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1 Introduction

The cost of default is an essential component to understanding the joint behavior of default

rates, credit spreads, and firms’ optimal financing decisions. A common view in the finance

literature, supported by empirical studies of defaulted firms, maintains that the average

firm’s cost of default is relatively low.1 This conclusion plays a central role in the challenge

faced by existing models to simultaneously explain the levels of leverage, credit spreads, and

default rates observed in the data.

I show that estimates of default costs drawn from the sample of defaulted firms are subject

to a significant selection bias. This selection bias is the result of firms and credit markets

internalizing default costs when choosing leverage and pricing debt, respectively. All else

equal, firms with a higher cost of default will choose a lower level of leverage, making default

less likely. Therefore, the firms that default ex post are disproportionately those with a low

cost of default. Consequently, existing estimates of default costs, drawn from the sample of

observed defaults, significantly understate the cost that the average firm expects to incur in

default.

In this paper, I estimate firm-specific, expected default costs from a structural model.

These costs, which are not subject to the selection bias, are the costs used ex ante by firms

in setting their leverage and by credit markets in pricing debt. In my sample of 2,505 U.S.

public firms, the mean estimated cost of default is 45% of firm value (with a median of 37%),

which is significantly higher than existing estimates obtained from the empirical sample of

defaulted firms. However, this value does not have a direct empirical counterpart and, given

the selection bias, one should expect this value to be larger than what is obtained from a

sample of defaulted firms.

The striking result is that the estimated model produces an average default cost for the

1Davydenko, Strebulaev, and Zhao (2012) estimate an average default cost of 21.7% of the market value
of assets from a sample of 175 defaulted firms. This measure is intended to capture both direct and in-
direct costs. Estimates of direct bankruptcy costs are much smaller. Warner (1977), Weiss (1990), and
Altman (1984) all find small direct costs of bankruptcy of 5.3%, 3.1%, and 6% of pre-bankruptcy firm value,
respectively.
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subset of defaulted firms of only 25%. This value, which is the model counterpart to the

empirical sample of defaulted firms, is significant for two reasons. First, it implies a large

selection bias — the average firm expects a cost of default nearly twice as large as the

average inferred from the sample of defaulted firms. Second, and perhaps more importantly,

this value is closely in line with existing estimates of average default costs from the empirical

sample of defaulted firms.2

A number of existing conclusions relating to leverage, credit spreads, and the importance

of default costs rely on the assumption that the low observed default costs accurately reflect

the costs faced by the broader population of firms. A central message of this paper is that

many of these conclusions should be revisited. In particular, I show that accounting for

heterogeneous default costs, and the sample selection bias that they induce, can significantly

help in explaining some of the low leverage ratios observed in the data. In addition, the

sample selection bias has significant implications for a wide class of credit risk models, not

just the framework used in this paper.

Using the values for default costs reported in Andrade and Kaplan (1998) and tax benefits

to debt estimated by Graham (2000), previous work has concluded that default costs are

too low for a tradeoff model of leverage to explain the low levels of leverage seen for many

firms in the data. I show that, due to the sample selection bias, low observed default costs

can be reconciled with low observed leverage ratios in a tradeoff model of leverage. The

estimated model is not only consistent with observed default rates and credit spreads, but

is also able to match the cross-section of leverage, including firms with low leverage, while

still replicating the low observed default costs seen in the data.

In a broad sense, my work is related to a growing body of literature that considers the

interactions of corporate financing decisions and asset prices. My approach to estimating

firm-specific default costs and cash flow parameters is related to other recent papers es-

timating structural models.3 A novel aspect of this paper is that I am able to estimate

2See, for example, Davydenko, Strebulaev, and Zhao (2012) and Andrade and Kaplan (1998).
3Recent examples include Hennessy and Whited (2007), Morellec, Nikolov, and Schuerhoff (2010), and

Nikolov and Whited (2010). The recent survey article of Strebulaev and Whited (2012) provides a very nice
review of the corporate finance literature on dynamic models and structural estimation.
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firm-specific parameters. In contrast, most related work estimates the parameters of a single

representative firm.

More specifically, my work is related to a strand of empirical literature that seeks to

measure the cost of distress or default. The existing literature has generally found the average

default costs observed in the data to be relatively low. Andrade and Kaplan (1998) estimate

distress costs of 10-23% of firm value for a sample of 31 highly leveraged transactions.

Davydenko, Strebulaev, and Zhao (2012) estimate an average default cost of 21.7% of the

market value of assets from a sample of 175 defaulted firms. Using a natural experiment

resulting from asbestos litigation, Taillard (2010) isolates financial from economic distress

and finds little of evidence of significant costs of financial distress.4

The relatively small average default costs observed in the data has led to the conclusion

that many firms are too conservative in their choice of leverage. Miller (1977) notes that

default and distress costs appear far too small, given estimated tax benefits to debt, to

explain empirical leverage ratios. Graham (2000) estimates the tax benefits of debt up to

5% of firm value and concludes that from a tradeoff model of leverage many firms appear,

on average, under levered.

Almeida and Philippon (2007) note that default is more likely to occur in bad states

when marginal utility is high. Using risk-neutral probabilities and the estimates of Andrade

and Kaplan (1998), they conclude that firms are not, on average, under levered. Elkamhi,

Ericsson, and Parsons (2010) note that this calculation does not filter out economic shocks,

which are unrelated to leverage, that drive the firm to default or distress. They argue that

once the economic shocks are accounted for separately, the default cost estimates of Andrade

and Kaplan (1998) are too low to account for the observed leverage ratios. The structural

model that I use avoids this issue.

Using the marginal tax benefit estimates of Graham (2000), van Binsbergen, Graham,

and Yang (2010) estimate firm-specific costs of debt under the assumption that firms are

4Additional examples of work studying distress or default costs include Pulvino (1998), Franks and Torous
(1989), Opler and Titman (1994), Gilson (1997), Ofek (1993), Asquith, Gertner, and Scharfstein (1994), Bris,
Welch, and Zhu (2006), and Acharya, Bharath, and Srinivasan (2007).
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optimally levered. They conclude that approximately half of their estimated cost of debt is

due to default or distress costs. My results suggest that, due to the sample selection bias,

default costs account for a significantly larger component of a firm’s total cost of debt.

Korteweg (2010) estimates the net benefits to leverage and, consistent with previous

work, concludes that many firms are under levered. Using firms at or near distress, he

estimates distress costs of 15-30%. These firms at or near distress, however, are likely to

be disproportionately those for which default costs were relatively low. George and Hwang

(2010) also note that firms with high distress costs can be expected to choose low leverage

to avoid distress. They argue that this provides an explanation for the distress risk and

leverage puzzles observed in equity returns.

The model that I estimate is based on a class of structural models of capital structure

and credit risk that build upon the seminal papers of Merton (1974) and Leland (1994).

Strebulaev (2007) develops a structural model of this form and shows that the model is

able to produce simulated capital structure dynamics consistent with several documented

empirical patterns. The model in this paper is closest to the models of Chen (2010), Bhamra,

Kuehn, and Strebulaev (2010a,b), and Hackbarth, Miao, and Morellec (2006).5 These models

are primarily concerned with matching aggregate facts regarding credit spreads, default

frequency, and leverage. Chen (2010) seeks to explain the observed credit spreads and

leverage ratios while Bhamra, Kuehn, and Strebulaev (2010b) focus on a levered equity

premium. Bhamra, Kuehn, and Strebulaev (2010a) focus on the dynamics of leverage in an

economy with macroeconomic risk. In their model, all firms are identical ex ante, but differ

ex post due to idiosyncratic shocks. In contrast, I focus on computing a firm-specific measure

of the cost of default and quantifying the magnitude of the sample selection bias. To that

end, the economy I consider features a cross-section of firms which are ex ante heterogeneous,

differing in the parameters of their cash flow process as well as default costs.

The remainder of the paper is organized as follows. In Section 2 I introduce the model

framework. In Section 3 I estimate firm-specific expected default costs and cash flow pa-

5Other similar models include Chen, Collin-Dufresne, and Goldstein (2009), Fischer, Heinkel, and Zechner
(1989), Goldstein, Ju, and Leland (2001).
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rameters from the model. In Section 4 I simulate the model again under the estimated joint

cross-sectional distribution of the firm-specific parameters, which gives an estimate for the

sample selection bias in observed default costs. Section 5 examines how these firm-specific

estimates relate to firm characteristics, industry, and credit rating. Section 6 concludes.

2 Model

I construct a partial equilibrium model featuring a cross-section of ex ante heterogeneous

firms and time-varying macroeconomic conditions. The model setup is similar to the models

of Chen (2010) and Bhamra, Kuehn, and Strebulaev (2010a,b), with a key difference being

that I allow for ex ante heterogeneity in multiple dimensions at the firm level. These papers

show that including time-varying macroeconomic conditions and a countercyclical price of

risk is important for this class of model to match observed average leverage and credit

spreads.6

Illustrating the existence of a selection bias does not depend on the inclusion of the

time-varying macroeconomic conditions. One should expect a selection bias in observed

default costs to arise in a wide array of model environments. As long as the cost of default

influences a firm’s choice of leverage and a firm’s default probability is a function of its

leverage, a selection bias would emerge. Thus, the existence of a selection bias is a general

point that could be illustrated qualitatively in other models. However, in this paper I am

interested in estimating unobservable, expected default costs at the firm level as well as the

magnitude of the selection bias they generate. The size and distribution of the firm-level

default costs I estimate obviously depends on the structural model used in the estimation.

