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Abstract—We consider the task of learning the probability
distribution pX of a discrete random variable X whose samples
are not observed directly. At each time slot, we choose one of the
possible K functions, g1, . . . , gK and observe the corresponding
sample gi(X). The goal is to estimate the probability distribution
of X by generating minimum number of samples. This problem is
relevant in inference under non-precise information and privacy
preserving statistical estimation. We reveal the conditions on the
functions under which asymptotically consistent estimation is
possible. We also derive lower bounds on the estimation error as a
function of total samples and show that it is order-wise achievable.
Finally, we propose an iterative algorithm that chooses the
function to observe at each step and combines the obtained
samples to estimate pX . We demonstrate the performance of
this algorithm across different scenarios through simulations.

Index Terms—distribution learning, hidden random variable,
multi-arm bandits, correlated arms

I. INTRODUCTION

The modern world is rich with various types of data such as
images, video, cloud job execution traces, social network data,
and crowdsourced survey data. These data can provide invalu-
able insights into the underlying random phenomenon which
are generally not directly observable due to privacy concerns,
or imprecise measurement mechanisms. For example, if we
want to estimate the income distribution of a population, their
salary data may not be public. However, it may be possible
to estimate the income distribution using surveys about their
spending on luxury goods, or whether their income is above
or below some given thresholds.

In this work we seek to design techniques to use indirect and
correlated samples to estimate the probability distribution of
a hidden random phenomenon. We consider a stylized model,
shown in Fig. 1, where a hidden variable X can be sampled
through functions g1(X), . . . , gK(X), referred to as arms. Our
objective is to accurately estimate the probability distribution
of X with the minimum number of samples; see Section
section II for a precise definition of the problem.

Learning the distribution of a random variable from its
samples is a well-studied research problem [1], [2] in theo-
retical computer science. Some works [3], [4] are interested
in finding the min-max or worst case loss for various loss
functions; e.g., L2-loss and Kullback-Liebler (KL) divergence.
Unlike the majority of the literature on distribution learning,
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Fig. 1: At step t we pull some arm i and observe gi(Xt),
where Xt is an i.i.d. realization of the hidden variable X . Our
objective is use the samples to estimate the distribution pX(x).

here we assume that only functions gi(X) of the samples
can be observed instead of direct samples of X . Inferring a
hidden random variable from indirect samples is related to
many works in estimation theory [5], where the objective is to
estimate a set of parameters θ using observations y1, . . . , yn
that follow a model p(Y |θ). In our problem, the hidden
variable X is analogous to the parameter θ while samples
gi(Xt) correspond to the observations y1, . . . , yn.

A key difference between our model and typical parameter
estimation problems is that we decide on the arm to be pulled
in each time slot to obtain the corresponding sample gi(Xt).
This aspect is closely related to the multi-arm bandit (MAB)
sequential decision-making framework [6]. In the classical
MAB framework [7], each arm gives a reward according to
some unknown distribution that is independent across arms,
and the objective is to maximize the total reward. In contrast,
in our problem, the arms g1(X), . . . , gK(X), are correlated
through the common hidden variable X . Contextual bandits
[8]–[10] consider a context vector x for each arm that governs
its reward distribution, unlike a common hidden variable X as
considered in this paper.

To the best of our knowledge, this is the first work
to consider the problem of using sequential, indirect sam-
ples to learn the distribution of a hidden random variable.
Our main contributions are: 1) conditions on the functions
g1(X), g2(X), . . . gK(X) for asymptotically consistent esti-
mation of the hidden distribution, 2) lower bound on the
estimation error, and 3) proposing an algorithm to choose arms
and combine their samples, which successfully eliminates re-
dundant arms. Simulations indicate that the error performance
of our algorithm is better than several baseline strategies.



