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The problem
This talk deals with sets of the form

X :=
{

x ∈ R
n
+ : Rx ∈ S

}

where

R = [r1, . . . , rn] is a real q × n matrix,
S ⊂ R

q is a nonempty closed set with 0 /∈ S .
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Since 0 6∈ S , the closed convex hull of X does not contain 0.
We are interested in separating 0 from X , which we write as

c>x > 1 , for all x ∈ X .



Motivation arising in integer programming

Start from a polyhedron

P =
{

(x , y) ∈ R
n
+ × R

m : Ax + y = b
}

and assume that b /∈ Z
m.

Example 1 The set of interest is P ∩ {Zn
+ × Z

m}.
I.e. we want (x , y = b − Ax) such that x ∈ Z

n
+ and b − Ax ∈ Z

m.
The convex hull of this set is Gomory’s corner polyhedron 1969.

This problem fits our framework if we set

q = n +m , R =

[

I

−A

]

, S =

{

Z
n

Z
m

}

−

[

0
b

]

.

Since b /∈ Z
m, this S is a closed set not containing the origin.



Motivation arising in mixed integer programming

Start again from a polyhedron

P =
{

(x , y) ∈ R
n
+ × R

m : Ax + y = b
}

and again assume that b /∈ Z
m.

Example 2 Andersen, Louveaux, Weismantel and Wolsey 2007
The set of interest is P ∩ {Rn

+ × Z
m},

I.e. we want (x , y = b − Ax) such that x ∈ R
n
+ and b − Ax ∈ Z

m.

This fits our model by taking

q = m , R = −A , S = Z
m − b



Motivation arising from complementary slackness

Still using P =
{

(x , y) ∈ R
n
+ × R

m : Ax + y = b
}

let E ⊂ {1, 2, . . . ,m} × {1, 2, . . . ,m}

and C := {y ∈ R
m
+ : yiyj = 0 , (i , j) ∈ E}.

The set of interest is then P ∩ (Rn
+ × C ).

It can be modeled in our framework where

q = m , R = −A , S = C − b;

Cuts have been used for complementarity problems of this type,
for example in Judice, Sherali, Ribeiro, Faustino 2006



The problem

We will retain from the above examples the asymmetry between
S – a very particular and highly structured set –
and R – an arbitrary matrix.

Keeping this in mind, we will consider that (q,S) is given and

fixed, while (n,R) is instance-dependent data.

A number of papers have appeared in recent years, dealing with
the above problem with various special forms for S :

Andersen, Louveaux, Weismantel and Wolsey IPCO 2007

Dey and Wolsey SIOPT 2010

Basu, Conforti, Cornuéjols and Zambelli SIDMA 2010.



Cut-generating functions

Let S be fixed. Consider a function

ρ : R
q 7→ R

that produces coefficients cj := ρ(rj) of a cut c>x > 1 valid for
X (R ,S) for any choice of n and R = [r1 . . . rn].

In summary, we require our ρ to satisfy

∀R = [r1 . . . rn], x ∈ X =⇒

n
∑

j=1

ρ(rj)xj > 1.

Such a ρ can then justifiably be called a cut-generating function.



Sufficiency of cut-generating functions

Cut-generating functions are defined assuming that S is fixed but
R can vary arbitrarily.

What happens if both S and R are fixed?
A natural question is whether, for every cut c>x > 1 that is valid
for X (R ,S), there exists some cut-generating function ρ such that
ρ(rj ) ≤ cj .

THEOREM Cornuejols, Wolsey, Yildiz 2013
Suppose S ⊂ cone(R). Then any valid inequality c>x ≥ 1
separating 0 from X is dominated by one obtained from a
cut-generating function.

Next we show that the (vast!) class of cut-generating functions
from R

q to R can be drastically reduced.



Cut-generating functions

Let ρ̄(r) := infK ,α

{

∑K
k=1 αkρ(rk) :

∑K
k=1 αk rk = r , αk > 0

}

.

THEOREM
If ρ is a cut-generating function, then ρ̄ is nowhere −∞ and is
again a cut-generating function.

The function ρ̄ is sublinear (convex and positively homogeneous).
Sublinear functions are continuous.
Because ρ̄ ≤ ρ, the theorem shows that sublinear functions suffice
to generate all relevant cuts; a fairly narrow class indeed, which is
fundamental in convex analysis.

Sublinear functions are in correspondence with closed convex sets
and in our context, such a correspondence is based on the mapping
ρ 7→ V defined by

V :=
{

r ∈ R
q : ρ(r) 6 1

}

.



S-free sets

The set V turns out to be a cornerstone: the theorem below
establishes a correspondence between cut-generating functions and
the so-called S-free sets.

DEFINITION
Given a closed set S ⊂ R

q not containing the origin, a closed
convex neighborhood V of 0 ∈ R

q is called S-free if its interior
contains no point in S .

THEOREM
Let ρ be a sublinear function and V :=

{

r ∈ R
q : ρ(r) 6 1

}

.
Then ρ is a cut-generating function if and only if V is S-free.



Example of an S-free set

Assume b 6∈ Z
q and S := Z

q − b. Want to cut off the point x = 0.

0

r2

r1

Z
q − b

V

Convex set V is S-free: 0 ∈ int(V ) and no point of S is in int(V ).



Example of an S-free set

Assume b 6∈ Z
q and S := Z

q − b. Want to cut off the point x = 0.

cut

0 Z
q − b

r2

r1

V

Compute intersection of the rays with the boundary of V .
Cut defined by these points is valid: ρ(r1)x1 + ρ(r2)x2 ≥ 1.
Here ρ( r14 ) = ρ( r24 ) = 1. The cut is 4x1 + 4x2 ≥ 1.



