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Abstract—Automated 3D modeling of building interiors is
useful in applications such as virtual reality and entertainment.
Using a human-operated backpack system equipped with 2D
laser scanners and inertial measurement units (IMU), we de-
velop scan matching based algorithms to localize the backpack
in complex indoor environments such as a T-shaped corridor
intersection, a staircase, and two indoor hallways from two
separate floors connected by a staircase. When building 3D
textured models, we find that the localization resulting from scan
matching is not pixel accurate, resulting in misalignment between
successive images used for texturing. To address this, we propose
an image based pose estimation algorithm to refine the results
from our scan matching based localization. Finally, we use the
localization results within an image based renderer to enable
virtual walkthroughs of indoor environments using imagery from
cameras on the same backpack. Our renderer uses a three-step
process to determine which image to display, and a RANSAC
framework to determine homographies to mosaic neighboring
images with common SIFT features. In addition, our renderer
uses plane-fitted models of the 3D point cloud resulting from the
laser scans to detect occlusions. We characterize the performance
of our image based renderer on an unstructured set of 2709
images obtained during a five minute backpack data acquisition
for a T-shaped corridor intersection.

I. INTRODUCTION

Three-dimensional modeling of indoor and outdoor envi-
ronments has a variety of applications such as training and
simulation for disaster management, virtual heritage conserva-
tion, and mapping of hazardous sites. Manual construction of
these models can be time consuming, and as such, automated
3D site modeling has garnered much interest in recent years.
Interior modeling in particular poses significant challenges, the
primary one being indoor localization in the absence of GPS.

Localization has been studied by robotics and computer
vision communities in the context of the simultaneous lo-
calization and mapping problem (SLAM) where a vehicle’s
location within an environment and a map of the environment
are estimated simultaneously [1]. The vehicle is typically
equipped with a combination of laser range scanners, cameras,
and inertial measurement units (IMUs). Recent work in this
area has shifted toward solving SLAM with six degrees
of freedom (DOF) [2]–[4], namely position and orientation.
SLAM approaches with laser scanners often use scan matching
algorithms such as Iterative Closest Point (ICP) [5] to align
scans from two poses in order to recover the transformation
between the poses. Meanwhile, advances in visual odometry
algorithms have led to camera based SLAM approaches [3],

[6]. With a single camera, pose can be estimated only up to an
unknown scale factor. This scale is generally determined using
GPS waypoints, making it inapplicable to indoor environments
unless objects of known size are placed in the scene. To
resolve this scale ambiguity, stereo camera setups have gained
popularity, as the extrinsic calibration between the cameras can
be used to recover absolute translation parameters [3], [7].

Localizing a vehicle using scan matching and/or visual
odometry and/or wheel odometry can result in significant drifts
in navigation estimates over time. The error becomes apparent
when the vehicle encounters a previously visited location, at
which point it has traversed a loop. However, the estimated
trajectory from localization algorithms may not form a loop.
Such inconsistencies can be remedied by detecting when these
loop closure events occur and solving optimization problems
to close the loop [3], [8]–[10].

Previously, we developed a number of localization algo-
rithms for a human-operated backpack system equipped with
laser scanners and IMUs, and characterized their performance
on a simple 30-meter hallway [11]. The motivation for using
a backpack system rather than a wheeled robot or pushcart
has been the ability to map complex environments such as
staircases. In previous work, we manually detected the loops
in the traversed path to enforce loop closure [11]. In this paper,
we propose an automatic loop detection algorithm based on
FAB-MAP [12] and keypoint matching [13]. We show that
our localization algorithms perform just as accurately in more
complex environments, such as staircases, as they do in simple
flat hallway environments.

Though the localization errors resulting from these localiza-
tion algorithms are quite low even in these complex environ-
ments, when the resulting recovered pose is used to texture
map camera imagery onto the resulting 3D triangular mesh
models, there is significant misalignment between successive
images used to texture map neighboring triangles. This implies
that the scan matching based localization algorithms are not
pixel accurate. To cope with this problem, we propose an
image based approach in which the pose from scan matching
based localization is refined using camera imagery. The goal
of this step is to ensure that images in the texture mapping
process are sufficiently aligned so as to avoid visual artifacts.

We use backpack localization results to develop an image
based renderer for virtual walkthroughs of indoor environ-
ments using imagery from cameras on the same backpack.
Our renderer uses a three-step process to determine which978-1-4244-5864-6/10$26.00 c© IEEE
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Fig. 1. CAD model of the backpack system.

image to display, and a RANSAC framework to determine
homographies to mosaic neighboring images with common
SIFT features. In addition, our renderer uses plane-fitted
models of the 3D point cloud resulting from the laser scans
to detect occlusions.