II. PROBLEM FORMULATION

Consider a discrete random variable X that can take values
from a finite alphabet {x1, x2, . . . , xn} with an unknown
probability distribution {p1, p2, . . . , pn}. Throughout this pa-
per, we assume pi > 0,∀i. Our objective is to estimate
this probability distribution using a sequence of independent
samples from K functions {g1, g2, . . . , gK}, where each gi
is a mapping from {x1, x2, . . . , xn} to R; throughout, we
refer to these functions also as arms. More precisely, with
{Xt : t = 1, 2, . . .} denoting a sequence of independent
and identically distributed (i.i.d. ) realizations of X , we shall
choose and observe only one of the K possible outcomes
g1(Xt), . . . , gK(Xt), at each step t ∈ N . Broadly speaking,
for a given set of functions {g1, g2, . . . , gK}, our goal is to
derive an efficient and powerful algorithm i) to decide which
function will be observed at each iteration step, and ii) to come
up with an estimate {p̂1, p̂2, . . . , p̂n} of the true probability
distribution based on these observations. Ultimately, we aim
to minimize the mean-squared error, formally defined below.

Definition 1 (Estimation Error). The error in estimating
{p1, p2, . . . , pn} at step t (i.e., after observing t samples) is
defined as

ε(t) = E

[
n∑
i=1

(p̂i(t)− pi)2
]
. (1)

Here, p̂i(t) denotes the estimation obtained after observ-
ing t samples gc1(X1), gc2(X2), . . . , gct(Xt), where cj ∈
{1, . . . ,K} is the arm pulled at step j. We now give two
examples to illustrate and clarify the problem formulation.

Example 1. Fig. 2 shows an example in which X takes three
possible values {x1, x2, x3}, and there are three arms, g1, g2
and g3. Output of g1, g2 and g3 corresponding to x1, x2, x3
are illustrated in Fig. 2. In arm 1, output b can come from
either x2 or x3. This ambiguity exists in output d (between x1
and x3) in g2 and in output f (between x1 and x2) in g3.

Example 2. Fig. 3 illustrates an example with two arms, with
each arm showing outputs corresponding to {x1, x2, x3, x4}.
Arm 1 has ambiguity coming from output of x2 and x3,
whereas arm 2 exhibits ambiguity in the output of x1, x2 and
x3. For this set of functions it is not possible to accurately
estimate p2 and p3, as we will prove in Section III-A.

We note that if a function gi is invertible, then every output
sampled from gi will be uniquely matched to a single value
(say, xj) that X can take without any ambiguity. In those
cases, it would be optimal (in the sense of minimizing ε(t)
for each t) to pull gi at every step. We formally prove a more
general version of this result in Theorem 2.

III. RESULTS

A. Conditions for asymptotically consistent estimation

A natural question is whether it is possible to estimate the
true distribution accurately when the number t of steps grows
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Fig. 2: An example where it is possible to estimate {p1, p2, p3}
(asymptotically consistently) although no arm is invertible.
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Fig. 3: An example where it is not possible to get consistent
estimation due to the ambiguity between p2 and p3.

unboundedly large. The answer to this question depends on
the functions g1, g2, . . . , gK as we now show.

Definition 2 (Asymptotically consistent estimation). Given a
random variable X and arms {g1, g2, . . . , gK}, we call an
estimation asymptotically consistent if limt→∞ ε(t) = 0.

For each k = 1, . . . ,K, let {o1,k, o2,k, . . . , omk,k} denote
the set of possible outcomes (i.e., the domain) of the function
gk; evidently, mk is the number of distinct outputs of gk. We
find it useful to construct a matrix Ak with mk rows and n
columns, where

Ak(i, j) =

{
1, if gk(xj) = oi,k
0, otherwise,

for each i = 1, . . . ,mk and j = 1, . . . , n. Informally,
Ak(i, j) = 1 if output oi,k could have been generated by xj
in arm k. We refer Ak as the Sample Generation Matrix for
arm k. Let the matrix A be given by A = [Aᵀ

1 , A
ᵀ
2 , . . . , A

ᵀ
K ]ᵀ;

the size of A is m × n, where m = m1 + . . . + mK . The
corresponding matrices AExample-1 and AExample-2 for Examples
1 and 2, respectively are shown below.

