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ABSTRACT
In multi-server queueing systems where there is no central queue

holding all incoming jobs, job dispatching policies are used to as-

sign incoming jobs to the queue at one of the servers. Classic job

dispatching policies such as join-the-shortest-queue and shortest

expected delay assume that the service rates and queue lengths of

the servers are known to the dispatcher. In this work, we tackle the

problem of job dispatching without the knowledge of service rates

and queue lengths, where the dispatcher can only obtain noisy esti-

mates of the service rates by observing job departures. This problem

presents a novel exploration-exploitation trade-off between sending

jobs to all the servers to estimate their service rates, and exploit-

ing the currently known fastest servers to minimize the expected

queueing delay. We propose a bandit-based exploration policy that

learns the service rates from observed job departures. Unlike the

standard multi-armed bandit problem where only one out of a finite

set of actions is optimal, here the optimal policy requires identify-

ing the optimal fraction of incoming jobs to be sent to each server.

We present a regret analysis and simulations to demonstrate the

effectiveness of the proposed bandit-based exploration policy.
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1 INTRODUCTION
Traditional queueing models [10, 21] such as M/M/1, M/G/k, G/G/k

consist of a single central queue holding incoming jobs and one

or more servers that are used to serve those jobs. However, in

many applications such as supermarket or airport queues, it is more

practical for each server to maintain a separate queue consisting

of jobs that are assigned to it. This paradigm calls for the design

of job dispatching policies such as join-the-shortest queue (JSQ),

shortest expected delay (SED) and least-work-left (LWL) that seek

to emulate the delay performance of systems with a single central

queue by making the most efficient assignments of jobs to server

queues. For example, the JSQ dispatching policy polls the queue

lengths at the servers and assigns each job to the shortest queue.
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In large-scale systems such as computing clusters with tens of

thousands of servers, an important consideration is that it can be

practically infeasible to poll and maintain status information of all

the queues. Therefore, alternatives to join-the-shortest-queue such

as the power-of-𝑑-choices (Po𝑑) policy [18, 19, 24] obtain queue

length information of only a randomly chosen subset of servers in

order to reduce the communication and memory cost.

A common assumption in all the the policies described above

is that the service rates at which jobs assigned to each server are

served are known to the job dispatcher, or are to be homogeneous

across servers, which precludes the need for the dispatcher to

know them. In emerging applications such as cloud computing

and crowd-sourcing, the servers may not be dedicated to jobs as-

signed by the dispatcher and may encounter interruptions and

service slowdown due to background workload. Therefore, the ser-

vice rate experienced by the assigned jobs can be unknown, highly

variable across servers, and also changing over time. Traditional

service-rate-agnostic policies are not effective in such systems and

service-rate-aware policies such as join-the-fastest-shortest-queue

(JFSQ) cannot be used due to the service rates being unknown.

1.1 Main Contributions and Organization
In this paper, we propose a job dispatching policy that learns the

unknown service rates of the servers, while simultaneously seeking

to minimize the queueing delay experienced by jobs. This problem

is at the intersection of queueing systems and online learning. It

sheds light on a novel exploration-exploitation trade-off where the

job dispatching policy needs to strike a balance between assigning

jobs to all servers in order to better estimate their service rates

(exploration) and preferentially sending jobs to the faster servers

to minimize the queueing delay experienced by jobs (exploitation).

Unlike classic multi-armed bandits (MABs) where only one of

the actions is optimal, in the queueing setting considered in this

paper, an optimal policy would typically use several fast servers.

Therefore, it is necessary to perform exploration in order to identify

the subset of servers that should continue receiving jobs asymp-

totically. However, more importantly, only identifying this optimal

subset of servers is not enough for learning an optimal job dispatch-

ing policy. We need to also accurately estimate the service rates of

servers in this subset. Interestingly, we are able to achieve this by

virtue of some special properties of queueing systems. In particular,

after we identify the optimal subset of servers, we exploit by dis-

patching jobs only to this subset of servers. But meanwhile, since

we keep obtaining service time samples from the jobs dispatched

to these servers, we also continue to improve the learning accuracy

of the service rates. Therefore, exploitation and improvement in

estimation are taking place simultaneously in this queueing system.
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The rest of the paper is organized as follows. In Section 2 we

describe the system model and formulate the problem concretely.

In Section 3, we find the optimal weighted random routing policy,

which serves as the performance baseline. In Section 4 we propose

a bandit-based 𝜖𝑡 -exploration algorithm. The distinction between

multi-armed bandits and our queueing setting leads to very different

regret analysis, presented in Section 5. In Section 6 we demonstrate

the effectiveness of the proposed policy via simulations.

1.2 Related Work
Bandits have had a rich history, both from an optimal control per-

spective (see [17] for a survey) and a finite-time regret perspective

(see [15] for a survey). Our paper focuses on bandits in queueing

settings – while this intersection has had a rich history (starting

from the Klimov’s model [11] focusing on optimal control), our

focus is on a finite-time regret formulation. At a high-level, the

regret perspective formulates queueing problems with unknown

statistics (e.g., of the service or arrival processes), with the goal of

characterizing the loss/regret in performance of a resource alloca-

tion (with learning) algorithm with respect to a genie-policy that

has access to the complete statistics. Such regret formulations have

recently been introduced both in the adversarial setting [25] and the

stochastic setting [13]. Walton [25] has shown that in an adversar-

ial setting, the queue regret (difference between the queue-length

induced by a learning algorithm with respect to a static optimal

policy) increases at most sublinearly in time. On the other hand, in

a stochastic setting, Krishnasamy et al. [13] have shown that the

expected regret in fact decreases with time (roughly as 𝑂̃ (1/𝑡)).
Starting from the above studies, there has been increasing in-

terest in the regret of algorithms in various queueing settings

[5, 8, 12, 16, 22]. Krishnasamy et al. [12] studied the problem of

scheduling jobs using the 𝑐𝜇 rule with unknown service rates and

showed that the cumulative queue regret (i.e., sums of queue regret

over time) is𝑂 (1). Liu et al. [16] studied the problem of distributing

different job classes across servers with unknown rewards for each

job class-server pair and proves a reward regret of 𝑂 (
√
𝑡). Bandits

problems of similar flavour are also studied in the communication

system settings, where Cayci and Eryilmaz [5] studied channel

allocation in wireless downlink systems with unknown channel sta-

tistics, with an objective to identify the optimal number of channels

to activate and proposed an UCB-based index policy that achieves

𝑂 (ln 𝑡) regret. The task of selecting the optimal channel in a wire-

less systemwith a single transmitter/receiver and multiple channels

was studied by Stahlbuhk et al. [22], and they derived queue length

based policies that achieve𝑂 (1) cumulative queue regret by exploit-

ing samples acquired during the idle time of queues. Finally, Fatale

et al. [8] studied regret from an age of information viewpoint.

Unlike these studies, our setting is one where the queues are not

centrally located at the dispatcher. Instead, jobs are dispatched to

individual queues based on partial information; this setting requires

both learning a discrete support set and an estimation of dispatch

weights (over continuous parameters).

𝜆

Dispatcher

𝒫

𝜇1

𝜇2

𝜇𝐾

U
nknow

n service rates
Unknown queue length

Figure 1: Our system model with job arrival rate 𝜆 and 𝐾
servers with service rates 𝜇1, . . . , 𝜇𝐾 respectively. The dis-
patching policy P assigns each job to one of 𝐾 queues. The
service rates and queue lengths are unknown to the dis-
patcher; it only observes the service times of departed jobs.

2 PROBLEM FORMULATION
2.1 System Model, Arrivals and Departures
We consider a multi-server discrete-time

1
queueing system con-

sisting of 𝐾 servers, with one queue at each server storing the

unfinished jobs that are dispatched to it, as illustrated in Fig. 1. Jobs

arrive into the system according to a Bernoulli process with arrival

rate 𝜆, where 0 < 𝜆 < 1. Specifically, let 𝐴(𝑡) denote the number

of job arrivals at the beginning of time slot 𝑡 . Then 𝐴(𝑡) = 1 with

probability 𝜆 and𝐴(𝑡) = 0 with probability 1−𝜆. Incoming jobs are

dispatched to one of the the 𝐾 servers according to a scheduling

policy P. Once dispatched, the job joins a first-come-first-served

queue with an infinite buffer size at that server. The 𝐾 servers have

geometrically distributed service times with parameter 𝜇𝑖 . That is,

after a job reaches the head of the queue at server 𝑖 , it departs at the

end of the next time slot with probability 𝜇𝑖 . With the arrival rate 𝜆

and the service of the 𝑖-th server being 𝜇𝑖 , the system is stable only

if 𝜆 <
∑𝐾
𝑖=1 𝜇𝑖 , a condition that we assume to be true.

Let𝐴𝑖 (𝑡) and 𝐷𝑖 (𝑡) denote the number of arrivals to queue 𝑖 and

the number of departures from queue 𝑖 respectively during time

slot 𝑡 . Let 𝑄𝑖 (𝑡) represent the length of queue 𝑖 at the beginning of

slot 𝑡 , including the job that is currently in service. We assume that

the system starts with empty queues, i.e., 𝑄𝑖 (0) = 0, for all 𝑖 . Then

the queue evolution process is given by

𝑄𝑖 (𝑡 + 1) = 𝑄𝑖 (𝑡) +𝐴𝑖 (𝑡) − 𝐷𝑖 (𝑡) . (1)

We use 𝑋𝑖,𝑛 to denote the service time of the 𝑛-th job that de-

parts from server 𝑖 . It is the time since the job reaches the head

of its queue and starts service until it departs from the system.

𝑋𝑖,𝑛 is geometrically distributed with success probability 𝜇𝑖 , that is,

Pr(𝑋𝑖,𝑛 = 𝑥) = (1 − 𝜇𝑖 )𝑥−1𝜇𝑖 for 𝑥 ∈ {1, 2, . . . }.

2.2 Information Available to the Dispatcher
Service Rates and Queue Lengths are Unknown. Job dispatch-
ing policies for the multi-server setting described above have been

extensive studied in previous literature [10, 21]. However, most

1
Although we use the discrete-time assumption for the regret analysis presented in

this paper, the proposed policy can be used in continuous time systems. We conjecture

that the regret analysis is extendable to continuous time systems as well, but this

extension is beyond the scope of this paper and is left for future work.
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prior works assume that the dispatcher knows the service rates

𝜇1, . . . , 𝜇𝐾 , and it also has either full or partial information about

the queue lengths 𝑄𝑖 (𝑡). For example, for homogeneous systems

where 𝜇1 = · · · = 𝜇𝐾 = 𝜇, the join-the-shortest-queue (JSQ) policy

has full queue information and sends each incoming job to the

server 𝑖∗ ∈ argmin𝑄𝑖 (𝑡), i.e., the shortest queue, with ties broken

at random. Power-of-𝑑-choice (Po𝑑) policies [18, 19, 24] reduce the

cost of querying queue lengths by sampling 𝑑 queues uniformly at

random and dispatching the incoming job to the shortest queue. For

heterogeneous service rates, JSQ can be generalized to the join-the-

shortest-fastest-queue (JSFQ) [7, 26, 27], which breaks ties in favor

for the queue with the fastest server. Other policies for systems

with heterogeneous servers such as shortest expected delay (SED)

[3, 9] also use some form of queue length information to make job

dispatch decisions. In contrast, in this work, we consider that the

service rates 𝜇1, 𝜇2, . . . , 𝜇𝐾 of the 𝐾 servers are heterogeneous and
unknown to the dispatcher. Similarly, the queue lengths 𝑄𝑖 (𝑡) for
𝑖 = 1, . . . , 𝐾 are also unknown to the dispatcher.

Dispatcher Observes Service Times of Departed Jobs. In lieu

of service rates and queue lengths, we consider that the dispatcher

observes service times 𝑋𝑖1, . . .𝑋𝑖𝑁𝑖 (𝑡 ) of the 𝑁𝑖 (𝑡) jobs that depart
from server 𝑖 by time 𝑡 . In practice, this information can be made

available to the dispatcher by having the server send the dispatcher

a notification when a job reaches the head of its queue and begins

service and another notification when it departs. The dispatching

policy P can use this information to estimate the service rates 𝜇1,

. . . 𝜇𝐾 . For example, it can estimate the service rate vector 𝝁 (𝑡) =
(𝜇1 (𝑡), 𝜇2 (𝑡), · · · , 𝜇𝐾 (𝑡)) at time 𝑡 , where 𝜇𝑖 (𝑡) is given by

𝜇𝑖 (𝑡) =
𝑁𝑖 (𝑡)∑𝑁𝑖 (𝑡 )
𝑗=1

𝑋𝑖, 𝑗

, (2)

and use it to make job dispatch decisions. For instance, it can dis-

patch a larger fraction of jobs to server 𝑖 if it has a higher service

rate estimate 𝜇𝑖 (𝑡).

2.3 Weighted Random Routing Policies
The service rate estimate 𝜇𝑖 (𝑡) can be used by the dispatcher in

a variety of ways to make job dispatch decisions. Among all the

possible scheduling policies, we focus on the class of weighted
random routing policies, which are defined as follows.

Definition 1 (Weighted Random Routing P). In time slot 𝑡 , the

dispatcher associates a probability 𝑝𝑖 (𝑡) with server 𝑖 , where 𝑝𝑖 (𝑡)’s
satisfy the property

∑𝐾
𝑗=1 𝑝 𝑗 (𝑡) = 1. We call the probability vec-

tor 𝒑̂(𝑡) = (𝑝1 (𝑡), 𝑝2 (𝑡), · · · , 𝑝𝐾 (𝑡)) the routing vector. A job that

arrives at time 𝑡 is dispatched to server 𝑖 with probability 𝑝𝑖 (𝑡),
independent of other jobs. The routing vector 𝒑̂(𝑡) = 𝑓 (𝜆, 𝝁𝑖 (𝑡)),
where 𝑓 : [0, 1]𝐾+1 → [0, 1]𝐾 is a fixed, deterministic function.

The uniform random routing policy corresponds to setting 𝒑̂(𝑡) =
(1/𝐾, · · · , 1/𝐾). Since the routing vector 𝒑̂(𝑡) is a fixed, predeter-
mined function of 𝜇𝑖 (𝑡), policies such as round-robin dispatching

that retain a memory of where past jobs were dispatched are not

included in this class of weighted random routing policies.

Optimal Weighted Random Routing. Consider a genie system
where the dispatcher knows the service rates 𝜇1, . . . , 𝜇𝐾 . Then the

optimal weighted routing policy P∗ is defined as the policy that

chooses the optimal 𝒑∗ = 𝑓 (𝜆, 𝝁), that minimizes the expected

steady-state queue length E[∑𝐾
𝑖=1𝑄𝑖 (∞)], which is equivalent to

minimizing the mean response time experienced by incoming jobs.

We will derive 𝒑∗ in Section 3.

2.4 Measuring Performance in terms of Regret
We seek to design a weighted random routing policy P that starts

with no knowledge of the service rates and converges to the optimal

random routing policy P∗. To evaluate the transient performance

of P in terms of how quickly it learns P∗, we define a performance

metric ΨPP∗ (𝑡), referred to as the regret of P. In Section 5, we

analyze the performance of our proposed dispatching policy in

terms of the expected regret E[ΨPP∗ (𝑡)].

Definition 2 (Regret of a Dispatching Policy). The regret ΨPP∗
of a dispatching policy P with respect to the optimal baseline P∗ is

ΨPP∗ (𝑡) ≜
𝑡∑
𝜏=1

𝐾∑
𝑖=1

(
𝑄𝑖 (𝜏) −𝑄∗𝑖 (𝜏)

)
, (3)

where 𝑄∗
𝑖
(𝑡) represent the queue length at server 𝑖 at time 𝑡 when

following policy P∗.

The ΨPP∗ (𝑡) represents the cost of using policy P instead of

P∗ in terms of cumulative queue length till time 𝑡 . Note that the

cumulative queue length is the total time spent by all jobs that

arrived before time 𝑡 , including the jobs that have departed. Hence,

regret represents the additional time jobs stayed in the systemwhen

using policy P instead of P∗. It is the penalty the policy P has to

pay for the lack of knowledge the service rates system.

Difference from the Regret used in Multi-armed Bandits. Al-
though similar, the regret considered in this paper and its analysis

is fundamentally different from the multi-armed bandit setting

[4, 14, 15]. In the multi-armed bandit setting with 𝐾 arms, asymp-

totically optimal algorithms pull the best arm (with the highest

mean reward) 𝑂 (𝑡) times and pull all the 𝐾 − 1 sub-optimal arms

𝑂 (log 𝑡) times. In our queueing setting, the optimal random routing

policy generally sends 𝑂 (𝑡) jobs to all servers with 𝑝∗
𝑖
> 0 and not

just the fastest server with the highest service rate 𝜇𝑖 . We seek fast

convergence of the routing vector 𝒑̂(𝑡) to the optimal 𝒑∗ so as to

dispatch the optimal fraction 𝑝∗
𝑖
of incoming jobs to each server 𝑖 .

2.5 Justification for Focusing on Weighted
Random Routing Policies

In this section, we justify why we choose to focus on the class of

weighted random routing policies. First, we explain why service

rates and queue lengths are unknown in the large-scale systems en-

visioned in this work. Furthermore, we show that even if partial or

delayed queue length information is available, using it and perform-

ing join-the-shortest-queue (JSQ) or join-the-fast-shortest-queue

(JFSQ) dispatching does not give a large performance improvement

over weighted random routing.

Why the ServiceRates areUnknown.Traditionally, multi-server

queueing systems consisted on dedicated servers and a single source

of incoming jobs. However, in modern applications such as cloud

data centers, a server may be receiving jobs from several different

applications. For instance, it may be running background workload
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such as check-pointing and garbage collection, or higher priority

jobs coming from other sources [6]. As a result, the effective service

rate 𝜇𝑖 of server 𝑖 as seen by the dispatcher of any one application

depends on the external workload. Due to privacy constraints and

communication delays, it is infeasible for each dispatcher to know

and keep track of the external workload at each server. Therefore,

we consider that service rates 𝜇𝑖 are unknown to the dispatcher.
2

Why Queue Lengths are Unknown. In large-scale systems with

multiple job sources, each server’s queue receives jobs from many

dispatchers. In this setting, it is difficult to obtain queue length

information due to two reasons: 1) privacy concerns – if a server

reveals its total queue length 𝑄𝑖 (𝑡) to one of the dispatcher, it

may compromise the privacy of other dispatchers by revealing

information about how many jobs they sent to that queue and 2)

even if privacy is not a concern, due to large communication delays

incurred when a dispatcher queries the queue length of a server,

the queue length information may become stale by the time the job

is dispatched. Therefore, we consider that the queue lengths 𝑄𝑖 (𝑡)
are unknown to the dispatcher.

Limited Utility of Partial or Delayed Queue Length Informa-
tion. In Fig. 2, we consider a system of 6 servers with service rates

𝜇𝑖 such that 𝜇𝑖 = 2
𝑖−1𝜇1, and

∑
6

𝑖=1 𝜇𝑖 = 0.99. We show a comparison

of the mean response times (waiting time in queue plus service

time) for optimal weighted random (OWR) routing, which knows

the service rates 𝜇𝑖 but does not use queue length information, with

JSQ and JFSQ, which use queue length information to make job dis-

patching decisions. Our goal is to demonstrate that when the queue

length information is partial or delayed, a queue-length-agnostic

policy such as OWR performs nearly as well as JSQ and JFSQ.

To model partial and delayed queue length information, we con-

sider that apart from the rate 𝜆 job arrivals at the dispatcher, server

𝑖 has external Poisson arrivals at rate 𝜆𝑒𝑥𝑡
𝑖

that are not visible to

the dispatcher. For Fig. 2a1 and Fig. 2b1, we choose 𝜆𝑒𝑥𝑡
𝑖

= 𝜇𝑖/2,
while for Fig. 2a2 and Fig. 2b2, we choose 𝜆𝑒𝑥𝑡

𝑖
= 4𝜇𝑖/5. In Fig. 2a,

we consider that due to privacy concerns, the dispatcher only has

queue length information about the jobs that it sent to each queue,

but not about the external arrivals. In Fig. 2b, we consider the case

of delayed queue lengths, where the dispatcher receives updated

queue length information (including both its jobs and the external

arrivals) with probability 1/3. For OWR, we assumed that the policy

does not know 𝜇𝑖 or 𝜆
𝑒𝑥𝑡
𝑖

but knows the difference (𝜇𝑖 − 𝜆𝑒𝑥𝑡𝑖
) and

uses the routing vector 𝑓 (𝜆, 𝝁 − 𝝀𝑒𝑥𝑡 ) to dispatch jobs. All the sim-

ulations are averaged over 40 trials of 10
7
job departures each. For

both these cases, observe in Fig. 2 that in the low to moderate load

regimes (load = (𝜆 + ∑𝐾
𝑖=1 𝜆

𝑒𝑥𝑡
𝑖
)/∑𝐾

𝑖=1 𝜇𝑖 )), the optimal weighted

random routing (OWR) policy is comparable to JFSQ and better

than JSQ in terms of the mean response time. Moreover, observe

that as the external arrival rate 𝜆𝑒𝑥𝑡
𝑖

increased from 𝜇𝑖/2 to 4𝜇𝑖/5,
the load beyond which OWR performs worse than JFSQ shifted

from 0.8 to 0.9 roughly. This is because at heavy load, the cost of a

sub-optimal allocation of job using a partial or delayed information

2
In practice, the effective service rates may vary over time depending on the external

workload. For tractability of the analysis, we do not consider time-varying service

rates 𝜇𝑖 . However, the estimates in (2) can be modified to discount older service time

observations in order to account for time-varying service rates.
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a Partial Queue Length Information (excluding external workload)
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bDelayedQueue Length Information (including externalworkload)

Figure 2: OWR performs better than JSQ and similar to JFSQ
in the middle and low traffic regime. In the heavy traffic
regime, both JSQ and JFSQ performs better thanOWR.OWR
performs better as the external workload increases.

is more than using no information at all. We conjecture that OWR

becomes more and more useful as the cross traffic load increases.