The outline of the paper is as follows. The architecture of
our backpack system is described in Section II. Localization
algorithms including loop detection and closure are included
in Section III. In Section IV, we discuss our image based
renderer, including image selection, mosaicing, and rendering.
The conclusions are in Section V.

II. ARCHITECTURE

We mount three 2D laser range scanners and two IMUs
onto our backpack rig, which is carried by a human operator.
Figure 1 shows the CAD model of our backpack system. The
yaw scanner is a 40Hz Hokuyo UTM-30LX 2D laser scanner
with a 30-meter range and a field of view of 270◦. The pitch
scanner and left vertical geometry scanner are 10Hz Hokuyo
URG-04LX 2D laser scanners each with a 4-meter range and a
field of view of 240◦. These scanners are positioned orthogonal
to each other. One IMU is a strap-down navigation-grade
Honeywell HG9900 IMU, which combines three ring laser
gyros with bias stability of less than 0.003◦/hour and three
precision accelerometers with bias of less than 0.245mm/sec2.
The HG9900 provides highly accurate measurements of all six
degrees of freedom (DOF) at 200Hz and serves as our ground
truth. The other IMU, an InterSense InertiaCube3, provides
orientation parameters at the rate of 180Hz. As seen later, we
localize the backpack over time using only the yaw scanner,
the pitch scanner, and the InterSense IMU. In particular, we
estimate the backpack’s pose at a rate of 10Hz, the same rate
as the pitch scanner. The left vertical geometry scanner is only
used to build a 3D point cloud following localization.

We use a right-handed local coordinate system. With the
backpack worn upright, x is forward, y is leftward, and z is
upward. Referring to Figure 1, the yaw scanner scans the x-
y plane, the pitch scanner scans the x-z plane, and the left
vertical geometry scanner scans the y-z plane. Thus, the yaw

scanner can resolve yaw rotations about the z axis and the
pitch scanner about the y axis.

Assuming that the yaw scanner scans the same plane
over time, we can apply scan matching on successive laser
scans from the yaw scanner and integrate the translations and
rotations obtained from scan matching to recover x, y, and
yaw of the backpack over time. Likewise, assuming that pitch
scanner scans the same plane over time, we can apply scan
matching on successive laser scans from the pitch scanner to
recover x, z, and pitch.

The assumption of scanning the same plane roughly holds
for both the yaw and the pitch scanners. However, we have
empirically found that coplanarity assumption remains more
valid if the effective range of the yaw scanner is limited. In
particular, points scanned that are closer to the yaw scanner
appear to come from approximately the same plane between
two successive scan times. However, points farther away from
the yaw scanner can potentially come from two very different
planes between two successive scan times, for example if
between these times the backpack experiences a large pitch
change. These scan points that clearly come from different
planes between two scan times cannot be aligned by scan
matching. Thus, for the experiments in this paper, we discard
points farther than a certain threshold away from the yaw
scanner. We have empirically found that limiting the yaw
scanner range to 15 meters still allows for nearly all the yaw
scanner’s range data between two successive scan times to
appear to roughly come from the same plane.

III. LOCALIZATION

We use laser/IMU based localization algorithms from [11]
to estimate the transformation between backpack poses at
consecutive time steps. We compose these transformations to
reconstruct the entire trajectory the backpack traverses. How-
ever, since each transformation is somewhat erroneous, the
error in the computed trajectory can become large over time,
resulting in loop closure errors. In Section III-A we propose
an automatic loop closure detection method based on images
collected by the backpack. Once loops are detected, we enforce
loop closure using a nonlinear optimization technique in the
Tree based netwORk Optimzer (TORO) [10] to reduce the
overall localization error. In Section III-B, we apply the loop
closure detection method from Section III-A in conjunction
with TORO to experimentally characterize the performance
of the laser/IMU based localization algorithms in [11] for
complex environments such as staircases. In Section III-C,
we combine an image based pose estimation technique with
TORO to refine the laser/IMU localization results. As seen, the
resulting 3D textured models from this localization approach
are pixel accurate and as such, do not suffer from texture align-
ment issues prevalent in 3D models resulting from laser/IMU-
only localization algorithms.

A. Loop Closure Detection

In this section, we describe an algorithm to automatically
detect loop closures using camera imagery on the backpack.
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Our algorithm is a modified version of Newman’s FAB-
MAP [12], a probabilistic approach of recognizing places via
appearance.

