Upgrading Optical Flow to 3D Scene Flow through Optical Expansion

Gengshan Yang1, Deva Ramanan1,2

1Robotics Institute, Carnegie Mellon University
2Argo AI

Monocular 3D Scene Motion Estimation

Problem: Estimate the 3D motion of dynamic scene elements using a monocular camera.
Monocular 3D Scene Motion Estimation

Challenge: Infinite pairs of 3D points correspond to the 2D flow observation.
Monocular 3D Scene Motion Estimation

Challenge: Infinite pairs of 3D points correspond to the 2D flow observation.

Prior work
- Motion prior [Kumar et al., ICCV 17, ...]
- Data-driven depth prior [Brickwedde et al., ICCV 19, ...]
Optical Expansion and Motion-in-depth

Change of perceptual size corresponds to change of physical depth.

Upgrading to 3D Scene Flow

(a) with optical flow

(b) optical flow + expansion
Upgrading to 3D Scene Flow

(b) optical flow + expansion

(c) optical flow + expansion + 1st or 2nd depth
Pipeline Overview

Input frame pair

Optical Flow Estimation

Optical Expansion Estimation

Motion-in-depth Correction

Output 3D scene flow
Upgrading Optical Flow to 3D Scene Flow through Optical Expansion
Gengshan Yang, Deva Ramanan. CVPR 2020.

Input frame pair

Optical Flow Estimation
Optical Expansion Estimation
Motion-in-depth Correction
Output 3D scene flow

Optical Flow Network

Optical flow
Upgrading Optical Flow to 3D Scene Flow through Optical Expansion
Gengshan Yang, Deva Ramanan. CVPR 2020.

Input frame pair

Optical Flow Estimation

Optical Expansion Estimation

Motion-in-depth Correction

Output 3D scene flow

Optical flow

Dense, local affine warps

Optical Flow Network

Optic Expansion Network

Optical expansion
Upgrading Optical Flow to 3D Scene Flow through Optical Expansion
Gengshan Yang, Deva Ramanan. CVPR 2020.

- Optical Flow Estimation
- Optical Expansion Estimation
- Motion-in-depth Correction

Input frame pair

Output 3D scene flow

Optical flow

Optical expansion

Dense, local affine warps

Optical Flow Network

Optic Expansion Network

Motion-in-depth Network

Motion-in-depth
Upgrading Optical Flow to 3D Scene Flow through Optical Expansion
Gengshan Yang, Deva Ramanan. CVPR 2020.

Optical Flow

3D scene flow $t = Z\hat{t}$

Optical expansion
Learning for 3D Scene Flow Upgrade

Multi-task losses for optical expansion and motion-in-depth estimation.
Learning for 3D Scene Flow Upgrade

Training procedure
1. Pre-train with synthetic Scene Flow Datasets [CVPR 2016]
2. Fine-tune on target domain data, KITTI [JPRS 2018].
Learning for 3D Scene Flow Upgrade

Self-supervised training for optical expansion and optical flow estimation.
Application: Monocular Scene Flow

Off-the-shelf monocular depth network

Output 3D scene flow

Motion-in-depth Correction

Optical Expansion Estimation

Optical Flow Estimation

Input frame pair

1st frame

First frame
Application: Stereo Scene Flow

Off-the-shelf stereo matching network

Input frame pair

Output 3D scene flow

1st stereo pair

Optical Flow Estimation

Optical Expansion Estimation

Motion-in-depth Correction
Monocular / Stereo Scene Flow

Input

Relative depth change (motion-in-depth)

SOTA monocular and stereo scene flow performance on foreground objects of KITTI leaderboard.

Application: LiDAR Scene Flow

Input frame pair

Optical Flow Estimation

Optical Expansion Estimation

Motion-in-depth Correction

Output 3D scene flow

1st frame LiDAR
- High-accuracy than state-of-the-art lidar-only methods
- Can be computed before the next LiDAR sweep is captured

Application: Two-frame SFM

Input frame pair → Optical Flow Estimation → Optical Expansion Estimation → Motion-in-depth Correction → up-to-scale 3D flow → Rigid structure
Upgrading Optical Flow to 3D Scene Flow through Optical Expansion
Gengshan Yang, Deva Ramanan. CVPR 2020.

Inverse depth

Residual error

Iteration 0 Iteration 1 Iteration 5
Upgrading Optical Flow to 3D Scene Flow through Optical Expansion

Gengshan Yang, Deva Ramanan. CVPR 2020.

Result from MonoDepth2 [3]

Result from COLMAP [2] (two view)

Ours

Residual error

Overlaid two frames [1]

Thanks! More in our paper ...

- Formalism for upgrading 2D optical flow to 3D scene flow

- Optical expansion is the crucial ingredient enabling the above

- If you are using optical-flow-for-X, consider using optical-expansion as well!