To that end, I follow the framework of existing models that have been shown to perform well

quantitatively.

I use a structural tradeoff model of the firm’s dynamic capital structure decision in

6Hackbarth, Miao, and Morellec (2006) and Chen, Collin-Dufresne, and Goldstein (2009) also consider
time-varying macroeconomic conditions in models of credit risk, though in slightly different frameworks than
the one used in this paper.
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which the cash flows are specified exogenously. Firms are exposed to both systematic and

idiosyncratic cash flow shocks in an environment with time-varying macroeconomic risk.

Firms choose leverage ratios by weighing the tax benefits of debt against the deadweight

losses incurred in default. Leverage, credit spreads, and firms’ optimal default decisions

are determined endogenously in the model with equityholders choosing optimal leverage to

maximize firm value. Conditional on not defaulting, a firm can restructure upwards by

issuing additional debt at any point in time.7 Restructuring is assumed to entail a cost,

however, which results in firms choosing to restructure only once their cash flows exceed an

optimally chosen restructuring boundary. In trading off the benefits of a tax shield with the

costs of default, the model gives optimal leverage choices endogenously.8

Time is continuous and firms’ investment policies are fixed. The state of the economy is

determined by the state variable νt, which evolves according to a 2-state time-homogeneous

Markov chain. That is, νt ∈ {H,L}, where the switching between regimes follows a Poisson

arrival process. Changes in the aggregate state are assumed to be observable by all agents

in the economy and given νt the state-dependent parameters are known constants.

The aggregate earnings of the economy, denoted by XA,t, evolve according to a Markov-

modulated geometric Brownian motion:

dXA,t

XA,t

= µA(νt)dt+ σA(νt)dW
A
t (1)

where WA
t is a standard Brownian motion. As indicated by the notation, the expected

growth rate, µA(νt), and volatility, σA(νt), of aggregate earnings depend on the aggregate

state of the economy, νt.

In the model, a firm’s earnings growth depends on aggregate earnings shocks as well as

idiosyncratic shocks specific to the firm. Firms’ earnings are taxed at rate τc and full loss

7The option to restructure downwards is excluded for tractability. While perhaps limiting, this assumption
is common to other dynamic capital structure models, such as, Goldstein, Ju, and Leland (2001), Chen (2010),
and Bhamra, Kuehn, and Strebulaev (2010a,b).

8Note, however, that due to fluctuations in firm cash flows and economic conditions and the assumed cost
of restructuring, the firm’s actual leverage will drift away from its optimal target. In the model, the firm is
at its optimally chosen leverage ratio only at time 0 and subsequent restructuring dates.
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offset is assumed. Firm i’s before-tax earnings, Xi,t, evolve according to

dXi,t

Xi,t

= (µi + µA(νt))dt+ βiσA(νt)dW
A
t + σi,FdW

i,F
t (2)

This implies that firm i’s expected earnings growth in state νt is given by (µi+µA(νt)), where

µi represents a state-invariant, firm-specific component and µA(νt) is the state-dependent

expected growth rate of aggregate earnings. Thus, the expected earnings growth rate for all

firms is assumed to depend, in part, on the aggregate state of the economy. Additionally, βi

parameterizes firm i’s exposure to the aggregate earnings shocks generated by the Brownian

motion WA
t . Note that the volatility of aggregate earnings shocks, σA(νt), is assumed to

be state-dependent, but a firm’s exposure to these shocks, βi, is constant. Finally, firm i is

exposed to idiosyncratic earnings shocks with volatility σi,F generated by the firm-specific

Brownian motion W i,F
t . By assumption, W i,F

t is independent of WA
t for all firms i. Thus,

firms are exposed to three types of shocks: aggregate earnings shocks generated by WA
t ,

idiosyncratic earnings shocks generated by W i,F
t , and changes in the aggregate state of the

economy, νt.

2.1 Pricing Kernel, Risk Neutral Measure

I assume markets are complete and that there exists a default-risk-free asset that pays a

state-dependent interest rate, r(νt). The model is partial equilibrium and I take the pricing

kernel as exogenous. Specifically, the pricing kernel is assumed to evolve according to

dπt
πt

= −r(νt)dt− ϕ(νt)dW
A
t . (3)

In this economy, ϕ(νt) is the state-dependent market Sharpe ratio and the risk premium

for firm i’s cash flows in state νt is given by βiσA(νt)ϕ(νt). Given the specification for the

pricing kernel, I can derive the risk-neutral probability measure, Q, which will be used for

pricing assets.9 Under the risk-neutral measure, firm i’s cash flow process evolves according

9Details of the derivation of the risk-neutral measure and risk-neutral cash flow dynamics are provided
in Appendix A.
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to
dXi,t

Xi,t

= µ̂i(νt)dt+ σi,X(νt)dŴ
i
t . (4)

where µ̂i(νt) represents the cash flow growth under the risk-neutral measure, Ŵ i
t is a Q-

Brownian motion, and

σi,X(νt) =
√

(βiσA(νt))2 + (σi,F )2. (5)

represents the total earnings volatility for firm i.

2.2 Unlevered Firm Value

The unlevered value of the firm is the value if the firm were to never issue any debt, which

is simply the value of a claim to the firm’s perpetual cash flow stream.10 The firm’s earnings

are taxed at rate τc and full loss offset is assumed. At time t in state νt, the value before

taxes of unlevered firm i is given by

V U
i (Xit, νt) = Et

[∫ ∞
t

πs
πt
Xi,s ds

∣∣∣∣ νt] (6)

That is, the value of the unlevered firm is simply a claim to its perpetual stream of cash

flows. Note that this value is state-conditional but time-independent. Alternatively, the

before-tax unlevered value of firm i in state νt at time t can be expressed as

V U
i (Xi,t, νt) =

Xi,t

rUi (νt)
(7)

where rUi (νt) is the discount rate applied to firm i’s unlevered cash flows in state νt. For

current state H,

rUi (H) =
[λHL + rf (H)− µ̂i(H)][λLH + rf (L)− µ̂i(L)]− λHLλLH

rf (L)− µ̂i(L) + λHL + λLH
(8)

where rf (H) is the instantaneous risk-free rate in state H, µ̂i(H) is firm i’s risk-neutral cash

flow growth rate in state H, and λHL is the probability of switching from state H to L.

This expression shows that the discount rate applied to the firm’s cash flows accounts for

10Details of the derivation of unlevered firm value are provided in Appendix B.
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the possibility of a change in the aggregate state. An analogous expression holds for rUi (L).

With no regime-switching, the expression for unlevered firm value collapses to a familiar

Gordon growth formula:

V U
i (Xi,t, νt) =

Xi,t

rf − µ̂i
. (9)

The value in state νt of a consol bond, b(νt), that has no default risk and pays a constant

coupon rate of 1 can be computed similarly and is given by

b(νt) =
1

rP (νt)
(10)

where rP (νt), is the interest rate in state νt on a default-risk-free perpetuity. For current

state H,

rP (H) = rf (H) +
λHL(rf (L)− rf (H))

λHL + λLH + rf (L)
. (11)

with an analogous expression holding for rP (L).

2.3 Financing Decision

Firms make their leverage and default decisions by balancing the benefit of the interest tax

shield against the cost of default, with the objective of maximizing the value of equity. Firm

i issues debt in the form of a perpetuity that pays a constant coupon rate of Ci. This

rate is chosen at issuance and paid to bondholders until equityholders choose to default or

restructure by issuing additional debt. In the case of restructuring, a firm calls its outstanding

debt and issues a new perpetuity with a new coupon rate.

The firm is assumed to distribute all earnings after the coupon payment and corporate

taxes to equity holders in the form of a dividend, which is taxed at rate τd. In the event

that current earnings are less than the coupon payment owed, Xi,t − Ci < 0, the firm can

issue additional equity. Due to limited liability, equity holders are not obligated to inject

additional funds to pay the bondholders. However, failure to do so results in default at which

point the bondholders receive ownership rights to the firm. Consequently, equity holders will

optimally choose to raise additional funds only in the event that the value of equity in the
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current state is positive. Thus, under the assumption that the absolute priority rule holds,

the equity holders’ optimal default decision satisfies the usual smooth-pasting condition.

2.4 Default Event and the Cost of Default

In the event of default, debtholders take over the firm with equityholders receiving nothing.

Firms incur a cost in the event of default, which reduces debtholders’ recovery rate. In

particular, if firm i defaults at time t, bondholders receive (1−αi)V U
i (Xt, νt) where V U

i (Xt, νt)

is the unlevered value of firm i given in equation (7). Thus, αi represents the fraction of

firm i’s unlevered value that is lost in the event of default. As indicated by the notation,

these costs are assumed to vary across firms but are constant across aggregate states. While

I do not specifically model the nature of this loss, it may be due to a variety of factors

such as reputation costs, asset fire sales, loss of customer or supplier relationships, legal and

accounting fees, and costs of changing management.