As a result of these observations, we choose to focus on the class

of weighted random routing policies that do not take into account

of queue lengths when making job dispatching decisions, and seek

to design a dispatching policy that can learn unknown service

rates while simultaneously minimizing the regret (see Definition 2).

Another reason is that for this class of policies, the optimal policy

P∗ that minimizes the steady-state cumulative queue length is

clearly defined, as we show in Section 3 below. In contrast, the

optimal policy is not known in the case where queue lengths are

considered for job assignment decisions. Although policies such

as JSQ and JFSQ perform well in practice and have been shown to

be optimal in the heavy-traffic regime, it is unclear which policy is

optimal in other regimes.

3 OPTIMALWEIGHTED RANDOM ROUTING
POLICY FOR KNOWN SERVICE RATES

We define optimal weighted random routing (OWR) policy as the

weighted random routing policy that minimizes the mean response

time of jobs in steady state or equivalently, the policy that minimizes

the cumulative steady-state queue length E[∑𝐾
𝑖=1𝑄𝑖 (∞)]. Let 𝒑∗ =(

𝑝∗
1
, 𝑝∗

2
, · · · , 𝑝∗

𝐾

)
be the routing vector corresponding to the optimal

weighted routing policy as a function of arrival rate and the service

rates and we will refer to it as the optimal routing vector.
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For a 𝐺𝑒𝑜/𝐺𝑒𝑜/1 queueing system with arrival rate 𝜆′ and de-

parture rate 𝜇 ′, the expected steady-state queue length, E [𝑄 (∞)],
is given by (see [21] Chapter 3 for the derivation)

E [𝑄 (∞)] = 𝜆′(1 − 𝜇 ′)
𝜇 ′ − 𝜆′ . (4)

Now, for our system with arrival rate 𝜆 and service rates 𝜇𝑖 ’s, if

every incoming job is assigned to server 𝑖 with probability 𝑝𝑖 , the

system can be viewed as 𝐾 𝐺𝑒𝑜/𝐺𝑒𝑜/1 queues each with arrival

rate 𝑝𝑖𝜆 and service rate 𝜇𝑖 respectively. Hence, the steady state

queue length of the system is given by

E

[
𝐾∑
𝑖=1

𝑄𝑖 (∞)
]
=

𝐾∑
𝑖=1

E [𝑄𝑖 (∞)] =
𝐾∑
𝑖=1

𝑝𝑖𝜆(1 − 𝜇𝑖 )
𝜇𝑖 − 𝜆𝑝𝑖

. (5)

Hence, the optimal routing vector would be the solution to the

following optimization problem:

min

𝑝1,𝑝2, · · · ,𝑝𝐾

𝐾∑
𝑖=1

𝑝𝑖𝜆(1 − 𝜇𝑖 )
𝜇𝑖 − 𝜆𝑝𝑖

(6)

s.t.

𝐾∑
𝑖=1

𝑝𝑖 = 1 (7)

𝑝𝑖 ≥ 0, 𝑝𝑖𝜆 < 𝜇𝑖 , ∀𝑖, (8)

where the constraint 𝑝𝑖𝜆 < 𝜇𝑖 ensures stability of the queue 𝑖 and

the remaining constraints ensures that 𝑝𝑖 forms a valid routing

vector. We show in Appendix B that the optimal routing vector is

given by 𝒑∗ = 𝑓 (𝜆, 𝝁), where 𝑓 : [0, 1]𝐾+1 → [0, 1]𝐾 is a function

given by

𝑓 (𝜆, 𝝁) (𝑖)

=


𝜇𝑖
𝜆
−

√
𝜇𝑖 (1−𝜇𝑖 )∑

𝑗∈S(𝜆,𝝁)
√
𝜇 𝑗 (1−𝜇 𝑗 )

(∑
𝑗∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

)
, if 𝑖 ∈ S(𝜆, 𝝁),

0, if 𝑖 ∉ S(𝜆, 𝝁) .
(9)

whereS(𝜆, 𝝁) is a subset of servers which we refer to as the optimal
support set such that 𝑖 ∈ S (𝜆, 𝝁) if and only if 𝑝∗

𝑖
> 0.

In Appendix B , we formally prove that if 𝜇𝑖 ≥ 𝜇 𝑗 , then 𝑝∗𝑖 ≥ 𝑝
∗
𝑗
.

Therefore, only the slowest servers are excluded from the support

set S(𝜆, 𝝁), and the support set has to be [1, . . . , 𝑖] for some 𝑖 ∈
{1, 2, . . . 𝐾}. To find the optimal set S(𝜆, 𝝁) and the optimal routing

vector 𝒑∗ we can use the iterative algorithm given below.

(i) Initialize the support set S(𝜆, 𝝁) = {1, 2, . . . , 𝐾}.
(ii) Calculate 𝑝∗

𝑖
according to (9).

(iii) If 𝑝∗
𝑖
< 0 for any 𝑖 ∈ {1, . . . , 𝐾}, then remove the slowest

server argmin𝑖∈S(𝜆,𝝁) 𝜇𝑖 from the support set and repeat

from Steps (ii) and (iii).

The proof of the correctness of the above algorithm is also given

in Appendix B.

4 PROPOSED JOB DISPATCHING POLICY FOR
UNKNOWN SERVICE RATES

Recall that we consider a dispatcher who does not know the service

rate vector 𝝁 = (𝜇1, . . . , 𝜇𝐾 ) and thus relies on the estimated service

𝜆
OWR

𝜇1

𝜇2

𝜇4

𝜇3

𝑝1
∗

𝑝3
∗

𝑝2
∗

Increasing service rate𝑝4
∗ = 0

O
ptim

al support set

Figure 3: An illustration of the optimal weighted random
routing policy. The job arrival rate is 𝜆 is split and there are
4 servers with service rates 𝜇1, . . . , 𝜇4 respectively such that
𝜇1 ≥ 𝜇2 ≥ 𝜇3 ≥ 𝜇4.

rate vector 𝝁 (𝑡) = (𝜇1 (𝑡), . . . , 𝜇𝐾 (𝑡)). Our goal is to design a dis-

patching policy P that minimizes the expected regret E [ΨPP∗ (𝑡)]
with respect to the optimal weighted random routing policy P∗.

In order to asymptotically converge to P∗, it is important for

the dispatching policy to correctly identify the optimal support

set S(𝜆, 𝝁) for which 𝑝∗
𝑖
> 0. If a server with 𝑝∗

𝑖
> 0 is excluded

from the estimated support set, then the dispatcher will not send

any jobs to it and hence cannot converge to the optimal policy P∗.
In this section we first demonstrate that it is necessary to explore

(that is, send jobs to all 𝐾 servers) infinitely often for achieving

a reasonable regret in Section 4.1. We then present our policy in

Section 4.2.

4.1 The Necessity of Exploration
It is well-known that for stochastic multi-armed bandits problems,

it is necessary to explore infinitely often to achieve an optimal re-

gret. Interestingly, there are recent results showing that no explicit

exploration is needed for achieving an optimal regret in some queue-

ing systems with unknown parameters [12]. There the exploration

comes for free when running a stabilizing policy. However, for the

job dispatching problem we consider in this paper, we demonstrate

below that infinitely often exploration is still necessary.

A naive dispatching policy may dedicate a constant amount of

time at the beginning to exploration to obtain a good estimate of

the service rate vector. Then after the initial exploration phase, the

policy uses the estimate 𝝁 (𝑡) at every time slot 𝑡 to compute the

routing vector and dispatches arriving jobs accordingly, while keep-

ing updating the estimate 𝝁 (𝑡) using the service times of completed

jobs. We will construct an example to demonstrate that this can

lead to a situation where a server in the optimal support set S(𝜆, 𝝁)
is forever excluded from the estimated optimal set, which will incur

a linear regret.

Consider a two-server system with 𝜆 = 0.05 and 𝝁 = (0.5, 0.5).
One can verify that the optimal routing vector is (0.5, 0.5). Suppose
for the first 𝑛 time slots, the dispatching policy assigns an arriving

job to one of the two servers chosen uniformly at random. We

consider an event E defined by the scenario below.

Suppose that there are 𝑘 job arrivals during the first 𝑛 time slots

to server 1. Let 𝑡 ′ be the earliest time by which all the 𝑘 jobs that are

assigned to server 1 have departed. Then we consider the scenario

where the estimated service rates satisfy that 𝜇1 (𝑡) ≤ 0.1 for all

time 𝑡 with 𝑡 ≤ 𝑡 ′ and 𝜇2 (𝑡) ≥ 0.2 for all time 𝑡 .
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Algorithm 1 An 𝜖𝑡 -Exploration Policy for Learning Optimal

Weighted Random Routing

1: while 𝑡 ≥ 0 do
2: if a job arrives then
3: 𝜒 (𝑡) ←a Bernoulli sample with mean min

{
1, 𝐾 ln 𝑡

𝑡

}
4: if 𝜒 (𝑡) = 1 then ⊲ Explore

5: Dispatch to one of the servers uniformly at random

6: else ⊲ Exploit

7: Compute routing vector 𝒑̂(𝑡) = 𝑓 (𝜆, 𝝁 (𝑡))
8: Dispatch to server 𝑖 with probability 𝑝𝑖 (𝑡)
9: end if
10: end if
11: for 𝑖 = 1, 2, · · ·𝐾 do
12: if a job departs from server 𝑖 then
13: Update 𝜇𝑖 (𝑡) using (2)
14: end if
15: end for
16: end while

We first argue that under the event E, the regret scales linearly
with time. Note that under E, for any time 𝑡 with 𝑛 < 𝑡 ≤ 𝑡 ′, the
routing vector is (0, 1) since 𝜇1 (𝑡) ≤ 0.1 and 𝜇2 (𝑡) ≥ 0.2. At time

𝑡 = 𝑡 ′ + 1, we still have that 𝜇1 (𝑡) ≤ 0.1 since no new job is sent to

server 1 and that 𝜇2 (𝑡) ≥ 0.2 by the definition of event E, which
makes the routing vector remain (0, 1). Repeating this argument

for all the time slots after 𝑡 ′ + 1 we can see that for rest of the time

no job will be sent to server 1 at all. Now the expected steady-state

queue length when using only server 2 is 1/18, while the expected
steady-state queue length using the optimal routing vector is 1/19.
Thus the regret scales roughly as 𝑡/342, which is linear in 𝑡 .

We next show that the event E happens with a strictly positive

probability:

P(E) =
(
𝑛∑
𝑘=1

(
𝑛

𝑘

)
(0.5𝜆)𝑛P

(
all 𝑘 jobs to server 1

have service time ≥ 10

))
· P

(
∩∞𝑡=1 {𝜇2 (𝑡) ≥ 0.2}

)
(10)

≥
(
1 −

∞∑
𝑡=1

P (𝜇2 (𝑡) < 0.2)
)
𝑛∑
𝑘=1

(
𝑛

𝑘

)
(0.5𝜆)𝑛

(
(0.5)10

)𝑘
(11)

≥ 1

3

𝑛∑
𝑘=1

(
𝑛

𝑘

)
(0.5𝜆)𝑛

(
(0.5)10

)𝑘
, (12)

which is strictly positive, where (12) is due to Chernoff bound.

4.2 An 𝜖𝑡 -Exploration Policy
As demonstrated in Section 4.1, exploring for a fixed amount of time

can lead to a linear regret. To ensure enough exploration, we pro-

pose an 𝜖𝑡 -exploration policy, which explores with probability 𝜖𝑡 =
𝐾 ln 𝑡
𝑡 at each time slot 𝑡 . When not exploring, the policy treats the

estimated service rates as if they were the actual service rates and

calculates the optimal routing probabilities based on them; i.e., when

not exploring, the policy uses 𝒑̂(𝑡) = (𝑝1 (𝑡), 𝑝2 (𝑡), · · · , 𝑝𝐾 (𝑡)) to
make a routing decision at time 𝑡 . The pseudo-code is presented

in Algorithm 1.

5 REGRET ANALYSIS
In this section, we prove an upper bound on the expected regret

E [ΨPP∗ (𝑡)] of the 𝜖𝑡 -exploration policy.

To state our upper bound, we first define a quantity ΔS that we

refer to as the tolerance gap, which is analogous to the suboptimality

gap for multi-armed bandits. Specifically, let

ΔS := sup

{
𝛿 ≥ 0 : S

(
𝜆, 𝝁 ′

)
= S(𝜆, 𝝁)

∀𝝁 ′s.t.
��𝜇 ′𝑖 − 𝜇𝑖 �� ≤ 𝛿,∀𝑖} , (13)

where recall that S(𝜆, 𝝁) is the optimal support set computed from

arrival rate 𝜆 and service rate vector 𝝁.
The tolerance gap ΔS quantifies how much error in the service

rates can be tolerated without incurring a discrepancy in the sup-

port set. We can think of the 𝝁 ′ in (13) as the estimated service

rate vector. If ΔS = 0, then even a slight imprecision in the esti-

mated service rates would make the estimated support set deviate

from the optimal support set, indicating hardness of the problem.

Therefore, we make the assumption that ΔS > 0 in our upper

bound. We comment that from a practical perspective, this is a

very mild assumption since only a small set (with zero measure) in

the parameter space

{
(𝜆, 𝝁) ∈ R𝐾+1+ : 𝜆 <

∑𝐾
𝑖=1 𝜇𝑖

}
will violate this

assumption.

Theorem 1 (Upper Bound on Expected Regret). Consider a system
with arrival rate 𝜆 and service rate vector 𝝁 and assume that ΔS > 0.

Then there exists a constant 𝑘1 and a 𝑡0 such that for all 𝑡 ≥ 𝑡0,
the 𝜖𝑡 -exploration policy (Algorithm 1) has an expected regret

E [ΨPP∗ (𝑡)] that admits the following upper bound:

E [ΨPP∗ (𝑡)]

≤
𝑡−1∑
𝜏=𝑡0

©­«
∑
𝑖:𝑝∗
𝑖
>0

66𝑘1 ln𝜏

𝑟2
𝑖

√
ln𝜏

𝜏
+

𝐾∑
𝑖=1

132 ln
2 𝜏

𝑟2
𝑖
𝜏

ª®¬ +𝑂 (1) , (14)

where 𝑟𝑖 is the residual capacity of server 𝑖 under the optimal

weighted random routing given by 𝑟𝑖 = 𝜇𝑖 − 𝜆𝑝∗𝑖 .

In the regret upper bound in Theorem 1 above, the first summand∑𝑡−1
𝜏=𝑡0

∑
𝑖:𝑝∗
𝑖
>0

66𝑘1 ln𝜏

𝑟 2
𝑖

√
ln𝜏
𝜏 is the dominant term and it comes from

the estimation error in the estimated routing probability vector

𝒑̂(𝑡), and the second summand

∑𝑡−1
𝜏=𝑡0

∑𝐾
𝑖=1

132 ln
2 𝜏

𝑟 2
𝑖
𝜏

results from the

exploration used by the 𝜖𝑡 -exploration policy. We note that this

regret bound becomes smaller in low to moderate traffic regimes

where the residual capacities 𝑟𝑖 ’s are large and the size of the optimal

support set S (𝜆, 𝝁) = {𝑖 : 𝑝∗
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝐾} is small.

In the following subsections, we first couple our system with the

system that runs the the optimal weighted random routing policy in

Section 5.1 to facilitate the regret analysis.We then prove Theorem 1

in Section 5.2, using several lemmas whose proof sketches are given

in Section 5.3.

5.1 Coupling with the Optimal Weighted
Random Routing

Consider the system that runs the optimal weighted random rout-

ing policy P∗, which we refer to as the optimal system. We will

annotate quantities in the optimal system with the superscript
∗
,

e.g., 𝐴∗ (𝑡) denotes the total number of job arrivals at time 𝑡 to the
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optimal system, and 𝑄∗
𝑖
(𝑡) denotes the length of queue 𝑖 under P∗.

Correspondingly, recall that the regret at time 𝑡 is defined as

ΨPP∗ (𝑡) =
𝑡−1∑
𝜏=1

𝐾∑
𝑖=1

(
𝑄𝑖 (𝜏) −𝑄∗𝑖 (𝜏)

)
.

We assume that the optimal system also starts from empty queues,

i.e., 𝑄∗
𝑖
(0) = 0 for all 𝑖 .

We couple the system that runs our proposed 𝜖𝑡 -exploration

policy with the optimal system in the following way.

Arrivals. We couple arrivals such that 𝐴(𝑡) = 𝐴∗ (𝑡) for all time 𝑡 .

Service. For each server 𝑖 , let 𝑆𝑖 (𝑡) for 𝑡 = 0, 1, 2, . . . be i.i.d. Bernoulli

random variables that take the value 1 with probability 𝜇𝑖 . We will

refer to 𝑆𝑖 (𝑡) as the service offered by server 𝑖 at 𝑡 . If𝑄𝑖 (𝑡)+𝐴𝑖 (𝑡) > 0,

we let 𝐷𝑖 (𝑡) = 𝑆𝑖 (𝑡), where recall that 𝐷𝑖 (𝑡) is the number of depar-

tures from queue 𝑖 at 𝑡 ; otherwise it is clear that𝐷𝑖 (𝑡) = 0. Similarly,

let 𝑆∗
𝑖
(𝑡) denote the corresponding service offered in the optimal

system. We couple the service processes such that 𝑆𝑖 (𝑡) = 𝑆∗𝑖 (𝑡) for
all server 𝑖 and all time 𝑡 .

Assignment process. Recall that in the 𝜖𝑡 -exploration policy, for

each time slot 𝑡 , with probability
𝐾 ln 𝑡
𝑡 we explore and otherwise

we dispatch the arriving job according to the routing vector 𝒑̂(𝑡).
We couple the dispatching decision generated from 𝒑̂(𝑡) with the

dispatching decision generated from the optimal routing vector 𝒑∗

in the optimal system as follows.

For simplicity, we can assume that for each time slot 𝑡 , we gen-

erate a dispatching decision from 𝒑̂(𝑡), although this dispatching

decision is needed only when there is a job arrival at 𝑡 and the

𝜖𝑡 -exploration policy chooses to exploit. Let the dispatching de-

cision generated from 𝒑̂(𝑡) be represented by the server that an

arriving job will be dispatched to, denoted as 𝜎 (𝑡). Then 𝜎 (𝑡)’s
pmf is 𝒑̂(𝑡). Similarly, let 𝜎∗ (𝑡) be the dispatching decision in the

optimal system, and then 𝜎∗ (𝑡)’s pmf is 𝒑∗. Then we couple 𝜎 (𝑡)
and 𝜎∗ (𝑡) such that they have the following joint pmf:

P(𝜎 (𝑡) = 𝑖, 𝜎∗ (𝑡) = 𝑗)

=


min{𝑝𝑖 (𝑡), 𝑝∗𝑖 } if 𝑖 = 𝑗,

(𝑝𝑖 (𝑡 )−min{𝑝𝑖 (𝑡 ),𝑝∗𝑖 })
(
𝑝∗𝑗 (𝑡 )−min

{
𝑝 𝑗 (𝑡 ),𝑝∗𝑗

})
𝑑𝑇𝑉 (𝒑̂ (𝑡 ),𝒑∗) if 𝑖 ≠ 𝑗,

(15)

where 𝑑𝑇𝑉 (𝒑̂(𝑡),𝒑∗) is the total variation distance between 𝒑̂(𝑡)
and𝒑∗ and𝑑𝑇𝑉 (𝒑̂(𝑡),𝒑∗) =

∑𝐾
𝑗=1

(
𝑝∗
𝑗
(𝑡) −min

{
𝑝 𝑗 (𝑡), 𝑝∗𝑗

})
for the

job routing distributions. This coupling is known as the maximal
coupling (see, e.g., [20]) and it guarantees that P(𝜎 (𝑡) ≠ 𝜎∗ (𝑡)) =
𝑑𝑇𝑉 (𝒑̂(𝑡),𝒑∗).

With this coupling, we can quantify the probability for a mis-

matched dispatching decision between our system and the optimal

system. In our system, recall that 𝐴𝑖 (𝑡) denotes the number of jobs

dispatched to server 𝑖 at time 𝑡 . We now make a finer distinction

between jobs dispatched through exploration and through exploita-

tion under the 𝜖𝑡 -exploration policy. Let 𝐴
(𝐸)
𝑖
(𝑡) and 𝐴(𝑂)

𝑖
(𝑡) de-

note the numbers of jobs dispatched to server 𝑖 through exploration

and exploitation, respectively. Then 𝐴𝑖 (𝑡) = 𝐴
(𝐸)
𝑖
(𝑡) + 𝐴(𝑂)

𝑖
(𝑡).

Lemma 1 below upper-bounds the probability for the mismatch

that 𝐴
(𝑂)
𝑖
(𝑡) = 1, 𝐴∗

𝑖
(𝑡) = 0 with the distance

��𝑝𝑖 (𝑡) − 𝑝∗𝑖 ��, implying

that once the estimates 𝑝𝑖 (𝑡)’s are close to 𝑝∗𝑖 ’s, the probability of

such a mismatch is small.

Lemma 1. For any time slot 𝑡 and any server 𝑖 ,

P
[
𝐴
(𝑂)
𝑖
(𝑡) = 1, 𝐴∗𝑖 (𝑡) = 0

��� 𝑝𝑖 (𝑡)] ≤ ��𝑝𝑖 (𝑡) − 𝑝∗𝑖 �� .
Proof of the lemma is given in Appendix C.1.

5.2 Proof of Regret Bound (Theorem 1)
In this section we prove the upper bound in Theorem 1 on the ex-

pected regretE [ΨPP∗ (𝑡)] = E
[∑𝑡−1

𝜏=1

∑𝐾
𝑖=1

(
𝑄𝑖 (𝜏) −𝑄∗𝑖 (𝜏)

) ]
based

on several lemmas. Proof sketches of these lemmas will be given in

Section 5.3, and the detailed proofs are presented in Appendices C.2,

C.6, C.7 and C.4 respectively.

We first note that the difference between 𝑄𝑖 (𝑡) and 𝑄∗𝑖 (𝑡) can
be written in the following recursive form for any 𝑡 and 𝜏 ≤ 𝑡 :

𝑄𝑖 (𝑡) −𝑄∗𝑖 (𝑡) = 𝑄𝑖 (𝜏) −𝑄
∗
𝑖 (𝜏)

+
𝑡−1∑
ℓ=𝜏

(
𝐴𝑖 (ℓ) − 𝐷𝑖 (ℓ) −

(
𝐴∗𝑖 (ℓ) − 𝐷

∗
𝑖 (ℓ)

) )
.

