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Abstract Large volumes of data, which are being collected for the purpose of
knowledge extraction, have to be reliably and efficiently stored. Furthermore, re-
trieval and processing of large data files have to be fast and efficient. Recent work
has proposed using erasure codes to address both goals. This paper is concerned
with two problems that involve coding and are of particular importance in practice.
The first problem deals with coded distributed sparse matrix multiplication. It is
shown how coded computing methods previously proposed for arbitrary matrices
can be modified and efficiently used for sparse matrices that occur more often in
applications. The second problem is concerned with service rates in coded storage
systems. It is shown how judicious combining of coding and replication can be used
to shape service rate regions of distributed storage systems.
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1 Introduction

With the ever increasing amount of data on the cloud, there is a growing need for
faster cloud computation. For instance, search engines (Google), data streaming
(Netflix), and cloud storage companies (Dropbox) perform vast amounts of com-
puting on the cloud. Companies such as Amazon S3 and Microsoft Azure offer
cloud computing as a service, where users can rent machines by the hour to run
computation jobs. To reduce latency, cloud computing framework, e.g., MapReduce
and Hadoop, employs massive parallelization. Large jobs are divided into hundreds
of tasks that can be executed in parallel on different machines.

The critical step in several important algorithms used in optimization and ma-
chine learning is the computation of linear transforms of high-dimensional vectors
[9]. Existing coded computing methods assume arbitrary matrix structure (see e.g.
[13]). Thus, for applications that involve a sparse structure, e.g., graph mining tasks,
current erasure methods are wasting processing power on the zero elements. In this
paper, we deal with coded distributed sparse matrix multiplication. In Sec. 3, we
show how coded computing methods previously proposed for arbitrary matrices can
be modified and efficiently used for sparse matrices that occur more often in appli-
cations.

Cloud services are implemented on top of a distributed storage layer that acts as
a middleware to the applications, and also provides the desired content to the users.
Therefore, the performance of a cloud system and the quality of user experience rely
on the efficiency of data storage.

Most of the recent work on data access has been concerned with the download
latency (see e.g., [7, 19, 21, 22, 30] and references therein). It has recently been rec-
ognized, that another important metric that measures the availability of the stored
data is the service rate [1, 27]. Maximizing service rate (or the throughput) of a dis-
tributed system helps support a large number of simultaneous system users. Rate-
optimal strategies are also latency-optimal in high traffic. Thus, maximizing the
service rate also reduces the latency experienced by users in particular in highly
contending scenarios. In this paper, we are concerned with service rates in storage
systems that use redundancy. In Sec. 4, we show how judicious combining of cod-
ing and replication can be used to shape service rate regions of distributed storage
systems.

The plan of this paper is to state the two emerging problems, provide some ex-
amples and preliminary results, and list some open problems and possible future
directions. The purpose of the paper is to highlight some usually overlooked aspects
of data science, where a number of fundamental math disciplines are important, and
many mathematicians could contribute.
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2 Linear Codes

Let F be a field. An [n,k,d]-linear code C is a linear subspace of Fn with dimension
k and minimum distance d. The minimum distance d is defined as

d := min{d(x,y) : x 6= y ∈C},

where d(x,y) denotes the Hamming distance between vectors x and y, that is, d(x,y)
is the number of differing entries between x and y. The elements of C are called
codewords and the Hamming weight of a codeword x, denoted wH(x), is defined to
be wH(x) := d(x,0).

A generator matrix, denoted G, of code C is a k×n matrix where the rows form
a basis for code C. As a result, each codeword of C can be represented by a linear
combination of the rows. That is, c ∈C if and only if c = Gtx for some x ∈ Fn. In
this paper, we consider only systematic generator matrices, i.e., the first k columns
of G consist of the identity matrix Ik. A code with Ik as a submatrix of its generator
matrix G is said to be systematic.

Example 1. Let C be the [7,4,3]-code over Z2 with generator matrix

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 .

Then, C = {Gtx : x ∈ Z4
2}. An example of a codeword is

c = Gt


1
0
0
1

=
(
1 0 0 1 0 1 1

)t
.