2.5 Overview of the Firm’s Problem

In order to solve for a firm’s optimal capital structure, the values of debt and equity must

first be computed. Given the specified cash flow process and pricing kernel, I use a contingent

claims approach to solve for the values of these securities and then find the optimal coupon

that maximizes initial firm value for each firm.11 The solution procedure is as follows.

First, I solve for the unlevered value of the firm. Then, I solve for the values of debt and

equity for arbitrary coupon rate and set of restructuring thresholds with the optimally chosen

default thresholds determined by the smooth-pasting conditions. Given these security values,

I solve for the optimal default thresholds chosen by the equity holders as a function of an

arbitrary coupon. Finally, I solve for the optimal coupon rate and set of upward restructuring

thresholds subject to the smooth pasting conditions for the default thresholds.

11The solution technique follows that of Chen (2010), which is based on a method of pricing options on
securities with Markov-modulated dynamics presented in Jobert and Rogers (2006).
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2.6 Valuing Debt and Equity

Debt and equity are contingent claims on a firm’s cash flows that pay a continuous dividend

rate while the firm is solvent and a lump sum payment in the event of default. As time-

homogeneous contingent claims, the values of these two securities at time t depend only on

the present cash flows, Xi,t, and the current state, νt. Thus, the debt and equity values

can be solved for in a manner analogous to the technique used to solve for the unlevered

firm value. In particular, the values for debt and equity can be characterized as systems of

ordinary differential equations.

Once a firm has issued debt, default becomes a possibility and the firm must choose a

cash flow threshold at which it defaults. Since the value of a firm’s cash flows (as well as a

contingent claim on the cash flows) is different in the two states, a firm will have a different

default threshold for each state. I denote the threshold at which firm i defaults in state νt

as XDi,νt . Since equity holders receive nothing in default, the default threshold for a given

state will always be less than the coupon payment.

Debt is a contingent claim on firm i’s cash flows that pays the constant coupon payment

Ci while the firm is solvent and pays (1 − αi)V U
i (Xi,t, νt) in the event of default by firm i

at time t in state νt. That is, debt holders receive a fraction (1 − αi) of the unlevered firm

value in the event of default, where the size of the fraction as well as the unlevered firm value

depend on the state.

In what follows, I suppress the firm-specific subscript for notational convenience. The

values presented apply to a given firm, but are not fixed to be constant across firms. In

the event of restructuring, the debt is called and the bondholders receive D(X0; ν0). When

default occurs at time t in state νt, the bondholders receive a payment of (1− α)V (Xt, νt).

For current cash flow Xt, debt issued when the state was ν0 has current value given by

D(Xt; ν0) =
k∑
j=1

wDk,j(ν0)gk,jX
ψk,j

t + ξDk (ν0)Xt + ζDk (ν0), Xt ∈ Rk, k = 1, 2, 3 (12)

whereRk represents the current cash flow region. The ψ’s are the eigenvalues and g represent

the eigenvectors of the firm’s eigenvalue problem presented in the Appendix. The terms
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ξDk (ν0) and ζDk (ν0) represent solutions to the inhomogeneous equation.

Similarly, equity is a contingent claim that pays a dividend (Xi,t − Ci) until default or

restructuring occurs. In the event of restructuring, the equity holders have a claim to the

newly levered firm value. As previously mentioned, in default, equity holders receive nothing.

Thus, for current cash flow Xt and initial debt issuance occurring in state ν0, the value of

equity is given by

E(Xt; ν0) =
k∑
j=1

wEk,j(ν0)gk,jX
ψk,j

t + ξEk (ν0)Xt + ζEk (ν0), X ∈ Rk, k = 1, 2, 3 (13)

With these expressions, we can solve for the firm’s optimal capital structure, which consists

of choosing a coupon rate and default and restructuring boundaries.

2.7 Firm’s Problem

The firm faces a dynamic capital structure decision at time t = 0. In choosing its capital

structure, the firm balances the tax benefits of debt against the expected cost of default.

The debt issued is a perpetuity and the firm is able to restructure upwards in the future by

issuing additional debt, subject to a proportional cost of debt issuance, φD. This proportional

issuance cost is paid on the total amount of debt outstanding. As such, the firm faces

effectively a fixed cost component on its current outstanding debt and consequently it chooses

not to issue debt continuously. Instead, it will choose thresholds for the level of earnings at

which point the firm finds it optimal to issue additional debt. Given the initial state, ν0,

the firm chooses the coupon rate and two state-dependent default and upward restructuring

boundaries, {XD(ν0),XU(ν0)}, to maximize the initial value of equity. At time 0, the initial

value of the firm for initial cash flow level X0 and initial state ν0 is given by

E(X0, ν0; ν0) + (1− φD)D(X0, ν0; ν0) (14)

where φD is a proportional cost of debt issuance. Note that even at a later date, t, the equity

and debt value depend on the initial state, ν0, and well as the current state, νt. Similarly,
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the coupon rate and thresholds chosen will depend on the initial state. The firm’s problem

is given by

max
C(ν0),XU(ν0)

E(X0, ν0; ν0) + (1− φD)D(X0, ν0; ν0) s.t. (15)

∂

∂X
E(X, k,C; ν0)

∣∣∣∣
X↓Xk

D(ν0)

= 0, k = 1, 2 (16)

where XU(ν0) = {X1
U(ν0), X

2
U(ν0)}.

The initial optimal leverage ratio is given by

L0(X0, ν0) =
D(X0, ν0;C

∗(ν0))

E(X0, ν0;C∗(ν0)) +D(X0, ν0;C∗(ν0))
(17)

where C∗(ν0) is the optimally chosen coupon rate for initial state ν0.

2.8 Distress and Default Costs

In the model, firms do not incur distress costs prior to declaring default, at which point the

equity holders no longer have a claim to the firm. In reality, firms typically incur distress

costs prior to the event of default and some firms may incur distress costs without ever

declaring default. Moreover, the costs of distress outside of default are borne directly by

equity holders (though debtholders may suffer losses as a result), whereas default in the

model occurs when equity value is zero, with the subsequent default costs coming out of the

bondholders’ recovery.

Despite this simplification, the effect on a firm’s capital structure decision is similar to a

model with explicit distress costs. In the model, equityholders do not explicitly incur distress

costs, but they behave as if they did insofar as the costs borne by the debtholders in default

are internalized by the equityholders. In the model, a higher cost of default results in a

lower recovery rate for debtholders, all else equal. Recognizing this, the debtholders demand

a higher credit spread for a given level of leverage and default probability. This leads a firm

with larger default costs to issue less debt and thus have a lower default probability than an

otherwise identical firm with smaller default costs. While the default costs are not directly
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borne by the equityholders, they internalize these costs as they adjust their optimal level of

leverage. Thus, even without explicit distress costs incurred prior to default, equityholders

still behave similarly to a case with such explicit costs. This underscores the importance

of using a modeling framework in which leverage choices and debt prices are determined

jointly and endogenously. The equilibrium pricing of the firm’s debt ensures that default

costs, which are borne directly by debtholders, are internalized by the equityholders when

choosing leverage.

3 Model Estimation

I now turn to the model calibration and estimation of firm-specific parameters, including

default costs. Before estimating the firm-specific parameters, I first calibrate the aggregate

parameters in the model.

3.1 Aggregate Parameter Calibration

I estimate the parameters of the regime-switching aggregate earnings process using quarterly

aggregate earnings data from NIPA Table 1.14 provided by the BEA.12 In the model, aggre-

gate earnings is assumed to evolve according to a Markov-modulated geometric Brownian

motion given in equation (1). By Itô’s Lemma, the quarterly log earnings growth rate, xt+1,

can be written as

xAt+1 ≡ ∆log(XA
t+1) = µA(νt)−

1

2
σA(νt) + εAt+1 (18)

where εAt+1 ∼ N (0, (σA(νt))
2). The identifying assumption for the two regimes is a negative

earnings growth rate in the low state. I estimate the six parameters of the aggregate earnings

process, {µA1 , µA2 , σA1 , σA2 , λ12, λ21}, via maximum likelihood. The estimates for the aggregate

earnings process and the generator matrix, Λ, are presented in Table I. Note that the low

state, which is identified by the negative earnings growth, also has higher volatility. For

details on the estimation procedure, see Appendix F.

12Additional details can be found in Appendix E.
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The cost of debt issuance, φD, comes from the estimates found in Altinkilic and Hansen

(2000) and is in line with values used in the prior literature. The tax rate on equity dis-

tributions, τd, and interest income, τi, are set to 12% and 29.6%, respectively, which are

the values computed in Graham (2000). The tax rate on corporate profits is set to 35%,

the current top U.S. federal corporate marginal tax rate. This parameterization follows the

values used in Chen (2010).

In unreported results, I estimate the model for an alternative case where τπ = 30% and

all other parameters are kept at their original values. I find that this has the expected effect

of reducing the cross-sectional mean of the estimated firm-level expected default costs from

44.5% to 37.3%. However, the magnitude of the selection bias is essentially unchanged, with

a value of 18.4% points in the τπ = 30% case, compared to a bias of 19.9% points in the

benchmark parameterization.