Representation

As a result, cut-generating functions can alternatively be studied
from a geometric point of view, involving sets V instead of
functions ρ. This situation, common in convex analysis, is often
very fruitful. However, there is a difficulty here: the mapping
ρ 7→ V is many-to-one and therefore has no inverse.

DEFINITION
Let V ⊂ R

q be a closed convex neighborhood of the origin. A
representation of V is a sublinear function ρ satisfying
V =

{

r ∈ R
q : ρ(r) 6 1

}

.

A cut-generating function is a representation of an S-free set.
Among the several representations of an S-free set V , we are
interested in the small ones.



Main results

We extend the results in

Dey and Wolsey SIOPT 2010

Basu, Conforti, Cornuéjols and Zambelli SIDMA 2010

Basu, Cornuéjols and Zambelli JOCA 2011

I We show that the representations of V have a unique
maximal element γV (the gauge of V introduced by
Minkowski) and a unique minimal element µV , which is the
relevant inverse of ρ 7→ V for our purpose.

I Then we study the correspondence V ↔ µV . We show that
different concepts of minimality come into play for ρ.
Geometrically they correspond to different concepts of
maximality for V . We also show that they coincide in a
number of cases.



Support function

The support function of a set G ⊂ R
q is

σG (r) := sup
d∈G

d>r .

It is easily seen to be sublinear, to grow when G grows, but to
remain unchanged if G is replaced by its closed convex hull:
σG = σconv(G). Conversely, any sublinear function ρ is the support
function of a closed convex set, unambiguously defined by

G :=
{

d ∈ R
n : d>r 6 ρ(r) for all r ∈ R

q
}

.

Besides, the polar of G

G ◦ :=
{

r ∈ R
q : d>r 6 1 for any d ∈ G

}

= {r ∈ R
q : σG (r) 6 1}

is also a closed convex set. And it is a neighborhood of the origin
when σG is finite-valued (i.e. when G is bounded).

Thus the support function of G represents its polar G ◦.



Minimal representation

The following geometric objects turn out to be relevant:

V̂ ◦ :=
{

d ∈ V ◦ : σV (d) = 1
}

,

V • := conv(V̂ ◦).

Let µV := σ
V̂ ◦

= σV •

PROPOSITION Basu, Cornuéjols and Zambelli JOCA 2011
Any sublinear function ρ representing V satisfies ρ > µV .

THEOREM
A sublinear function ρ represents V if and only if it satisfies

µV 6 ρ 6 γV .



Minimal cut-generating functions and maximal S-free sets

Definition
A cut-generating function ρ is minimal if any cut-generating
function ρ′ 6 ρ is ρ itself.

A minimal cut-generating function is certainly a smallest
representation of some set V . But this set is special:

Take for example S = {1} ⊂ R, V = [−1,+1];
ρ(r) := |r | is the unique representation of V but ρ is not minimal:
ρ′(r) := max {0, r} is also a cut-generating function; it represents
the larger set V ′ =]−∞,+1].

A smaller ρ describes a larger V ; so the above definition has its
geometrical counterpart:

Definition
An S-free set V is called maximal if any S-free set V ′ ⊃ V is V
itself.



An example

Actually, this “duality” is deceiving, as the two definitions do not
match: the set represented by a minimal cut-generating function
need not be maximal. Here is a trivial example.

Example

0

V

S = {2}1

With n = 1, the set V = ]−∞, 1] (represented by ρ(r) = r) is
{2}-free but is obviously not maximal.
However ρ(r) = r is a minimal cut-generating function.

So a subtlety is necessary, indeed the smallest representation of a
maximal V enjoys a stronger property than minimality.



Strongly minimal cut-generating functions

DEFINITION
A cut-generating function ρ is called strongly minimal if any
cut-generating function ρ′ 6 γV (ρ) satisfies ρ

′ > ρ.

Strong minimality turns out to be the appropriate definition in
general:

THEOREM
An S-free set V is maximal if and only if its smallest
representation µV is a strongly minimal cut-generating function.



Asymptotically maximal S-free sets

Then comes a natural question: how maximal are the S-free sets
represented by minimal cut-generating functions? For this, we
introduce one more concept:

DEFINITION
An S-free set V is called asymptotically maximal if any S-free set
V ′ ⊃ V has the same recession cone: V ′

∞ = V∞.

It allows a partial answer to the question.

THEOREM
The S-free set represented by a minimal cut-generating function is
asymptotically maximal.



When does minimality imply strong minimality?

The following theorem provides two favorable cases when this
implication holds.

THEOREM
Suppose 0 ∈ Ŝ := convS ; denote by L the lineality space of the
S-free set V and assume that µV is minimal.
Then µV is strongly minimal in either of the following situations

(i) V∞ ∩ Ŝ∞ = {0} (in particular S bounded),

(ii) V∞ ∩ Ŝ∞ = L ∩ Ŝ∞ and Ŝ = G + Ŝ∞ with G bounded.

This theorem generalizes several earlier results. The special case
where S is a finite set of points in Z

q − b was first considered by
Johnson 1981 and more recently by Dey and Wolsey 2010.
Part (ii) was proven by Dey and Wolsey 2010 and Basu, Conforti,
Cornuéjols and Zambelli 2010 in the special case where
S = P ∩ (Zq − b) for some rational polyhedron P .