AExample-1 =


1 0 0
0 1 1
1 0 1
0 1 0
1 1 0
0 0 1

 , AExample-2 =


1 0 0 0
0 1 1 0
0 0 0 1
1 1 1 0
0 0 0 1


Theorem 1. It is possible to achieve asymptotically consistent
estimation if and only if rank(A) = n.

Proof of Theorem 1. Recall that oi,k represents the ith distinct
output of arm k. Let poi,k denote the probability of observing
oi,k each time arm k is pulled. Consider the system of linear
equations below relating these probabilities to the probability
distribution of X:

poi,k =

n∑
z=1

Ak(i, z)pz,
k = 1, . . . ,K
i = 1, . . . ,mk

(2)



Suppose now that A is full rank. In order to construct
an asymptotically consistent estimate of pX = {p1, . . . , pn},
assume that arms are pulled in a round robin manner. Thus,
at step t we will have t

K samples from each arm. With noi,k
denoting the number of times oi,k is observed in t steps, we
let p̂oi,k(t) =

noi,k

t/K be the estimate of poi,k at step t. By virtue
of Strong Law of Large Numbers, we have p̂oi,k(t) → poi,k
almost surely as t goes to infinity. Put differently, the estimates
p̂oi,k(t) are asymptotically consistent. Given that A is full
rank, the estimates p̂oi,k(t) can be used to obtain a unique
solution of {p1, p2, . . . , pn} from the system of equations (2).
Given that n is finite, this unique solution will constitute an
asymptotically consistent estimation of pX as well.

Conversely, if rank(A) < n, it is not possible to obtain a
unique solution of the system of equations in (2). This implies
that even if consistent estimation of each poi,k is possible, it
is not possible to achieve asymptotically consistent estimation
of the probability distribution {p1, . . . , pn} of X .

Clearly, rank(AExample-1) = n while rank(AExample-2) < n.
Thus, asymptotically consistent estimation is possible for the
set of functions in Example 1 but not in Example 2.

B. Eliminating redundant functions/arms

Recall the definition of sample generation matrix Ak for
each arm k given in Section III-A.

Definition 3 (Subset Arm). An arm r is said to be a subset
of another arm s if the row space of Ar is a subset of the row
space of As.

Informally, this means that all information produced by arm
r can be generated by arm s. For example, in Fig. 3 we see
that arm 2 generates information about p1+p2+p3, while arm
1 generates information about p1 and p2 +p3 separately; also,
both arms generate information about p4 separately. Therefore,
information produced by arm 2 can be generated by arm 1.
This observation is made precise next.

Theorem 2. If an arm r is a subset of some other arm s, then
it is suboptimal (for the purposes of minimizing ε(t)) to pull
arm r at any round t.

Proof of Theorem 2. Suppose we have two arms r and s with
sample generation matrices Ar and As respectively. Let arm
r be a subset of arm s according to Definition 3.

Samples from arm s give us noi,k which can be used to
estimate the output probabilities poi,k as given in the proof of
Theorem 1. Since the rows Ar can be generated by As, we
can use arm s samples to generate estimates for the output
probabilities of arm r. For example, if rows i and j of As can
be added to generate a row k of Ar, then the output probability
por,k is given by

por,k =

n∑
z=1

Ar(k, z)pz =

n∑
z=1

(As(i, z) +As(j, z))pz

= pos,i + pos,j

Therefore, pulling arm s is at least as good as pulling arm r.
Hence, pulling arm r is suboptimal.

By Theorem 2, if an invertible arm exists, all other arms
will be its subset. This leads to the following corollary.

Corollary 1. If there is an invertible arm, then the optimal
action (for the purpose of minimizing ε(t)) is to pull the
invertible arm at every round.