3.2 Firm-Level Estimation Overview

I estimate firm-specific default costs and cash flow parameters using a simulated method

of moments procedure. I construct a sample of firms from the Compustat Fundamentals

Quarterly file merged with equity data from CRSP. Details and variable definitions are

provided in Appendix E. The dataset consists of firm-specific moments for 2,505 firms. The

aggregate parameters are set to their calibrated values given in Table I.

The method of moments estimator selects the vector of parameters for each firm that

minimizes the distance between a firm’s moments in the data and moments from simulated

data produced by the model. Intuitively, it selects the set of model parameters for each firm

that “best” explain that firm’s data moments. Recall that in the model firm i’s cash flows

evolve according to

dXi,t

Xi,t

= (µi + βiµA(νt))dt+ βiσA(νt)dW
A
t + σi,FdW

i,F
t (19)

This gives three firm-specific cash flow parameters (µi, βi, σ
F
i ), in addition to the cost of

default parameter, αi, to be estimated for each of the 2,505 firms in my sample. For each
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firm i in the sample, I estimate a firm-specific vector of parameters, θi, where

θi = [αi µi βi σi,F ] (20)

Let M i denote the K x 1 vector of data moments for firm i. Given a parameter vector θ, for

each simulation s = 1, ..., S, I simulate a time series of length T and compute a vector of

moments from the simulated data, M̃s(θ), that serves as an analog to the data moments,

M i. The method of moments estimator for the parameters of firm i is defined as

θ̂i = argmin
θ

(
M i − 1

S

S∑
s=1

M̃s(θ)

)′
Wi

(
M i − 1

S

S∑
s=1

M̃s(θ)

)
(21)

whereWi is a positive semidefinite weighting matrix for firm i. Following Duffie and Singleton

(1993), I choose Wi = Σ−10,i , where

Σ0,i =
∞∑

j=−∞

Et ([mi,t − Et(mi,t)][mi,t−j − Et(mi,t−j)]
′) (22)

with Σ0,i approximated using the estimator of Newey and West (1987). Note that mi,t is

the observation at date t for firm i from the data, meaning Σ0,i depends only on firm i’s

empirical data, not the simulated data. Define ui,t = (mi,t −
∑Ti

t=1mi,t), where Ti is the

empirical sample length for firm i. I approximate the spectral density matrix for firm i using

Σ̂i =
k∑

j=−k

(
k − |j|
k

)
1

Ti

Ti∑
t=1

(
ui,tu

′
i,t−j

)
(23)

where I select k = 2. Duffie and Singleton (1993) show that under the appropriate conditions,

√
T (θ̂T,i − θ0,i)→ N [0, (1 + 1/S)(H ′0,iΣ

−1
0,iH0,i)

−1] (24)

where S denotes the number of simulations of length Ti and

H0,i = E

[
∂M̃s(θ0,i)

∂θ

]
. (25)

I repeat the SMM procedure for each firm in the sample, obtaining a 1 x 4 vector of parameter

estimates, θ̂i, and standard errors for each firm i = 1, ..., N .
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To implement the simulations used in the SMM, I follow the approach used in the litera-

ture on simulating structural models of the firm.13 For each firm-level estimate, I simulate a

time series of aggregate shocks to the economy. Fixing this aggregate time series, I simulate

2,000 firm sample paths. I then repeat this procedure 1,000 times (S = 1000). I do this for

each of the 2,505 firms in my sample. In each of these simulations, I simulate a times series

length of 540 quarters, discarding the first 400 quarters of simulated data. In doing this, I

effectively begin each simulation path from a stationary distribution that is independent of

the initial condition.

3.3 Selection of Moments

The selection of moments used in the firm-specific estimation is important to ensure that

the four parameters are identified. I select a set of seven firm-specific moments that are

informative in that they are sensitive to the parameter values. The set of moments chosen

includes moments that are informative about both prices and quantities. Specifically, the

moments used in the estimation are the firm’s mean book leverage, mean excess equity

return, mean price-earnings ratio, mean earnings growth rate, volatility of earnings growth,

mean of quasi-market leverage, and volatility of quasi-market leverage.14 I briefly discuss

the moments identifying each of the parameters.

The cost of default parameter, αi is identified primarily by the book and quasi-market

leverage measures. In the model, the firm’s optimal leverage choice is sensitive to the value of

default costs. Additionally, since quasi-market leverage contains the market value of equity,

it contains information independent of book leverage. As a result, both are informative with

respect to the default cost parameter αi.

As one would expect, the firm-specific component to expected earnings growth, µi, is

pinned down primarily by the earnings growth rate, however, other moments are informative

as well. The price-earnings ratio, for example, is increasing in the rate of earnings growth,

13See, for example, Gomes (2001), Hennessy and Whited (2007), and Strebulaev (2007).
14The quasi-market leverage measure is the ratio of the book value of debt to the sum of the book value

of debt and market value of equity.
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all else equal. Intuitively, controlling for the discount rate, a firm with a higher expected

earnings growth has a larger value of equity and thus a higher price-earnings ratio.

The firm’s risk exposure, which is parameterized by βi, impacts the mean excess equity

return, price-earnings ratio, and quasi-market leverage values. A larger value of βi implies

greater exposure to systematic risk, which translates to a higher expected return. Similarly,

this higher expected return results in a lower present value of equity, which all else equal,

means a lower price-earnings ratio. While an increase in βi does increase the volatility of

quasi-market leverage and earnings, the impact on these moments is substantially smaller.

This is because most of the variation in the volatility measures is driven by differences in

the idiosyncratic volatility, not differences in exposure to aggregate shocks. Additionally, an

increase in βi increases the mean quasi-market leverage ratio in that it reduces the market

value of equity, all else equal. However, again, this affect is small compared to the impact

of other parameters on the quasi-market leverage ratio.

Finally, the idiosyncratic volatility, σi,F is determined primarily by the earnings growth

and quasi-market leverage volatilities. Again, this is straightforward as these volatility mea-

sures are monotonically increasing in σi,F . However, the volatility also impacts the levels of

book and quasi-market leverage as a higher volatility, all else equal, implies a greater default

probability. At the same time, this effect is somewhat mitigated by the fact that, all else

equal, higher idiosyncratic volatility increases the equityholders’ option to delay default.

3.4 Estimation Results

The results from the firm-level estimation are presented in Figure 1, which shows the cross-

sectional distribution for each of the four firm-specific parameters. Panel B of Figure 1 shows

the cross-sectional distribution of the estimated default cost parameter, αi. Note that the

estimated values of αi show considerable cross-sectional dispersion, with a standard deviation

of 27%. This suggests that applying a single cost of default to the entire cross-section of

firms is likely to give misleading results.

In Table II, I present summary statistics and correlations for the estimated parameters.
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As indicated in the first row of Panel A of the table, the mean estimated default cost in the

sample of 2,505 firms is 44.5% of firm value, with a median value of 36.8%. Additionally,

the estimated values of αi display significant heterogeneity with a cross-sectional standard

deviation of 27%. The remaining rows of Panel A display statistics for the estimated firm-

specific cash flow parameters. These parameters also display considerable cross-sectional

standard deviation.

In Panel B of Table II, I report the correlation matrix for the estimated firm-specific pa-

rameters for the 2,505 firms in my sample. It is interesting to note that the estimated default

cost, α, has nontrivial correlation with the estimated cash flow parameters. Specifically, the

estimated default cost is negatively correlated with a firm’s idiosyncratic volatility, σFi , and

positively correlated with its systematic risk exposure, βi, and expected earnings growth,

µi. This correlation structure displayed in Panel B, along with the significant heterogeneity

in the estimated cash flow parameters, underscores the importance of jointly estimating the

firm-specific default cost and cash flow parameters. Finally, Panel C of Table II displays

Spearman rank correlations for the estimated parameters and data moments.

For each firm i in my sample of 2,505 firms, I estimate a 4×1 vector, θi, of the firm-specific

parameters. In addition, I compute standard errors for each of these estimated parameters

for each firm. Table III displays summary statistics for the cross-sectional distribution of the

standard errors for each of the firm-specific parameter estimates. The first row of the table

displays the mean standard error for the firm-specific parameter estimates. For example,

the mean standard error on the estimated αi across the 2,505 firms is 0.073. As with the

parameter estimates themselves, there is heterogeneity in the magnitude of the standard

errors across firms. However, the size of the standard errors for most firms indicates that the

parameters of the model are relatively precisely estimated. Most importantly, the magnitude

of the standard errors indicates that the cross-sectional variation in estimated default costs

and the other firm-level parameters is both economically and statistically significant.
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4 Estimating the Selection Bias in Default Costs

To estimate the selection bias in default costs, I use the firm-specific parameters estimated

in the SMM of Section 3 to simulate the model again, but under the estimated joint cross-

sectional distribution of the firm-specific parameters. Aggregating the firm-specific estimates

obtained from the SMM, I have an estimated four-dimensional joint distribution over the

cross-section. I then simulate the model under this joint distribution and estimate the

selection bias in the cost of default. I simulate a panel of 5,000 firms at a quarterly frequency

for 540 quarters, discarding the first 400 quarters of data, and repeat the simulation 5,000

times. In each simulation, I collect the firms that defaulted in the sample period and compute

the average α for this conditional sample of simulated defaults. Thus, I obtain 5,000 mean

values for α.