In this proof, wewill consider a specific 𝜏 that is the last time queue 𝑖

is empty. In particular, define 𝐵𝑖 (𝑡) as the length of the current busy

cycle period as seen at time 𝑡 , i.e.,

𝐵𝑖 (𝑡) = min {𝑠 ≥ 0 : 𝑄𝑖 (𝑡 − 𝑠) = 0} . (16)

Then it is easy to see that for 𝜏 = 𝑡 − 𝐵𝑖 (𝑡), we have 𝑄𝑖 (𝜏) = 0

and 𝑄∗
𝑖
(𝜏) ≥ 0. In addition, for any ℓ with 𝜏 ≤ ℓ ≤ 𝑡 − 1, we have

𝐷𝑖 (ℓ) = 𝑆𝑖 (ℓ) since 𝑄𝑖 (ℓ) > 0. Based on this choice of 𝜏 , the queue

length difference can be bounded as follows:

𝑄𝑖 (𝑡)−𝑄∗𝑖 (𝑡) = 𝑄𝑖 (𝑡 − 𝐵𝑖 (𝑡)) −𝑄
∗
𝑖 (𝑡 − 𝐵𝑖 (𝑡))+

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

(
𝐴𝑖 (ℓ) − 𝐷𝑖 (ℓ) −

(
𝐴∗𝑖 (ℓ) − 𝐷

∗
𝑖 (ℓ)

) )
≤

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

(
𝐴𝑖 (ℓ) −𝐴∗𝑖 (ℓ)

)
+

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

(
𝐷∗𝑖 (ℓ) − 𝐷𝑖 (ℓ)

)
≤

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

(
𝐴
(𝐸)
𝑖
(ℓ) +𝐴(𝑂)

𝑖
(ℓ) −𝐴∗𝑖 (ℓ)

)
+

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

(
𝑆∗𝑖 (ℓ) − 𝑆𝑖 (ℓ)

)
(17)

=

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

𝐴
(𝐸)
𝑖
(ℓ) +

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

(
𝐴
(𝑂)
𝑖
(ℓ) −𝐴∗𝑖 (ℓ)

)
(18)

≤
𝑡−1∑

ℓ=𝑡−𝐵𝑖 (𝑡 )
𝐴
(𝐸)
𝑖
(ℓ) +

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

1{
𝐴
(𝑂 )
𝑖
(ℓ)=1,𝐴∗

𝑖
(ℓ)=0

} ,
(19)

where (17) uses the facts that 𝐴𝑖 (ℓ) = 𝐴(𝐸)𝑖
(ℓ) +𝐴(𝑂)

𝑖
(ℓ), 𝐷∗

𝑖
(ℓ) ≤

𝑆∗
𝑖
(ℓ), and 𝐷𝑖 (ℓ) = 𝑆𝑖 (ℓ); (18) is due to our coupling 𝑆𝑖 (ℓ) = 𝑆∗𝑖 (ℓ).
In the upper bound (19) on the queue length difference, the first

summand comes from exploration. Since we know that by our 𝜖𝑡 -

exploration, we have E[𝐴(𝐸)
𝑖
(ℓ)] = 𝐾 ln ℓ

ℓ , this summand can be

properly bounded if we obtain a suitable upper bound on 𝐵𝑖 (𝑡).
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Busy period bound (Lemma 3)Heavy exploration period

Figure 4: Time structure of lemmas in proof of Theorem 1.

The second summand in (19) comes from exploitation, and it can be

bounded with the estimation error through Lemma 1. To formalize

the above intuition, we define the following events:

E1 (𝑡) := {𝐵𝑖 (𝑡) ≤ 𝑣𝑖 (𝑡),∀𝑖} , where 𝑣𝑖 (𝑡) =
66 ln 𝑡

𝑟2
𝑖

, and (20)

E2 (𝑡) :=
{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� ≤ 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}
,∀𝜏 ∈

[ 𝑡
2

+ 1, 𝑡
]
,∀𝑖

}
,

(21)

where 𝑘1 is a properly chosen constant. Utilizing these two events,

Lemma 2 below establishes an upper bound on the expected queue

length difference, which enables us to further bound the regret by

analyzing the busy period and the estimation error in service rates.

Lemma 2. There exists a 𝑡0 such that for any time 𝑡 ≥ 𝑡0, the total
expected queue length difference can be bounded as

𝐾∑
𝑖=1

E
[
𝑄𝑖 (𝑡) −𝑄∗𝑖 (𝑡)

]
≤

𝐾∑
𝑖=1

2𝑣𝑖 (𝑡) ln 𝑡
𝑡

+
∑
𝑖:𝑝∗
𝑖
>0

𝑘1𝑣𝑖 (𝑡)
√

ln 𝑡

𝑡
+ 𝑡P

(
(E1 (𝑡))𝑐

)
+ 2𝑡P

(
(E2 (𝑡))𝑐

)
. (22)

With Lemma 2, to bound the expected regret, now it suffices to

bound the probabilities P ((E1 (𝑡))𝑐 ) and P ((E2 (𝑡))𝑐 ), which are

established in Lemmas 3 and 4 below. We demonstrate the time

structure of the lemmas in Figure 4.

Lemma 3 (Busy Period Bound). There exist a constant 𝑘2 and a 𝑡0
such that for any 𝑡 ≥ 𝑡0, the event E1 (𝑡) defined in (20) satisfies

P
(
(E1 (𝑡))𝑐

)
≤ 4𝐾

(
1

𝑡7
+ 𝑘2 + 1

𝑡3
+ 1

𝑡4

)
. (23)

Lemma 4 (Estimation Error Bound). There exist a constant 𝑘2 and

a 𝑡0 such that for any 𝑡 ≥ 𝑡0, the event E2 (𝑡) defined in (21) satisfies

P
(
(E2 (𝑡))𝑐

)
≤ 𝐾

(
1

𝑡7
+ 𝑘2 + 1

𝑡3

)
+

∑
𝑖:𝑝∗
𝑖
>0

(
1

𝑡3
+ 𝑡 exp

(
−
𝑝∗
𝑖
𝜆𝑡

128

)
+ 𝑡 exp

(
−
𝑟2
𝑖
𝑡

4

))
. (24)

Finally, we choose a common 𝑡0 for Lemmas 2–4 and a common

𝑘2 for Lemmas 3 and 4, and put Lemmas 2–4 together to get

E [ΨPP∗ (𝑡)]

=

𝑡0−1∑
𝜏=1

𝐾∑
𝑖=1

E
[
𝑄𝑖 (𝜏) −𝑄∗𝑖 (𝜏)

]
+
𝑡−1∑
𝜏=𝑡0

𝐾∑
𝑖=1

E
[
𝑄𝑖 (𝜏) −𝑄∗𝑖 (𝜏)

]

≤ 𝑡2
0
+
𝑡−1∑
𝜏=𝑡0

𝐾∑
𝑖=1

2𝑣𝑖 (𝜏) ln𝜏
𝜏

+
𝑡−1∑
𝜏=𝑡0

∑
𝑖:𝑝∗
𝑖
>0

𝑘1𝑣𝑖 (𝜏)
√

ln𝜏

𝜏

+
𝑡−1∑
𝜏=𝑡0

𝜏 · 𝐾
(
4

𝜏7
+ 4𝑘2 + 4

𝜏3
+ 4

𝜏4

)
+
𝑡−1∑
𝜏=𝑡0

2𝜏 · 𝐾
(
1

𝜏7
+ 𝑘2 + 1

𝜏3

)
+
𝑡−1∑
𝜏=𝑡0

2𝜏 ·
∑
𝑖:𝑝∗
𝑖
>0

(
1

𝜏3
+ 𝜏 exp

(
−
𝑝∗
𝑖
𝜆𝜏

128

)
+ 𝜏 exp

(
−
𝑟2
𝑖
𝜏

4

))
(25)

= 𝑡2
0
+
𝑡−1∑
𝜏=𝑡0

𝐾∑
𝑖=1

132 ln
2 𝜏

𝑟2
𝑖
𝜏
+
𝑡−1∑
𝜏=𝑡0

∑
𝑖:𝑝∗
𝑖
>0

66𝑘1 ln𝜏

𝑟2
𝑖

√
ln𝜏

𝜏

+ 𝐾
𝑡−1∑
𝜏=𝑡0

(
6

𝜏6
+ 6𝑘2 + 6

𝜏2
+ 4

𝜏3

)
+ 2

𝑡−1∑
𝜏=𝑡0

∑
𝑖:𝑝∗
𝑖
>0

(
1

𝜏2
+ 𝜏2 exp

(
−
𝑝∗
𝑖
𝜆𝜏

128

)
+ 𝜏2 exp

(
−
𝑟2
𝑖
𝜏

4

))
(26)

=

𝑡−1∑
𝜏=𝑡0

©­«
∑
𝑖:𝑝∗
𝑖
>0

66𝑘1 ln𝜏

𝑟2
𝑖

√
ln𝜏

𝜏
+

𝐾∑
𝑖=1

132 ln
2 𝜏

𝑟2
𝑖
𝜏

ª®¬ +𝑂 (1) ,
which completes the proof of Theorem 1. □

Remark. Our proof techniques used the absolute difference in the

routing probabilities to analyze the difference in queue lengths.

We comment that it might be possible for one to prove a tighter

regret upper bound by considering the actual difference in routing

probabilities, but the analysis will become much more challenging.

Specifically, inaccurate routing probabilities can actually instanta-

neously benefit the queues whose 𝑝𝑖 (𝑡) is smaller than the optimal

𝑝∗
𝑖
. This is a phenomenon not seen in multi-armed bandit problems,

and it is worth further investigation.

5.3 Proof Sketches of Lemmas 2–4
The detailed proofs of Lemmas 2, 3, 4 and 5 are presented in Ap-

pendices C.2, C.6, C.7 and C.4 respectively.

Lemma 2 can be proven using a series of conditioning on event

E1 (𝑡), event E2 (𝑡) and also the estimated 𝒑̂(𝑡). Then the construc-

tion of E1 (𝑡) gives an upper bound on the busy period, Lemma 1

helps translate the number of mismatches into the error in esti-

mation, and finally the construction of E2 (𝑡) upper bounds the
estimation error.

Next for Lemmas 3 and 4, we will just highlight a key lemma

used in their proofs, presented as Lemma 5. Lemma 5 below states

that for any large enough time 𝑡 , the estimated optimal support

set, S (𝜆, 𝝁 (𝑡)), is correct (i.e., equal to the true optimal support set

S (𝜆, 𝝁)) for a period of time [𝑤 (𝑡), 𝑡] with high probability, where

𝑤 (𝑡) = 2 exp

(
Θ

(√
ln 𝑡

))
. Moreover, during this period of time,

the rate at which we dispatch jobs to each server 𝑖 lies between

𝜆𝑝∗
𝑖
/2 and 𝜇𝑖 − 𝑟𝑖/2; i.e., the arrival rate to each server is no smaller

than half of the rate under the optimal weighted random routing,

but still leaves at least half of residual capacity under the optimal

weighted random routing. We call the period of time [𝑤 (𝑡), 𝑡] the
quick learning period since we have “locked” the correct support

set and spend all exploitation jobs on learning the service rates of
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Figure 5: Regret vs time for various policies. The shaded region represent ±2𝜎 boundary of the mean regret. TS and UCB
performs well in load load regime, while 𝐾/𝑡-greedy exploration policy performs well in higher traffic regimes. Our policy
moderately in very low load regime and performs well in higher traffic regimes.

servers in the correct support set. This time structure of Lemma 5

is also illustrated in Figure 4.

Lemma 5 (Quick Learning Period). Define the event E3 (𝑡) as

E3 (𝑡) := E31 (𝑡) ∩ E32 (𝑡), where (27)

E31 (𝑡) := {S (𝜆, 𝝁 (𝜏)) = S(𝜆, 𝝁),∀𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡]} ,

E32 (𝑡) :=
{
𝜆𝑝∗
𝑖

2

≤ E (𝐴𝑖 (𝜏) | 𝑝𝑖 (𝜏)) ≤ 𝜇𝑖 −
𝑟𝑖

2

,∀𝑖,∀𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡]
}
.

Then there exist a constant 𝑘2 and 𝑡0 such that for all 𝑡 ≥ 𝑡0,

P
(
(E3 (𝑡))𝑐

)
≤ 𝐾

(
1

𝑡7
+ 𝑘2 + 1

𝑡3

)
.

Based on Lemma 5, Lemmas 3 and 4 can be proven through

the following outline. The bound on the busy period in Lemma 3

relies on the property that E (𝐴𝑖 (𝜏) | 𝑝𝑖 (𝜏)) ≤ 𝜇𝑖 − 𝑟𝑖
2
in the event

E32 (𝑡) (𝑡), which leads to a negative drift in the queue length. For

the bound on the estimation error in Lemma 4, the property that

E (𝐴𝑖 (𝜏) | 𝑝𝑖 (𝜏)) ≥
𝜆𝑝∗𝑖
2

in the event E32 (𝑡) guarantees that the
expected number of jobs we dispatch to each server in the optimal

support set is at least linear in time, resulting in enough samples

for estimating the service rates of these servers. For servers outside

of the optimal support set, event E31 (𝑡) ensures that we do not

dispatch exploitation jobs to those servers.

6 SIMULATION RESULTS
In this section we compare the expected regret of our proposed

𝐾 ln 𝑡/𝑡-exploration policy with three other policies that are also

based on multi-armed bandits: (i) an 𝜖𝑡 -exploration with a faster

decaying exploration probability 𝜖𝑡 = 𝐾/𝑡 , (ii) a variant of the upper
confidence bound (UCB) policy [2], and (iii) a variant of Thompson

sampling [1, 23], described in more detail below. Our simulation set-

up consists of a system of 6 servers with service rates 𝜇𝑖 such that

𝜇𝑖 = 2
𝑖−1𝜇1, and

∑
6

𝑖=1 𝜇𝑖 = 0.99. We consider 5 different job arrival

rates 𝜆 = 0.1, 0.2, 0.4, 0.5 and 0.7. To compute the regret, we find

the cumulative queue length

∑𝑡
𝜏=1

∑𝐾
𝑖=1𝑄𝑖 (𝜏) for 𝑡 ∈ [0, 2 × 107]

for each of the policies and the optimal weighted random routing

policy. The regret ΨPP∗ (𝑡) =
∑𝑡
𝜏=1

∑𝐾
𝑖=1 (𝑄𝑖 (𝜏) − 𝑄∗𝑖 (𝜏)) is then

averaged over 20000 simulation runs. We compare the regret of our

proposed policy with that of the three other policies in Fig. 5.

𝐾/𝑡-exploration: Instead of the 𝜖𝑡 = 𝐾 ln 𝑡/𝑡 probability of explo-

ration used in our proposed policy, this policy sets 𝜖𝑡 = 𝐾/𝑡 , which
decays much faster. Because of the aggressive exploitation, this

policy can exclude servers from the optimal support set, similar

to the situation described in Section 4.1. As a result, we observe

linearly increasing regret in Fig. 5 and it is clearly outperformed by

our proposed 𝐾 ln 𝑡/𝑡-exploration policy, especially for small 𝜆. For

larger 𝜆, only a small amount of exploration is required to ensure

that none of the servers in the optimal support set is excluded and

hence the performance of the policy improves.
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Upper Confidence Bound (UCB) variant: This is a variant of the
UCB policy [2], where in each time slot, we compute the routing

probability vector 𝑓

(
𝜆, 𝝁𝑈𝐶𝐵 (𝑡)

)
using optimistic estimates of the

service rates 𝜇𝑈𝐶𝐵
𝑖
(𝑡) = 𝜇𝑖 (𝑡) + 1√

𝑁𝑖 (𝑡 )
, where 𝑁𝑖 (𝑡) is the number

of jobs that have departed from server 𝑖 till time 𝑡 . Using optimistic

service rate estimates induces more exploration of slower servers

by including them in the support set more often. As a result, UCB

explores more aggressively than our proposed 𝐾 ln 𝑡/𝑡-exploration
policy and therefore, UCB performs well for small 𝜆. However, as 𝜆

increases, the additional exploration results in a higher regret.

Thompson Sampling (TS) variant: This is a variant of the Thomp-

son sampling [1, 23]. At each time slot, we compute the rout-

ing probability vector 𝑓

(
𝜆, 𝝁𝑇𝑆 (𝑡)

)
by sampling the service rates

𝜇𝑇𝑆
𝑖
(𝑡) from a Beta distribution with parameters 𝜇𝑖 (𝑡)𝑁𝑖 (𝑡) + 1 and

(1− 𝜇𝑖 (𝑡))𝑁𝑖 (𝑡) +1. The variance of the Beta distribution is roughly

𝑂 (1/𝑁𝑖 (𝑡)). The exploration in this policy comes from the fact

𝜇𝑇𝑆
𝑖
(𝑡) lies within 𝜇𝑖 (𝑡) ± 𝑂 (1/

√
𝑁𝑖 (𝑡)) region. While similar to

UCB, TS performs less exploration of slow servers because 𝜇𝑇𝑆
𝑖
(𝑡)

can be lower than the optimistic estimates 𝜇𝑖 (𝑡). Thus, we observe
in Fig. 5 that the regret of TS is similar to, but better than UCB.

A common trend in these results is that we need more explo-

ration in the low 𝜆 regime and less exploration for larger 𝜆. In the

low 𝜆 regime, the optimal weighted random routing usually sends

the job to the fastest server, which essentially reduces to a typi-

cal MAB setting. Hence, UCB and TS perform well in very low 𝜆

regime. However, their performance worsens as 𝜆 increases due to

over-exploration. Unlike traditional MAB problems where the user

either explores or exploits at each time, in queueing bandits every

exploitation also acts as an exploration. As long as the servers in

the optimal support set has a non-zero probability of assignment

associated with it, there would be a steady flow of jobs to those

servers which in turn will improve their service rate estimates.

7 CONCLUDING REMARKS
In this paper, we study the problem of job dispatching policies in

a system with unknown service rates and unknown queue length

information. We propose a bandit-based 𝐾 ln 𝑡/𝑡-exploration policy,

which uses online estimate of the service rates to dispatch jobs, and

asymptotically converges to the optimal weighted random (OWR)

routing policy. We characterize the finite-time regret of this policy

and present simulation results to demonstrate that it performs well

in all load regimes.

There are substantial open directions for future work. An imme-

diate open challenge is to prove a matching lower bound on the

regret. Unlike typical bandit problem where every wrong decision

incurs a penalty, characterization of this penalty is difficult in our

queueing setting. Another open direction is extending the work

to characterize of regret for classes of policies that has access to

the queue length information like JSQ, SED etc. The analysis of

these policies is far more complicated than random routing policies,

where the difference in the queue length can be characterized by

the difference in the routing probabilities.

ACKNOWLEDGMENTS
The authors thank Osman Yağan for insightful initial discussions.

This work was supported in part by the CMU Dean’s fellowship,

NSF CCF grant #2007834, NSF CNS grant #2007733, ONR Grant

N00014-19-1-2566 and a Carnegie Bosch Institute Research Award.

REFERENCES
[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of Thompson Sampling for the

Multi-armed Bandit Problem. In Proc. Conf. Learning Theory (COLT) (Proceed-
ings of Machine Learning Research), Vol. 23. JMLR Workshop and Conference

Proceedings, Edinburgh, Scotland, 39.1–39.26.

[2] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. 2002. Finite-Time Analysis

of the Multiarmed Bandit Problem. Mach. Learn. 47, 2–3 (May 2002), 235–256.

https://doi.org/10.1023/A:1013689704352

[3] S. A. Banawan and N. M. Zeidat. 1992. A comparative study of load sharing in

heterogeneous multicomputer systems. In Proceedings. 25th Annual Simulation
Symposium. IEEE, Orlando, FL, USA, 22–31. https://doi.org/10.1109/SIMSYM.

1992.227580

[4] S. Bubeck and C. B. Nicolò. 2012. Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Now Foundations and Trends.

[5] S. Cayci and A. Eryilmaz. 2017. Learning for serving deadline-constrained traffic

in multi-channel wireless networks. In 2017 15th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt).
IEEE, Paris, France, 1–8. https://doi.org/10.23919/WIOPT.2017.7959911

[6] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,

2 (Feb. 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[7] Atilla Eryilmaz and R. Srikant. 2012. Asymptotically Tight Steady-State Queue

Length Bounds Implied by Drift Conditions. Queueing Syst. Theory Appl. 72, 3–4
(Dec. 2012), 311–359. https://doi.org/10.1007/s11134-012-9305-y

[8] S. Fatale, K. Bhandari, U. Narula, S. Moharir, , and M. Hanawal. [n.d.]. Regret of

Age-of-Information Bandits. arXiv eprint: 2001.09317.

[9] GJ Foschini. 1977. On heavy traffic diffusion analysis and dynamic routing in

packet switched networks. Computer Performance 10 (1977), 499–513.
[10] Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge University Press.

[11] G.P. Klimov. 1974. Time-sharing service systems I. Theory Prob. Appl. 19 (1974),
532 –– 551.

[12] S. Krishnasamy, A. Arapostathis, R. Johari, and S. Shakkottai. 2018. On Learning

the c𝜇 Rule in Single and Parallel Server Networks. In Proc. Ann. Allerton Conf.
Communication, Control and Computing. IEEE, Monticello, IL, USA, 153–154.

https://doi.org/10.1109/ALLERTON.2018.8636001

[13] Subhashini Krishnasamy, Rajat Sen, Ramesh Johari, and Sanjay Shakkottai. 2016.

Regret of Queueing Bandits. In Advances Neural Information Processing Systems
(NEURIPS), Vol. 29. Curran Associates, Inc.

[14] T.L Lai and Herbert Robbins. 1985. Asymptotically efficient adaptive allocation

rules. Advances in Applied Mathematics 6, 1 (1985), 4 – 22. https://doi.org/10.

1016/0196-8858(85)90002-8

[15] Tor Lattimore and Csaba Szepesvári. 2020. Bandit Algorithms. Cambridge Uni-

versity Press.