Remark 1. The proofs of Theorem 2 and Corollary 1 are not
specific to the error metric given in Definition 1. Thus, both
results hold true under other error metrics as well; e.g., L1
norm, KL divergence etc.

C. Lower bounds for unbiased estimators

We first derive a naive lower bound on the estimation error.

Theorem 3 (Naive Lower Bound). Estimation error of any
unbiased estimator for the problem in Section II is lower
bounded by

∑n
i=1

pi(1−pi)
t .

Proof of Theorem 3. From Corollary 1, we know that it is
optimal to always pull the invertible arm if there exists one.
It is also clear that the optimal error can only decrease when
an additional arm is included in the set of possible arms we
can choose. Thus, for the purpose of deriving a lower bound
on the estimation error, we can assume the existence of an
invertible arm.

We define p̂i(t) =
nxi

t , as the corresponding empirical
estimator (which is also the maximum likelihood estimator),
where nxi

is the number of times the output corresponding to
xi was observed (from the invertible arm) in t steps. Under
this scenario, the estimation error is given by

ε(t) =

n∑
i=1

Var [p̂i(t)] =

n∑
i=1

pi(1− pi)
t

, (3)

which also gives the minimum possible variance for any
unbiased estimator (given the samples from the invertible arm).
Using this fact and Corollary 1, we establish Theorem 3.

Remark 2. The lower bound in Theorem 3 is achieved if an
invertible arm exists.

Next, we derive a lower bound on the error of any unbiased
estimator given the number of times each arm is pulled.

Theorem 4 (Lower bound Given the Number of Pulls). Let
t1, t2, . . . , tK be the number of times arms g1, . . . , gK are
pulled, respectively. The estimation error of any unbiased
estimator satisfies

ε(t) ≥ tr(I(θ)−1) +

n−1∑
i=1

n−1∑
j=1

I(θ)−1(i, j), (4)



where I(θ) is an n− 1× n− 1 matrix with entries

Ii,j(θ) =

K∑
k=1

mK∑
`=1

−tkAk(`, i)Ak(`, j)(1−Ak(`, n))

po`,k

+
−tk(1−Ak(`, i))(1−Ak(`, j)Ak(`, n)

po`,k
. (5)

Proof. We use the Cramer-Rao bound [11], [12] that pro-
vides a lower bound on the covariance matrix of any un-
biased estimator of an unknown deterministic parameter.
Since

∑n
i=1 pi = 1 it suffices to estimate any n − 1 of

the parameters {p1, p2, . . . , pn}. Let these parameters (θ =
{θ1, θ2, . . . , θn−1}) be {p1, p2, . . . , pn−1}. Let Dt be the event
that after t slots, we observe the ith output from arm k noi,k
times, for all k ∈ [1,K], and i ∈ [1,mk].

We evaluate the log likelihood L(Dt; θ) of observed data Dt
with respect to θ, We then compute the n− 1× n− 1 Fisher
information matrix, I(θ), whose (i, j)th entry is given by
−E

[
∂2

∂θi∂θj
L(Dt; θ)|t1, . . . , tK

]
. For our problem, we obtain

a closed form expression of Ii,j(θ) given in (5).
The Cramer-Rao lower bound on covariance matrix of θ for

any unbiased estimator is then given by I(θ)−1. Our objective
is to minimize

∑n
i=1 Var [p̂i], which can be bounded as

n∑
i=1

Var [p̂i] =

n−1∑
i=1

Var [p̂i] + Var [p̂n] ,

≥ tr(I(θ)−1) + Var

[
1−

n−1∑
i=1

p̂i

]
,

= tr(I(θ)−1) +

n−1∑
i=1

n−1∑
j=1

Cov(p̂i, p̂j),

≥ tr(I(θ)−1) +

n−1∑
i=1

n−1∑
j=1

I(θ)−1(i, j).

D. Orderwise Achievability

In section III-C, we showed that ε(t) = Ω
(
1
t

)
. We now

show that this lower bound is achievable if rank(A) = n.

