
SQL, NoSQL,

MongoDB

CSE-291 (Distributed Systems) Winter 2017

Gregory Kesden

“SQL” Databases

• Really better called “Relational Databases”

• Key construct is the “Relation”, a.k.a. the table

• Rows represent records

• Columns represent attribute sets

• Find things within tables by brute force or indexes, e.g. B-Trees or Hash Tables

• Cross-reference tables via shared keys, basically an optimized cross-product, known
as a “join”

• Expensive operation

“SQL” Databases

• Backbone of modern apps

• Very, very high throughput can be achieved

• Scaling is challenging because there is no good way to partition tables while

still achieving semantics

• Amazing work-arounds are possible – virtualize SANS to large storage

devices, etc

• But, the model is what it is.

NoSQL Databases

• Any of the more modern databases that essentially give up the ability to do

joins in order to be able to avoid huge monolith tables and scale

• Key-Value (Dynamo or basic Cassandra)

• Column-based (Hbase)

• Document-based (MongoDB)

• Usually has more flexible scheme (no rigid tables means no rigid NxM

structure)

MongoDB

• Document-based NoSQL database

• Max 16MB per document

• Documents are rich BSON (Binary JSON) key-value documents

• Collections hold documents and can share indexes

• Some like to suggest they are analogous to tables, but not all documents in a collection must
have the same structure.

• They just have some of the same keys

• Databases hold collections hold documents

MongoDB Document

• Note field:value

tuples

https://docs.mongodb.com/manual/_images/crud-annotated-document.png

Embedded Documents

var mydoc = {
_id: ObjectId(“1abcd45b123456754321abcd"),
name: { first: “Gregory", last: “Kesden" },
classes: [“CSE-291", “CSE-110", “CSE-500"],
contact: { phone: { type: "cell", number: “412-818-7813" } },

}

Array access: classes.0

Embedded doc access: contact.phone.number

Join Operations?

• In general, not a MongoDB thing

• Get data from different places

• Slow and expensive operation

• Much better to take advantage of denormalized structure to embed related things

• Can also “chase pointers” by chasing an id from one document into another

document via another query. (More like using a foreigh key in SQL than a join)

• Worst case? Multiple passes using shared key.

Indexes (Much like any other DB)

https://docs.mongodb.com/manual/indexes/

Single Field Indexes

https://docs.mongodb.com/manual/indexes/

Compound Indexes

https://docs.mongodb.com/manual/indexes/

Multi-Key (Array Field) Indexes

https://docs.mongodb.com/manual/core/index-multikey/

Note: One index for

each element of the

array

More About Indexing

• Matches, Range-based results, etc

• Geospatial searches

• Text searches, language based, includes only meaningful words

• Partial indexes filter and only index matching documents

• TTL indexes, internally used to age out documents, where desired

• Covered queries are queries that can be answered directly from indexes, without
scanning

• Intersection of indexes.

Aggregation Pipeline: Filter, Group, Sort, Ops

(Average, Concatenation, etc)

https://docs.mongodb.com/manual/aggregation/

Map-Reduce

https://docs.mongodb.com/manual/aggregation/

Concurrency

• Multiple options, WiredTiger the default

• Document-level concurrency control for write operations. As a result, multiple clients
can modify different documents of a collection at the same time.

• For most read and write operations, WiredTiger uses optimistic concurrency
control. WiredTiger uses only intent locks at the global, database and collection
levels. When the storage engine detects conflicts between two operations, one will
incur a write conflict causing MongoDB to transparently retry that operation.

• Some global operations, typically short lived operations involving multiple
databases, still require a global “instance-wide” lock. Some other operations, such as
dropping a collection, still require an exclusive database lock.

https://docs.mongodb.com/manual/core/wiredtiger/

Snapshots and Checkpoints

• At the start of an operation, WiredTiger provides a point-in-time snapshot of the data to the transaction. A
snapshot presents a consistent view of the in-memory data.

• When writing to disk, WiredTiger writes all the data in a snapshot to disk in a consistent way across all data
files. The now-durable data act as a checkpoint in the data files. The checkpoint ensures that the data files are
consistent up to and including the last checkpoint; i.e. checkpoints can act as recovery points.

• MongoDB configures WiredTiger to create checkpoints at intervals of 60 seconds or 2 gigabytes of journal
data.

• During the write of a new checkpoint, the previous checkpoint is still valid.

• The new checkpoint becomes accessible and permanent when WiredTiger’s metadata table is atomically
updated to reference the new checkpoint. Once the new checkpoint is accessible, WiredTiger frees pages
from the old checkpoints.

• Journaling needed to recover changes ahead of checkpoints

https://docs.mongodb.com/manual/core/wiredtiger/

https://docs.mongodb.com/manual/reference/glossary/#term-durable

Journaling

• Compressed write-ahead log (WAL)

• Used to recover state more recent than most recent checkpoint

• Buffered in memory, synced every 50ms

• Deleted upon clean shutdown

• Depending on file system, can preallocate log to avoid slow allocation

Replica Sets: Asynchronous Replication

https://docs.mongodb.com/manual/replication/

Arbiters for Quorums:

Real World Student-Like Move

https://docs.mongodb.com/manual/replication/

Automatic Failover

• Missing heartbeats for 10sec? Call election

• Secondary with most votes becomes new
primary, temporarily

• But, uses bully-like primary to agree on top
dog in the end

• Can be non-voting secondaries. Can be
read, but not elected or voting.

• Read-only during election

https://docs.mongodb.com/manual/replication/

Supporting Scale

• Vertical – bigger host

• Horizontal -- Sharding

• More hosts

• Higher throughput

• Greater capacity

Sharding

• Documents w/in sharded collection have
shard key

• Immutable, sued for sharding

• Choice is very important, because key
must be found in range by index. Can be
bottleneck

• Collection partitioned by shard key range
into chunks

• Chunks are distributed and replicated
(replica sets)

Chunks

• Sharded into

chunks by shard

key

• Can be migrated

manually or

balancer

• Can be split if too

large