Our modifications and extensions to the FAB-MAP algo-
rithm are as follows. First, after building a vocabulary from
training data and converting all scenes into words, we remove
words that appear in all, one, or no scenes. This is because
we calculate the co-occurrence of words for the Chow Liu
tree [14] and words that appear in every image, only one
image, or none of the images provide little information in
distinguishing images. Second, location prior is left uniform,
since performance is largely unaffected [12].

Computing the probability distribution of all images over all
locations is considered one trial. We call a match between an
image and a location an image pair, since a location originates
from an image. This match occurs because the probability of
it being a genuine loop closure is higher than a prespecified
threshold; however, in practice it could be either a genuine
loop closure or a false positive. In order to emphasize genuine
loop closures and recognize false positives, we run 100 trials
and record all image pairs with the number of times they
appear in the trials. Figure 2 shows several image pairs with
the most counts in dataset 1, which corresponds to a 5 minute
walk in a T-shaped corridor with about 100 images. While
in this example the two image pairs with the highest count
from FAB-MAP correspond to genuine loop closures and the
remaining ones do not, in general this is not the case. As
such, some postprocessing is needed to detect genuine loop
closures among the top ranked image pair candidates generated
by FAB-MAP.

We now examine image pairs that have appeared the most
and use keypoint matching [13] to determine whether they
are correct matches. As shown in [13], correct and incorrect
matches have different distributions of the ratio

d(feature, nearest neighbor)
d(feature, 2nd nearest neighbor)

(1)

where d(a,b) computes the Euclidean distance between a
and b. Figure 3 shows the PDF of the above ratio for all
the features in two image pairs of Figure 2 corresponding
to a correct and an incorrect match. As seen, the PDF for
genuine and incorrect matches are quite different. Unlike an
incorrect match, for a genuine match a significant number and
percentage of the features result in the ratio in Equation 1
being smaller than 0.6. Figure 4(a) shows the number of
candidate image pairs across all 9 datasets as a function of
the number of features satisfying the ratio in Equation 1; each
dataset corresponds to a 5 to 10 minute data acquisition and
consists of 100 images; there are a total of 13 genuine loop
closure pairs for the 9 datasets. As seen, using the absolute
number of features is not a reliable indicator of the correctness
of a given image pair. By contrast, Figure 4(b) shows the same
quantity as a function of the percentage of features satifying
the ratio in Equation 1. As seen, the percentage of features
satisfying Equation 1 can be successfully used to distinguish
between correct and incorrect candidate image pairs resulting

Fig. 2. Image pairs and their # of appearances in 100 trials for dataset 1.
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Fig. 3. The PDF of the ratio of distance of the nearest neighbor to the
distance of the second-closest neighbor for two image pairs; (a) a correct
pair, 85-1 in Figure 2; (b) an incorrect pair, 69-20 in Figure 2.
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Fig. 4. PDF of (a) the number, (b) the percentage, of features with ratio
below 0.6.

from FAB-MAP for all 13 loop closures corresponding to 9
datasets.

B. Laser/IMU Localization Results

We use the 2×ICP+IMU and 1×ICP+IMU+Planar al-
gorithms from [11] to characterize the performance of our
laser/IMU based localization. In doing so, the loop closures
are detected via the approach in Section III-A and TORO
optimization is applied to the directed graph with transforma-
tions resulting from these two algorithms. Both localization
methods use scan matching on the yaw scanner to estimate
the backpack pose parameters x, y, and yaw over time. Also,
both methods use the InterSense IMU to estimate the backpack
roll and pitch over time. For 2×ICP+IMU, scan matching
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on the pitch scanner is used to estimate z over time. The
1×ICP+IMU+Planar method works only in environments
with planar floors and fits a line to the floor to estimate z
over time.

We test these two algorithms on four datasets: Dataset 1
is a T-shaped corridor intersection that includes a roughly 20-
meter segment of a hallway. Datasets 2 and 3 are of a staircase
roughly 4.5 meters in height. Dataset 4 consists of two roughly
15-meter hallway segments connected by a staircase roughly
4.5 meters in height. We first compare 1×ICP+IMU+Planar
and 2×ICP+IMU results on dataset 1 as it is the only dataset
with a strictly planar floor. For the other datasets, which
include staircases, we use 2×ICP+IMU localization as it does
not require a planarity assumption. Incremental pose errors are
compared in the local coordinate frame specified in Section II.
Global position and orientation errors are computed in a frame
where x is east, y is north, and z is upward. Note that global
errors result from accumulated local errors. As such, their
magnitude is for the most part decoupled from the magnitude
of local errors. In particular, local errors can either cancel each
other out to result in lower global errors, or they can interact
with each other in such a way so as to magnify global errors.