Theorem 5 (Order-wise Achievability). It is possible to
achieve estimation error of O

(
1
n

)
if rank(A) = n.

Proof of Theorem 5. In order to show achievability we divide
the t pulls equally across all K arms; i.e., each arm is
pulled t

K times. For each k = 1, . . . ,K and i = 1, . . . ,mk

let p̂oi,k(t) =
noi,k

t/K be the estimate for poi,k . From these
estimates, we can generate estimates {p̂1(t), . . . , p̂n(t)} by
solving the system of equations described by (2). More
precisely, with Ŷ := [p̂1(t), p̂2(t), . . . , p̂n(t)]ᵀ and P̂o =
[p̂o1,1(t), . . . , p̂om1,1

(t), . . . p̂omK,K
(t)]ᵀ, we can solve

AŶ = P̂o. (6)

First, we show that the estimates p̂(t) are unbiased. Let
Y be the list of true probabilities [p1, p2, . . . , pn]ᵀ and Po

be the list of true probabilities of observations, i.e., Po =
[po1,1(t), . . . , pom1,1(t), . . . pomK,K

(t)]ᵀ. The solution of (6) is
given by Ŷ = A+P̂o, where A+ is the Moore-Penrose inverse
of the matrix A. Thus, we get

E
[
Ŷ
]

= E
[
A+P̂o

]
= A+E

[
P̂o

]
= A+Po,

upon using the fact that the estimates p̂oi,k =
noi,k

t/K are

unbiased. The desired result E
[
Ŷ
]

= Y is now established as
we note that A+Po = Y in view of (2).

Next, we derive a bound on the estimation error ε(t). We
remark that our estimates are of the form p̂i = A+(i)P̂o where
A+(i) is the ith row of the Moore-Penrose inverse of A. It is
also easy to see that (e.g., by Chebshev inequality) the variance
of each empirical estimator p̂oi,k =

noi,k

t/K is O
(
K
t

)
. With

m = m1 + . . . + mK denotes the (finite) number of rows in
A, we then get

ε(t) =
n∑
i=1

Var [p̂i(t)]

=

n∑
i=1

Var

 m∑
j=1

A+(i, j)P̂o(j)


≤

n∑
i=1

m∑
j=1

(
A+(i, j)

)2
Var

[
P̂o(j)

]
= O

(
1

t

)
where the inquality follows from the fact that elements in P̂o
are negatively correlated since

∑n
i=1 p̂oi,k = 1 for each k =

1, . . . ,K.

IV. PROPOSED ALGORITHM

The design of an algorithm to minimize the estimation error
can be divided into two parts: 1) producing the estimate of the
distribution p̂X(t) based on the samples observed till step t,
and 2) deciding which arm to pull at each time t. Algorithm 1
describes our proposed algorithm. In Section IV-A and Sec-
tion IV-B, we describe the two parts of our algorithm in detail.

A. Combining estimates from observations

We present a method to estimate {p1, . . . , pn} given
t1, . . . , tK , i.e., the number of times arms g1, . . . , gk are pulled
until time t, respectively.

It is known that the Maximum Likelihood Estimate θ̂ of a
parameter θ behaves as N(θ, I(θ)−1) asymptotically, where
I(θ) is the Fisher Information matrix; here N(µ, σ2) denotes
the normal distribution with mean µ and variance σ2. This
means that MLE estimator is asymptotically consistent and
it achieves the Cramer-Rao lower bound. This motivates us
to use the maximum likelihood estimation for predicting
p̂1(t), p̂2(t), . . . , p̂n(t) given samples observed until step t.

Recall that we defined noi,k as the number of times ith

output from arm k, i.e., oi,k, is observed. Let p̂oi,k(t) be the



Algorithm 1 Sequential Distribution Estimation

1: Input: {x1, x2, . . . , xn}, Functions {g1, g2 . . . gK} where
gi : {x1, x2, . . . , xn} → R. Total number of rounds, T .