[16] Xin Liu, Bin Li, Pengyi Shi, and Lei Ying. 2020. POND: Pessimistic-Optimistic

oNline Dispatch. arXiv:cs.LG/2010.09995

[17] A. Mahajan and D. Teneketzis. 2008. Multi-armed bandit problems. Foundations
and applications of sensor management (2008), 121 – 151.

[18] M. Mitzenmacher. 1996. Load balancing and density dependent jump Markov

processes. In Proceedings of 37th Conference on Foundations of Computer Science.
IEEE, Burlington, VT, USA, 213–222. https://doi.org/10.1109/SFCS.1996.548480

[19] M. Mitzenmacher. 2001. The power of two choices in randomized load balancing.

IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001), 1094–1104.
https://doi.org/10.1109/71.963420

[20] Sheldon M. Ross and Erol A. Peköz. 2007. A second course in probability.
www.ProbabilityBookstore.com.

[21] R. Srikant and Lei Ying. 2014. Communication Networks: An Optimization, Control
and Stochastic Networks Perspective. Cambridge University Press, USA.

[22] T. Stahlbuhk, B. Shrader, and E. Modiano. 2018. Learning Algorithms for Minimiz-

ing Queue Length Regret. In 2018 IEEE International Symposium on Information
Theory (ISIT). 1001–1005. https://doi.org/10.1109/ISIT.2018.8437817

[23] William R. Thompson. 1933. On the Likelihood that One Unknown Probability

Exceeds Another in View of the Evidence of Two Samples. Biometrika 25, 3/4
(1933), 285–294.

[24] Nikita Dmitrievna Vvedenskaya, Roland L’vovich Dobrushin, and Fridrikh Izraile-

vich Karpelevich. 1996. Queueing system with selection of the shortest of two

queues: An asymptotic approach. Problemy Peredachi Informatsii 32, 1 (1996),
20–34.

[25] N.S. Walton. 2014. Two queues with non-stochastic arrivals. Operations Research
Letters 42, 1 (2014), 53 – 57. https://doi.org/10.1016/j.orl.2013.11.008

https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1109/SIMSYM.1992.227580
https://doi.org/10.1109/SIMSYM.1992.227580
https://doi.org/10.23919/WIOPT.2017.7959911
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1007/s11134-012-9305-y
https://doi.org/10.1109/ALLERTON.2018.8636001
https://doi.org/10.1016/0196-8858(85)90002-8
https://doi.org/10.1016/0196-8858(85)90002-8
http://arxiv.org/abs/cs.LG/2010.09995
https://doi.org/10.1109/SFCS.1996.548480
https://doi.org/10.1109/71.963420
https://doi.org/10.1109/ISIT.2018.8437817
https://doi.org/10.1016/j.orl.2013.11.008


Job Dispatching Policies for Queueing Systems
with Unknown Service Rates , ,

[26] Richard R. Weber. 1978. On the optimal assignment of customers to parallel

servers. Journal of Applied Probability 15, 2 (1978), 406–413. https://doi.org/10.

2307/3213411

[27] Wentao Weng, Xingyu Zhou, and R. Srikant. 2020. Optimal Load Balancing in

Bipartite Graphs. arXiv:cs.PF/2008.08830

https://doi.org/10.2307/3213411
https://doi.org/10.2307/3213411
http://arxiv.org/abs/cs.PF/2008.08830


, , Tuhinangshu Choudhury, Gauri Joshi, Weina Wang, and Sanjay Shakkottai

A CONSTANTS AND STANDARD RESULTS
We define the constant 𝑡0 below.

𝑡0 = inf

𝜏

{
𝜏 ∈ R :

𝜆 ln𝑤 (𝜏)
𝑤 (𝜏) ≤ min

𝑖

𝑟𝑖

4

, (28)

min

𝑖

{
𝜇𝑖𝑤 (𝜏)

2

− 4 ln𝜏

𝑐𝑔Δ2

0

−
√
8𝜇𝑖𝑤 (𝜏) ln𝜏

}
≥ 0, (29)

min

𝑖
𝑟𝑖𝑤 (𝜏) ≥ 48 ln𝜏, (30)

𝑘1

𝑐

√
ln𝜏

𝜏
≤ min

{
min

𝑖:𝑝∗
𝑖
>0
𝑝𝑖 ,Δ

}
, (31)

𝑤 (𝜏) ≤ 𝜏
4

, (32)

max

𝑖

66 ln𝜏

𝑟2
𝑖

+ 6𝑤 (𝜏)
𝑟𝑖

≤ 𝜏
2

}
, (33)

where

𝑤 (𝜏) = 2 exp

(
1

Δ0

√
16 ln𝜏

𝑐𝑔𝜆

)
(34)

and 𝑐𝑔 , Δ0 and Δ are constants depending on system parameters given by

𝑐𝑔 = min

𝑖
min

{
1

8𝜇2
𝑖
(1 − 𝜇𝑖 )

,
1

6𝜇2
𝑖
(1 − 𝜇𝑖 ) (3 − 𝜇𝑖 )

}
, (35)

Δ0 = min

{
Δ,min

𝑖
{𝜇𝑖 (1 − 𝜇𝑖 )},

min𝑖:𝑝∗
𝑖
>0 𝑝

∗
𝑖

3𝑐

}
, (36)

Δ = min

{
𝜇̃

2

,

∑
𝑗 ∈S(𝜆,𝝁) 𝑟 𝑗
|S(𝜆, 𝝁) | ,

min𝑗 ∈S(𝜆,𝝁) 𝑟 𝑗
4𝑐𝜆

,ΔS

}
, (37)

𝜇̃ = min

𝑗 ∈S(𝜆,𝝁)
{min{𝜇 𝑗 , 1 − 𝜇 𝑗 }}, (38)

𝑟min = min

𝑖
𝑟𝑖 , (39)

𝑐 = max

{
1

𝜆

(
1 + 4

∑
𝑗 ∈S(𝜆,𝝁) 𝑟𝑖

𝜇̃
+ |S(𝜆, 𝝁) |

)
,
1

𝜆
+
30

∑
𝑗 ∈S(𝜆,𝝁) 𝑟 𝑗
𝜆𝜇̃

+ 16|S(𝜆, 𝝁) |
𝜆

}
(40)

and

ΔS := sup

{
𝛿 ≥ 0 : S

(
𝜆, 𝝁 ′

)
= S(𝜆, 𝝁),∀𝝁 ′s.t.

��𝜇 ′𝑖 − 𝜇𝑖 �� ≤ 𝛿,∀𝑖} (41)

The requirement of (28)-(32) is explained in the proofs of the lemmas. (33) is to ensure that for that any 𝑡 ≥ 𝑡0, 𝑣𝑖 (𝑡) ≤ 𝑡/2, which is used in

the proof of Theorem 1.Below, we state some standard results that we will use in the proofs.

• Chernoff’s Inequality: For i.i.d. Bernoulli random variables 𝑋1, 𝑋2, · · · , 𝑋𝑛 , and 𝛿 ∈ (0, 1)

P

(∑
𝑖

𝑋𝑖 ≤ (1 − 𝛿)E
[∑
𝑖

𝑋𝑖

])
≤ exp

(
−𝛿

2E [∑𝑖 𝑋𝑖 ]
2

)
(42)

• Hoeffding’s Inequality: For i.i.d. random variables 𝑋1, 𝑋2, · · · , 𝑋𝑛 such that 𝑎 ≤ 𝑋𝑖 ≤ 𝑏 for all 𝑖 , we have,

P

(
𝑛∑
𝑖=1

𝑋𝑖 − E
(
𝑛∑
𝑖=1

𝑋𝑖

)
≤ −𝑡

)
≤ exp

(
− 2𝑡2

𝑛(𝑏 − 𝑎)2

)
. (43)
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B PROOF OF THE OPTIMALWEIGHTED RANDOM ROUTING POLICY
The Lagrangian of the optimization problem is given by

L =
∑
𝑖

𝜆𝑝𝑖 (1 − 𝜇𝑖 )
𝜇𝑖 − 𝜆𝑝𝑖

+ 𝑎
(
1 −

∑
𝑖

𝑝𝑖

)
+

∑
𝑖

𝑏𝑖 (𝜆𝑝𝑖 − 𝜇𝑖 ) −
∑
𝑖

𝑐𝑖𝑝𝑖 . (44)

Now

𝑑L
𝑑𝑝𝑖

=
𝜆𝜇𝑖 (1 − 𝜇𝑖 )
(𝜇𝑖 − 𝜆𝑝𝑖 )2

− 𝑎 + 𝑏𝑖𝜆 − 𝑐𝑖 (45)

Let 𝑝∗ (𝜆, 𝝁) =
(
𝑝∗
1
, 𝑝∗

2
, · · · , 𝑝∗

𝐾

)
be the optimal primal solution which is also the optimal routing vector. Let 𝑎∗, 𝒃∗ = (𝑏∗

1
, 𝑏∗

2
, · · · , 𝑏∗

𝐾
) and

𝒄∗ = (𝑐∗
1
, 𝑐∗
2
, · · · , 𝑐∗

𝐾
) be the optimal dual solution. Since, objective function is convex, inequality constraints are convex and equality

constraint is affine, the dual gap is zero. From complementary slackness,

𝑐∗𝑖 𝑝
∗
𝑖 = 0, (46)

𝑏∗𝑖 (𝜆𝑝
∗
𝑖 − 𝜇𝑖 ) = 0. (47)

Since, 𝜆𝑝∗
𝑖
< 𝜇𝑖 for all 𝑖 , 𝑏

∗
𝑖
= 0 for all 𝑖 . As defined already, S(𝜆, 𝝁) is the optimal support set, i.e., 𝑖 ∈ S(𝜆, 𝝁) if and only if 𝑝∗

𝑖
> 0. Then, for

all 𝑖 ∈ S(𝜆, 𝝁), we have
𝜆𝜇𝑖 (1 − 𝜇𝑖 )
(𝜇𝑖 − 𝜆𝑝∗𝑖 )2

− 𝑎∗ = 0 (48)

Simplifying the expression, we get

𝜇𝑖 − 𝜆𝑝∗𝑖 = 𝑎′𝑠𝑖 (49)

where 𝑎′ =
√

𝜆
𝑎∗ , 𝑠𝑖 =

√
𝜇𝑖 (1 − 𝜇𝑖 ). Summing the above expression for all 𝑖 ∈ S(𝜆, 𝝁), we get∑

𝑗 ∈S(𝜆,𝝁)
𝜇 𝑗 − 𝜆 = 𝑎′

©­«
∑

𝑗 ∈S(𝜆,𝝁)
𝑠 𝑗

ª®¬ . (50)

Using the value of 𝑎′ from (49) and (50), for any 𝑖 ∈ S(𝜆, 𝝁)

𝑝∗𝑖 =
𝜇𝑖

𝜆
− 𝑠𝑖∑

𝑗 ∈S(𝜆,𝝁) 𝑠 𝑗

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

)
. (51)

Hence, the task to find the optimal routing vector essentially boils down to finding the optimal support set. We will introduce the definition

of valid support set and two lemmas below.

Definition B.1. A set is a valid support set if the routing vector calculated using (9) for the set satisfies the constraints of the optimization

problem.

Lemma B.2. If 𝜇𝑖 ≥ 𝜇 𝑗 , then 𝑝∗𝑖 ≥ 𝑝
∗
𝑗
.

Lemma B.3. There exists no valid support set 𝑉 ⊃ S(𝜆, 𝝁).

We will now prove the correctness of our algorithm using the two lemmas mentioned above. Without loss of generality, assume

𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝐾 . (52)

Define the sets 𝑉1,𝑉2, · · · ,𝑉𝐾 such 𝑖 ≤ 𝑗 implies 𝑖 ∈ 𝑉𝑗 . Observe that 𝑉𝑖 for 𝑖 ∈ [1, 𝐾] are the only possible sets that can be both valid

set and satisfy Lemma B.2. Hence, S(𝜆, 𝝁) has to be one of the 𝑉𝑖 ’s. Assume that S(𝜆, 𝝁) = 𝑉𝑞 . We want to argue that algorithm to find

S(𝜆, 𝝁) converges to 𝑉𝑞 . Since 𝑉𝑞 is a valid vector, clearly the algorithm will not converge to any 𝑉𝑞′ where 𝑞
′ < 𝑞. To prove the validity

of our algorithm, it is enough to show that for all 𝑞′′ > 𝑞, the routing vector calculated using 𝑉𝑞′′ is not non-negative. By Lemma B.3, for

any 𝑞′′ > 𝑞, 𝑉𝑞′′ is not a valid set. There are mainly three constraints for a set to be valid. The first constraint is that the sum of routing

probabilities

∑𝐾
𝑖=1 𝑝

∗
𝑖
should equal 1 which is always satisfied because of (9). The second constraint ensure that for any 𝑖 , 𝜇𝑖 − 𝜆𝑝∗𝑖 should be

positive. Clearly this is true for any 𝑖 which is not in the support set. For any 𝑖 ∈ 𝑉𝑞′′ , we have

𝜇𝑖 − 𝜆𝑝∗𝑖 =
𝑠𝑖∑

𝑗 ∈𝑉𝑞′′ 𝑠 𝑗
©­«

∑
𝑗 ∈𝑉𝑞′′

𝜇 𝑗 − 𝜆
ª®¬ ≥ 0, (53)

where the last step follows from the fact that

(∑
𝑗 ∈𝑉𝑞′′ 𝜇 𝑗 − 𝜆

)
≥

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

)
≥ 0. Hence, the only way 𝑉𝑞′′ could not be a valid set,

if it violates the third constraint which ensures that the routing probabilities are non-negative.

Next we will prove the above lemmas.



, , Tuhinangshu Choudhury, Gauri Joshi, Weina Wang, and Sanjay Shakkottai

(1) Proof of Lemma B.2. Consider a feasible routing vector 𝒑𝐴 = (𝑝1, 𝑝2, · · · , 𝑝𝐾 ) such that there exists 𝑖, 𝑗 such that 𝑝𝑖 < 𝑝 𝑗 and

𝜇𝑖 > 𝜇 𝑗 . Consider another feasible routing vector 𝒑𝐵 with the exact same routing probabilities as 𝒑𝐴 except the 𝑝𝑖 , 𝑝 𝑗 are interchanged,

i.e., 𝒑𝐴
𝑖
= 𝒑𝐵

𝑗
and 𝒑𝐵

𝑖
= 𝒑𝐴

𝑗
. Now the difference of the value of objective function is given by,

E [𝑄𝐴] − E [𝑄𝐵] (54)

=
𝜆𝑝𝑖 (1 − 𝜇𝑖 )
𝜇𝑖 − 𝜆𝑝𝑖

+
𝜆𝑝 𝑗 (1 − 𝜇 𝑗 )
𝜇 𝑗 − 𝜆𝑝 𝑗

−
𝜆𝑝 𝑗 (1 − 𝜇𝑖 )
𝜇𝑖 − 𝜆𝑝 𝑗

−
𝜆𝑝𝑖 (1 − 𝜇 𝑗 )
𝜇 𝑗 − 𝜆𝑝𝑖

(55)

=𝜆𝑝 𝑗
(𝜇𝑖 − 𝜇 𝑗 ) (1 − 𝜆𝑝 𝑗 )
(𝜇 𝑗 − 𝜆𝑝 𝑗 ) (𝜇𝑖 − 𝜆𝑝 𝑗 )

+ 𝜆𝑝𝑖
(𝜇 𝑗 − 𝜇𝑖 ) (1 − 𝜆𝑝𝑖 )
(𝜇𝑖 − 𝜆𝑝𝑖 ) (𝜇 𝑗 − 𝜆𝑝𝑖 )

(56)

=𝜆
(
𝜇𝑖 − 𝜇 𝑗

) (
𝑝 𝑗 − 𝑝𝑖

) (
𝜇𝑖𝜇 𝑗 + 𝜆2𝑝𝑖𝑝 𝑗 (𝜇𝑖 + 𝜇 𝑗 ) − 𝜆2𝑝𝑖𝑝 𝑗 − 𝜆𝜇𝑖𝜇 𝑗 (𝑝𝑖 + 𝑝 𝑗 )
(𝜇𝑖 − 𝜆𝑝𝑖 ) (𝜇 𝑗 − 𝜆𝑝𝑖 ) (𝜇 𝑗 − 𝜆𝑝 𝑗 ) (𝜇𝑖 − 𝜆𝑝 𝑗 )

)
(57)

=
𝜆

(
𝜇𝑖 − 𝜇 𝑗

) (
𝑝 𝑗 − 𝑝𝑖

)
(𝜇𝑖 − 𝜆𝑝𝑖 ) (𝜇 𝑗 − 𝜆𝑝𝑖 ) (𝜇 𝑗 − 𝜆𝑝 𝑗 ) (𝜇𝑖 − 𝜆𝑝 𝑗 )

( (
𝜇 𝑗 − 𝜆𝑝 𝑗

)
𝜆𝑝𝑖 (1 − 𝜆𝑝𝑖 ) + (𝜇𝑖 − 𝜆𝑝𝑖 ) 𝜆𝑝 𝑗

(
1 − 𝜆𝑝 𝑗

)
+

+ (𝜇𝑖 − 𝜆𝑝𝑖 )
(
𝜇 𝑗 − 𝜆𝑝 𝑗

) (
1 − 𝜆𝑝𝑖 − 𝜆𝑝 𝑗

) )
(58)

≥0 (59)

where the last inequality is non-negative since all the terms in the expression are non-negative. This implies that if 𝜇𝑖 ≥ 𝜇 𝑗 , then
𝑝∗
𝑖
≥ 𝑝∗

𝑗
. □

(2) Proof of Lemma B.3. Let 𝑉𝑚 and 𝑉𝑚+𝑛 be valid support sets. We want to argue that 𝑉𝑚 cannot be the optimal support set. Assume

that 𝑉𝑚 is the optimal support set. Since the solution is optimal, the dual variables corresponding to optimal support set 𝑉𝑚 has to be

non-negative.

𝑎∗ =
𝜆𝑠2

1

(𝜇1 − 𝜆𝑝1)
(60)

=
𝜆𝑠2

1(
𝑠1∑𝑚
𝑗=1 𝑠 𝑗

(∑𝑚
𝑗=1 𝜇 𝑗 − 𝜆

))2 (61)

= 𝜆

( ∑𝑚
𝑗=1 𝑠 𝑗∑𝑚

𝑗=1 𝜇 𝑗 − 𝜆

)
2

, (62)

which is always non-negative. Since, 𝑉𝑚 is a valid set, 𝑏∗
𝑖
= 0 for all 𝑖 ∈ {1, 2, 3, · · · , 𝐾}. Also, from the equation

𝜆𝜇𝑖 (1 − 𝜇𝑖 )
(𝜇𝑖 − 𝜆𝑝∗𝑖 )2

− 𝑎∗ − 𝑐∗𝑖 = 0 (63)

Hence, for all 𝑖 > 𝑚,

𝑐∗𝑖 ≥ 0 (64)

𝑎∗ ≤ 𝜆𝜇𝑖 (1 − 𝜇𝑖 )
(𝜇𝑖 )2

(65)

𝜆

( ∑𝑚
𝑗=1 𝑠 𝑗∑𝑚

𝑗=1 𝜇 𝑗 − 𝜆

)
2

≤ 𝜆𝜇𝑖 (1 − 𝜇𝑖 )
(𝜇𝑖 )2

= 𝜆
𝑠2
𝑖

𝜇2
𝑖

(66)∑𝑚
𝑗=1 𝑠 𝑗∑𝑚

𝑗=1 𝜇 𝑗 − 𝜆
≤ 𝑠𝑖

𝜇𝑖
(67)

Using (67) with the property that 𝑠𝑖/𝜇𝑖 is mononically increasing in 𝑖 , we have∑𝑚
𝑗=1 𝑠 𝑗∑𝑚

𝑗=1 𝜇 𝑗 − 𝜆
≤ 𝑠𝑚+1
𝜇𝑚+1

≤ 𝑠𝑚+2
𝜇𝑚+2

≤ · · · ≤ 𝑠𝑚+𝑛
𝜇𝑚+𝑛

. (68)

Hence, ∑𝑚+𝑛
𝑗=1 𝑠 𝑗∑𝑚+𝑛

𝑗=1 𝜇 𝑗 − 𝜆
=

∑𝑚+𝑛
𝑗=𝑚+1 𝑠 𝑗 +

∑𝑚
𝑗=1 𝑠 𝑗∑𝑚+𝑛

𝑗=𝑚+1 𝜇 𝑗 +
∑𝑚
𝑗=1 𝜇 𝑗 − 𝜆

(69)



Job Dispatching Policies for Queueing Systems
with Unknown Service Rates , ,

≤

∑𝑚+𝑛
𝑗=𝑚+1

𝑠𝑚+𝑛
𝜇𝑚+𝑛

𝜇 𝑗 + 𝑠𝑚+𝑛𝜇𝑚+𝑛

(∑𝑚
𝑗=1 𝜇 𝑗 − 𝜆

)
∑𝑚+𝑛
𝑗=𝑚+1 𝜇 𝑗 +

∑𝑚
𝑗=1 𝜇 𝑗 − 𝜆

(70)

=
𝑠𝑚+𝑛
𝜇𝑚+𝑛

. (71)

This implies

𝜇𝑚+𝑛
𝜆
− 𝑠𝑚+𝑛∑𝑚+𝑛

𝑗=1 𝑠 𝑗

(∑𝑚+𝑛
𝑗=1 𝜇 𝑗 − 𝜆

𝜆

)
< 0. (72)

But this is the routing probability to server (𝑚 + 𝑛) if the support set is 𝑉𝑚+𝑛 . Since the routing probability is negative, 𝑉𝑚+𝑛 is not a

valid set, which is a contradiction. This implies 𝑉𝑚 cannot be the optimal support set.

