system.

In the RL version (see Figure 2), the user specifies a set of parts, each of which belongs to one of three selected categories:
‘Consider doing:’, ‘Pay attention to:’, and ‘Get a “yes” answer to:". The part finishes the clause started by the corresponding
category. Parts take the form of conditions that can be true or false given the current state of the environment or actions
that can be performed by the agent. By combining a category with a part, a user specifies an action that the agent can
take (‘Consider doing:’), a state variable the agent should be concerned with (‘Pay attention to:") or the goal of the agent
(‘Get a ‘yes” answer to:").



B Your CurrentRules

Add aNew Rule +

= Geta'yes' answerto: s |sthe robot in the Dining Room?

= Consider doing: & Go through a door to the North
& Pay attentionto: & Is the robot in the Kitchen?

= Pay attentionto; & s the robot in the Dining Room?

Figure 2: An example of an RL ruleset in our system.

Table 1: Proposed tasks for our experiments.

| Instruction | TAP rules | RL parts |
Starting from the entry, go to the kitchen. 1 3
Wherever you start, go to the master bedroom. 8 12
Starting from the entry, bring back the blue box from the 7 13
master bathroom.
Starting from the entry, clear all of the red boxes out of the 6 12
hall.

3 Proposed Experiment Design

Our experiment will involve two groups of 20 participants with no prior experience in programming. One group will
randomly be assigned to the TAP condition while the other will be assigned to the RL condition. Both groups will receive
instructions on how to access the website with our program-creation framework.
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Figure 3: Floorplan of the house for our experiments.

Users would then be given four programming tasks of increasing difficulty and tasked with writing rules to control an
agent to solve each task. The tasks involve a robot navigating through a house and moving items around in it (Figure 3).

Triggers in the system include ‘Robot is in room X’, “There is a red/blue block in room X’, and ‘Robot is holding a
red/blue block’. Actions that the robot can take include ‘Go through a door to the North/South/East/West’, ‘Pick up a
red/blue block in your current room’, and ‘Put down held block’.

Table 1 provides an example set of tasks and the number of TAP rules or RL parts needed to solve them. Although the
number of required RL parts is consistently larger than the TAP rule sets, the assembly of RL parts is performed by the
learner, which may make it easier to select them.

After users finish writing their programs, they submit them to our database for analysis. Solutions that miss components
that are necessary to complete the task or put agents into situations where they have no available actions will be deemed
incomplete. Solutions will be graded according to a rubric determined in advance for each task.



We are interested in statistics such as: How often does each programming style succeed on each task? Is there any pattern
to how the success rates change as the task difficulty increases? Is a certain programming style better suited to certain
tasks? How often do participants include unnecessary components? How often do they miss required components? Are
there consistent errors that participants make that might be reduced through careful interface design? Ultimately, we are
interested in assessing if RL can be a viable programming language for end users.
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