2: Initialize: noi,k = 1,∀i, k. p̂i(0) = 1
n ,∀i.

3: for t = 1 : T do
4: ct = arg mink Ṽ (ct|c1:t−1, p̂(t− 1))
5: Pull arm ct, observe output yt
6: if yt = oi,k then
7: noi,k = noi,k + 1
8: end if
9: Obtain estimates p̂i(t) by obtaining fixed point solution

of the set of equations described by

p̂j(t) =
1

t

K∑
k=1

mk∑
i=1

noi,k
Ak(i, j)p̂j(t)

p̂oi,k(t)
, j = 1, 2, . . . , n.

10: end for

probability of observing output oi,k under the probability dis-
tribution p̂(t) = {p̂1(t), p̂2(t), . . . , p̂n(t)}. The log likelihood
of Dt with respect to the probability distribution p̂(t) is given
by

L(Dt; p̂(t)) =

K∑
k=1

mk∑
i=1

noi,k log(p̂oi,k(t)). (7)

where, p̂oi,k =
∑n
z=1Ak(i, z)p̂z.

In order to obtain the maximum likelihood estimate of p̂(t),
we take the derivative of L(Dt; p̂(t)) and equate it to zero
under the constraint

∑n
i=1 p̂i(t) = 1. This provides us a set

of equations described by

p̂j(t) =
1

t

K∑
k=1

mk∑
i=1

noi,k
Ak(i, j)p̂j(t)

p̂oi,k(t)
, j = 1, 2, . . . , n. (8)

Observe that these set of equations are in the form of x =
f(x) and thus can be solved numerically by finding a fixed
point. Since the log likelihood function is concave in p̂(t), the
solution from the set of equations described above maximizes
the log likelihood function.

B. Deciding which arm to pull
The previous section describes a method to generate esti-

mates given the observations Dt. In this section, we look at the
task of deciding which arm to pull in each round, i.e., choosing
ct, where ct is a decision variable indicating the chosen arm
in round t. Formally, ct = k, if arm k is pulled in round t.

If we had an analytic expression for estimation error ε(t)
at each round t, we could find the arm that minimizes the
estimation error. However, in absence of an invertible arm, it
is hard to obtain an analytic expression of ε, due to which we
resort to a heuristic approach.

We define Ei(t) as the “effective” number of samples
observed for xi until time t. In particular, we let

Ei(t) ,
K∑
k=1

qk,itk, (9)

where qk,i is a parameter that measures the quality of arm k
in estimating the probability of xi, and tk is the number of
times arm k is pulled until time t.

In what follows, the quality metric qk,i is defined to achieve
two fundamental goals. First, we would like to ensure that
enough arms are sampled to achieve asymptotically consistent
estimation if rank(A) = n. Secondly, we would like to ensure
that an arm is never pulled if it is a subset of another arm. With
these in mind, in our algorithm we choose qk,j as follows,

qk,j =

{∑mk

i=1
Ak(i,j)∑n
`=1 A(i,`) , if k = arg maxr

∑mr

i=1
Ar(i,j)∑n
`=1 A(i,`)

0, otherwise.
(10)

Observe that for a single invertible arm, Ei(t) = t for
all i since qk,j = 1,∀j. The intuition behind this choice of
qk,j is to ensure that the most informative arm corresponding
to each xi is pulled. For a Bernoulli random variable with
parameter p, the variance in estimating p from n samples
is given by p(1−p)

n . This expression motivates us to use the
method described below for deciding which arm to pull.

Let c1:t = [c1, c2, . . . ct] be the vector of indices of the arms
pulled until time t. Given c1:t, we can compute t1, t2, . . . , tK .
Our decision in round t + 1 will be based on comparing the
value of the function

Ṽ (ct+1 = k|c1:t, p̂(t)) ,
n∑
i=1

p̂i(t)(1− p̂i(t))
Ei(t) + qk,i

(11)

across all arms, which is a heuristic estimate of the error if
ct+1 = k (i.e., if arm k is picked next), given c1:t and p̂(t).
In particular, at each round we choose the arm that minimizes
Ṽ , i.e.,

c∗t+1 = arg min
k

Ṽ (ct+1 = k|c1:t, p̂(t)), (12)

with ties broken uniformly at random.