□

C PROOFS OF LEMMAS REQUIRED FOR THEOREM 1
C.1 Proof of Lemma 1

Proof. When 𝐴
(𝑂)
𝑖
(𝑡) = 1 and 𝐴∗

𝑖
(𝑡) = 0, the 𝜖𝑡 -exploration policy must have chosen to exploit and generated a dispatching decision

𝜎 (𝑡) = 𝑖 and the optimal weighted random routing must have generated a dispatching decision 𝜎∗ (𝑡) ≠ 𝑖 . Therefore,

P
[
𝐴
(𝑂)
𝑖
(𝑡) = 1, 𝐴∗𝑖 (𝑡) = 0

��� 𝑝𝑖 (𝑡)] = P [
𝜒 (𝑡) = 0, 𝜎 (𝑡) = 𝑖, 𝜎∗ (𝑡) ≠ 𝑖

��� 𝑝𝑖 (𝑡)] (73)

≤ P
[
𝜎 (𝑡) = 𝑖, 𝜎∗ (𝑡) ≠ 𝑖

��� 𝑝𝑖 (𝑡)] (74)

=
𝑝𝑖 (𝑡) −min{𝑝𝑖 (𝑡), 𝑝∗𝑖 }

𝑑𝑇𝑉 (𝒑̂(𝑡),𝒑∗)
∑
𝑗≠𝑖

(
𝑝∗𝑗 (𝑡) −min

{
𝑝 𝑗 (𝑡), 𝑝∗𝑗

})
(75)

= 𝑝𝑖 (𝑡) −min{𝑝𝑖 (𝑡), 𝑝∗𝑖 } (76)

≤
��𝑝𝑖 (𝑡) − 𝑝∗𝑖 �� , (77)

where in (76) we use the fact that the total variation distance 𝑑𝑇𝑉 (𝒑̂(𝑡),𝒑∗) =
∑𝐾
𝑗=1

(
𝑝∗
𝑗
(𝑡) −min

{
𝑝 𝑗 (𝑡), 𝑝∗𝑗

})
. □

C.2 Proof of Lemma 2
Recall from (19), we have

𝑄𝑖 (𝑡) −𝑄∗𝑖 (𝑡) ≤
𝑡−1∑

ℓ=𝑡−𝐵𝑖 (𝑡 )
𝐴
(𝐸)
𝑖
(ℓ) +

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

1{
𝐴
(𝑂 )
𝑖
(ℓ)=1,𝐴∗

𝑖
(ℓ)=0

} . (78)

We first utilize the event E1 (𝑡) to further upper bound the queue length difference based on the upper bound in (78). Specifically, recall that

E1 (𝑡) is the event where 𝐵𝑖 (𝑡) ≤ 𝑣𝑖 (𝑡) = 66 ln 𝑡

𝑟 2
𝑖

for all server 𝑖 . Then based on (78), we have

𝐾∑
𝑖=1

E
[
𝑄𝑖 (𝑡) −𝑄∗𝑖 (𝑡)

]
= E

[(
𝐾∑
𝑖=1

(
𝑄𝑖 (𝑡) −𝑄∗𝑖 (𝑡)

))
· (1E1 (𝑡 ) + 1(E1 (𝑡 ))𝑐 )

]
(79)

≤ E
©­«

𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝐵𝑖 (𝑡 )

𝐴
(𝐸)
𝑖
(ℓ)ª®¬ · 1E1 (𝑡 )

 + E

𝐾∑
𝑖=1

©­«
𝑡−1∑

ℓ=𝑡−𝐵𝑖 (𝑡 )
1{
𝐴
(𝑂 )
𝑖
(ℓ)=1,𝐴∗

𝑖
(ℓ)=0

}ª®¬ · 1E1 (𝑡 )
 + 𝑡P

(
(E1 (𝑡))𝑐

)
(80)

≤ E

𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

𝐴
(𝐸)
𝑖
(ℓ)

 + E

𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

1{
𝐴
(𝑂 )
𝑖
(ℓ)=1,𝐴∗

𝑖
(ℓ)=0

} + 𝑡P
(
(E1 (𝑡))𝑐

)
(81)

≤
𝐾∑
𝑖=1

2𝑣𝑖 (𝑡) ln 𝑡
𝑡

+
𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

P
(
𝐴
(𝑂)
𝑖
(ℓ) = 1, 𝐴∗𝑖 (ℓ) = 0

)
+ 𝑡P

(
(E1 (𝑡))𝑐

)
, (82)

where (80) uses (78) and the fact that

∑𝐾
𝑖=1

(
𝑄𝑖 (𝑡) −𝑄∗𝑖 (𝑡)

)
≤ 𝑡 since there are at most 𝑡 arrivals before time 𝑡 ; (81) is due to the property

𝐵𝑖 (𝑡) ≤ 𝑣𝑖 (𝑡) given by the indicator 1E1 (𝑡 ) ; and (82) is because 𝑣𝑖 (𝑡) ≤ 𝑡/2 for large enough 𝑡 .
Next, it suffices to bound P

(
𝐴
(𝑂)
𝑖
(ℓ) = 1, 𝐴∗

𝑖
(ℓ) = 0

)
using event E2 (𝑡). Recall E2 (𝑡) is the event where the estimation error |𝑝𝑖 (𝜏) −𝑝∗𝑖 | ≤

𝑘1min{𝑝∗
𝑖
,
√
ln 𝑡/𝑡} for any 𝜏 ∈ [𝑡/2, 𝑡]. Using Lemma 1 for 𝒑̂(𝑡) = 𝑓 (𝜆, ˆ𝝁 (𝑡)), the routing probability vector computed from the estimated
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service rates, we have

𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

P
(
𝐴
(𝑂)
𝑖
(ℓ) = 1, 𝐴∗𝑖 (ℓ) = 0

)
=

𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

E
[
P

(
𝐴
(𝑂)
𝑖
(ℓ) = 1, 𝐴∗𝑖 (ℓ) = 0

��� 𝑝𝑖 (𝑡))] (83)

≤
𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

E
[��𝑝𝑖 (𝑡) − 𝑝∗𝑖 ��] (84)

= E

©­«
𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

��𝑝𝑖 (𝑡) − 𝑝∗𝑖 ��ª®¬ · 1E2 (𝑡 )
 + E

©­«
𝐾∑
𝑖=1

𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

��𝑝𝑖 (𝑡) − 𝑝∗𝑖 ��ª®¬ · 1(E2 (𝑡 ))𝑐
 (85)

≤
∑
𝑖:𝑝∗
𝑖
>0

𝑘1𝑣𝑖 (𝑡)
√

ln 𝑡

𝑡
+ 2𝑡P

(
(E2 (𝑡))𝑐

)
, (86)

where (84) is due to Lemma 1; (86) uses the definition of the event E2 (𝑡), the fact that 𝑣𝑖 (𝑡) ≤ 𝑡/2 for large enough 𝑡 , and the fact that∑𝐾
𝑖=1

��𝑝𝑖 (𝑡) − 𝑝∗𝑖 �� ≤ 2 for the second summand. Inserting (86) back to (82) completes the proof. □

C.3 Proofs of preliminary results (Lemma 6 and Lemma 7)
From the service times of the departed jobs, the system can learn the 𝜇𝑖 ’s. Since E (𝜇𝑖 (𝑡)) ≠ 𝜇𝑖 and geometric random variable is unbounded,

standard hoeffding bounds cannot be used to bound the estimation error. Lemma 6 provides a relation to bound the error in the estimate

using chernoff bound. We also need to bound the error in the estimate of 𝑝∗
𝑖
. Lemma 7 provides a relation between the estimation error of

|𝜇𝑖 (𝜏) − 𝜇𝑖 | and |𝑝𝑖 (𝜏) − 𝑝∗𝑖 |, for all 𝑖 .

Lemma 6. For any 𝛿 ∈ [0, 𝜇𝑖 (1 − 𝜇𝑖 )], 𝑛 and the estimate 𝜇
(𝑛)
𝑖

of 𝜇𝑖 using 𝑛 i.i.d samples, ,

P
(���𝜇 (𝑛)𝑖 − 𝜇𝑖

��� ≥ 𝛿) ≤ exp

(
−𝑛𝑐𝑔𝛿2

)
, (87)

where 𝑐𝑔 = min𝑖 min

{
1

8𝜇2
𝑖
(1−𝜇𝑖 )

, 1

6𝜇2
𝑖
(1−𝜇𝑖 ) (3−𝜇𝑖 )

}
.

Proof of Lemma 6. Let 𝑋𝑖1, 𝑋𝑖2, · · · , 𝑋𝑖𝑛 be the 𝑛 i.i.d samples of a geometric random variable with parameter 𝜇𝑖 . Then the estimate 𝜇
(𝑛)
𝑖

can be given as

𝜇
(𝑛)
𝑖

=
𝑛∑𝑛

𝑗=1 𝑋𝑖 𝑗
. (88)

Now,

����∑𝑛𝑗=1 𝑋𝑖 𝑗𝑛 − 1

𝜇𝑖

���� ≤ 𝛿 ′ implies

1

𝜇𝑖
− 𝛿 ′ ≤

∑𝑛
𝑗=1 𝑋𝑖 𝑗

𝑛
≤ 1

𝜇𝑖
+ 𝛿 ′ (89)

𝜇𝑖

1 + 𝛿 ′𝜇𝑖
≤ 𝜇 (𝑛)

𝑖
≤ 𝜇𝑖

1 − 𝛿 ′𝜇𝑖
(90)

−𝛿 ′𝜇2
𝑖

1 + 𝛿 ′𝜇𝑖
≤ 𝜇 (𝑛)

𝑖
− 𝜇𝑖 ≤

𝛿 ′𝜇2
𝑖

1 − 𝛿 ′𝜇𝑖
(91)

implies

���𝜇 (𝑛)𝑖 − 𝜇𝑖
��� ≤ 2𝛿 ′𝜇2

𝑖
for any 0 ≤ 𝛿 ′ ≤ 1/(2𝜇𝑖 ). We want to prove that

P

(�����
∑𝑛
𝑗=1 𝑋𝑖 𝑗

𝑛
− 1

𝜇𝑖

����� ≥ 𝛿 ′
)
≤ exp

(
−𝑛𝑐 ′𝑔𝛿 ′2

)
. (92)

Then, for any 𝛿 ≤ 𝜇𝑖

P
(���𝜇 (𝑛)𝑖 − 𝜇𝑖

��� ≥ 𝛿) ≤ P (�����
∑𝑛
𝑗=1 𝑋𝑖 𝑗

𝑛
− 1

𝜇𝑖

����� ≥ 𝛿

2𝜇2
𝑖

)
≤ exp

(
−𝑛

𝑐 ′𝑔

4𝜇4
𝑖

𝛿2

)
. (93)

Hence, to prove the lemma, we will first prove that

P

(�����
∑𝑛
𝑗=1 𝑋𝑖 𝑗

𝑛
− 1

𝜇𝑖

����� ≥ 𝛿 ′
)
≤ exp

(
−𝑛𝑐 ′𝑔𝛿 ′2

)
. (94)

We will bound the upper confidence and lower confidence interval now.



Job Dispatching Policies for Queueing Systems
with Unknown Service Rates , ,

(1) Bounding the upper confidence interval:
Now, for any 𝑠 such that 0 ≤ 𝑠 ≤ − ln(1 − 𝜇𝑖 )

P

(∑𝑛
𝑗=1 𝑋𝑖 𝑗

𝑛
≥ 1

𝜇𝑖
+ 𝛿 ′

)
≤

(
E𝑒𝑠𝑋𝑖1

𝑒
𝑠 ( 1

𝜇𝑖
+𝑥)

)𝑛
(95)

≤
(
E𝑒𝑠𝑋𝑖1

𝑒
𝑠 ( 1

𝜇𝑖
+𝛿′)

)𝑛
(96)

=
©­«

𝜇𝑖𝑒
𝑠

1−(1−𝜇𝑖 )𝑒𝑠

𝑒
𝑠 ( 1

𝜇𝑖
+𝛿′)

ª®¬
𝑛

(97)

= exp

(
𝑛

(
ln 𝜇𝑖 + 𝑠 − ln(1 − (1 − 𝜇𝑖 )𝑒𝑠 ) − 𝑠

(
1

𝜇𝑖
+ 𝛿 ′

)))
. (98)

Since, the above function is true for any 𝑠 ∈ [0,− ln(1 − 𝜇𝑖 )], we will try to find the 𝑠 that minimizes the probability. Now, define the

function 𝑓 such that

𝑓 (𝑠) = ln 𝜇𝑖 + 𝑠 − ln(1 − (1 − 𝜇𝑖 )𝑒𝑠 ) − 𝑠
(
1

𝜇𝑖
+ 𝛿 ′

)
. (99)

𝑓 ′(𝑠) = 1 + (1 − 𝜇𝑖 )𝑒𝑠
1 − (1 − 𝜇𝑖 )𝑒𝑠

−
(
1

𝜇𝑖
+ 𝛿 ′

)
=

1

1 − (1 − 𝜇𝑖 )𝑒𝑠
−

(
1

𝜇𝑖
+ 𝛿 ′

)
. (100)

𝑓 ′′(𝑠) = (1 − 𝜇𝑖 )𝑒𝑠

(1 − (1 − 𝜇𝑖 )𝑒𝑠 )2
≥ 0. (101)

Hence, 𝑓 (𝑠) is convex w.r.t 𝑠 . This implies that the minima of the function is at the point 𝑠 = 𝑠∗ where derivative is 𝑓 ′(𝑠∗) = 0. Thus

1

1 − (1 − 𝜇𝑖 )𝑒𝑠∗
−

(
1

𝜇𝑖
+ 𝛿 ′

)
= 0, (102)

𝑒𝑠
∗
=

1 + 𝜇𝑖𝛿 ′ − 𝜇𝑖
1 + 𝜇𝑖𝛿 ′ − 𝜇𝑖 − 𝜇2𝑖 𝛿 ′

≤ 1

1 − 𝜇𝑖
, (103)

where the last inequality satisfies the condition that 𝑠∗ ∈ [0,− ln(1 − 𝜇𝑖 )]. Substituting the value of 𝑠∗ in 𝑓 (𝑠), we get

𝑓 (𝑠∗) = ln 𝜇𝑖 + ln
(
1 + 𝜇𝑖𝛿 ′ − 𝜇𝑖
𝜇𝑖 (1 − 𝜇𝑖 )

)
−

(
1

𝜇𝑖
+ 𝛿 ′

)
ln

(
1 + 𝜇𝑖𝛿 ′ − 𝜇𝑖

1 + 𝜇𝑖𝛿 ′ − 𝜇𝑖 − 𝜇2𝑖 𝛿 ′

)
(104)

Now, we want to argue that ∃𝑐𝑔+
𝑖
> 0 such that 𝑓 (𝑠∗) ≤ −𝑐𝑔+

𝑖
𝛿 ′2. Consider the function

ℎ(𝑥) = ln 𝜇𝑖 + ln
(
1 + 𝜇𝑖𝑥 − 𝜇𝑖
𝜇𝑖 (1 − 𝜇𝑖 )

)
−

(
1

𝜇𝑖
+ 𝑥

)
ln

(
1 + 𝜇𝑖𝑥 − 𝜇𝑖

1 + 𝜇𝑖𝑥 − 𝜇𝑖 − 𝜇2𝑖 𝑥

)
+ 𝑐𝑔+

𝑖
𝑥2 (105)

Now,

ℎ′(𝑥) = 𝜇𝑖

1 − 𝜇𝑖 + 𝜇𝑖𝑥
− 1 + 𝜇𝑖𝑥

𝜇𝑖

[
𝜇𝑖

1 − 𝜇𝑖 + 𝜇𝑖𝑥
−

𝜇𝑖 − 𝜇2𝑖
1 + 𝜇𝑖𝑥 − 𝜇𝑖 − 𝜇2𝑖 𝑥

]
− ln

(
1 − 𝜇𝑖 − 𝜇𝑖𝑥

1 + 𝜇𝑖𝑥 − 𝜇𝑖 − 𝜇2𝑖 𝑥

)
+ 2𝑐𝑔+

𝑖
𝑥, (106)

ℎ′′(𝑥) = −
𝜇2
𝑖

(1 − 𝜇𝑖 + 𝜇𝑖𝑥)2
− 1 + 𝜇𝑖𝑥

𝜇𝑖

[
−

𝜇2
𝑖

(1 − 𝜇𝑖 + 𝜇𝑖𝑥)2
+

(𝜇𝑖 − 𝜇2𝑖 )
2

(1 + 𝜇𝑖𝑥 − 𝜇𝑖 − 𝜇2𝑖 𝑥)2

]
− 2

[
𝜇𝑖

1 − 𝜇𝑖 + 𝜇𝑖𝑥
−

𝜇𝑖 − 𝜇2𝑖
1 + 𝜇𝑖𝑥 − 𝜇𝑖 − 𝜇2𝑖 𝑥

]
+ 2𝑐𝑔+

𝑖
(107)

= −
𝜇2
𝑖

(1 − 𝜇𝑖 + 𝜇𝑖𝑥) (1 + 𝜇𝑖𝑥)
+ 2𝑐𝑔+

𝑖
. (108)

Hence, for all 0 ≤ 𝑥 ≤ 1−𝜇𝑖
2𝜇𝑖

,

ℎ′′(𝑥) ≤ −
4𝜇2
𝑖

3(1 − 𝜇𝑖 ) (3 − 𝜇𝑖 )
+ 2𝑐𝑔+

𝑖
. (109)
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Choosing 𝑐𝑔+
𝑖
=

2𝜇2𝑖
3(1−𝜇𝑖 ) (3−𝜇𝑖 ) implies ℎ′′(0) < 0. Also, ℎ′(0) = 0, ℎ(0) = 0 Hence, for all 0 ≤ 𝑥 ≤ 1−𝜇𝑖

2𝜇𝑖
,

ℎ(𝑥) ≤ 0. (110)

Hence, for any 𝛿 ′ ∈ [0, (1 − 𝜇𝑖 )/(2𝜇𝑖 )] and 𝑐𝑔+
𝑖
= 2𝜇2

𝑖
/(3(1 − 𝜇𝑖 ) (3 − 𝜇𝑖 ))

P

(∑
𝑖 𝑋𝑖

𝑛
≥ 1

𝜇𝑖
+ 𝛿 ′

)
≤ exp

(
−𝑛𝑐𝑔+

𝑖
𝛿 ′2

)
. (111)

(2) Bounding the lower confidence interval:
Now, for any 𝑠 such that 0 ≤ 𝑠 ≤ − ln(1 − 𝜇𝑖 )

P

(∑𝑛
𝑗=1 𝑋𝑖 𝑗

𝑛
≤ 1

𝜇𝑖
− 𝛿 ′

)
≤

(
E𝑒−𝑠𝑋𝑖1

𝑒
−𝑠 ( 1

𝜇𝑖
−𝛿′)

)𝑛
(112)

≤
(
E𝑒−𝑠𝑋𝑖1

𝑒
−𝑠 ( 1

𝜇𝑖
−𝛿′)

)𝑛
(113)

≤ ©­«
𝜇𝑖𝑒
−𝑠

1−(1−𝜇𝑖 )𝑒−𝑠

𝑒
−𝑠 ( 1

𝜇𝑖
−𝛿′)

ª®¬
𝑛

(114)

≤ exp

(
𝑛

(
ln 𝜇𝑖 − 𝑠 − ln(1 − (1 − 𝜇𝑖 )𝑒−𝑠 ) + 𝑠

(
1

𝜇𝑖
− 𝛿 ′

)))
. (115)

Since, the above function is true for any 𝑠 ∈ [0,− ln(1 − 𝜇𝑖 )], we will try to find the 𝑠 that minimizes the probability. Now, define the

function 𝑔 such that

𝑔(𝑠) = ln 𝜇𝑖 − 𝑠 − ln(1 − (1 − 𝜇𝑖 )𝑒−𝑠 ) + 𝑠
(
1

𝜇𝑖
− 𝛿 ′

)
. (116)

𝑔′(𝑠) = −1 − (1 − 𝜇𝑖 )𝑒−𝑠
1 − (1 − 𝜇𝑖 )𝑒−𝑠

+
(
1

𝜇𝑖
− 𝛿 ′

)
= − 1

1 − (1 − 𝜇𝑖 )𝑒−𝑠
+

(
1

𝜇𝑖
− 𝛿 ′

)
. (117)

𝑔′′(𝑠) = (1 − 𝜇𝑖 )𝑒−𝑠

(1 − (1 − 𝜇𝑖 )𝑒−𝑠 )2
≥ 0. (118)

Hence, 𝑔(𝑠) is convex w.r.t 𝑠 . This implies that the minima of the function is at the point 𝑠 = 𝑠∗ where derivative is 𝑔′(𝑠∗) = 0. Thus

1

1 − (1 − 𝜇𝑖 )𝑒−𝑠∗
−

(
1

𝜇𝑖
− 𝛿 ′

)
= 0, (119)

𝑒−𝑠
∗
=

1 − 𝜇𝑖𝛿 ′ − 𝜇𝑖
1 − 𝜇𝑖𝛿 ′ − 𝜇𝑖 + 𝜇2𝑖 𝛿 ′

≤ 1. (120)

To ensure that the minima is valid 𝑒−𝑠
∗ ≥ 0 which implies 𝛿 ′ ≤ 1−𝜇𝑖

𝜇𝑖
. Substituting 𝑠∗ in g(s), we get

𝑔(𝑠∗) = ln

(
1 − 𝜇𝑖𝛿

′

1 − 𝜇𝑖

)
−

(
1

𝜇𝑖
− 𝛿 ′

)
ln

(
1 −

𝜇2
𝑖
𝛿 ′

(1 − 𝜇𝑖 ) (1 − 𝜇𝑖𝛿 ′)

)
. (121)

Now, we want to argue that ∃𝑐𝑔−
𝑖
> 0 such that 𝑔(𝑠∗) ≤ −𝑐𝑔−

𝑖
𝛿 ′2. Consider the function

ℎ(𝑥) = ln

(
1 − 𝜇𝑖𝑥

1 − 𝜇𝑖

)
−

(
1

𝜇𝑖
− 𝑥

)
ln

(
1 −

𝜇2
𝑖
𝑥

(1 − 𝜇𝑖 ) (1 − 𝜇𝑖𝑥)

)
+ 𝑐𝑔−

𝑖
𝑥2 (122)