In this paper, we employ error-correcting codes, otherwise known as forward er-
ror correction codes. An error-correcting code introduces redundancy to allow for
error correction. For instance, a [2k,k,d] code with generator matrix G =

[
Ik Ik

]
,

where Ik is the k× k identity matrix, is a repetition code such that given a k-
dimensional vector x, Gtx duplicates the vector, resulting in two stored copies of
x. Commonly used error-correcting codes are parity check codes, Hamming codes,
Hadamard codes, and Reed-Solomon codes

It is straightforward to see that if d − 1 or fewer symbols are missing from a
codeword of code with minimum distance d, that codeward can be recovered from
the remaining symbols. In other words, it is sufficient to have n−d+1 symbols of a
codeword for its sufficient recovery. We will use this fact for fast coded distributed
computing in Sec. 3.

Traditionally, the goal of code design has been to construct codes with large min-
imum distance d and low redundancy n− k. However, in large data storage appli-
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cation, one must be able to reconstruct data on a single disk by reading data stored
on a small number of other disks; see, for instance, [16]. This property is beneficial
when a 1) disk fails and its data is lost and has to be efficiently recovered from the
remaining storage and 2) when the demand for some (hot) data is high and cannot
be fulfilled by a single server [2, 21, 22]. In Sec. 4, we are concerned with service
rates in such systems.

3 Coded Distributed Sparse Matrix Multiplication

The critical step in several important algorithms used in optimization and machine
learning is the computation of linear transforms of high-dimensional vectors [9].
In fact, the building blocks of the solutions to various machine learning problems
such as regression and classification are linear transforms, which are also used in ac-
quiring and pre-processing the data through Fourier transforms, wavelet transforms,
filtering, etc. Thus, fast and reliable computation of linear transforms is necessary
for low-latency inference [9]. This task can be easily divided into independent par-
allel tasks.

System designers have turned to parallel and distributed computing in order to re-
duce computation time of machine-learning algorithms. However, the bottleneck in
distributed computing is the latency in waiting for a small fraction of slow processes
called stragglers. The speed of computation is thus reduced as the fusion node must
wait on all the outputs from each processor in order to complete the computation. In
the majority of distributed systems, a few stragglers have been observed to signif-
icantly delay the entire computation [11]. This unpredictable latency in distributed
systems is attributed to factors such as network latency, shared resources, mainte-
nance activities, and power limitations. For instance, the execution time of a task
on a machine is subject to stochastic variations caused by co-hosting, virtualization
and other hardware and network variations [11].

In order to combat the problem of stragglers, cloud computing frameworks like
Hadoop [29] employ various straggler detection techniques and reset the task allot-
ted to stragglers. Recent literature [3, 4, 13, 20, 31] proposes introducing redundancy
in computations across processors, e.g., using repetition-based strategies or erasure
codes. The fusion node can exploit this redundancy by completing the computation
using outputs from only a subset of the processors, ignoring the stragglers.

Classical approaches of computing linear transforms across parallel processors,
e.g., Block-Striped Decomposition [23], Fox’s method [15, 23], and Cannon’s
method [23], rely on dividing the computational task equally among all available
processors without addressing the straggler effect by any redundant computation.
The idea of replicating tasks in parallel computing has been recognized by system
designers [17] and first adopted at a large scale via the backup tasks in MapReduce
[12]. A line of systems work [5, 28] and references therein further developed this
idea. Forward error-correction techniques offer an alternative approach to deal with
the straggler effect by introducing redundancy in the computational tasks across dif-
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ferent processors. By this approach, the fusion node needs to only collect outputs
from a subset of all the processors rather than all to successfully complete the com-
putation. In this context, the use of preliminary erasure codes dates back to the ideas
of algorithmic fault tolerance [18].

Recently, optimized Repetition and Maximum Distance Separable (MDS) codes
have been explored to speed up computations [24, 25, 31]. In [3, 4] the authors
studied the impact of coding and replication on the trade off between the “resource
usage” and the “execution time” and investigated whether the redundancy should
be simple replication or coding, and when it should be introduced. In [13], au-
thors proposed a coding-theory inspired computation technique called Short-Dot
for speeding up computing linear transforms of high-dimensional data by distribut-
ing it across multiple processing units. Instead of computing long dot products as
required in the original linear transforms, the Short-Dot constructs a larger num-
ber of redundant and short dot products that can be computed more efficiently at
individual processors.