Lemma 1. The proposed algorithm never picks an arm that
is a subset of another arm.

Proof. Suppose arm r is a subset of arm s. By (10), arm s
has higher quality than arm r, that is, qs,i ≥ qr,i for all xi.
Thus, given Ei(t) and p̂(t) in (11), picking arm s instead of
arm r will always result in a smaller value of Ṽ . Hence, the
proposed algorithm will always choose arm s over arm r.

From Lemma 1, it follows that when there is an invertible
arm, the method described above always picks it. Notice
that our algorithm is following the principles mentioned in
Theorem 2 and Corollary 1 to minimize the estimation error.

C. Simulations

In this section, we demonstrate the performance of our
algorithm under different scenarios. We compare the esti-
mation error of our algorithm with the Cramer Rao lower
bound evaluated in Section III-C. Recall that Cramer Rao
bound gives a lower bound on the estimation error given the
choice of {t1, t2, . . . , tK}. To evaluate the lower bound after
a total of T time slots, we find the Cramer Rao bound for all



x1 x2 x3 x1 x2 x3

g2(X) g3(X)g1(X)

x1 x2 x3 x4 x4 x4

Fig. 4: Example of a set of functions {g1, g2, . . . , gK},
where arm g3 is a subset of arm g2. Probability distribution
{p1, p2, p3, p4} is [0.1, 0.2, 0.3, 0.4].
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Fig. 5: Comparison of our policy against the described baseline
algorithms for the example in Fig. 4

combinations of {α1T, α2T, . . . , αKT} where
∑K
i=1 αi = 1,

and take the minimum over all such combinations. We iterate
{α1, α2, . . . , αK} for all possible values between 0 to 1 with
a precision of 0.01. Note that the existence of an algorithm
that achieves the Cramer Rao lower bound is not guaranteed.

For comparison purposes, in simulations, we also include
the estimation error of two baseline algorithms. First baseline
algortihm (Baseline 1) selects arms in a round robin manner,
and produces estimate as described in Section IV-A. Baseline
2 algorithm selects arms as described in Section IV-B and
produces estimate p̂j(t) =

t̃j
t , where

t̃j =

K∑
k=1

mk∑
i=1

noi,k
Ak(i, j)∑n
j=1A(i, j)

.

Informally, Baseline 2 algorithm keeps a pseudo-count of the
number of occurrences of each xi. When the output could have
been generated from multiple xis, it increases pseudo count
of all such xis by an equal amount such that total increase in
pseudo count is 1. Fig. 5 shows that the performance of our
proposed algorithm is superior to that of the two considered
baseline algorithms.

V. CONCLUDING REMARKS

We consider the problem of learning the distribution pX
of a hidden random variable X , using indirect samples from
the functions g1(X), g2(X), . . . gK(X), referred to as arms.
The samples are obtained in a multi-arm bandit fashion, by
choosing one of the K arms in each time slot. Several appli-
cations where we wish to infer properties of a hidden random

phenomenon using indirect or imprecise observations fit into
our framework. We determine conditions for asymptotically
consistent estimation of pX and obtain lower bounds on the
estimation error. Using insights from this analysis, we propose
an algorithm to choose arms and combine their samples.
This algorithm eliminates redundant arms and gives lower
estimation error than some intuitive baseline algorithms.

Ongoing work includes obtaining stronger guarantees on
the performance of our algorithm. A generalization of the
problem is to consider the sample gk(X) as the reward for
pulling arm k, and design an algorithm to maximize the total
expected reward. Analysis of such algorithms would require
regret analysis, similar to multi-arm bandit problems.
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