Now,

ℎ′(𝑥) = 𝜇𝑖

𝜇𝑖𝑥 + 𝜇𝑖 − 1
− 1 − 𝜇𝑖𝑥

𝜇𝑖

[
𝜇𝑖

𝜇𝑖𝑥 + 𝜇𝑖 − 1
−

𝜇2
𝑖
− 𝜇𝑖

1 − 𝜇𝑖 − 𝜇𝑖𝑥 + 𝜇2𝑖 𝑥

]
+

+ ln
(

1 − 𝜇𝑖 − 𝜇𝑖𝑥
1 − 𝜇𝑖 − 𝜇𝑖𝑥 + 𝜇2𝑖 𝑥

)
+ 2𝑐𝑔−

𝑖
𝑥 (123)

ℎ′′(𝑥) = −
𝜇2
𝑖

(𝜇𝑖𝑥 + 𝜇𝑖 − 1)2
− 1 − 𝜇𝑖𝑥

𝜇𝑖

[
−

𝜇2
𝑖

(𝜇𝑖𝑥 + 𝜇𝑖 − 1)2
+

(𝜇2
𝑖
− 𝜇𝑖 )2

(1 − 𝜇𝑖 − 𝜇𝑖𝑥 + 𝜇2𝑖 𝑥)2

]
+

+ 2
[

𝜇𝑖

𝜇𝑖𝑥 + 𝜇𝑖 − 1
−

𝜇2
𝑖
− 𝜇𝑖

1 − 𝜇𝑖 − 𝜇𝑖𝑥 + 𝜇2𝑖 𝑥

]
+ 2𝑐𝑔𝑖 (124)
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= −
𝜇2
𝑖

(1 − 𝜇𝑖𝑥) (1 − 𝜇𝑖 − 𝜇𝑖𝑥)
+ 2𝑐𝑔𝑖 . (125)

Hence, for all 0 ≤ 𝑥 ≤ 1−𝜇𝑖
2𝜇𝑖

,

ℎ′′(𝑥) ≤ −
𝜇2
𝑖

1 − 𝜇𝑖
+ 2𝑐𝑔−

𝑖
. (126)

Choose 𝑐𝑔−
𝑖
= 𝜇2

𝑖
/(2(1 − 𝜇𝑖 )). Now, ℎ(0) = 0, ℎ′(0) = 0. Hence, for all 0 ≤ 𝑥 ≤ 1−𝜇𝑖

2𝜇𝑖
,

ℎ(𝑥) ≤ 0. (127)

Hence, for any 𝛿 ′ ∈ [0, (1 − 𝜇𝑖 )/(2𝜇𝑖 )] and 𝑐𝑔−
𝑖
= 𝜇2

𝑖
/(2(1 − 𝜇𝑖 ))

P

(∑
𝑖 𝑋𝑖

𝑛
≤ 1

𝜇𝑖
− 𝛿 ′

)
≤ exp

(
−𝑛𝑐𝑔−

𝑖
𝛿 ′2

)
. (128)

Using (111) and (128), we have for any 𝛿 ′ ∈ [0, (1 − 𝜇𝑖 )/(2𝜇𝑖 )],

P

(����∑𝑖 𝑋𝑖𝑛
− 1

𝜇𝑖

���� ≥ 𝛿 ′) ≤ exp

(
−𝑛𝑐 ′𝑔𝑖𝛿

′2
)
. (129)

where 𝑐 ′𝑔𝑖 = min

{
𝜇2𝑖

2(1−𝜇𝑖 ) ,
2𝜇2𝑖

3(1−𝜇𝑖 ) (3−𝜇𝑖 )

}
. Using (93) and (129), we have, for any 0 ≤ 𝛿 ≤ 𝜇𝑖 (1 − 𝜇𝑖 ),

P
(���𝜇 (𝑛)𝑖 − 𝜇𝑖

��� ≥ 𝛿) ≤ exp

(
−𝑛𝑐𝑔𝛿2

)
. (130)

where 𝑐𝑔 = min𝑖 min

{
1

8𝜇2
𝑖
(1−𝜇𝑖 )

, 1

6𝜇2
𝑖
(1−𝜇𝑖 ) (3−𝜇𝑖 )

}
□

Lemma 7. For any time 𝜏 ≥ 0 and any 𝛿 ∈ (0,Δ), |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ 𝛿 for all 𝑖 , implies

|𝑝𝑖 (𝜏) − 𝑝∗𝑖 | ≤ min

{
𝑐𝛿,

𝑟𝑖

4𝜆

}
(131)

where 𝑐 ≥ 1 is some positive constant and Δ = min

{
𝜇̃
2
,

∑
𝑗∈S(𝜆,𝝁) 𝑟 𝑗
|S (𝜆,𝝁) | ,

min𝑗∈S(𝜆,𝝁) 𝑟 𝑗
4𝑐𝜆

,ΔS
}
, 𝜇̃ = min𝑗 ∈S(𝜆,𝝁) {min{𝜇 𝑗 , 1 − 𝜇 𝑗 }}.

Proof. We will mainly use the following set on inequalities to prove the lemma.

1 − 𝑥 ≤
√
1 − 𝑥 ≤ 1 − 𝑥

2

, 𝑥 ∈ [0, 1] (132)

1 + 𝑥
3

≤
√
1 + 𝑥 ≤ 1 + 𝑥, 𝑥 ∈ [0, 1] (133)

1 + 𝑥 ≤ 1

1 − 𝑥 , 𝑥 ∈ [0, 1] (134)

1

1 − 𝑥 ≤ 1 + 2𝑥, 𝑥 ∈ [0, 1
2

] (135)

From the definition of Δ, it is clear that |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ Δ for all 𝑖 , implies |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ ΔS which implies 𝑝𝑖 (𝜏) = 0 for all 𝑖 ∉ S(𝜆, 𝝁). For
any 𝑖 ∈ S(𝜆, 𝝁)

𝑝𝑖 (𝜏) =
𝜇𝑖 (𝜏)
𝜆
−

√
𝜇𝑖 (𝜏) (1 − 𝜇𝑖 (𝜏))∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (𝜏) (1 − 𝜇 𝑗 (𝜏))

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 (𝜏)

𝜆
− 1

)
(136)

≤ 𝜇𝑖 + 𝛿
𝜆
−

√
(𝜇𝑖 − 𝛿) (1 − 𝜇𝑖 − 𝛿)∑

𝑗 ∈S(𝜆,𝝁)
√
(𝜇 𝑗 + 𝛿) (1 − 𝜇 𝑗 + 𝛿)

(∑
𝑗 ∈S(𝜆,𝝁) (𝜇 𝑗 − 𝛿)

𝜆
− 1

)
(137)

≤ 𝜇𝑖 + 𝛿
𝜆
−

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

√
(1 − 𝛿

𝜇𝑖
) (1 − 𝛿

1−𝜇𝑖 )√
(1 + 𝛿

𝜇min

) (1 + 𝛿
1−𝜇max

)

(∑
𝑗 ∈S(𝜆,𝝁) (𝜇 𝑗 − 𝛿)

𝜆
− 1

)
(138)

≤ 𝜇𝑖 + 𝛿
𝜆
−

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

(1 − 𝛿
𝜇𝑖
) (1 − 𝛿

1−𝜇𝑖 )

(1 + 𝛿
𝜇min

) (1 + 𝛿
1−𝜇max

)

(∑
𝑗 ∈S(𝜆,𝝁) (𝜇 𝑗 − 𝛿)

𝜆
− 1

)
, (139)

where

• 𝜇min = min𝑖∈S(𝜆,𝝁) 𝜇𝑖 and 𝜇max = max𝑖∈S(𝜆,𝝁) 𝜇𝑖 .
• (139) uses (132), (133).
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Hence, if 𝜇̃ = min(𝜇min, 1 − 𝜇max)

𝛿 ≤ min

{
𝜇̃,

∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆
|S(𝜆, 𝝁) |

}
, (140)

then, combining (139) with (134) and the above conditions, we get

𝑝𝑖 (𝜏) ≤
𝜇𝑖 + 𝛿
𝜆
−

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
1 − 𝛿

𝜇̃

)
4

(
1 − |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

)
(141)

Hence,

𝑝𝑖 (𝜏) − 𝑝∗𝑖 ≤
𝛿

𝜆
+

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
1 −

(
1 − 𝛿

𝜇̃

)
4

(
1 − |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

))
(142)

≤ 𝛿
𝜆
+

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
1 −

(
1 − 4𝛿

𝜇̃

) (
1 − |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

))
(143)

≤ 𝛿
𝜆
+

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
4𝛿

𝜇̃
+ |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

)
(144)

≤ 𝛿
𝜆

(
1 + 4

∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

𝜇̃
+ |S(𝜆, 𝝁) |

)
(145)

=
𝛿

𝜆

(
1 + 4

∑
𝑗 ∈S(𝜆,𝝁) 𝑟𝑖

𝜇̃
+ |S(𝜆, 𝝁) |

)
(146)

= 𝑐1𝛿 (147)

where 𝑐1 =
1

𝜆

(
1 + 4

∑
𝑗∈S(𝜆,𝝁) 𝑟𝑖

𝜇̃
+ |S(𝜆, 𝝁) |

)
. To prove a lower bound, we will use a similar argument like upper bound. ,

𝑝𝑖 (𝜏) =
𝜇𝑖 (𝜏)
𝜆
−

√
𝜇𝑖 (𝜏) (1 − 𝜇𝑖 (𝜏))∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (𝜏) (1 − 𝜇 𝑗 (𝜏))

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 (𝜏)

𝜆
− 1

)
(148)

≥ 𝜇𝑖 − 𝛿
𝜆
−

√
(𝜇𝑖 + 𝛿) (1 − 𝜇𝑖 + 𝛿)∑

𝑗 ∈S(𝜆,𝝁)
√
(𝜇 𝑗 − 𝛿) (1 − 𝜇 𝑗 − 𝛿)

(∑
𝑗 ∈S(𝜆,𝝁) (𝜇 𝑗 + 𝛿)

𝜆
− 1

)
(149)

≥ 𝜇𝑖 − 𝛿
𝜆
−

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

√
(1 + 𝛿

𝜇𝑖
) (1 + 𝛿

1−𝜇𝑖 )√
(1 − 𝛿

𝜇min

) (1 − 𝛿
1−𝜇max

)

(∑
𝑗 ∈S(𝜆,𝝁) (𝜇 𝑗 + 𝛿)

𝜆
− 1

)
(150)

≥ 𝜇𝑖 − 𝛿
𝜆
−

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

(1 + 𝛿
𝜇𝑖
) (1 + 𝛿

1−𝜇𝑖 )

(1 − 𝛿
𝜇min

) (1 − 𝛿
1−𝜇max

)

(∑
𝑗 ∈S(𝜆,𝝁) (𝜇 𝑗 + 𝛿)

𝜆
− 1

)
(151)

where (151) uses (132), 133. If

𝛿 ≤ min

{
𝜇̃

2

,

∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆
|S(𝜆, 𝝁) |

}
, (152)

then combining (151) with (135), we get

𝑝𝑖 (𝜏) ≥
𝜇𝑖 − 𝛿
𝜆
−

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
1 + 2𝛿

𝜇̃

)
4

(
1 + |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

)
. (153)

𝑝𝑖 (𝜏) − 𝑝∗𝑖 ≥ −
𝛿

𝜆
+

√
𝜇𝑖 (1 − 𝜇𝑖 )∑

𝑗 ∈S(𝜆,𝝁)
√
𝜇 𝑗 (1 − 𝜇 𝑗 )

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
1 −

(
1 + 2𝛿

𝜇̃

)
4

(
1 + |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

))
(154)

≥ −𝛿
𝜆
+

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
1 −

(
1 + 30𝛿

𝜇̃

) (
1 + |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆

))
(155)

≥ −𝛿
𝜆
−

(∑
𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗

𝜆
− 1

) (
30𝛿

𝜇̃
+ |S(𝜆, 𝝁) |𝛿∑

𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆
+ 30𝛿2 |S(𝜆, 𝝁) |
(∑𝑗 ∈S(𝜆,𝝁) 𝜇 𝑗 − 𝜆)𝜇̃

)
(156)

≥ −𝛿
(
1

𝜆
+
30

∑
𝑗 ∈S(𝜆,𝝁) 𝑟𝑖
𝜆𝜇̃

+ 16|S(𝜆, 𝝁) |
𝜆

)
(157)
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= −𝑐2𝛿 (158)

where 𝑐2 =

(
1

𝜆
+ 30

∑
𝑗∈S(𝜆,𝝁) 𝑟 𝑗
𝜆𝜇̃

+ 16 |S (𝜆,𝝁) |
𝜆

)
. Hence,using (147) and (158) if 𝛿 ≤ Δ = min

{
𝜇̃
2
,

∑
𝑗∈S(𝜆,𝝁) 𝑟 𝑗
|S (𝜆,𝝁) | ,

min𝑗∈S(𝜆,𝝁) 𝑟 𝑗
4𝑐𝜆

}
and 𝑐 = max(𝑐1, 𝑐2)

|𝜇𝑖 − 𝜇𝑖 | ≤ 𝛿 for all 𝑖 , 𝑖 implies |𝑝𝑖 − 𝑝∗𝑖 | ≤ min

{
𝑐𝛿,

𝑟𝑖

4𝜆

}
for all 𝑖 . (159)

□

C.4 Proof of Lemma 5
We restate Lemma 5 below for ease of reference.

Lemma 5 (Quick Learning Period). Define the event E3 (𝑡) as
E3 (𝑡) := E31 (𝑡) ∩ E32 (𝑡), where (27)

E31 (𝑡) := {S (𝜆, 𝝁 (𝜏)) = S(𝜆, 𝝁),∀𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡]} ,

E32 (𝑡) :=
{
𝜆𝑝∗
𝑖

2

≤ E (𝐴𝑖 (𝜏) | 𝑝𝑖 (𝜏)) ≤ 𝜇𝑖 −
𝑟𝑖

2

,∀𝑖,∀𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡]
}
.

Then there exist a constant 𝑘2 and 𝑡0 such that for all 𝑡 ≥ 𝑡0,

P
(
(E3 (𝑡))𝑐

)
≤ 𝐾

(
1

𝑡7
+ 𝑘2 + 1

𝑡3

)
.

Proof. We first show that if the service rates estimates are within Δ0 ball of the true parameter for all time after𝑤 (𝑡), i.e., |𝜇𝑖 (𝜏) −𝜇𝑖 | ≤ Δ0

for all 𝑖 and all 𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡], then E31 (𝑡) and E32 (𝑡) hold true, where𝑤 (𝑡) = 2 exp

(
1

Δ0

√
16 ln 𝑡
𝑐𝑔𝜆

)
. Recall that the definitions of Δ0, Δ and

ΔS in (36), (37) and (13) imply that Δ0 ≤ Δ ≤ ΔS .

(1) For any 𝜏 , |𝜇𝑖 (𝜏)−𝜇𝑖 | ≤ Δ0 for all 𝑖 implies |𝜇𝑖 (𝜏)−𝜇𝑖 | ≤ ΔS for all 𝑖 , which from the definition of ΔS implies thatS(𝜆, 𝝁) = S(𝜆, 𝝁 (𝜏)).
Hence, |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ Δ0, for all 𝑖 , for all 𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡] implies S(𝜆, 𝝁) = S(𝜆, 𝝁 (𝜏)), for all 𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡], which is essentially

E31 (𝑡).
(2) To prove the lower bound in E32 (𝑡), we will use mainly Lemma 7. We restate the Lemma 7 below.

Lemma 7. For any time 𝜏 ≥ 0 and any 𝛿 ∈ (0,Δ), |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ 𝛿 for all 𝑖 , implies

|𝑝𝑖 (𝜏) − 𝑝∗𝑖 | ≤ min

{
𝑐𝛿,

𝑟𝑖

4𝜆

}
(131)

where 𝑐 ≥ 1 is some positive constant and Δ = min

{
𝜇̃
2
,

∑
𝑗∈S(𝜆,𝝁) 𝑟 𝑗
|S (𝜆,𝝁) | ,

min𝑗∈S(𝜆,𝝁) 𝑟 𝑗
4𝑐𝜆

,ΔS
}
, 𝜇̃ = min𝑗 ∈S(𝜆,𝝁) {min{𝜇 𝑗 , 1 − 𝜇 𝑗 }}.

Now, for any 𝜏 , |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ Δ0, for all 𝑖 implies |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ min

{
Δ,

min𝑖 :𝑝∗
𝑖
>0 𝑝

∗
𝑖

3𝑐

}
for all 𝑖 , which by Lemma 7 further implies

|𝑝𝑖 (𝜏) − 𝑝∗𝑖 | ≤ 𝑐 min

{
Δ,

min𝑖 :𝑝∗
𝑖
>0 𝑝

∗
𝑖

3𝑐

}
. Hence,

|𝑝𝑖 (𝜏) − 𝑝∗𝑖 | ≤ 𝑐 min

{
Δ,

min𝑖:𝑝∗
𝑖
>0 𝑝

∗
𝑖

3𝑐

}
(160)

≤
min𝑖:𝑝∗

𝑖
>0 𝑝

∗
𝑖

3

(161)

≤
𝑝∗
𝑖

3

(162)

𝑝𝑖 (𝜏) ≥
2𝑝∗
𝑖

3

(163)

𝜆

(
ln𝜏

𝜏
+

(
1 − ln𝜏

𝜏

)
𝑝𝑖 (𝜏)

)
≥ 𝜆

(
ln𝜏

𝜏
+

(
1 − ln𝜏

𝜏

)
2𝑝∗
𝑖

3

)
(164)

≥
𝜆𝑝∗
𝑖

2

, (165)

where (165) is true for any 𝜏 ≥ 0. Hence, for any 𝑡 ≥ 𝑡0 and and for all 𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡], |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ Δ0 for all 𝑖 , implies for all 𝑖 ,

E
(
𝐴𝑖 (𝜏)

���𝑝𝑖 (𝜏)) = 𝜆 (
ln𝜏

𝜏
+

(
1 − ln𝜏

𝜏

)
𝑝𝑖 (𝜏)

)
≥
𝜆𝑝∗
𝑖

2

, (166)

which is the lower bound in E32 (𝑡).
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(3) For the upper bound, like previous argument, we can show that for any 𝜏 , |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ Δ0, for all 𝑖 implies |𝑝𝑖 (𝜏) − 𝑝∗𝑖 | ≤ 𝑟𝑖/4𝜆.
Hence, for all 𝑖 ,

E
(
𝐴𝑖 (𝜏)

���𝑝𝑖 (𝜏)) = 𝜆 (
ln𝜏

𝜏
+

(
1 − ln𝜏

𝜏

)
𝑝𝑖 (𝜏)

)
(167)

≤ 𝜆
(
ln𝜏

𝜏
+ 𝑝𝑖 (𝜏)

)
(168)

≤ 𝜆 ln𝜏
𝜏
+ 𝜆(𝑝𝑖 (𝜏) − 𝑝∗𝑖 ) + 𝜆𝑝

∗
𝑖 (169)

≤ 𝜆 ln𝜏
𝜏
+ 𝜆 𝑟𝑖

4𝜆
+ (𝜇𝑖 − 𝑟𝑖 ) (170)

≤ 𝑟𝑖
4

+ 𝜆 𝑟𝑖
4𝜆
+ (𝜇𝑖 − 𝑟𝑖 ) (171)

≤ 𝜇𝑖 −
𝑟𝑖

2

, (172)

where

• (170) uses the fact that 𝑟𝑖 = 𝜇𝑖 − 𝜆𝑝∗𝑖 and |𝑝𝑖 (𝜏) − 𝑝
∗
𝑖
| ≤ 𝑟𝑖/4𝜆.