3.1 The Compressed Sparse Row Format for Sparse Matrices

A sparse matrix is a matrix in which the majority of the elements are zero. Sparse
matrices are common in many applications such as graph data mining tasks, e.g.,
graph spectral clustering [26], max-flow min-cut [8], and collaborative recommen-
dation systems [14]. Moreover, differential equations, one of the most import math-
ematical tools in modeling the physical world, are usually approximated by finite
difference or finite volume methods, both of which result in a sparse matrix. These
applications often require multiple matrix-vector multiplications and fast computa-
tion of sparse linear transforms. A sparse matrix frequently found in applications is
the adjacency matrix. The adjacency matrix of a graph can be seen as a stochastic
matrix whose nonzeros define a relationship between data points. For instance, in a
web graph, the nonzeros of the adjacency matrix denote the probability for a “tran-
sition” from one webpage to another. Real-world graphs also tend to be scale-free,
meaning that there are many low-degree vertices, i.e., only one or two connections,
and very few high-degree vertices, i.e., “hubs” such as Google in a web graph. The
rows/columns of the adjacency matrix that represent “hubs” will be densely popu-
lated, while most of the rows/columns will only have a few nonzeros. Traditionally,
if standard dense-matrix structures are used to represent a sparse matrix, the op-
erations on a sparse matrix will be inefficient as processing power and memory
are wasted on the zero entries. Two common sparse data structure are Compressed
Sparse Row format (CSR) and Compressed Sparse Column format (CSC), both rep-
resent matrix M by three (one-dimensional) arrays and allow for much faster matrix-
vector multiplications.

Existing coded computing methods assume arbitrary matrix structure. Thus, for
applications that involve a sparse structure, e.g., graph mining tasks, current erasure
methods are wasting processing power on the zero elements. Load balancing is also
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an issue for existing methods as real-world graphs tend to be scale-free. Thus, a few
erasure nodes could potentially be assigned the majority of the work and latency
issues are exacerbated. The sparsity structure could be used in conjunction with
erasures for speeding up the computation time of linear transforms. In this paper, we
address the problem of reducing the time required for computing linear transforms
of high-dimensional vectors, leveraging coding techniques and the sparse structure
of the matrices in real world applications.

Instead of storing the zeros of the associated matrix in memory, sparse data struc-
tures are used to substantially reduce the memory requirement. Compressed Sparse
Row (CSR) is one such format that supports efficient memory access and matrix
operations. CSR represents the m×n matrix M with three one-dimensional arrays.
Let nnz denote the number of nonzero entries in M. The array nval ∈ Rnnz will
hold the nonzero entries of M in row-major order, i.e., the consecutive non-zero el-
ements of each consecutive row. For each element in nval, the array colval ∈ Rnnz

will store the the column index. Let mi be the number of nonzero entries in row
i. Finally, the array rowptr ∈ Rm+1 indicates the number of non-zeros elements in
each row and is defined by the following recursive definition. Let rowptr1 = 0, then
rowptri = rowptri−1+mi and finally rowptrm+1 = nnz+1 indicating the end of the
array.

Example 2. Consider the matrix

M =


3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 .
To store M in CSR format, three arrays are constructed:

nval := [3,−1,−1,−1,−1,1,−1,1,−1,1] ,

which is the ordered by row.

colval := [1,2,3,4,1,2,1,3,1,4] ,

which consists of the column index of nonzero elements, e.g., the first positive 1
occurs in the second column, and finally

rowptr := [0,4,6,8,11] ,

which designates the pointer to the next row by the number of nonzero entries per
row, i.e., the non-zero entries for the second row (rowptr2) begins after 4 entry in
nval and colval.

An alternative compression format that is less commonly used than CSR is the
compressed sparse column (CSC) format. In this paper we focus on matrices stored
in the CSR format, and leave the extension to CSC format matrices for future work.
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3.2 Erasure Coded Sparse Matrix-Vector Multiplication

Matrices in many modern applications can be massive in size. Even after compress-
ing them using CSR or other formats, performing operations such as matrix-vector
multiplication at a single node can be prohibitively slow. Thus, it is necessary to
parallelize the computation across multiple processors. Since we need to wait for
all the processors to finish computation, even one straggling server can become a
bottleneck in completing the matrix-vector multiplication.