Figure 2 displays the distribution of these conditional mean α’s across simulations. The

red vertical line indicates the true unconditional mean α of the estimated distribution ob-

tained from the SMM. Note that this is also the distribution under which the model is simu-

lated. As indicated by the figure, in none of the 5,000 sample simulations is the conditional

average α computed from the sample of defaulted firms as large as the true unconditional

mean.

In Table VIII, I present the estimated selection bias in the average cost of default. The

first column of the table reproduces the mean and standard deviation of the distribution of

estimated αi’s from the SMM. The second column of the table reports the mean and standard

deviation of the distribution of default costs for firms that default in the simulated data.

Averaging across the 5,000 simulations, the mean cost of default for the defaulted firms is

0.246, or 24.6% of firm value. In contrast, the average default cost among all firms is 44.5%.

Thus, the estimated selection bias in default costs is quantitatively large and economically

significant.

Using the sample of ex post defaults leads one to conclude that the average default costs

are 24.6% of firm value when, in fact, the true mean of the distribution of these costs is

44.5%. In other words, the average firm expects to incur costs in default that are nearly
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twice as large as what is inferred by estimating these costs from the sample of defaulted

firms. Furthermore, the average default cost among defaulted firms of 24.6% generated by

the estimated model is very close to existing empirical estimates from the sample of defaulted

firms. For example, Davydenko, Strebulaev, and Zhao (2012) estimate an average default

cost of 21.7% from a sample of 175 defaulted firms.

Table VIII also reports the mean and standard deviation of default costs for the sample

of simulated defaults conditional on the aggregate economic state in which default occurs.

The third column of the table reports the distribution for simulated defaults occurring in

the high state of the economy (νt = H) and the fourth column reports the distribution for

the low state (νt = L). Defaults occurring in the high state have an average default cost of

27.6% and those in the low state have an average cost of 20.4%. That is, the selection bias

is present in both states of the economy, but more pronounced in the low state.

Recent papers that have considered macroeconomic risk in similar models of capital

structure have typically parameterized default costs such that they are larger in a recession

state.15 This is done to match the observed patterns in the time series of default costs. Given

the available data, I am not able to estimate expected firm-specific default costs conditional

on the aggregate state. However, the simulation evidence presented above suggests that

a composition effect does not explain the observed time series pattern in default costs.

Put differently, the higher default costs rates observed in recessions are not simply because

different types of firms are defaulting. Rather, consistent with the above models’ assumption,

each firm expects to face a higher cost of default in a recession.

Figure 3 illustrates that the bias affects the entire distribution of default costs, not just

the mean value. The figure compares the estimated distribution of expected default costs

(Panel A) with the distribution of observed default costs from the sample of defaulted firms

generated by simulating the estimated model (Panel B). As shown in the figure, the selection

bias has the effect of shifting the entire distribution. While defaults of high default cost firms

are observed, these are rare and infrequent. As a result, the observed sample of default costs

15See Hackbarth, Miao, and Morellec (2006), Bhamra, Kuehn, and Strebulaev (2010a,b), and Chen (2010).
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is a biased sample that understates the magnitude of default costs.

5 Characterizing the Estimated Default Costs

In this section I characterize the estimated firm-level default costs by examining how they

relate to firm characteristics, credit ratings, and industry. Using data that was not included

in the estimation procedure allows me to check whether the estimates are consistent with

previously identified determinants of leverage and default costs. This not only gives an

external validation check of the estimates obtained from the structural model, but also

provides insights into the determinants of a firm’s default costs.

In Table IV, I display summary statistics for the estimated default costs by industry. The

industries are grouped according to the Fama-French 17 industry classification, with utilities

and financials excluded from the sample.16 From the table, one can observe some variation in

the average cost of default across industries. For example, the Drugs, Perfume, and Tobacco

industry classification has relatively high default costs with an industry average of 53%.

Given the higher R&D intensity and nature of intangible capital in this industry, the higher

estimated default costs are not surprising. In contrast, the Oil and Steel industries have

lower average default costs with industry averages of 36% and 37%, respectively. The lower

estimated default costs for these industries seems consistent with what one might expect

insofar as these industries tend to have higher physical capital intensity.

Table IV also shows significant intra-industry variation in estimated default costs. This

suggests that industry alone, at least as defined by the FF 17 industry classification, does

not explain most of the variation in estimated default costs. This may be due in part to

the industry classification that is used. However, the intraindustry variation in estimated

default costs is consistent with the observation that most of the variation in firm investment

and financing policies, as well as expected returns, is not explained by industry.

16The Fama-French industry classification is according to Standard Industrial Classification (SIC) codes,
which are available for the firms in the Compustat database. Details of the classification are provided on Ken
French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table VI displays the average estimated default costs and cash flow parameters by credit

rating. The table shows that the average estimated default costs are increasing in the quality

of credit rating. Since firms with high default costs choose leverage such that their probability

of default is low, these firms are likely to be those that have a high credit rating, at least

at their optimal financing date. This implies that firms which at one point had a high

credit rating and later defaulted, the so-called fallen angels, should have higher than average

default costs. This prediction is consistent with the findings of Davydenko, Strebulaev, and

Zhao (2012), who find empirically that fallen angels have realized default costs significantly

higher than those of original-issue junk issuers.17

In Table VII, I present regressions of the estimated default costs on various firm character-

istics. I present six different specifications in which I compare the results with and without

controls for leverage and industry fixed effects. While not all statistically significant, the

relationship between default costs and firm characteristics generally appear consistent with

intuition and previously identified determinants.

As shown in Table VII, firms with higher market-to-book ratios and investment rates

appear to have higher default costs, even after controlling for leverage. These characteristics

are often associated with growth firms. Distress or default is likely to be costly for these firms,

both because they have less value in physical assets and because such an event would likely

result in the firm losing its growth options. Additionally, while not statistically significant,

the R&D/Sales ratio is positively correlated with default costs. Similar to firms with growth

options, distress or default is likely to be costly for R&D-intensive firms as this intangible

capital may be more difficult for the firm to liquidate or transfer. Finally, firms with higher

cash to asset ratios appear to be those with higher default costs, which consistent with a

hedging motive.

17The original-issue junk issuers are those firms rated speculative grade at the time when the bonds are
issued.
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6 Conclusion

This paper shows that ex ante heterogeneity in firms’ expected default costs has important

implications for the levels of leverage, credit spreads, and default rates observed in the data.

Because firms internalize their expected default costs, those firms with higher costs optimally

choose lower levels of leverage, all else equal. As a result, these firms are less likely to default

than those firms with lower costs. The estimates of default costs from a sample of defaulted

firms, is therefore biased, understating the expected costs faced by the average firm. Since it

is the latter that determines a firm’s optimal leverage, firms may appear underlevered when,

in fact, they simply have high expected default costs.

Using a dynamic capital structure model, I estimate a quantitatively significant selection

bias in default costs. My results suggest that many firms may face higher expected default

costs than what is indicated by the empirical sample of defaulted firms. Furthermore, the

selection bias in default costs that I estimate can help to explain the low leverage ratios

adopted by many firms in the data in the context of a tradeoff model of capital structure.

While this paper focuses on default costs, the intuition for the selection bias can be

readily applied to other topics in financial economics. Firm-level heterogeneity, combined

with firms internalizing this heterogeneity in setting their optimal policies, may produce

similar selection biases in other observed outcomes. The dynamic modeling framework and

empirical methodology used in this paper could be applied more broadly to study related

issues in corporate finance.
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Table I:
Aggregate Parameters

This table reports the aggregate parameter values used in simulating and estimating the model. Where

applicable, values are quarterly. The aggregate earnings parameters and probability of a regime change

are estimated via maximum likelihood using aggregate earnings data. See the appendix for details on the

estimation procedure.

Parameter Symbol State 1 State 2

Aggregate Earnings Growth Rate µA 0.0192 -0.0076
Aggregate Earnings Volatility σA 0.0366 0.0770
Market Sharpe Ratio ϕ 0.140 0.238
Instantaneous Risk-free Rate rf 0.006 0.009
Probability of Regime Change λ 0.07 0.10
Tax Rate on Corporate Earnings τπ 0.35 0.35
Tax Rate on Dividends τd 0.12 0.12
Tax Rate on Interest Income τi 0.296 0.296
Proportional Debt Issuance Cost φD 0.015 0.015
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Table II:
Cross-sectional Statistics for Firm-Specific Parameter Estimates

This table reports summary statistics for the firm-specific parameter estimates obtained from the SMM of
Section 3. The firm-specific parameters consist of three cash flow parameters (µi, βi, and σF

i ) and the cost
of default parameter αi. Firm i’s earnings in the model evolve according to

dXi,t

Xi,t
= (µi + βiµA(νt))dt+ βiσA(νt)dW

A
t + σi,F dW

i,F
t (26)

where µi represents a firm fixed effect for the expected earnings growth rate, βi is the loading of the firm’s

cash flows on the aggregate earnings shock, and σF
i is the volatility of the firm’s idiosyncratic earnings

shocks. The fraction of unlevered firm value lost in default for firm i is given by αi, where the unlevered

value is defined in equation (6). Panel A displays cross-sectional moments for the firm-specific parameter

estimates. Note that the µ row reports statistics for firms’ unconditional expected growth rate, not the firm

specific component µi. The cross-sectional correlation of the parameter estimates are shown in Panel B.