• (171) uses (28) that ensures that for any 𝜏 ≥ 𝑤 (𝑡) and 𝑡 ≥ 𝑡0, 𝜆 ln𝜏/𝜏 ≤ min𝑖 𝑟𝑖/4.
Hence, we proved that for any 𝑡 ≥ 𝑡0,

E31 (𝑡) ∪ E32 (𝑡) ⊇
𝑡
∩

𝜏=𝑤 (𝑡 )+1

{
𝐾
∩
𝑖=1
{|𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ Δ0}

}
. (173)

Hence,

P
(
(E3 (𝑡))𝑐

)
≤

𝑡∑
𝜏=𝑤 (𝑡 )+1

𝐾∑
𝑖=1

P ( |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≥ Δ0) . (174)

Hence, to prove the lemma it is sufficient to prove that for any 𝑡 ≥ 𝑡0,
𝑡∑

𝜏=𝑤 (𝑡 )+1

𝐾∑
𝑖=1

P ( |𝜇𝑖 (𝜏) − 𝜇𝑖 | ≥ Δ0) ≤ 𝐾
(
2

𝑡7
+ 𝑘2
𝑡3

)
. (175)

The main idea behind proving the above bound is that because of exploration, each server will observe sufficient number of departures such

that the estimates are within the Δ0 ball of the true parameter. Consider any 𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡]. Now, for any 𝑛0 (𝑡)

P ( |𝜇𝑖 (𝜏) − 𝜇𝑖 | > Δ0) = P
(
|𝜇𝑖 (𝜏) − 𝜇𝑖 | > Δ0,

𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
)
+

∞∑
𝑛=𝑛0 (𝑡 )

P

(
|𝜇𝑖 (𝜏) − 𝜇𝑖 | > Δ0,

𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) = 𝑛
)

(176)

≤ P
(
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
)
+

∞∑
𝑛=𝑛0 (𝑡 )

P

(���𝜇 (𝑛)𝑖 − 𝜇𝑖
��� > Δ0,

𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) = 𝑛
)

(177)

≤ P
(
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
)
+

∞∑
𝑛=𝑛0 (𝑡 )

P
(���𝜇 (𝑛)𝑖 − 𝜇𝑖

��� > Δ0

)
, (178)

where 𝜇
(𝑛)
𝑖

is the estimate of 𝜇𝑖 using 𝑛 independent samples of i.i.d. geometric random variable with parameter 𝜇𝑖 . Now, the term

P
(���𝜇 (𝑛)𝑖 − 𝜇𝑖

��� > Δ0

)
can be upper bounded using Lemma 6. Using Lemma 6 with (178), we have

P ( |𝜇𝑖 (𝜏) − 𝜇𝑖 | > Δ0) (179)

≤P
(
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
)
+

∞∑
𝑛=𝑛0 (𝑡 )

exp

(
−𝑛𝑐𝑔Δ2

0

)
(180)

≤P ©­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


(𝜏−1)/2∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
ª®¬ + P ©­«

(𝜏−1)/2∑
ℓ=1

𝐴𝑖 (ℓ) < 𝑛0 (𝑡)
ª®¬ +

∞∑
𝑛=𝑛0 (𝑡 )

exp

(
−𝑛𝑐𝑔Δ2

0

)
(181)

≤P ©­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


(𝜏−1)/2∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
ª®¬ + P ©­«

𝑤 (𝑡 )/2∑
ℓ=1

𝐴𝑖 (ℓ) < 𝑛0 (𝑡)
ª®¬ +

exp

(
−𝑛0 (𝑡)𝑐𝑔Δ2

0

)
1 − exp

(
−𝑐𝑔Δ2

0

) (182)
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≤P ©­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


(𝜏−1)/2∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩


𝜏−1∑

ℓ=(𝜏−1)/2
𝑆𝑖 (ℓ) < 𝑛0 (𝑡)

ª®¬+
+ P ©­«

{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


(𝜏−1)/2∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩


𝜏−1∑

ℓ=(𝜏−1)/2
𝑆𝑖 (ℓ) ≥ 𝑛0 (𝑡)

ª®¬ + P ©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ) < 𝑛0 (𝑡)

ª®¬ +
exp

(
−𝑛0 (𝑡)𝑐𝑔Δ2

0

)
1 − exp

(
−𝑐𝑔Δ2

0

) .
(183)

Now,

P
©­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


(𝜏−1)/2∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩


𝜏−1∑

ℓ=(𝜏−1)/2
𝑆𝑖 (ℓ) < 𝑛0 (𝑡)

ª®¬ ≤ P ©­«
𝜏−1∑

ℓ=(𝜏−1)/2
𝑆𝑖 (ℓ) < 𝑛0 (𝑡)

ª®¬ . (184)

Also,

P
©­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


(𝜏−1)/2∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩


𝜏−1∑

ℓ=(𝜏−1)/2
𝑆𝑖 (ℓ) ≥ 𝑛0 (𝑡)

ª®¬ = 0, (185)

because, if the server 𝑖 sees at least 𝑛0 (𝑡) jobs till time (𝜏 − 1)/2 and total offered service in time (𝜏 − 1)/2 to (𝜏 − 1) exceed 𝑛0 (𝑡), then total

departures till time 𝜏 should be at least 𝑛0 (𝑡). Using (183), (184) and (185) we have,

P ( |𝜇𝑖 (𝜏) − 𝜇𝑖 | > Δ0) ≤ P
©­«

𝜏−1∑
ℓ=(𝜏−1)/2

𝑆𝑖 (ℓ) < 𝑛0 (𝑡)
ª®¬ + P ©­«

𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ) < 𝑛0 (𝑡)

ª®¬ +
exp

(
−𝑛0 (𝑡)𝑐𝑔Δ2

0

)
1 − exp

(
−𝑐𝑔Δ2

0

) (186)

= P
©­«
(𝜏−1)/2∑
ℓ=1

𝑆𝑖 (ℓ) < 𝑛0 (𝑡)
ª®¬ + P ©­«

𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ) < 𝑛0 (𝑡)

ª®¬ +
exp

(
−𝑛0 (𝑡)𝑐𝑔Δ2

0

)
1 − exp

(
−𝑐𝑔Δ2

0

) (187)

≤ P ©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝑆𝑖 (ℓ) < 𝑛0 (𝑡)
ª®¬︸                         ︷︷                         ︸

𝑇1

+P ©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ) < 𝑛0 (𝑡)

ª®¬︸                             ︷︷                             ︸
𝑇2

+
exp

(
−𝑛0 (𝑡)𝑐𝑔Δ2

0

)
1 − exp

(
−𝑐𝑔Δ2

0

)
︸                  ︷︷                  ︸

𝑇3

, (188)

where (187) uses the fact that the service process is i.i.d across time. Take 𝑛0 (𝑡) = 4 ln 𝑡

𝑐𝑔Δ2

0

. Now,

P
(
𝐴
(𝐸)
𝑖
(ℓ) = 1

)
=
𝜆 ln ℓ

ℓ
. (189)

Hence,

E
©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ)ª®¬ ≥ 3

8

𝜆 ln2
(
𝑤 (𝑡)
2

)
=

6 ln 𝑡

𝑐𝑔Δ2

0

. (190)

Bounding the 𝑇2 in (188), we get

P
©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ) ≤ 4 ln 𝑡

𝑐𝑔Δ2

0

ª®¬ ≤ P ©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ) ≤

(
1 − 1

3

)
E

©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ)ª®¬ª®¬ (191)

≤ exp

©­«− 1

18

E
©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝐴
(𝐸)
𝑖
(ℓ)ª®¬ª®¬ (192)

≤ exp

(
− ln 𝑡

3Δ2

0
𝑐𝑔

)
(193)

≤ 1

𝑡4
(194)

where,

• (192) uses chernoff bound given in (42).

• (194) uses the fact that Δ0 ≤ 1

4
and 𝑐𝑔 ≤ 1.
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Bounding the 𝑇1 in (188), we get

P
©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝑆𝑖 (ℓ) <
4 ln 𝑡

𝑐𝑔Δ2

0

ª®¬ = P
©­«
𝑤 (𝑡 )/2∑
ℓ=1

𝑆𝑖 (ℓ) <
𝜇𝑖𝑤 (𝑡)

2

4 ln 𝑡

𝑐𝑔Δ2

0

𝜇𝑖𝜏
2

ª®¬ (195)

≤ exp

©­­«−
1

2

©­«1 −
4 ln 𝑡

𝑐𝑔Δ2

0

𝜇𝑖𝑤 (𝑡 )
2

ª®¬
2

𝜇𝑖𝑤 (𝑡)
2

ª®®¬ (196)

≤ exp

©­­­­«
−

(
𝜇𝑖𝑤 (𝑡 )

2
− 4 ln 𝑡

𝑐𝑔Δ2

0

)
2

𝜇𝑖𝑤 (𝑡)

ª®®®®¬
(197)

≤ 1

𝑡8
(198)

where

• (197) uses the Chernoff bound given in (42).

• (198) uses (29) that ensures that for any 𝑡 ≥ 𝑡0, min𝑖

{
𝜇𝑖𝑤 (𝑡 )

2
− 4 ln 𝑡

𝑐𝑔Δ2

0

−
√
8𝜇𝑖𝑤 (𝑡) ln 𝑡

}
≥ 0.

Finally, to bound the 𝑇3 in (188), we substitute the value of 𝑛0 (𝑡) = 4 ln 𝑡

𝑐𝑔Δ2

0

in the expression and hence get

exp

(
−𝑛0 (𝑡)𝑐𝑔Δ2

0

)
1 − exp

(
−𝑐𝑔Δ2

0

) ≤ 𝑘2
𝑡4
. (199)

where 𝑘2 =
1

1−exp(−𝑐𝑔Δ2

0
) . Using bounds on 𝑇1,𝑇2 and 𝑇3 we have, for any 𝑖 and for any 𝜏 ∈ [𝑤 (𝑡) + 1, 𝑡]

P ( |𝜇𝑖 (𝜏) − 𝜇𝑖 | > Δ0) ≤
1

𝑡8
+ 𝑘2 + 1

𝑡4
, (200)

Hence,

P((E3 (𝑡))𝑐 ) ≤
𝑡∑

𝜏=𝑤 (𝑡 )+1

𝐾∑
𝑖=1

P ({|𝜇𝑖 (𝜏) − 𝜇𝑖 | ≥ Δ0}) ≤ 𝐾
(
1

𝑡7
+ 𝑘2 + 1

𝑡3

)
, (201)

which completes the proof. □

C.5 Implication of Lemma 5
An immediate consequence of Lemma 5 is the Lemma 8 which would be instrumental in proving the future lemmas. Recall that 𝑤 (𝑡) =
2 exp

(
1

Δ0

√
16 ln 𝑡
𝑐𝑔𝜆

)
and 𝑟𝑖 is the residual capacity at server 𝑖 .

Lemma 8. For any 𝑡1, 𝑡2 such that𝑤 (𝑡) ≤ 𝑡1 ≤ 𝑡2 ≤ 𝑡 ,
(1) for 𝜏 ≤ (𝑡2 − 𝑡1 + 1) 𝑟𝑖

2
, we have

P

({
𝑡2∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩ E3 (𝑡)

)
≤ exp

(
−

(
𝜏 − (𝑡2 − 𝑡1 + 1) 𝑟𝑖

2

)
2

2(𝑡2 − 𝑡1 + 1)

)
. (202)

(2) for 0 ≤ 𝜏 ≤ (𝑡2 − 𝑡1 + 1)
𝜆𝑝∗𝑖
2
, we have

P

({
𝑡2∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

)
≤ exp

©­«−12 ©­«1 − 𝜏

(𝑡2−𝑡1+1)𝜆𝑝∗𝑖
2

ª®¬
2

(𝑡2 − 𝑡1 + 1)𝜆𝑝∗𝑖
2

ª®®¬ . (203)

Proof. (1)

P

({
𝑡2∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩ E3 (𝑡)

)
(204)

=

∫
𝑝𝑖 (𝑡2)

P

({
𝑡2∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩ E3 (𝑡)

���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (205)
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=

∫
𝑝𝑖 (𝑡2)

P

({
𝑡2∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩ E3 (𝑡) ∩

{
E[𝐴𝑖 (𝑡2)

���𝑝𝑖 (𝑡2)] ≤ 𝜇𝑖 − 𝑟𝑖
2

} ���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) ×
× 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (206)

=

∫
𝑝𝑖 (𝑡2) :E[𝐴𝑖 (𝑡2) |𝑝𝑖 (𝑡2)=𝑝𝑖 (𝑡2) ] ≤𝜇𝑖− 𝑟𝑖

2

P

({
𝑡2∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩ E3 (𝑡)

���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) ×
× 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (207)

=

∫
𝑝𝑖 (𝑡2) :E[𝐴𝑖 (𝑡2) |𝑝𝑖 (𝑡2)=𝑝𝑖 (𝑡2) ] ≤𝜇𝑖− 𝑟𝑖

2

P

({
𝑆𝑖 (𝑡2) − 𝐵𝑒𝑟

(
𝜆
ln 𝑡2

𝑡2
+ 𝜆

(
1 − ln 𝑡2

𝑡2

)
𝑝𝑖 (𝑡2)

)
+

+
𝑡2−1∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩ E3 (𝑡)

���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (208)

≤
∫
𝑝𝑖 (𝑡2) :E[𝐴𝑖 (𝑡2) |𝑝𝑖 (𝑡2)=𝑝𝑖 (𝑡2) ] ≤𝜇𝑖− 𝑟𝑖

2

P

( {
𝑆𝑖 (𝑡2) − 𝜉 ′𝑖 (𝑡2) +

𝑡2−1∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩

∩ E3 (𝑡)
���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) × 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (209)

≤P
({
𝑆𝑖 (𝑡2) − 𝜉 ′𝑖 (𝑡2) +

𝑡2−1∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 𝜏
}
∩ E3 (𝑡)

)
(210)

≤P
({

𝑡2∑
ℓ=𝑡1

(
𝑆𝑖 (ℓ) − 𝜉 ′𝑖 (ℓ)

)
≤ 𝜏

}
∩ E3 (𝑡)

)
(211)

≤P
(
𝑡2∑
ℓ=𝑡1

(
𝑆𝑖 (ℓ) − 𝜉 ′𝑖 (ℓ)

)
≤ 𝜏

)
(212)

≤ exp
(
−

(
𝜏 − (𝑡2 − 𝑡1 + 1) 𝑟𝑖

2

)
2

2(𝑡2 − 𝑡1 + 1)

)
(213)

where

• (208) uses the fact that conditioned on 𝑝𝑖 (𝑡2), 𝐴𝑖 (𝑡2) is bernoullli random variable independent of past arrivals and services.

• (209) uses the fact that we can have a Bernoulli random variables 𝜉 ′
𝑖
(𝑡2) with mean 𝜇𝑖 − 𝑟𝑖

2
independent of everything else, that

stochasticallly dominates the random variable 𝐵𝑒𝑟

(
𝜆
ln 𝑡2
𝑡2
+ 𝜆

(
1 − ln 𝑡2

𝑡2

)
𝑝𝑖 (𝑡2)

)
.

• (211) follows repeating the same argument as above.

• (213) uses the Hoeffding inequality given in (43).

(2)

P

({
𝑡2∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

)
(214)

=

∫
𝑝𝑖 (𝑡2)

P

({
𝑡2∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (215)

=

∫
𝑝𝑖 (𝑡2)

P

({
𝑡2∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡) ∩

{
E[𝐴𝑖 (𝑡2)

���𝑝𝑖 (𝑡2)] ≥ 𝜆𝑝∗
𝑖

2

} ���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) ×
× 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (216)

=

∫
𝑝𝑖 (𝑡2) :E[𝐴𝑖 (𝑡2) |𝑝𝑖 (𝑡2)=𝑝𝑖 (𝑡2) ] ≥

𝜆𝑝∗
𝑖

2

P

({
𝑡2∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) ×
× 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (217)

=

∫
𝑝𝑖 (𝑡2) :E[𝐴𝑖 (𝑡2) |𝑝𝑖 (𝑡2)=𝑝𝑖 (𝑡2) ] ≥

𝜆𝑝∗
𝑖

2

P

({
𝐵𝑒𝑟

(
𝜆
ln 𝑡2

𝑡2
+ 𝜆

(
1 − ln 𝑡2

𝑡2

)
𝑝𝑖 (𝑡2)

)
+
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+
𝑡2−1∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2)) 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (218)

≤
∫
𝑝𝑖 (𝑡2) :E[𝐴𝑖 (𝑡2) |𝑝𝑖 (𝑡2)=𝑝𝑖 (𝑡2) ] ≥

𝜆𝑝∗
𝑖

2

P

( {
𝜒𝑖 (𝑡2) +

𝑡2−1∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

���𝑝𝑖 (𝑡2) = 𝑝𝑖 (𝑡2))×
× 𝑓𝑝𝑖 (𝑡2) (𝑝𝑖 (𝑡2))𝑑𝑝𝑖 (𝑡2) (219)

≤P
({
𝜒𝑖 (𝑡2) +

𝑡2−1∑
ℓ=𝑡1

𝐴𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

)
(220)

≤P
({

𝑡2∑
ℓ=𝑡1

𝜒𝑖 (ℓ) ≤ 𝜏
}
∩ E3 (𝑡)

)
(221)

≤P
(
𝑡2∑
ℓ=𝑡1

𝜒𝑖 (ℓ) ≤ 𝜏
)

(222)

≤ exp ©­«−12 ©­«1 − 𝜏

(𝑡2−𝑡1+1)𝜆𝑝∗𝑖
2

ª®¬
2

(𝑡2 − 𝑡1 + 1)𝜆𝑝∗𝑖
2

ª®®¬ (223)

where

• (218) uses the fact that conditioned on 𝑝𝑖 (𝑡2), 𝐴𝑖 (𝑡2) is Bernoulli random variable independent of past arrivals.

• (219) uses the fact that we can have a Bernoulli random variables 𝜒𝑖 (𝑡2) with mean

𝜆𝑝∗𝑖
2

independent of everything else, that is

stochasticallly dominated by the random variable 𝐵𝑒𝑟

(
𝜆
ln 𝑡2
𝑡2
+ 𝜆

(
1 − ln 𝑡2

𝑡2

)
𝑝𝑖 (𝑡2)

)
.

• (221) follows repeating the same argument as above.

• (223) uses Chernoff inequality, given in (42).

□

C.6 Proof of Lemma 3
We will prove this using a sequence of lemmas where we iteratively bound the length of busy period and the queue length. In Lemma 9, we

will first prove a coarse all time bound on the queue length. Using bounded queue length from Lemma 9 and negative drift from Lemma 5,

we will prove a coarse bound on the length of busy period in Lemma 10. Using the coarse bound on busy period length in Lemma 10 and

negative drift in Lemma 5, we will provide a tighter bound on the queue length in Lemma 11. Finally, using Lemma 11 and Lemma 5, we will

prove Lemma 3.

Lemma 9 is given below which proves a coarse all time bound on the queue length.

Lemma 9. For any 𝑡 ≥ 𝑡0 with 𝑡0 defined in (28–33) and𝑤 (𝑡) defined in (34) and the event E4 (𝑡) defined as

E4 (𝑡) :=
𝐾
∩
𝑖=1

𝑡
∩
𝜏=1
{𝑄𝑖 (𝜏) ≤ 2𝑤 (𝑡)} , (224)

it holds that

P
(
(E4 (𝑡))𝑐

)
≤ 𝐾

(
1

𝑡4
+ 1

𝑡7
+ 𝑘2 + 1

𝑡3

)
. (225)

Proof. Now, using law of total probability and union bound, we have

P
(
(E4 (𝑡))𝑐

)
≤

∑
𝑖

𝑡∑
𝜏=1

P ({𝑄𝑖 (𝜏) ≥ 2𝑤 (𝑡)} ∩ E3 (𝑡)) + P
(
(E3 (𝑡))𝑐

)
. (226)

Hence, to the bound probability of (E4 (𝑡))𝑐 , it is sufficient to bound P ({𝑄𝑖 (𝜏) ≥ 2𝑤 (𝑡)} ∩ E3 (𝑡)) for all 𝑖 and for any 𝜏 . Clearly, the

probability is zero for any 𝜏 ≤ 2𝑤 (𝑡) Now, consider any 𝜏 > 2𝑤 (𝑡). Define
𝑙1 = max{max {ℓ ≤ 𝜏 : 𝑄𝑖 (ℓ) = 0} ,𝑤 (𝑡)} (227)

𝑙2 = max {ℓ ≤ 𝜏 − 1 : 𝐴𝑖 (ℓ) − 𝐷𝑖 (ℓ) ≠ 0} (228)

From the definition of 𝑙1, 𝑙2, 𝑄𝑖 (ℓ) has to be positive in the duration ℓ ∈ [𝑙1 + 1, 𝑙2]. Now 𝑄𝑖 (𝜏) ≥ 2𝑤 (𝑡) implies

𝑄𝑖 (𝜏) = 𝑄𝑖 (𝑙1) +
𝑙2∑
ℓ=𝑙1

(𝐴𝑖 (ℓ) − 𝑆𝑖 (ℓ)) ≥ 2𝑤 (𝑡) . (229)
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If 𝑙1 > 𝑤 (𝑡), then 𝑄𝑖 (𝑙1) = 0, else 𝑄𝑖 (𝑙1) = 𝑄𝑖 (𝑤 (𝑡)) ≤ 𝑤 (𝑡). This implies

𝑙2∑
ℓ=𝑙1

(𝐴𝑖 (ℓ) − 𝑆𝑖 (ℓ)) ≥ 𝑤 (𝑡) . (230)

The above argument implies that if 𝑄𝑖 (𝜏) ≥ 2𝑤 (𝑡), then there must exists some 𝑙 ′
1
, 𝑙 ′
2
such that

∑𝑙 ′
2

ℓ=𝑙 ′
1

(𝐴𝑖 (ℓ) − 𝑆𝑖 (ℓ)) ≥ 𝑤 (𝑡). This
implies that the probability of the event {{𝑄𝑖 (𝜏) ≥ 2𝑤 (𝑡)} ∩ E3 (𝑡)} can be upper bounded by the probability of union of the the events{{∑𝑙 ′

2

ℓ=𝑙 ′
1

(𝐴𝑖 (ℓ) − 𝑆𝑖 (ℓ)) ≥ 𝑤 (𝑡)
}
∩ E3 (𝑡)

}
, where the union is taken over all combination of 𝑙 ′

1
, 𝑙 ′
2
. Hence,

P ({𝑄𝑖 (𝜏) ≥ 2𝑤 (𝑡)} ∩ E3 (𝑡)) ≤
∑
𝑙 ′
1
,𝑙 ′
2

P
©­«

𝑙 ′
2∑

ℓ=𝑙 ′
1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ −𝑤 (𝑡)
 ∩ E3 (𝑡)ª®¬ (231)

≤
∑
𝑙 ′
1
,𝑙 ′
2

exp

(
−

(
(𝑙 ′
2
− 𝑙 ′

1
+ 1) 𝑟𝑖

2
+𝑤 (𝑡)

)
2

2(𝑙 ′
2
− 𝑙 ′

1
+ 1)

)
(232)

≤
∑
𝑙 ′
1
,𝑙 ′
2

exp

(
−𝑟𝑖𝑤 (𝑡)

2

)
(233)

≤
∑
𝑙 ′
1
,𝑙 ′
2

1

𝑡7
(234)

≤ 1

𝑡5
(235)

where,

• (232) uses Lemma 8.

• (233) uses the property that arithmetic mean is greater than geometric mean.

• (234) uses (30) that ensures that for any 𝑡 ≥ 𝑡0, min𝑖 𝑟𝑖𝑤 (𝑡) ≥ 48 ln 𝑡 ≥ 14 ln 𝑡 .

Using (226) and Lemma 5 and taking an union bound all 𝜏 and for all 𝑖 , we get,

P
(
(E4 (𝑡))𝑐

)
≤

∑
𝑖

∑
𝜏

P ({𝑄𝑖 (𝜏) ≥ 2𝑤 (𝑡)} ∩ E3 (𝑡)) + P
(
(E3 (𝑡))𝑐

)
≤ 𝐾

(
1

𝑡4
+ 1

𝑡7
+ 𝑘2 + 1

𝑡3

)
. (236)

□

Using the preceding lemma, we will now prove a coarse high probability bound on the busy period length.