Global and incremental pose errors using
1×ICP+IMU+Planar and 2×ICP+IMU for dataset 1 are
shown in Figure 5. The results are for loop closure detection,
followed by TORO optimization. We see that the two
methods are comparable with 1×ICP+IMU+Planar resulting
in significantly lower global z error compared to 2×ICP+IMU.
This is to be expected since in 1×ICP+IMU+Planar we
estimate the absolute value of z, rather than the incremental tz,
at every time step. Thus, the error in z does not have a chance
to accumulate over time. However, since 2×ICP+IMU does
not make use of a planar-floor assumption, it extends to
multi-floor datasets 2, 3, and 4.

Global and incremental pose errors using 2×ICP+IMU
across all four datasets are shown in Figure 6. Again, the
results are for loop closure detection followed by TORO
optimization. We see that compared to dataset 1, datasets 2,
3, and 4 corresponding to the multi-floor datasets, have higher
error in global roll and yaw. Other errors remain comparable
to the single-floor case of dataset 1. Across all datasets,
incremental yaw resulting from horizontal scan matching has
lower error than incremental pitch and roll resulting from
the IMU. The resulting estimated trajectories closely resemble
ground truth trajectories, as shown in Figure 7.

For each dataset, the average position error of the estimated
path is reported along with the ground truth path’s length in
Table I. We find that the average position error relative to the
path length for each dataset is small, i.e. around 1% or lower.

The localization results can be applied to the scans from the
left vertical geometry scanner in Figure 1 in order to generate
a 3D point cloud, which is then processed by a plane fitting
algorithm. An example of the 3D point cloud and the resulting
3D plane fitted model for the T-shaped corridor intersection
is shown in Figures 8(a) and 8(b) respectively. The plane-
fitted model is used later in Section IV to detect occlusions in

Fig. 5. Global and incremental RMS error characteristics using
1×ICP+IMU+Planar and 2×ICP+IMU on dataset 1. Markers above each
bar denote peak errors.

Fig. 6. Global and incremental RMS error characteristics using 2×ICP+IMU
across all four datasets. Markers above each bar denote peak errors.

the image based renderer. Figure 9 shows a triangulated and
textured 3D model for two hallways connected by a staircase.

C. Refining Laser/IMU Localization Using Images

Using the pose information provided by the localization
algorithms discussed in Section III-B, we can transform all
captured laser scans into a single 3D coordinate frame. Since
camera images are acquired at nearly the same time as a
subset of the laser scans, nearest-neighbor interpolation of
the pose parameters allows us to estimate the pose of every
camera image. Therefore, to generate a 3D model, we (i)
transform all laser scans from the floor scanner to a single
world coordinate frame and use known methods to create
a triangulated surface model from ordered laser data [15],
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Dataset Path length Average position error
1 68.73 m 0.66 m
2 46.63 m 0.35 m
3 46.28 m 0.58 m
4 142.03 m 0.43 m

TABLE I
GROUND TRUTH PATH LENGTH VS. AVERAGE POSITION ERROR OF THE

ESTIMATED PATH FOR EACH DATASET.

(a) (b)

(c) (d)

Fig. 7. Estimated trajectories using 2×ICP+IMU plotted against ground
truth for: (a) dataset 1; (b) dataset 2; (c) dataset 3; (d) dataset 4. The
estimated trajectory using 1×ICP+IMU+Planar for dataset 1 is similar to
that of 2×ICP+IMU.

and (ii) texture map the model by projecting laser scans
onto temporally close images. However, we have found that
the laser based localization algorithms alone are not accurate
enough for building textured 3D surface models. For example,
Figure 10 shows a screenshot of a model created by using
the 1×ICP+IMU+planar localization results and the resulting
texture misalignment. In this section we propose an image
based approach to refine the laser/IMU localization results.

Our image based localization refinement scheme uses laser
scans acquired at times (τ1,τ2, . . . ,τN), the estimated poses X
as derived from the scan matching based localization algo-
rithms and camera images acquired at times (τ ′1,τ

′
2, . . . ,τ

′
M).

We assume that M� N, because we desire image pairs that
exhibit enough baseline for reliable SIFT feature triangulation.
In particular, for our two datasets over a 30-meter-long hall-
way, we have N ≈ 3000 and M ≈ 80. Further, we can assume
that each image is acquired at approximately the same time as
one of the laser scans, allowing us to estimate camera poses
from X using nearest neighbor interpolation. In practice, our
backpack system guarantees synchronization of laser scans and
images to within 50 milliseconds.