We propose a method to use erasure coding to alleviate the problem of stragglers.
In particular, before applying CSR to the matrix, we encode the matrix to a larger
but still sparse matrix by applying an [p,k,d]-linear code, where p is the number of
available processors. As a result, we obtain a matrix where any p− (d− 1) of the
p submatrix-vector multiplications must be returned in order to obtain the desired
product Mx. As a result, wait time is reduced.

Let M be an l×m matrix. We note in applications, M is typically sparse, and in
this paper we assume M is sparse and exploit the property of sparseness. Let p be
the number of available processors. Let k ∈ Z such that k < p. We divide the matrix
M vertically into k equal dimension sub-matrices. If k does not divide l, then we
pad on t additional rows of entries zero, where t is the minimum number such that
k divides l + t. That is,

M =


M1
M2
.
.

Mk

 .
We note that to balance the computation load of the processors, the rows of the
matrix M (including the padded zero rows) can be rearranged accordingly.

Let C be a [p,k,d]-linear code and let G denote a systematic generator matrix
of C. That is, G contains the k× k identity matrix as a sub-matrix. Applying the
generator matrix, we encode the sub-matrices of M to obtain the encoded matrix
M̃ = G>M (see Example 3). To compute the product Mx, each processor is assigned
an encoded submatrix M̃i to compute the vector M̃ix. As C is a [p,k,d]-code, it
follows that the vector Mx can be obtained from any p− (d− 1) of the encoded
sub-matrices of M̃x.

Example 3. Let

M =


M1
M2
M3
M4

 ,
where M1,M2,M3,M4 represent submatrices, and let p = 7. Consider the [7,4,3]-
Hamming Code C from Example 1. Then M encoded is
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M̃ = G>M =



M1
M2
M3
M4

M1 +M3 +M4
M1 +M2 +M3
M2 +M3 +M4


=



M̃1
M̃2
M̃3
M̃4
M̃5
M̃6
M̃7


Processor i is assigned the encoded sub-matrix M̃i. The fusion node must wait on at
most five of the seven processors before computing the end result. More specifically,
suppose we have access to the last four sub-matrices of M̃x. Through linear combi-
nations of those matrices, we are able to retrieve M1x,M2x, and M3x. For example,

M1x = M4x+(M1x+M2x+M3x)− (M2x+M3x+M4x) .

Once we have the encoded matrix M̃, we store each of the sub-matrices M̃i in
CSR format.

Example 3 (continued). To store sub-matrices M̃i, 1 ≤ i ≤ p in CSR format, we
construct three arrays as dictated in Section 3.1. Suppose

M̃1 =



3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1
1 −1 0 0
1 0 0 −1
−3 1 1 1


.

Then the three arrays constructed are as follows:

nval := [3,−1,−1,−1,−1,1,−1,1,−1,1,−1,1,1,−1,1,−1,−3,1,1,1]
colval := [1,2,3,4,1,2,1,3,1,4,1,2,1,4,1,2,3,4]
rowptr := [0,4,6,8,10,12,14,17].

In general, if M is a l×m matrix, we choose a code [p,k,d]-linear code C, p≥ k.

1. Using the generator matrix G of C, compute the encoded matrix M̃ = G>M.
2. Store sub-matrices M̃i in CSR format.
3. Given vector x ∈ Rm, compute M̃x by assigning sub-matrices M̃i among the pro-

cessors.
4. Given γ = p− (d−1) of the computations

M̃i1x, . . . ,M̃iγ x

return it to the original format M1x,M2x, . . . ,Mkx, where M̃i is a sub-matrix of M̃.
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3.3 Advantages of Coded Computing

As discussed earlier, when a computing job is distributed across p processors, wait-
ing for all the processors to finish can significantly slow down the completion of the
computing job. In the sparse matrix-vector multiplication problem considered here,
the straggling issue is exacerbated by varying sparsity across the rows of the matrix
M, due to which some processors may be assigned dense rows and hence take longer
than other processors which with get sparse rows.

The coding scheme proposed above efficiently overcomes the issue of stragglers.
In our scheme described in Section 3.2, the matrix is split into k sub-matrices, coded
using an [p,k,d] code, and then distributed across p processors. We need to wait only
for some p−d+1 processors to finish multiplying their sub-matrix with the vector.
Thus, it can tolerate d−1 slow servers.