Panel C displays Spearman rank correlations for the estimated parameters with firm data moments. The

sample consists of 2,505 firms from the merged Compustat and CRSP databases. See the Appendix for

further details.

Panel A: Parameter Estimate Summary Statistics

Mean Median Std

αi 0.445 0.368 0.270
σFi 0.132 0.147 0.055
βi 1.278 1.000 0.577
µ 0.004 0.001 0.007

Panel B: Correlation of Parameter Estimates
αi σFi βi µi

αi 1
σFi -0.270 1
βi 0.320 0.023 1
µi 0.358 -0.125 0.567 1

Panel C: Spearman Rank Correlations

αi σFi βi µi
Mean Book Lev -0.862 0.095 -0.357 -0.326
Mean Earnings Growth 0.046 -0.085 0.274 0.315
Std Earnings Growth -0.144 0.660 0.191 0.159
Mean P/E Ratio 0.288 -0.131 0.286 0.562
Mean Quasi-Market Lev -0.743 0.292 -0.484 -0.504
Mean Excess Ret 0.135 -0.059 0.207 0.154
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Table III:
Standard Errors for Firm-level Parameter Estimates

This table presents distribution statistics for the cross-section of standard errors on the firm-specific pa-

rameter estimates obtained in the SMM procedure of Section 3. For each firm, four firm-level parameters

are estimated with standard errors. The table displays statistics for the cross-sectional distribution of these

standard errors. For more details on the estimation, see Section 3.

SE(α) SE(σF ) SE(β) SE(µ)

Mean 0.073 0.009 0.478 0.005
Std 0.176 0.006 0.393 0.007
Q1 0.027 0.004 0.179 0.002
Median 0.043 0.008 0.378 0.003
Q3 0.072 0.013 0.655 0.006
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Table IV:
Default Cost Estimates by Industry

This table reports summary statistics by industry for the estimated α’s obtained in the firm-level SMM.

Industries correspond to one of the 17 Fama-French industry index, based on SIC codes. Financials and

utilities are excluded. N reports the number of firms in each industry classification.

Mean Std N

Food 0.389 0.255 128
Mining and Minerals 0.463 0.275 36
Oil 0.364 0.262 158
Clothing 0.452 0.273 110
Cons Durable 0.422 0.267 113
Chemicals 0.435 0.248 62
Drugs, Perfume, Tobacco 0.532 0.259 88
Construction 0.374 0.206 143
Steel 0.369 0.191 64
Fabricated Products 0.350 0.203 46
Machinery 0.489 0.25 411
Automobiles 0.397 0.205 58
Transportation 0.413 0.181 41
Retail Stores 0.442 0.266 251
Other 0.474 0.302 752
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Table V:
Parameter Estimates by Industry

This table reports the mean firm-specific parameter estimates by industry. Estimates are obtained from the

SMM procedure described in Section 3. Industries correspond to one of the 17 Fama-French industry index,

based on SIC codes. Financials and utilities are excluded.

α σF β µ

Food 0.389 0.135 1.195 0.003
Mining and Minerals 0.463 0.141 1.319 0.005
Oil 0.364 0.134 1.246 0.005
Clothing 0.452 0.137 1.251 0.001
Cons Durable 0.422 0.140 1.209 0.001
Chemicals 0.435 0.121 1.131 0.002
Drugs, Perfume, Tobacco 0.532 0.112 1.430 0.004
Construction 0.374 0.146 1.146 0.001
Steel 0.369 0.147 1.128 0.001
Fabricated Products 0.350 0.150 1.141 0.001
Machinery 0.489 0.133 1.338 0.005
Automobiles 0.397 0.140 1.162 0.002
Transportation 0.413 0.136 1.085 0.001
Retail Stores 0.442 0.131 1.235 0.003
Other 0.474 0.125 1.363 0.005

Table VI:
Parameter Estimates by Credit Rating

This table reports the mean firm-specific parameter estimates by credit rating for those firms in the sample

for which a credit rating is available. The parameter estimates are obtained in the SMM of Section 3.

α σF β µ

Aaa 0.568 0.094 0.840 0.002
Aa 0.585 0.093 1.128 0.003
A 0.445 0.102 1.031 0.002
Baa 0.419 0.112 1.100 0.003
Ba 0.313 0.125 1.234 0.004
B 0.305 0.137 1.296 0.004
Caa-C 0.189 0.167 1.400 0.008
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Table VII:
Regressions of Estimated Default Costs on Firm Characteristics

This table reports regressions of the estimated firm-specific default costs, α, on firm characteristics. The firm-

specific default costs, α, are estimated using the SMM procedure described in Section 3. Unless indicated

otherwise, independent variables are a time series mean of the data available for each firm. In the regressions,

all independent variables are normalized by their (cross-sectional) standard deviation, thus the coefficient can

be interpreted as the absolute change in α for a one standard deviation change in the independent variable.

Regressions (4), (5), and (6) include industry fixed effects for the 15 Fama-French industries included in

the sample. Robust standard errors are in parentheses. For more details on the data construction see the

appendix.

(1) (2) (3) (4) (5) (6)
VARIABLES α̂ α̂ α̂ α̂ α̂ α̂

Book Leverage -0.200*** -0.216*** -0.202*** -0.221***
(0.004) (0.008) (0.004) (0.008)

Cash/Assets 0.008 0.012
(0.007) (0.007)

R&D/Sales 0.015 0.018*
(0.009) (0.010)

PPE/Assets -0.039*** 0.005 0.019*** -0.041*** 0.008* 0.016**
(0.006) (0.004) (0.007) (0.007) (0.004) (0.008)

I/K 0.050*** 0.014*** 0.026*** 0.052*** 0.013*** 0.021**
(0.007) (0.004) (0.008) (0.007) (0.004) (0.009)

Earnings/Assets 0.074*** 0.030*** 0.033*** 0.074*** 0.030*** 0.033***
(0.006) (0.004) (0.007) (0.006) (0.004) (0.008)

M/B 0.016** 0.024*** 0.034*** 0.014** 0.024*** 0.031***
(0.007) (0.005) (0.007) (0.007) (0.005) (0.008)

COGS/Sales -0.024*** -0.007* -0.008 -0.017*** -0.006 -0.003
(0.006) (0.004) (0.008) (0.007) (0.004) (0.008)

log(Assets) -0.010** -0.003 0.000 -0.010** -0.002 0.004
(0.005) (0.003) (0.005) (0.005) (0.003) (0.006)

Constant 0.444*** 0.443*** 0.437*** 0.445*** 0.442*** 0.433***
(0.005) (0.003) (0.007) (0.005) (0.003) (0.007)

Observations 2,381 2,381 670 2,340 2,340 653
R-squared 0.206 0.663 0.733 0.185 0.651 0.723
Industry FE N N N Y Y Y

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Regression of Estimated α’s on Firm Characteristics
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Table VIII:
Estimated Bias in Default Costs

This table presents the inferred mean default costs from the sample of defaulted firms in the simulated data,

using the parameter distributions estimated in the SMM of Section 3. A panel of firms is simulated in the

model under the estimated joint distribution for the four firm-specific parameters. The panel consists of

5,000 firms simulated at a quarterly frequency for 140 quarters for each simulation and 5,000 simulations

are performed. For each simulation, the α’s for the defaulted firms are collected. A mean and standard

deviation of the α’s of the simulated defaulted firms is computed for all defaults and separately for the

defaults occurring in each of the two aggregate states. These means and standard deviations are then

averaged across all the simulated economies and reported in the table. The unconditional estimated α̂ refers

to the mean value of firm-specific αi’s from the SMM estimation of Section 3. “Ex Post α̂’s” refer to the firms

that default in the simulated data under the estimated distribution. The second column reports statistics

for the distribution of all simulated defaults and the third and fourth columns report statistics conditional

on the aggregate state of the economy in which the default occurred.