Image based localization refinement is a two step process.

(a)

(b)

Fig. 8. (a) 3D point cloud from laser scanners colored by height and (b) a
plane-fitted model of a T-shaped corridor intersection.

Fig. 9. 3D model of two hallways connected by a stairwell.

First, we estimate the transformations that relate pairwise
camera poses. In particular, we estimate the M− 1 transfor-
mations T ′1,2,T

′
2,3, . . . ,T

′
M−1,M in addition to all loop closure

transformations T ′
αi,βi

. Second, we obtain a directed graph by
adding the estimated pairwise camera transformations as edges
to the graph obtained from the scan matching algorithms. An
example of such a directed graph with both sets of transforma-
tions is shown in Figure 11. Each small node corresponds to a
laser scan, and each large node corresponds to a laser scan and
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Fig. 10. Screenshot of textured 3D model generated from localization data
without image based refinement. Misalignments between textures from different
images are apparent.

Fig. 11. Example directed graph for the image based refinement algorithm.

an image acquired at approximately the same time. Small arcs
represent transformations resulting from the scan matching
algorithms. Long arcs represent transformations estimated with
the image based refinement algorithm to be described shortly.
Once a new directed graph with both scan matching and
image based edges has been constructed, we perform a round
of TORO-based global optimization to redistribute the error
among the nodes in order to obtain a set of refined pose
estimates X [10]. To accomplish this, TORO requires as
input the covariance error associated with each transformation
shown in Figure 11. As shown later, these new pose estimates
lead to better image alignment on the final 3D model because
they incorporate both laser based and image based alignment.

1) Estimating Pairwise Image Transformations: We now
describe the process for estimating the pairwise transformation
T ′k,l relating camera poses at time τ ′k and time τ ′l . If τ ′k and
τ ′l are temporally closest to laser scans at times τr and τs

respectively, T̂r,s(X) represents an initial estimate for T ′k,l ,
where X is obtained from the scan matching based localization
algorithm initially used. Since our initial estimate for T ′k,l is
reasonably accurate, we propose to use an iterative process
that identifies SIFT inliers, and improves the estimate of T ′k,l

by employing the Levenberg-Marquardt algorithm to minimize
the Sampson reprojection error between the two images. For
a set of corresponding SIFT features {xq↔ x′q}q=1,2,...,Q, the
Sampson reprojection error is given by

∑
q

(x′Tq Fxq)
2

(Fxq)2
1 +(Fxq)2

2 +(FT x′q)2
1 +(FT x′q)2

2
(2)

where F is the Fundamental matrix that encodes the epipolar
geometry relating the two camera poses.

Our iterative refinement based on Sampson reprojection
error can only estimate translation up to an unknown scale
factor. However, it does provide us with a set of inlier SIFT
features; therefore we can estimate the translational scale
by aligning triangulated, inlier SIFT features from the side-
looking left camera with the 3D laser points acquired by the
left vertical geometry scanner. In particular, we perform a
multi-resolution search over the unknown scale factor. For
each scale, we find the distance between each triangulated
SIFT feature and its nearest neighbor in the set of 3D laser
points acquired by the floor scanner. We choose the scale
factor that minimizes the median distance over the set of inlier
SIFT features. The median distance criteria is chosen because
it is robust to SIFT outliers that may have been incorrectly
identified as inliers.

We have observed that in some cases our initial estimate for
T ′k,l , resulting from one of the scan matching based localization
methods, is inaccurate and leads to convergence issues for our
iterative refinement method. In most cases, we can detect this
situation because it results in either large Sampson reprojection
error or poor alignment between the laser points and triangu-
lated SIFT features. When such a situation is detected, we
use the normalized five point algorithm [16] in a RANSAC
framework to provide a new initial estimate for T ′k,l and rerun
our iterative refinement method. We only use this new estimate
of T ′k,l if it leads to a decrease in the Sampson reprojection
error or provides better alignment between the laser points and
triangulated SIFT features. Thus, the normalized five point
algorithm provides a safety net for our iterative refinement
scheme if the initial estimate of T ′k,l from scan matching is
poor.