We now present an analysis of the expected computing time with different values
of p, k and d, and the distance of the code to demonstrate the advantage of the
proposed scheme. The time taken to multiply r out of the total of l rows of the
matrix M to the vector x is modeled by an exponential random variable Sr. Its tail
probability distribution Pr(Sr > t) is

Pr(Sr > t) = e−
lµ
r t , for t ≥ 0, (1)

where µ is the service rate of the exponential distribution.

Theorem 1 Suppose the matrix M is split horizontally into k sub-matrices. It is then
coded using an [p,k,d] code, and the computation is distributed across p processors.
Then, the expected time to complete the matrix-vector product is,

E [T ] =
Hp−Hd−1

kµ
, (2)

where Hp is the pth harmonic number,

Hp =
p

∑
i=1

1
i
. (3)

The zero-th harmonic number is defined as H0 = 0.

Proof. The time T to finish the matrix-vector product is equal to the time to wait for
p− d + 1 processors to return their sub-matrix-vector products is the (p− d + 1)th

order statistic of p i.i.d. random variables Y1, Y2, . . .Yp, where Yi is the time taken by
processor i. By (1), its tail distribution is,

Pr(Y > t) = e−kµt , for t ≥ 0. (4)

Thus, the expected value of the total computation time T is,
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E [T ] = E
[
Yp−d+1:p

]
, (5)

=
Hp−Hd−1

kµ
, (6)

where Yp−d+1:p denotes the (p−d +1)th order statistic of p i.i.d. random variables
Y1, Y2, . . .Yp. Since Yi are exponential random variables, by the properties of ex-
ponential distributions [10], the expected value of Yp−d+1:p can be expressed as a
difference of harmonic numbers as shown in (6).

The approximation Hp ≈ log p holds for large p. The uncoded scheme where the
matrix is simply split into p parts which are assigned to p processors corresponds to
d = 1. Thus, E [T ] = O(log p). Instead if we use coding, the expected computation
time is,

E [T ]≈ 1
kµ

log
(

p
d−1

)
. (7)

Thus, if d is large enough, then we can significantly reduce the computation delay.

3.4 Future Directions

There are many interesting open questions for future work on designing codes to
speed-up distributed computing. An immediate future direction is to evaluate the
proposed coding scheme by running experiments on Amazon S3. We plan to use
graph matrices available publicly, for example, through the Stanford Network Anal-
ysis Project. Another direction is to explore the use of rate-less fountain codes such
as LT codes and Raptor codes for distributed computing, instead of fixed-rate linear
codes considered in this paper. Moreover, erasure coding is applicable to several
computation problems beyond matrix-vector multiplication, for example, matrix-
matrix multiplication, matrix inversion and convolutions. Designing coding tech-
niques for latency reduction as well as error-correction in these problems is an open
future direction.

4 Service Capacity Region of a Storage System

Two important considerations for file storage system design are reliability against
node failures and the ability to simultaneously serve a large number of users. Of-
ten, these considerations are addressed through file replication at multiple nodes.
However, recent work suggests coded file storage as a promising alternative.

Suppose files f1, . . . , fK are stored in a system that consists of N nodes. A node
is said to by systematic for file fk if accessing the node gives access to the file. A
coded storage system is one in which some nodes are not systematic for any file,
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but instead give access to one or more files only when accessed in combination with
other nodes of the system.

Assigning each storage system node a label in 1, . . . ,N, a subset of [N] :=
{1, . . .N} is called an fk–repair group if its nodes together give access to file fk,
with no proper subset of its nodes giving access to file fk. Let Rk1, . . . ,Rkγk ⊆ [N]
denote the minimal collections of nodes that give access to file fk (that is, each Rki
is an fk–repair group). When a request for file fk arrives to the storage system, sup-
pose that it is sent with probability αki to Rki, under the constraint that ∑

γk
i=1 αki = 1.

Here,
⋃K

k=1{αk1, . . . ,αkγk} is referred to as the storage system’s “splitting strategy.”
Suppose that at node j ∈ [N] the average rate of resolving received requests is µ j.