Unconditional Ex Post α̂: Ex Post α̂: Ex Post α̂:
Estimated α̂ All Defaults Defaults in νt = H Defaults in νt = L

Mean 0.445 0.246 0.276 0.204
Std Dev 0.270 0.243 0.227 0.264

Bias in Mean -0.199 -0.169 -0.242
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A. Distribution of Estimated αi B. Distribution of Estimated βi
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Figure 1: Estimated Cross-Sectional Distributions for the Firm-Specific Parameters. This figure
displays the cross-sectional distribution of the firm-specific parameter estimates from the SMM
described in Section 3
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Simulated Mean Default Costs from Estimated Parameter Distributions
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Figure 2: Distribution of Mean Default Costs from the Sample of Defaulted Firms. A panel of
5,000 firms is simulated over 140 quarters and the simulation is repeated 5,000 times. For each
simulation, a mean value of α is computed from the population of firms which defaulted during the
simulation. The histogram indicates the distribution of mean α’s across the 5,000 simulations. The
vertical red dashed lines indicates the estimated unconditional mean α from the SMM procedure
of Section 3

33



A. Distribution of Estimated α
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B. Distribution of α for Simulated Defaults
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Figure 3: Estimated Distribution of Default Costs vs. Distribution for Simulated Defaults. This figure
compares the estimated unconditional distribution of default costs, α, with the conditional distribution from
the sample of simulated defaults. The estimated distribution, which is displayed in Panel A, is obtained
from the firm-specific SMM described in Section 3. I simulate 5,000 model economies under the estimated
joint cross-sectional distribution of {αi, µi, βi, σ

F
i } and collect the sample of firms which defaulted in each

simulation. Panel B plots the distribution of default costs, aggregated over all simulations, of the firms that
defaulted.
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Supplemental Appendices
(Not intended for publication)

A Pricing Kernel, Risk-Neutral Measure

Given the exogenously specified process for the pricing kernel, the risk-neutral measure can

be derived.18 The pricing kernel, πt, evolves according to

dπt
πt

= −r(νt)dt− ϕm(νt)dW
m
t (A-1)

Define the density process for the risk-neutral measure by

ξt = Et

[
dQ

dP

]
(A-2)

We know this density process and the pricing kernel are related by19

ξt = Btπt (A-3)

where

Bt = exp

{∫ t

0

r(νs)ds

}
(A-4)

is the time t price of a bond paying the riskless rate and B0 has been normalized to 1.

Applying Itô’s Lemma gives

dξt = Btdπt + πtdBt (A-5)

Plugging in the expression for dπt,

dξt = Bt[−r(νt)πtdt− ϕm(νt)πtdW
m
t ] + πtdBt (A-6)

18Since the horizon is infinite, the risk-neutral measure, Q, that will be used for pricing contingent claims
is not an equivalent probability measure to the physical measure, P. Still, the risk-neutral measure Q will
have the necessary properties for risk-neutral pricing. See Duffie (2001), Section 6N, for more details.

19See Harrison and Kreps (1979).
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Replacing πt with ξt
Bt

and dividing through by ξt gives

dξt
ξt

= −r(νt)dt− ϕm(νt)dW
m
t +

1

Bt

dBt (A-7)

Itô’s Lemma implies

dBt = r(νt)dt (A-8)

Thus the density process, ξt, evolves according to

dξt
ξt

= −ϕm(νt)dW
m
t (A-9)

Applying Girsanov’s Theorem, we have a new Brownian motion under the risk-neutral mea-

sure, given by

dŴm
t = dWm

t + ϕm(νt)dt (A-10)

Note that the firm-specific Brownian motion, W f,n
t , that generates the idiosyncratic shocks

to firm n’s cash flows is independent of the Brownian motion, Wm
t generating systematic

shocks to the economy. Thus W f,n
t is still a Brownian motion under the risk-neutral measure

for all firms n. Thus, under the risk-neutral measure, cash flows for firm n evolve according

to
dXn

t

Xn
t

= µ̂n(νt)dt+ σnm(νt)dŴ
m
t + σnf dW

f,n
t (A-11)

where µ̂n(νt) is the drift under the risk-neutral measure,

µ̂n(νt) = µn(νt)− σnm(νt)ϕ
m(νt). (A-12)

The total volatility of the cash flows of firm n is given by

σnX(νt) =
√

(σnm(νt))2 + (σnf )2 (A-13)

Additionally, the two Brownian motions driving the idiosyncratic and systematic shocks to

firm n’s cash flows under the risk-neutral measure can be aggregated into a single Brownian
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motion (under the risk-neutral measure) for firm n which is given by

dŴ n
t =

σnm(νt)

σnX(νt)
dŴm

t +
σnf

σnX(νt)
dW f,n

t . (A-14)

So the evolution of firm n’s cash flows under the risk-neutral measure can be expressed as

dXn
t

Xn
t

= µ̂n(νt)dt+ σnX(νt)dŴ
n
t (A-15)

B Solving for Unlevered Firm Value

Here I show how to solve for the unlevered firm value.20 The pair of ODEs characterizing

the unlevered firm value has an associated characteristic function given by:

g1(β)g2(β) = λ1λ2 (A-16)

where

g1(β) = λ1 + r − (µ1 −
1

2
σ2
1)β − 1

2
σ2
1β

2 (A-17)

g2(β) = λ2 + r − (µ2 −
1

2
σ2
2)β − 1

2
σ2
2β

2 (A-18)

This characteristic function has four distinct roots β1 < β2 < 0 < β3 < β4. The general form

of the solution is given by

A1(X) = φ1(X) +
4∑
i=1

Gix
βi (A-19)

A2(X) = φ2(X) +
4∑
i=1

Hix
βi (A-20)

Hi = l(βi)Gi =
g1(βi)

λ1
Gi =

λ2
g2(βi)

Gi (A-21)

However boundedness conditions on the unlevered firm value need to be imposed. These

20The exposition follows Guo and Zhang (2004). See also Chen (2010) and Jobert and Rogers (2006).
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are

lim
x→∞

Ai(x)

x
<∞ and lim

x→0
Ai(x) <∞ (A-22)

These two conditions imply βi = 0, i = 1, ..., 4. Thus the unlevered firm value has the

form:

Ai(X) = φi(X) (A-23)

We conjecture that the unlevered firm value is affine in X. That is,

Ai(X) = ciX + di (A-24)

Furthermore, di = 0, i = 1, 2, since Ai(0) = 0

Thus the conjecture becomes

Ai(X) = ciX (A-25)

Plugging these expressions into the two ODEs characterizing the unlevered firm value

and with some rearranging gives a linear system of two equations in two unknowns.

µiciX − (λi + r)ciX +X + λicjX = 0, j 6= i (A-26)

Solving these two equations for c1, c2 gives the unlevered firm value in state i as:

Ai(X) =
(λ1 + λ2 + r − µj)X

λ2(r − µ1) + (r − µ2)(λ1 + r − µ1)
(A-27)

Note that if µ1 = µ2 then the unlevered firm value is the same in both states and is given

by

A(X) =
X

r − µ
(A-28)

C Eigenvalue Problem

This section describes the eigenvalue problem for the cash flow region in which neither default

nor restructuring are immediate threats. Define the log cash flow process, xt = log(Xt). By
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Itô’s Lemma, under the risk-neutral measure, the log cash flow process evolves according to

dxt =

[
µ̂(νt)−

1

2
σX(νt)

2

]
dt+ σX(νt)dŴt (A-29)

Under the risk-neutral measure, the price process of any contingent claim on firm cash flows

will be a martingale with the cash flows discounted by investors at the risk-free short rate,

r(νt). Thus, these contingent claims will be martingales of the form:

M f
t = exp

(
−
∫ t

0

r(νu) du

)
f(νt, xt) (A-30)

for some function f that depends on the payoffs of the given security.

Applying Itô’s Lemma gives

dM f
t = exp

(
−
∫ t

0

r(νu) du

)[
(Λ−R)f +

1

2
Σfxx + Θfx

]
dt (A-31)

R is the diagonal matrix of ri’s. Σ is the diagonal matrix of σ2
iX ’s. Θ is the diagonal matrix

of the risk-neutral drifts of the log cash flow process. Λ is the generator matrix of the Markov

chain, νt.

Since M f
t is a martingale, it has zero drift, implying

(Λ−R)f +
1

2
Σfxx + Θfx = 0 (A-32)

We seek a separable f of the form

f(νt, xt) = g(νt)exp(−βxt) = g(νt)X
β
t (A-33)

This gives the following equation to be solved in β and g:

(Λ−R)g +
1

2
β2Σg − βΘg = 0. (A-34)

Premultiplying the above equation by 2Σ−1 gives

2Σ−1(Λ−R)g + β2g − 2βΣ−1Θg = 0. (A-35)
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This gives the following system of equations:

βg = h (A-36)

βh = 2Σ−1Θh− 2Σ−1(Λ−R)g (A-37)

This can be written as a standard eigenvalue problem of the form

A

(
g
h

)
=

(
0 I

−2Σ−1(Λ−R) 2Σ−1Θ

)(
g
h

)
= β

(
g
h

)
(A-38)

If (g, β) solve this eigenvalue problem, then

M f
t = exp

(
−
∫ t

0

r(νu) du− βxt
)
g(νt) (A-39)

is a martingale. The matrix A has exactly 2 eigenvalues with positive real parts and 2 with

negative real parts.

D Solving for the w coefficients

For the case in which there are two aggregate states to the Markov chain, there are a total

of 3 relevant cash flow regions and each security has a total of 16 w coefficients (8 for each

initial state).