2) Global Optimization: To obtain the final pose estimates
used for 3D modeling, we run a final round of global
optimization using TORO [10]. The pairwise camera pose
transformations are incorporated as edges in the TORO graph.
The edges added to the graph span multiple nodes, as shown
by the long arcs in Figure 11. The graph input to the TORO
optimizer is G = ({X1,X2, . . . ,XN} ,E ), where {X1,X2, . . . ,XN}
are the pose estimates. The set E includes edges associated
with the following transformations: (i) the N − 1 pairwise
transformations Ti,i+1 and the L loop closure transformations
Tαi,βi obtained via the scan matching based methods and (ii)
the M − 1 pairwise transformations T ′i,i+1 and the L loop
closure transformations T ′

αi,βi
obtained via the image based

pose estimation.
TORO requires that each edge in the graph have a corre-

sponding 6-DOF transformation and a covariance matrix. It is



2010 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 15-17 SEPTEMBER 2010, ZÜRICH, SWITZERLAND

not straightforward to derive a closed-form covariance matrix
for our image based transformations since each one is obtained
by first minimizing the Sampson reprojection error followed
by minimizing the 3D distance between triangulated SIFT
features and nearby laser points. However, the covariances for
the laser based scan matching algorithms can be computed
using Censi’s method [17]. Using our ground truth, we can
also perform a one time calibration process whereby for each
diagonal element of the covariance matrix we compute the
relative scale factor between the laser based and the image
based technique. In particular, over a test run of data acqui-
sition, we first estimate laser based transformations and their
covariance matrices without loop closures and then estimate
image based transformations without loop closures. For both
techniques, we also compute the RMS error for each of the
6 pose parameters by comparison with ground truth provided
by the Honeywell HG9900 IMU. For practical situations in
which the ground truth is not available, we use this relative
scaling factor together with Censi’s covariance estimate of the
laser based localization to arrive at the covariance estimate for
image based localization. In particular, to obtain the covariance
matrices for the image based transformations, we average the
diagonal covariance matrices from all laser based transforma-
tions for a given path and scale them based on the square of
the relative RMS error between the two techniques. Intuitively,
in the global optimization, this covariance estimation method
emphasizes parameters estimated accurately by image based
techniques, e.g. translation along the direction of motion, while
deemphasizing parameters estimated more accurately by laser
based techniques, e.g. yaw.

3) Image Based Refinement Results: In all tested cases,
the image based localization refinement does result in a
significant improvement in the visual quality of the resulting
3D textured models. Screenshots of the textured 3D model for
the scene in Figure 10 are shown in Figure 12. As seen, the
misalignments exhibited in Figure 10 are significantly reduced.
The texture mapped 3D models for a number of datasets using
the localization results of Section III can be downloaded from
[18].

IV. IMAGE BASED RENDERING

Image based renderers use a set of images to represent a
3D environment. Renderers vary based on the relationship
between the number of input images and the amount of known
geometry [19]–[28].

Our approach to image based rendering is to utilize all
data products from the backpack acquisition system: high
resolution images from cameras, estimated camera poses from
localization algorithms, and the relevant geometry computed
from 3D point clouds resulting from laser scanners.

For the T-shaped corridor intersection, each of the 3 cameras
in Figure 1 provide 903 images during a five minute walk,
and the localization algorithms of Section III estimate the 6
dimensional pose of a camera for each image. We use the
localization results by converting each pose parameter x, y,
z, roll, pitch, and yaw into a 3-vector pose representation for

Fig. 12. Screenshots of textured 3D model generated with
1×ICP+IMU+planar followed by image based pose estimation and
texture blending. The 3D model exhibits good texture alignment in
comparison with Figure 10, generated with 1×ICP+IMU+planar.

Fig. 13. Camera pose. The position vector is the camera’s world coordinates.
The orientation vector is the center of projection of the image. The up vector
defines the rotation of the camera.

each camera on the backpack as seen in Figure 13. Specifically,
the estimated camera pose is represented by 3 vectors in 3D:
a vector (a,b,c) for the position of the camera, a vector
(a′,b′,c′) for the center of projection of the camera, which
represents the orientation, and a normal vector to (a′,b′,c′)
denoted by (a′′,b′′,c′′) to represent the up direction.

A. Selecting the Image to Render

1) Finding the Best Image: We use a 3-step process to
determine which images to render based on the viewer’s pose
and the set of estimated camera poses. In step 1, if the position
vector for a specific camera pose is within a threshold radius
of the viewer’s position vector, the associated image is added
to set A of images to be potentially rendered. The second step
involves pruning images in set A that are oriented in the wrong
direction to obtain set A′. The dot product between the viewer’s
orientation vector and the camera’s orientation vector provides
a metric for how close a given image is to the viewer’s image
plane. The resulting set of images A′ is close to the viewer
in both orientation and position; the “best” image in set A′

is chosen to be the one with the closest position vector to
the viewer’s. With a tight dot product threshold in step 2, the
chosen image has a camera position closest to the viewer’s
and an image plane in the same direction as the viewer’s
orientation with minimal deviation. The sets of images A and
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Fig. 14. Finding the best image to render. The grey vector is the viewer’s
pose and the black vectors represent camera poses. Red indicates neighboring
images, blue similarly oriented images, and green closest image.