Further, suppose that the arrival of requests for file fk to the storage system queue is
Poisson with rate λk, where λk is referred to as the “demand” for file fk. Whenever
demand is such that a node j of the storage system receives requests at a rate in
excess of its µ j, the storage system queue will have a tendency to grow. With this
in mind, it is appropriate to call µ j the service capacity of node j. If, at demand
λ = (λ1, . . . ,λK), there exists a splitting strategy under which no storage system
node receives requests at a rate in excess of its capacity, then λ is said to be in the
service capacity region of the storage system. More formally, letting

δk(i, j) :=

{
1, if node j is in Rki,

0, else,

a storage system’s service capacity region S is the set of all λ ∈RK
≥0 such that there

exists a splitting strategy with

∑
k∈[K]

∑
i∈[γk]

αkiδk(i, j)λk ≤ µ j, for all j ∈ [N]. (8)

A given storage system’s serviceable demand intensity and its robustness to demand
variability can be studied via an analysis of its service capacity region.

4.1 Recent work

If a given splitting strategy makes demand λ = (λ1, . . . ,λK) serviceable, then that
same splitting strategy is also sufficient to serve any demand λ ′ that satisfies λ ′k ≤ λk
for all k ∈ [K]. In this way, and noting that the service capacity region is a subset
of RK

≥0, a storage system’s service capacity region is fully described by its upper
boundary L(·) on the storage system’s (K−1)–dimensional service domain

S (K−1) :=
{
(λ1, . . . ,λK−1) ∈ RK−1

≥0 : (λ1, . . . ,λK−1,0) ∈S
}
. (9)

Here,
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L(λ1, . . . ,λK−1) := max{
λK ,

⋃K
k=1{αk1,...,αkγk

}
}λK , subject to

for all k ∈ [K], λk ≥ 0,
γk

∑
i=1

αki = 1, and

for all i ∈ [γk], αki ≥ 0; and,
for all j ∈ [N],

∑
k∈[K]

∑
i∈[γk]

αkiδk(i, j)λk ≤ µ j. (10)

In this way, the problem of identifying a storage system’s service capacity region
can be viewed as one of optimization. The service capacity region was introduced
in [27] and considered in [1] and [6].

In [1], we consider (N,K) systematic MDS coded systems, which are those in
which each file is stored on a single systematic node and may be accessed either via
that node or by accessing any K of the N−1 other nodes. To address this situation,
we introduce the Water-filling Algorithm and show that is optimal, and we show
that the service capacity region is given by

K

∑
i=1

(
min(λi,µ)+K(λi−µ)+

)
≤ Nµ

for codes of rate K
N ≤

1
2 . Here, we use the notation x+ := max(0,x).

Water-filling Algorithm: Given arrival rates λ1,λ2, . . . ,λK for the K files, assign
requests to the N nodes as follows:

• Let γi be the load on node i. Assign file requests to their respective systematic
nodes until these nodes are saturated. Set γi = min(λi,µ) for i = 1, . . . ,K.

• Each of the remaining λcoded = ∑
K
i=1(λi− µ)+ can be served by any K unsatu-

rated servers.
• While λcoded > 0 and mini γi < µ do the following: Find the K least-loaded

servers in the system, that is, the K servers with minimum γi’s. From λcoded ,
send an infinitesimally small rate ε > 0 to each of these K servers. Decrement
λcoded by ε , and increment the corresponding K γi’s by ε .

In the same paper, we also consider storage systems for 2 files. Here, we let
λ ∗a denote the maximum demand for a that can be supported by a given storage
system. We show that the service capacity region s bounded by λa = 0,λb = 0,λa =
min{(A+C)µ,(A+ B

2 +
C
2 )µ}, and



Erasure Coding Techniques for Faster Distributed Computing and Content Download 13

L(λa) =



(B+C)µ if A >C and
0≤ λa ≤ (A−C)µ

− 1
2 λa +(A

2 +B+ C
2 )µ if A >C and

(A−C)µ < λa ≤ Aµ

− 1
2 λa +(A

2 +B+ C
2 )µ if A≤C and

0≤ λa ≤ Aµ

−λa +(A+B+ C
2 )µ if Aµ < λa ≤ (A+ C

2 )µ

−2λa +(2A+B+C)µ if B >C and
(A+ C

2 )µ < λa ≤ A+C
−2λa +(2A+B+C)µ if B≤C and (A+ C

2 )µ

< λa ≤ (A+ B
2 +

C
2 )µ,

where there are A systematic nodes for file a, B systematic nodes for file b, and C
coded nodes.