The cash flow regions are:

Region 1: X ∈ [X1
D, X

2
D)

Region 2: X ∈ [X2
D, X

u(1)
U )

Region 3: X ∈ [X
u(1)
U , X

u(2)
U )

Note that for X < X1
D the firm is always in default regardless of the state and for X > X

u(2)
U

the firm has already restructured upwards for any state.
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Debt

For a given initial state, ν0, the 8 boundary conditions for debt are

lim
X↑X2

D

D(X, 1, ν0) = lim
X↓X2

D

D(X, 1, ν0) (A-40)

lim
X↑X2

D

DX(X, 1, ν0) = lim
X↓X2

D

DX(X, 1, ν0) (A-41)

lim
X↑Xu(1)

U

D(X, u(2), ν0) = lim
X↓Xu(1)

U

D(X, u(2), ν0) (A-42)

lim
X↑Xu(1)

U

DX(X, u(2), ν0) = lim
X↓Xu(1)

U

DX(X, u(2), ν0) (A-43)

D(X1
D, 1, ν0) = (1− α(1))V U(X1

D, 1) (A-44)

D(X2
D, 2, ν0) = (1− α(2))V U(X2

D, 2) (A-45)

D(X
u(1)
U , u(1), ν0) = D(X0, ν0) (A-46)

D(X
u(2)
U , u(2), ν0) = D(X0, ν0) (A-47)

Equations (A-40) and (A-42) are the value-matching conditions across cash flow regions and

equations (A-41) and (A-43) are the smooth-pasting conditions across regions. Equations

(A-46) and (A-47) are the value-matching boundary conditions for default and equations

(A-46) and (A-47) are the value-matching boundary conditions for upward restructuring.

The initial (par value) of debt at time 0 is given by

D(X0, ν0; ν0) = wD2,1(ν0)g2,1(ν0)exp{β2,1x0}+ wD2,2(ν0)g2,2(ν0)exp{β2,2x0}+

wD2,3(ν0)g2,3(ν0)exp{β2,3x0}+ wD2,4(ν0)g2,4(ν0)exp{β2,4x0}+ (1− τi)C(ν0)b(ν0)

D(X0, ν0; ν0) =
4∑
j=1

wD2,j(ν0)g2,j(ν0)exp{β2,jx0}+ (1− τi)C(ν0)b(ν0) (A-48)

Note that g2,j(ν0) is a scalar: it’s the ν0 element of the g2,j eigenvector, where g2,j is the jth

eigenvector for the eigenvalue problem for the 2nd cash flow region. Thus, we have a system

of 8 equations to solve for the 8 unknown wD coefficients.
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G(X)LHSW
D + ξ(X)LHS + ζLHS = G(X)RHSW

D + ξ(X)RHS + ζRHS (A-49)

[G(X)LHS −G(X)RHS]WD = ξ(X)RHS + ζRHS − ξ(X)LHS − ζLHS (A-50)

Thus,

WD = [G(X)LHS −G(X)RHS]−1 (ξ(X)RHS + ζRHS − ξ(X)LHS − ζLHS) (A-51)

Equity

For a given initial state, ν0, the 8 boundary conditions for equity are

lim
X↑X2

D

E(X, 1, ν0) = lim
X↓X2

D

E(X, 1, ν0) (A-52)

lim
X↑X2

D

EX(X, 1, ν0) = lim
X↓X2

D

EX(X, 1, ν0) (A-53)

lim
X↑Xu(1)

U

E(X, u(2), ν0) = lim
X↓Xu(1)

U

E(X, u(2), ν0) (A-54)

lim
X↑Xu(1)

U

EX(X, u(2), ν0) = lim
X↓Xu(1)

U

EX(X, u(2), ν0) (A-55)

E(X1
D, 1, ν0) = 0 (A-56)

E(X2
D, 2, ν0) = 0 (A-57)

E(X
u(1)
U , u(1), ν0) =

X
u(1)
U

X0

[(1− q)D(X0, u(1);u(1)) + E(X0, u(1);u(1))]−D(X0, ν0; ν0)(A-58)

E(X
u(2)
U , u(2), ν0) =

X
u(2)
U

X0

[(1− q)D(X0, u(2);u(2)) + E(X0, u(2);u(2))]−D(X0, ν0; ν0)(A-59)

Note that these conditions hold for an arbitrary coupon rate, C(ν0). For a given initial

state, ν0, the optimal default thresholds (for an arbitrary coupon) satisfy the smooth-pasting

conditions for equity such that

∂

∂X
E(X, 1; ν0)

∣∣∣∣
X↓X1

D(ν0)

= 0 (A-60)

∂

∂X
E(X, 2; ν0)

∣∣∣∣
X↓X2

D(ν0)

= 0 (A-61)
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E Data

Aggregate Earnings

For the aggregate earnings series, I use the quarterly “Net Operating Surplus” series from

NIPA Section 1, Table 1.14, Line 8. The quarterly series is available for the period 1947Q1-

2010Q2. I construct the log earnings growth series and present summary statistics for the

unconditional moments below (all values are quarterly).

Unconditional Moments: Quarterly Aggregate Earnings Growth
Mean 0.017
Std Dev 0.053
AC(1) 0.111

Firm Data

I construct the sample of firms to be estimated from the Compustat Fundamentals Quarterly

file merged with equity data from CRSP. I require firms to have at least 20 quarters of data

in the Compustat and CRSP files.

Variable definitions:

• Book Leverage: dlccq + dlttq
atq

• Earnings Growth:

ẽt+1 =

∑K
j=0 et+1−j∑K
j=0 et−j

− 1 (A-62)

where et is Compustat item ‘oiadpq’ in quarter t.

• Quasi-Market Leverage: dlccq + dlttq
dlccq + dlttq + ME

where ME is constructed from CRSP as Price*(Shares

Outstanding).

F Estimating Parameters of the Aggregate Earnings

Process

The procedure I use to estimate the parameters of the aggregate earnings growth follows the

exposition in Chapter 22 of Hamilton (1994) on estimating Markov chain regime-switching
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processes. See also Hamilton (1989). In the model, aggregate earnings is assumed to evolve

according to a Markov-modulated geometric Brownian motion:

dXA
t

XA
t

= µA(νt)dt+ σA(νt)dW
A
t . (A-63)

By Itô’s Lemma, the quarterly log earnings growth rate, xt+1, can be written as

xt+1 ≡ ∆log(Xt+1) = µA(νt)−
1

2
σA(νt) + εAt+1 (A-64)

where εAt+1 ∼ N (0, (σA(νt))
2).

This gives six parameters to be estimated: µA1 , µ
A
2 , σ

A
1 , σ

A
2 , λ12, and λ21. Stacking these

parameters into a vector, Θ, the vector of conditional densities for each state can be expressed

as

ηt =

[
f(xt|νt−1 = 1, xt−1; Θ)
f(xt|νt−1 = 2, xt−1; Θ)

]
=

 1√
2πσA

1

exp
{
−(xt−µA1 + 1

2
(σA

1 ))2)

2(σA
1 )2

}
1√

2πσA
2

exp
{
−(xt−µA2 + 1

2
(σA

2 ))2)

2(σA
2 )2

}  (A-65)

Define the vector of optimal inferences for the current state at date t, given the vector of

observations up to and including date t, Xt, and the vector of population parameters, Θ, as

ξ̂t|t =

[
P{νt = 1|Xt; Θ}
P{νt = 2|Xt; Θ}

]
(A-66)

Similarly, define the vector of optimal one period ahead forecasts for state νt+1 as

ξ̂t+1|t =

[
P{νt+1 = 1|Xt; Θ}
P{νt+1 = 2|Xt; Θ}

]
(A-67)

The optimal inference and forecast can be defined recursively as

ξ̂t|t =
ξ̂t|t−1 � ηt

1′(ξ̂t|t−1 � ηt)
(A-68)

ξ̂t+1|t = P ′ξ̂t|t (A-69)

where � denotes element by element multiplication and P is the discrete time transition

matrix given by

P =

[
p11 1− p11

1− p22 p22

]
(A-70)
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Starting with an initial guess for ξ1|0 equal to the vector of unconditional probabilities and

a vector of parameters, Θ, the log likelihood function can be constructed by iterating on

equations (A-68) and (A-69).

L(Θ) =
T∑
t=1

logf(xt|Xt−1; Θ) =
T∑
t=1

log(1′(ξ̂t|t−1 � ηt)) (A-71)

To estimate the parameter vector Θ, I maximize the log likelihood function given in (A-71)

numerically. Finally, given the estimated discrete time transition matrix, P , the generator

matrix, Λ, for the continuous time Markov chain can be computed as21

Λ =

[
λ11 λ12
λ21 λ22

]
=

[
log(p11)

(1−p11)log(p11)
p11−1

(1−p22)log(p22)
p22−1 log(p22)

]
(A-72)

G Selection Bias Across States

In Figure A-1 I present the distribution of default costs, for simulated defaults in an economy

with set of estimated firm-level parameters. I repeat the exercise of computing the selection

bias in default costs as in Section 4 of the paper, but display the results conditional on the

sate of the economy. Panel A of Figure Figure A-1 presents the distribution of default costs

for the defaults occurring in the high state of the economy (νt = H). Panel B displays the

distribution for the low state (νt = L).

21Note that this assumes that the probability of switching states more than once in a quarter is zero. See
Jarrow, Lando, and Turnbull (1997) for more details.
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A. Distribution of Defaulted αi: νt = H
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B. Distribution of Defaulted αi: νt = L
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Figure A-1: Distribution of Default Costs for Simulated Defaults, Conditional on State of the
Economy. This figure displays the distribution of default costs among the simulated defaults,
conditional on the state of the economy. Panel A displays the distribution for defaults occurring
in the good state of the economy (νt = H) and Panel B displays the distribution for the bad state
(νt = L).
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