A′ and the “best” image are shown in Figure 14.
2) Rendering the Image: The renderer uses OpenGL’s

texture mapping functionality to render an image from disk. By
defining a plane in the scene, the renderer converts the image
pixel array into a texture map of pixel values. The plane is
congruent to the image plane of the viewer; therefore, the plane
lies on the z = 1 plane in OpenGL World Coordinates. The
pixel values at indices {(0,0),(0,h),(w,0),(w,h)} correspond
to the {upper left, upper right, lower left, lower right} texture
coordinates of the plane where w and h stand for width and
height of the image. OpenGL interpolates the pixel values
according to the coordinates in the texture map. This rendering
model of converting images to textures is more efficient than
storing images into memory; the viewer always sees an image
plane perpendicular to the viewer’s lens axis.

B. Image Mosaicing for Increased Field of View

Similar to most image based renderers, our image based
renderer uses matching features between images to mosaic
images together to provide an increased field of view [29].
In doing so, we inherently assume that close by images are
related to each other by a 3×3 homography. We determine
proximity of images by taking advantage of camera pose
information as derived from backpack localization results
described in Section III.

Due to the large unstructured data set input to the the
renderer, we have taken various steps to optimize for scalabil-
ity. Features and homographies take an inordinate amount of
time to compute; therefore, these processes are precomputed
offline. The online or real-time procedure then renders multiple
images by stitching them together with the precomputed
homographies. The result is that an increase in the number of
images or the amount of known geometry only increases the
amount of offline calculations, not that of the online rendering.

The offline procedure finds SIFT features for each image
and calculates a 3×3 homography between nearby images
within the RANSAC framework [16], [30]. The renderer first
creates a kd-tree data structure to store the SIFT features
in image A. It then uses the kd-tree to traverse the set of
SIFT features of a neighboring image, B, to find the nearest
neighbors of each node in the kd-tree. If a SIFT feature from
image B is similar or close to a feature in image A, then a
point correspondence is found between the two images. The

process to estimate a 3×3 homography requires enough unique
point correspondences to calculate a projective transformation
[16]. The resulting SIFT features and homographies are stored
on disk for optimal real-time rendering.

C. Online Real-Time Rendering
The online process loads the homographies from disk into

memory to stitch relevant images to the “best” image chosen
in Section IV-A1 for a given view. The renderer performs
a similar procedure to determine images considered to be
neighbors by taking into account position and orientation
relative to the “best” image. These neighbors are cached for
future searches, limiting the search calculation to a single pass
across all images.

The camera pose information for each image is avail-
able from the backpack localization results as described in
Section III. In addition to camera poses, the homography
parameters such as the number of inliers and the residual
error resulting from the homography compilation are taken
into account in choosing neighboring images for stitching
purposes. Inherently, these transformations assume that the
images are coplanar, but in practice the scene is not always a
flat environment. Therefore, homographies that transform the
image by a rotation of more than 45 degrees of any axis are
not applied as they likely correspond to non-planar scenes.

1) Culling and Intersection: If we were to estimate a
homography for each pair of images, the run time would
become prohibitively long, i.e. on the order of O(n2) where
n is the number of images. However, optimizations can be
made by exploiting the known geometry of the environment.
Specifically, the backpack localization results can be used
to generate a 3D point cloud made up of scan points of
the left vertical geometry laser scanner on the backpack. An
example of this is shown in Figure 8(a). We can then create a
model of the scene by fitting planes to the 3D point cloud,
as shown in Figure 8(b). An intersection test can then be
used to determine whether two images can be considered
neighbors. If a line starting at the position vector of camera
pose P1 = (x1,y1,z1) and ending at the position vector of
camera pose P2 = (x2,y2,z2) intersects a plane represented
by equation Ax+By+Cz+D = 0 in the model, the image
at pose P1 is occluded from the camera at pose P2 and vice
versa; this is true regardless of the viewer’s orientation. This
can be quantified in the intersection test equation below:

0 < t =
A · x1 +B · y1 +C · z1 +D

A · (x1− x2)+B · (y1− y2)+C · (z1− z2)
< 1 (3)