In [6], we consider the 3-file case as well as systems which have an MDS core,
meaning storage systems for K files whose coded nodes satisfy the following three
conditions:

1. Each K–subset of coded nodes forms an fk–repair group for every k ∈ [K].
2. No subset of k < K coded nodes forms an fk–repair group, for any k ∈ [K].
3. With addition of systematic nodes for any n distinct files (naturally, n < K) every

(K− n)–subset of coded nodes from the core completes these systematic nodes
to form an fk–repair group for every k ∈ [K].

We assume uniform node capacities µ = µ1 = · · · = µN . We see that in a system
with all C coded nodes the service capacity region is bounded by λ1 = 0, . . . ,λK = 0
and

L(λ1, . . . ,λK−1) =
C
K

µ−
K−1

∑
i=1

λi

if C > K−1; whereas if there are C ≤ K−1 coded nodes, then the service capacity
region is the point (0, . . . ,0). In addition, we provide an algorithm for maximizing
λk for the general K-file case. The 3-file case is studied as well.

In the next section, we provide a detailed example in the 2-file case in order to
share some intuition behind the bounds.

4.2 Advantages of Coded Storage Systems

Coded storage systems have larger service capacity regions compared to uncoded
storage systems, which allows them to better handle requests when there are skews
in demand. For example, consider the differences between the following two storage
systems for 2 files with a total of 14 nodes.
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Example: Assume we have a uncoded storage system for 2 files with 7 system-
atic nodes for file f1 and 7 systematic nodes for f2. Then the maximum achievable
λ2 is L(λ1) = 7µ for 0≤ λ1 ≤ 7µ . This region is shown in Figure 1.

λ1

λ2

0
1µ

1µ

2µ

2µ

3µ

3µ

4µ

4µ

5µ

5µ

6µ

6µ

7µ

7µ

Fig. 1 Service capacity region for an uncoded storage system with 7 systematic nodes for file f1
and 7 systematic nodes for file f2.

Example: Assume we have a coded storage system for 2 files with an MDS
core with 4 systematic nodes for file f1, 4 systematic nodes for file f2, and 6 coded
nodes. That is, any repair group consisting of two coded nodes or a coded node and
a systematic file node can recover either file.

If 0 ≤ λ1 ≤ 4µ , then we may satisfy all the demand for file f1 by sending λ1
4

demand to each systematic file f1 node. Note, each systematic file f1 node has a re-
maining capacity of µ− λ1

4 . We can now satisfy demand for file f2. Recall, in addi-
tion to the systematic nodes for file f2, any two coded nodes or any coded node with
a systematic file f1 node can be used to recover file f2. There are 24 repair groups
with a coded node and a systematic file f1 node. We can satisfy 4

(
µ− λ1

4

)
demand

for file f2 by sending demand equally to these repair groups. The systematic file f1

nodes have zero capacity remaining while the coded nodes have µ− 4
6

(
µ− λ1

4

)
ca-

pacity remaining. We can use the remaining coded node capacity by creating repair
groups with two coded nodes and sending demand equally to each of these repair
groups, which will satisfy 6

2

(
µ−4

(
µ− λ1

4

))
demand for file f2. The systematic

file f2 nodes can also satisfy 4µ demand for file f2. Thus, when 0 ≤ λ1 ≤ 4µ , the
maximum achievable λ2 is

4
(

µ− λ1

4

)
+3
(

µ− 2
3

(
µ− λ1

4

))
+4µ = 9µ− 1

2
λ1.
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If 4µ < λ1 ≤ 7µ , then we may satisfy 4µ demand for file f1 by using all of the
systematic file f1 nodes; however, we must also use coded nodes to satisfy demand
for file f1. As before, since any two coded nodes can be used to recover file f1 or f2,
we can use repair groups that consist of two unique coded nodes to satisfy a total
of 3µ demand. Thus, by sending λ1− 4µ demand equally to each of these repair
groups, we have 3µ− (λ1−4µ) = 7µ−λ1 demand remaining to utilize in serving
demand for file f2. In addition, the systematic file f2 nodes may be used, so the
maximum achievable λ2 is 11µ−λ1.