Lemma 10. For any 𝑡 ≥ 𝑡0 with 𝑡0 defined in (28–33) and𝑤 (𝑡) defined in (34) and E5 (𝑡) defined as

E5 (𝑡) :=
𝐾
∩
𝑖=1

{
𝐵𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≤

6𝑤 (𝑡)
𝑟𝑖

}
, (237)

it holds that

P
(
(E5 (𝑡))𝑐

)
≤ 𝐾

(
2

𝑡7
+ 2𝑘2 + 2

𝑡3
+ 2

𝑡4

)
. (238)

Proof. The main idea behind the lemma is that since the queue length at each server is bounded for all time and each server is experiencing

a negative drift, the length of the busy period cannot be too large. Using law of total probability, we have

P
(
(E5 (𝑡))𝑐

)
≤

∑
𝑖

P

({
𝐵𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≥

6𝑤 (𝑡)
𝑟𝑖

}
∩ E3 (𝑡) ∩ E4 (𝑡)

)
+ P

(
(E3 (𝑡))𝑐

)
+ P

(
(E4 (𝑡))𝑐

)
(239)

Recall,

E4 (𝑡) :=
𝐾
∩
𝑖=1

𝑡
∩
𝜏=1
{𝑄𝑖 (𝜏) ≤ 2𝑤 (𝑡)} (240)

From its definition, E4 (𝑡) implies that 𝑄𝑖 (𝑡 − 𝑣𝑖 (𝑡) − 6𝑤 (𝑡 )
𝑟𝑖
) ≤ 2𝑤 (𝑡). Now if 𝐵𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≥ 6𝑤 (𝑡 )

𝑟𝑖
, then 𝑄𝑖 (ℓ) > 0 for

all ℓ ∈
[
𝑡 − 𝑣𝑖 (𝑡) − 6𝑤 (𝑡 )

𝑟𝑖
, 𝑡 − 𝑣𝑖 (𝑡)

]
and

2𝑤 (𝑡) −
𝑡2−1∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≥ 𝑄𝑖 (𝑡1) −
𝑡2−1∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) = 𝑄𝑖 (𝑡2) ≥ 0, (241)



, , Tuhinangshu Choudhury, Gauri Joshi, Weina Wang, and Sanjay Shakkottai

where 𝑡1 = 𝑡 − 𝑣𝑖 (𝑡) − 6𝑤 (𝑡 )
𝑟𝑖

and 𝑡2 = 𝑡 − 𝑣𝑖 (𝑡). Therefore{
𝐵𝑖 (𝑡2) ≥

6𝑤 (𝑡)
𝑟𝑖

}
∩ {𝑄𝑖 (𝑡1) ≤ 2𝑤 (𝑡)} ⊆

{
𝑡2−1∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 2𝑤 (𝑡)
}
. (242)

Hence,

P

({
𝐵𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≥

6𝑤 (𝑡)
𝑟𝑖

}
∩ E3 (𝑡) ∩ E4 (𝑡)

)
≤ P

({
𝑡2−1∑
ℓ=𝑡1

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ 2𝑤 (𝑡)
}
∩ E3 (𝑡)

)
(243)

≤ exp

©­«− (2𝑤 (𝑡) − 3𝑤 (𝑡))
2

12𝑤 (𝑡 )
𝑟𝑖

ª®¬ (244)

≤ exp

(
−𝑟𝑖𝑤 (𝑡)

12

)
(245)

≤ exp (−4 ln 𝑡) (246)

≤ 1

𝑡4
(247)

where,

• (244) uses Lemma 8.

• (246) uses (30) that ensures that for any 𝑡 ≥ 𝑡0, min𝑖 𝑟𝑖𝑤 (𝑡) ≥ 48 ln 𝑡 .

Using (247) with (239) and substituting results from Lemma 5 and Lemma 9, we have

P
(
(E5 (𝑡))𝑐

)
≤ 𝐾

(
2

𝑡7
+ 2𝑘2 + 2

𝑡3
+ 2

𝑡4

)
(248)

□

Using the preceding lemma, we will now prove a tight high probability bound on the length of the queue.

Lemma 11. For any 𝑡 ≥ 𝑡0 with 𝑡0 defined in (28–33) and E6 (𝑡) defined as

E6 (𝑡) :=
𝐾
∩
𝑖=1

{
𝑄𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≤

10 ln 𝑡

𝑟𝑖

}
. (249)

it holds that

P
(
(E6 (𝑡))𝑐

)
≤ 𝐾

(
3

𝑡7
+ 3𝑘2 + 3

𝑡3
+ 3

𝑡4

)
. (250)

Proof. Recall,

𝐾
∩
𝑖=1

{
𝐵𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≤

6𝑤 (𝑡)
𝑟𝑖

}
, (251)

The main idea behind the proof is that since the 𝐵𝑖 (𝑡 − 𝑣𝑖 (𝑡)) is bounded, the queue length at time 𝑡 − 𝑣𝑖 (𝑡) cannot be too large. Define

𝑟𝑖 (𝑡) = 𝑡 − 𝑣𝑖 (𝑡). Using the equation,

𝑄𝑖 (𝑟𝑖 (𝑡)) =
𝑟𝑖 (𝑡 )−1∑

ℓ=𝑟𝑖 (𝑡 )−𝐵𝑖 (𝑟𝑖 (𝑡 ))
𝐴𝑖 (ℓ) − 𝑆𝑖 (ℓ) (252)

we have,

P
(
(E6 (𝑡))𝑐

)
≤

∑
𝑖

P
©­«


𝑟𝑖 (𝑡 )−1∑
ℓ=𝑟𝑖 (𝑡 )−𝐵𝑖 (𝑟𝑖 (𝑡 ))

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ −
10 ln 𝑡

𝑟𝑖

 ∩ E3 (𝑡) ∩ E5 (𝑡)ª®¬ + P
(
(E3 (𝑡))𝑐

)
+ P

(
(E5 (𝑡))𝑐

)
. (253)

Now,

P
©­«


𝑟𝑖 (𝑡 )−1∑
ℓ=𝑟𝑖 (𝑡 )−𝐵𝑖 (𝑟𝑖 (𝑡 ))

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ −
10 ln 𝑡

𝑟𝑖

 ∩ E3 (𝑡) ∩ E5 (𝑡)ª®¬ (254)

=P
©­«


𝑟𝑖 (𝑡 )−1∑
ℓ=𝑟𝑖 (𝑡 )−𝐵𝑖 (𝑟𝑖 (𝑡 ))

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ −
10 ln 𝑡

𝑟𝑖

 ∩ E3 (𝑡) ∩ E5 (𝑡) ∩ {∪𝑙 {𝐵𝑖 (𝑟𝑖 (𝑡)) = 𝑙}}ª®¬ (255)
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≤
∑
𝑏

P
©­«


𝑟𝑖 (𝑡 )−1∑
ℓ=𝑟𝑖 (𝑡 )−𝐵𝑖 (𝑟𝑖 (𝑡 ))

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ −
10 ln 𝑡

𝑟𝑖

 ∩ E3 (𝑡) ∩ E5 (𝑡) ∩ {𝐵𝑖 (𝑟𝑖 (𝑡)) = 𝑏}ª®¬ (256)

=
∑
𝑏

P
©­«

𝑟𝑖 (𝑡 )−1∑
ℓ=𝑟𝑖 (𝑡 )−𝑏

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤ −
10 ln 𝑡

𝑟𝑖

 ∩ E3 (𝑡) ∩ E5 (𝑡)ª®¬ (257)

≤
∑

𝑏:𝑏≤ 6𝑤 (𝑡 )
𝑟𝑖

P
©­«

𝑟𝑖 (𝑡 )−1∑
ℓ=𝑟𝑖 (𝑡 )−𝑏

(𝑆𝑖 (𝑏) −𝐴𝑖 (ℓ)) ≤ −
10 ln 𝑡

𝑟𝑖

 ∩ E3 (𝑡)ª®¬ (258)

≤
∑

𝑏:𝑏≤ 6𝑤 (𝑡 )
𝑟𝑖

exp

©­­«−
(
10 ln 𝑡
𝑟𝑖
+ 𝑏𝑟𝑖

2

)
2

2𝑏

ª®®¬ (259)

≤
∑

𝑏:𝑏≤ 6𝑤 (𝑡 )
𝑟𝑖

exp (−5 ln 𝑡) (260)

≤ 1

𝑡4
(261)

where,

• (258) uses the fact that E5 (𝑡) implies that 𝑙 ≤ 6𝑤 (𝑡 )
𝑟𝑖

.

• (259) uses Lemma 8.

• (260) uses the property that arithmetic mean is greater than geometric mean.

Taking an union bound over all 𝑖 and using (253) with Lemma 5 and Lemma 10 completes the proof. □

Finally, using Lemma 11 we will prove Lemma 3.

Proof of Lemma 3. Using law of total probability and union bound, we have

P
(
(E1 (𝑡))𝑐

)
≤

∑
𝑖

P ({𝐵𝑖 (𝑡) ≥ 𝑣𝑖 (𝑡)} ∩ E3 (𝑡) ∩ E6 (𝑡)) + P
(
(E3 (𝑡))𝑐

)
+ P

(
(E6 (𝑡))𝑐

)
(262)

Recall that,

E6 (𝑡) :=
𝐾
∩
𝑖=1

{
𝑄𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≤

10 ln 𝑡

𝑟𝑖

}
. (263)

E6 (𝑡) implies that 𝑄𝑖 (𝑡 − 𝑣𝑖 (𝑡)) ≤ 10 ln 𝑡
𝑟𝑖

. Similar to arguments used in Lemma 10, we can show that if 𝐵𝑖 (𝑡) ≥ 𝑣𝑖 (𝑡), then 𝑄𝑖 (ℓ) > 0 for all

ℓ ∈ [𝑡 − 𝑣𝑖 (𝑡), 𝑡] and

10 ln 𝑡

𝑟𝑖
−

∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≥ 𝑄𝑖 (𝑡 − 𝑣𝑖 (𝑡)) −
𝑡∑

ℓ=𝑡−𝑣𝑖 (𝑡 )
(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) = 𝑄𝑖 (𝑡) ≥ 0. (264)

Hence,

E6 (𝑡) ∩ {𝐵𝑖 (𝑡)) ≥ 𝑣𝑖 (𝑡)} ⊆


𝑡∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤
10 ln 𝑡

𝑟𝑖

 (265)

Therefore, for any 𝑖 ,

P ({𝐵𝑖 (𝑡) ≥ 𝑣𝑖 (𝑡)} ∩ E3 (𝑡) ∩ E6 (𝑡)) ≤ P
©­«


𝑡−1∑
ℓ=𝑡−𝑣𝑖 (𝑡 )

(𝑆𝑖 (ℓ) −𝐴𝑖 (ℓ)) ≤
10 ln 𝑡

𝑟𝑖

 ∩ E3 (𝑡)ª®¬ (266)

≤ exp

©­­«−
(
10 ln 𝑡
𝑟𝑖
− 66 ln 𝑡

2𝑟𝑖

)
2

132 ln 𝑡

𝑟 2
𝑖

ª®®¬ (267)

≤ 1

𝑡4
(268)

where (267) uses Lemma 8. Finally, taking union bound over all 𝑖 and using results from Lemma 11 and Lemma 5 in (262) completes the

proof. □
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C.7 Proof of Lemma 4
Restating the Lemma 4

Lemma 4 (Estimation error bound). There exist a constant 𝑘2 and a 𝑡0 such that for any 𝑡 ≥ 𝑡0, the event E2 (𝑡) defined as

E2 (𝑡) :=
{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� ≤ 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}
,∀𝜏 ∈

[ 𝑡
2

+ 1, 𝑡
]
,∀𝑖

}
, (269)

satisfies

P
(
(E2 (𝑡))𝑐

)
≤ 𝐾

(
1

𝑡7
+ 𝑘2 + 1

𝑡3

)
+

∑
𝑖:𝑝∗
𝑖
>0

(
1

𝑡3
+ 𝑡 exp

(
−
𝑝∗
𝑖
𝜆𝑡

128

)
+ 𝑡 exp

(
−
𝑟2
𝑖
𝑡

4

))
. (270)

The proof idea of this lemma is similar to Lemma 5. We will argue using Lemma 5 that there is 𝑂 (𝑡) number of samples to each of the

servers in the support set which ensures with high probability that the estimated routing probabilities are within 𝑂 (
√
ln 𝑡/𝑡) ball of the true

routing probabilities. Using law of total probability and union bound, we have

P
(
(E2 (𝑡))𝑐

)
= P

(
𝐾
∪
𝑖=1

𝑡
∪

𝜏= 𝑡
2
+1

{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� > 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}})
(271)

≤ P
({

𝐾
∪
𝑖=1

𝑡
∪

𝜏= 𝑡
2
+1

{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� > 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}}
∩ E3 (𝑡)

)
+ P((E3 (𝑡))𝑐 ) . (272)

Now, E3 (𝑡) implies that for all 𝜏 ≥ 𝑤 (𝑡), S(𝜆, 𝝁 (𝑡)) is the same S(𝜆, 𝝁) which implies for any 𝜏 ≥ 𝑤 (𝑡) and for any 𝑖 such that 𝑖 ∉ S(𝜆, 𝝁),
𝑝𝑖 (𝜏) = 𝑝∗𝑖 = 0. Hence, for any 𝑖 ∉ S(𝜆, 𝝁) and for any 𝜏 ≥ 𝑤 (𝑡),{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� > 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}
∩ E3 (𝑡) = 𝜙, (273)

where 𝜙 is a zero probability event. Using (272) with (273), we have

P
(
(E2 (𝑡))𝑐

)
≤ P

({
∪

𝑖:𝑝∗
𝑖
>0

𝑡
∪

𝜏= 𝑡
2
+1

{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� > 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}}
∩ E3 (𝑡)

)
+ P((E3 (𝑡))𝑐 ) (274)

≤ P
({
∪

𝑖:𝑝∗
𝑖
>0

𝑡
∪

𝜏= 𝑡
2
+1

{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� > 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}}
∩

{
∩

𝑖:𝑝∗
𝑖
>0

𝑡
∩

𝜏= 𝑡
2
+1

{
|𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ 𝑘11min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}}
∩ E3 (𝑡)

)
+

+ P
({

𝐾
∪
𝑖=1

𝑡
∪

𝜏= 𝑡
2
+1

{
|𝜇𝑖 (𝜏) − 𝜇𝑖 | > 𝑘11min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}}
∩ E3 (𝑡)

)
+ P((E3 (𝑡))𝑐 ), (275)

where 𝑘11 = 𝑘1/𝑐 . (31) ensures that for any 𝑡 ≥ 𝑡0, 𝑘11
√

ln 𝑡
𝑡 ≤ min𝑖:𝑝∗

𝑖
>0 𝑝𝑖 . Using Lemma 7, we also have{

∪
𝑖:𝑝∗
𝑖
>0

{��𝑝𝑖 (𝜏) − 𝑝∗𝑖 �� > 𝑘1min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}}
∩

{
∩

𝑖:𝑝∗
𝑖
>0

{
|𝜇𝑖 (𝜏) − 𝜇𝑖 | ≤ 𝑘11min

{√
ln 𝑡

𝑡
, 𝑝∗𝑖

}}}
= 𝜙. (276)

Using (275) with (276) along with union bound, we have

P
(
(E2 (𝑡))𝑐

)
≤

∑
𝑖:𝑝∗
𝑖
>0

∑
𝜏

P

({
|𝜇𝑖 (𝜏) − 𝜇𝑖 | ≥ 𝑘11

√
ln𝜏

𝜏

}
∩ E3 (𝑡)

)
+ P

(
(E3 (𝑡))𝑐

)
. (277)

For any 𝜏 ∈ [𝑡/2 + 1, 𝑡] and any 𝑛0 (𝑡), we have

P

({
|𝜇𝑖 (𝜏) − 𝜇𝑖 | > 𝑘11

√
ln 𝑡

𝑡

}
∩ E3 (𝑡)

)
(278)

≤P
({
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩ E3 (𝑡)

)
+

𝑡∑
𝑛=𝑛0 (𝑡 )

P

({
|𝜇𝑖 (𝜏) − 𝜇𝑖 | > 𝑘11

√
ln 𝑡

𝑡

}
∩ {𝐷𝑖 (𝜏) = 𝑛0 (𝑡)} ∩ E3 (𝑡)

)
(279)

≤P
({
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩ E3 (𝑡)

)
+

𝑡∑
𝑛=𝑛0 (𝑡 )

P

({���𝜇 (𝑛0 (𝑡 ))𝑖
− 𝜇𝑖

��� > 𝑘11√ ln 𝑡

𝑡

}
∩ E3 (𝑡)

)
. (280)
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The second term in (280) can be simplified using Lemma 6 and (31) that ensures that for any 𝑡 ≥ 𝑡0, 𝑘11
√
ln 𝑡/𝑡 ≤ Δ. Hence, (280) can be

further bounded as

P

({
|𝜇𝑖 (𝜏) − 𝜇𝑖 | > 𝑘11

√
ln 𝑡

𝑡

}
∩ E3 (𝑡)

)
(281)

≤P
©­­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩ E3 (𝑡)

ª®®¬ + P
©­­«


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) < 𝑛0 (𝑡)
 ∩ E3 (𝑡)

ª®®¬+
+

𝑡∑
𝑛=𝑛0 (𝑡 )

exp

(
−
𝑘2
11
𝑛0 (𝑡)𝑐𝑔 ln 𝑡

𝑡

)
(282)

≤P
©­­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)

ª®®¬ + P

©­­«


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) < 𝑛0 (𝑡)
 ∩ E3 (𝑡)

ª®®¬+
+ 𝑡 exp

(
−
𝑘2
11
𝑛0 (𝑡)𝑐𝑔 ln 𝑡

𝑡

)
(283)

≤P
©­­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩


𝜏−1∑

ℓ= 3𝑡
8
+1
𝑆𝑖 (ℓ) < 𝑛0 (𝑡)


ª®®¬ + P

©­­«


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) < 𝑛0 (𝑡)
 ∩ E3 (𝑡)

ª®®¬+
+ P

©­­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩


𝜏−1∑

ℓ= 3𝑡
8
+1
𝑆𝑖 (ℓ) ≥ 𝑛0 (𝑡)


ª®®¬ + 𝑡 exp

(
−
𝑘2
11
𝑛0 (𝑡)𝑐𝑔 ln 𝑡

𝑡

)
. (284)

Now,

P
©­­«
{
𝜏−1∑
ℓ=1

𝐷𝑖 (ℓ) < 𝑛0 (𝑡)
}
∩


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) ≥ 𝑛0 (𝑡)
 ∩


𝜏−1∑

ℓ= 3𝑡
8
+1
𝑆𝑖 (ℓ) ≥ 𝑛0 (𝑡)


ª®®¬ = 0 (285)

because, if the server 𝑖 has 𝑛0 (𝑡) arrival till time 3𝑡/8 and total offered service in time (3𝑡/8 + 1) to 𝜏 exceed 𝑛0 (𝑡), then total departures till

time 𝜏 should be at least 𝑛0 (𝑡). Hence, using (284) and (285) we have

P

({
|𝜇𝑖 (𝜏) − 𝜇𝑖 | > 𝑘11

√
ln 𝑡

𝑡

}
∩ E3 (𝑡)

)
≤ P

©­­«
𝜏−1∑

ℓ= 3𝑡
8
+1
𝑆𝑖 (ℓ) < 𝑛0 (𝑡)

ª®®¬ + P
©­­«


3𝑡
8∑
ℓ=1

𝐴𝑖 (ℓ) < 𝑛0 (𝑡)
 ∩ E3 (𝑡)

ª®®¬ + 𝑡 exp
(
−
𝑘2
11
𝑛0 (𝑡)𝑐𝑔 ln 𝑡

𝑡

)
(286)

≤ P
©­­«

𝑡/2∑
ℓ= 3𝑡

8
+1
𝑆𝑖 (ℓ) < 𝑛0 (𝑡)

ª®®¬︸                         ︷︷                         ︸
𝑇1

+P
©­­«


3𝑡
8∑

ℓ= 𝑡
4
+1
𝐴𝑖 (ℓ) < 𝑛0 (𝑡)

 ∩ E3 (𝑡)
ª®®¬︸                                         ︷︷                                         ︸

𝑇2

+ 𝑡 exp
(
−
𝑘2
11
𝑛0 (𝑡)𝑐𝑔 ln 𝑡

𝑡

)
︸                          ︷︷                          ︸

𝑇3

. (287)

Choosing 𝑛0 (𝑡) =
𝑝∗𝑖 𝜆𝑡
32

and 𝑘11 = max𝑖:𝑝∗
𝑖
>0

√
160

𝑐𝑔𝑝
∗
𝑖
𝜆
, bounds 𝑇3 by

𝑡 exp

(
−
𝑘2
11
𝑛0 (𝑡)𝑐𝑔 ln 𝑡

𝑡

)
≤ 1

𝑡4
(288)

Again, using the (32) that for any 𝑡 ≥ 𝑡0,𝑤 (𝑡) ≤ 𝑡/4 for any 𝑡 ≥ 𝑡0 and Lemma 8, we can bound 𝑇2 by,

P
©­­«


3𝑡
8∑

ℓ= 𝑡
4
+1
𝐴𝑖 (ℓ) <

𝑝∗
𝑖
𝜆𝑡

32

 ∩ E3 (𝑡)
ª®®¬ ≤ exp

(
−
𝑝∗
𝑖
𝜆𝑡

128

)
. (289)

Similarly bounding 𝑇1, we have

P
©­­«

𝑡/2∑
ℓ= 3𝑡

8
+1
𝑆𝑖 (ℓ) <

𝑝∗
𝑖
𝜆𝑡

32

ª®®¬ ≤ P
©­­«

𝑡/2∑
ℓ= 3𝑡

8
+1
𝑆𝑖 (ℓ) <

𝑝∗
𝑖
𝜆𝑡

8

ª®®¬ (290)
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≤ exp

©­­«−
2

(
𝑟𝑖𝑡
8

)
2

𝑡
8

ª®®¬ (291)

≤ exp

(
−
𝑟2
𝑖
𝑡

4

)
. (292)

where, (291) follows from Hoeffding’s inequality given in (43). Taking summation over all 𝜏 ∈
(
𝑡
2
+ 1, 𝑡

)
in (277) and using Lemma 5, we get

P
(
(E2 (𝑡))𝑐

)
≤ 𝐾

(
1

𝑡7
+ 𝑘2 + 1

𝑡3

)
+

∑
𝑖:𝑝∗
𝑖
>0

(
1

𝑡3
+ 𝑡 exp

(
−
𝑝∗
𝑖
𝜆𝑡

128

)
+ 𝑡 exp

(
−
𝑟2
𝑖
𝑡

4

))
. (293)
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