Consider the line (x,y,z) = P = P1 + t ∗ (P2 − P1) for an
arbitrary parameter t; then an intersection point (x,y,z) must
satisfy both the plane equation and a line equation. Solving for
the variable t is the same as finding t at which the ray (P2−P1)
travels from P1 and intersects the plane with parameters {A,
B, C, D}. If 0 < t < 1, then the line intersects the plane
between the two position vectors. In this case, the two images
associated with the camera poses are occluded by a plane, and
are no longer considered neighbors.
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(a)

(b)

Fig. 15. The results of mosaicing images together (a) before and (b) after
alpha blending. Note the elimination of the boundary artifacts.

2) Alpha Blending: Neighboring images can have incon-
sistent lighting or distortion that affect the mosaic; as such,
the boundaries between images can be fairly pronounced,
diminishing the visual appeal as seen in Figure 15(a). We
choose to use a variant of feathering to alpha blend images
together in OpenGL. To do so, we divide each plane into
a series of one pixel wide planes, and apply a triangular
weighting function horizontally to the ith one pixel wide plane
as follows

αi =

{
i

w/2 if 0≤ i < w
2

1− i−w/2
w/2 if w

2 ≤ i < w
(4)

where w is the width of the image.
OpenGL renders a pixel value based on the following

equation

∀C ∈ zbu f f er, Cdst ←− αsrcCsrc +(1−αsrc)Cdst (5)

where Cdst and Csrc represent the destination and source colors
respectively. The initial destination color is black or (0,0,0) in
RGB format. Therefore, the residual darkening of pixel values
in each image are negated due to the blending of images.
OpenGL then successively applies this blending function to a
series of one pixel wide planes, C j, and their associated alpha
values, α j, as follows:

R0 = (0,0,0)

R j←− α jC j +(1−α j)R j−1 j = 1, . . . ,N (6)

where N is the total number of one pixel planes for that view,
R j is the display value after the first j one pixel planes have
been blended, and RN is the final display value for that view.
An example of alpha blending applied to the stitched imagery
in Figure 15(a) is shown Figure 15(b). As seen, the boundary
artifacts in Figure 15(a) are removed in Figure 15(b).

D. Image Based Rendering Results

We describe the capability of our proposed renderer on a
T-shaped hallway with 2709 wall, ceiling, and floor images at
1338×987 pixels from 3 cameras. The rendering machine has
8 Intel Xeon 2.66 Ghz CPUs with 4GB of RAM running 64-bit
Ubuntu 8.04 using an nVidia Quadro FX 4600 graphics card
with 768MB of memory. The multithreaded renderer takes up
to two hours to process SIFT features for 2709 images and up
to six hours to find homographies among all such images. The
renderer can display single camera images at approximately 20
frames per second. An initial cost of stitching images together
reduces the frame rate to 10 frames per second for two stitched
images. As expected, an inverse relationship exists between the
number of images stitched together and the frame rate. The
optimal field of view with high frame rate is around 5 images
stitched together resulting in 5 frames per second.

The viewer can navigate the image based renderer using
the keyboard and mouse to control translation and orientation
respectively. Rotating the view allows the viewer to look up,
down, and sideways, corresponding to each of the 3 cameras
on the backpack: the top, bottom, and left cameras. In our
current implementation, the displayed views are limited to the
images taken along the path of the backpack because view
interpolation has not yet been implemented. With the estimated
pose of the camera, each image is transformed to the world
coordinate frame; the images are approximated to have straight
lines and right-angle corners. A map of the environment from
the plane fitted models directs the user to navigate throughout
the scene. The goal of the navigation is to allow the user to
quickly and efficiently view the walls, floor, and ceiling at any
position within the scene.

Figure 16 shows the renderer’s capability to display complex
scenes from the T-shaped corridor intersection. These views
are particularly difficult to generate because the perspective
does not conform to a typical coplanar scene. Still, the image
stitching provides enough detail to provide photorealistic depth
approximation of the scene. In addition, Figure 17 shows the
renderer’s ability to change the view to look up and down. A
rendered video sequence for the T-shaped corridor intersection
can be found in [18].

V. CONCLUSIONS

We have described a human operated backpack data acquisi-
tion system used for virtual walkthroughs inside buildings. We
propose two methods for doing so. The first involves explicit
3D textured model construction and the second involves image
based rendering. Both approaches require accurate backpack
localization; we have shown that a combination of laser
scanners, IMUs, and camera imagery can lead to a sufficiently
accurate localization for both approaches.
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