If 7µ < λ1 ≤ 9µ , then again we may satisfy 4µ demand for file f1 by using all of
the systematic file f1 nodes. In this case, we need to also use coded nodes as well as
systematic file f2 nodes to satisfy the remaining demand for file f1. First, consider
repair groups consisting of one coded node and one systematic file f2 node. We can
satisfy 2(λ1−7µ) demand for file f1 by sending demand equally to each of these
repair groups. The remaining capacity of each coded node is µ − 2

6 (λ1−7µ), and
the remaining capacity of each systematic file f2 node is µ− 2

4 (λ1−7µ). We may
satisfy the remaining file f1 demand by sending it all equally to all the repair groups
consisting of two coded nodes, which can handle 6

2

(
µ− 2

6 (λ1−7µ)
)

demand. This
satisfies all demand for file f1, since

4µ +2(λ1−7µ)+3
(

µ− 2
6
(λ1−7µ)

)
= λ1.

The remaining capacity of systematic file f2 nodes may be used to satisfy demand
for f2. Hence, the the maximum achievable λ2 is 4

(
µ− 2

4 (λ1−7µ)
)
= 18µ−2λ1.

Therefore,

L(λ1) =


9µ− 1

2 λ1, if 0≤ λ1 ≤ 4µ

11µ−λ1, if 4µ < λ1 ≤ 7µ

18µ−2λ1, if 7µ < λ1 ≤ 9µ.

This storage system’s service capacity region is shown in Figure 2.
We can note that in the uncoded storage system the maximum amount of demand

that can be handled for either file is 7µ; however, the coded storage system can better
satisfy demand when one file is more popular, up to 9µ .

This idea of systematically utilizing repair groups to satisfy demand was gener-
alized in Algorithm 1 in [6] for MDS core coded storage systems with K files.

4.3 Future Directions

There are still many open questions regarding coded storage systems.

Question 1. What is the service capacity region for an MDS core coded storage
systems with K files?



16 Authors Suppressed Due to Excessive Length

λ1

λ2

0
1µ

1µ

2µ

2µ

3µ

3µ

4µ

4µ

5µ

5µ

6µ

6µ

7µ

7µ

8µ

8µ

9µ

9µ

Fig. 2 Service capacity region for a coded storage system with 6 coded nodes in an MDS core, 4
systematic nodes for f1 and 4 systematic nodes for file f2.

MDS core coded storage systems with K = 2 and K = 3 files were addressed in [1]
and [6], respectively. Additionally, a bound was given for storage capacity regions
of systems with MDS coded cores for K files, in cases where the storage system
consists of one systematic node for each file and N−K coded nodes. However, an
explicit L(·) function for the service capacity region for general MDS coded core
storage systems for K files has yet to be given.

Question 2. What is the service capacity region of a coded storage system when
each user may simultaneously request either a single file or multiple files?

Example: As shown in [1], the service capacity region of the system that consists
of one systematic file f1 node, one systematic file f2 node, and one coded node has

L(λ1) =


− 1

2 λ1 +2µ if 0≤ λ1 ≤ µ

−λ1 +
5
2 µ if µ < λ1 ≤ 3

2 µ

−2λ1 +4µ if 3
2 µ < λ1 ≤ 2µ

.

If file f1 requests and file f2 requests are sent separately, note that the point ( 3
2 µ, 3

2 µ)

is outside the service capacity region. However, 3
2 µ requests for both files may be

served if both files are retrieved together. This can be done by sending µ

2 requests to
each of the following three repair groups: (i) the systematic f1 node and the coded
node, (ii) the systematic f2 node and the coded node, and (iii) both systematic nodes.

In a coded storage system in which users may request files either separately or
together, we are interested in the optimal allocation of coded and systematic nodes.

Question 3. What is the service capacity region of a coded storage system under
different coding schemes?
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We have considered an MDS core coding scheme in which any N ≤ K coded nodes
along with systematic nodes for K−N distinct files can recover any file. How the
service capacity changes as this condition is relaxed remains an open question. Lo-
cally recoverable codes, which allow for file recovery using small repair groups,
may be of particular interest in this setting.
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