
Efficient Redundancy Techniques to

Reduce Delay in Cloud Systems

by

Gauri Joshi

B. Tech. and M. Tech., Indian Institute of Technology Bombay (2010)
S. M., Massachusetts Institute of Technology (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Gregory W. Wornell

Sumitomo Professor of Engineering
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Efficient Redundancy Techniques to

Reduce Delay in Cloud Systems

by

Gauri Joshi

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Cloud services are changing the world by providing millions of people low-cost access
to the computing power of data centers. Storing and processing data on shared
servers in the cloud provides scalability and flexibility to these services. However the
large-scale sharing of resources also causes unpredictable fluctuations in the response
time of individual servers. In this thesis we use redundancy as a tool to combat this
variability. We study three areas of cloud infrastructure: cloud computing, distributed
storage, and streaming communication.

In cloud computing, replicating a task on multiple machines and waiting for the
earliest copy to finish can reduce service delay. But intuitively, it costs additional
computing resources, and increases queueing load on the servers. In the first part
of this thesis we analyze the effect of redundancy on queues. Surprisingly, there are
regimes where replication not only reduces service delay but also reduces queueing
load, thus making the system more efficient. Similarly, we can speed-up content
download from cloud storage systems by requesting multiple replicas of a file and
waiting for any one. In the second part of the thesis we generalize from replication
to coding, and propose the (n, k) fork-join model to analyze the delay in accessing
an (n, k) erasure-coded storage system. This analysis provides practical insights into
how many users can access a piece of content simultaneously, and how fast they can be
served. Achieving low latency is even more challenging in streaming communication
because the packets need to be delivered fast and in-order. The third part of this
thesis develops erasure codes to transmit redundant combinations of packets and
ensure smooth playback.

This thesis blends a diverse set of mathematical tools from queueing, coding the-
ory, and renewal processes. Although we focus on cloud infrastructure, the techniques
and insights are applicable to other systems with stochastically varying components.

Thesis Supervisor: Gregory W. Wornell
Title: Sumitomo Professor of Engineering

3

4

Acknowledgments

After six fantastic years here at MIT, it is hard to imagine that it is time to leave. This

joyous and fulfilling ride would be incomplete without so many people who shared it

with me: my teachers, mentors, colleagues, friends, and family. First of all, I would

like to express my deepest gratitude to my advisor Gregory Wornell for his incredible

support and mentorship. Greg taught me to be patient and keep the big picture

in mind while defining and solving a problem. In every meeting, he would bring to

light a new perspective that I did not consider before. He has been an ideal advisor:

giving me the freedom to explore new research ideas and collaborations, while being

extremely supportive whenever I needed help.

My thesis committee members Emina Soljanin and Devavrat Shah have also been

an invaluable part of my grad school experience. The seeds of this thesis were planted

during the summer I spent interning with Emina at Bell Labs. In the years following,

she has been instrumental in helping me connect with the academic community and

establish collaborations. I cannot thank her enough for her mentorship. Devavrat’s

wisdom and infectious enthusiasm for research make him an amazing committee mem-

ber. He asked some sharp and insightful questions during our meetings that helped

shape several key results presented in this thesis.

I had the pleasure to work with wonderful collaborators Yuval Kochman, Da

Wang, Yanpei Liu, Ashish Khisti, and Kaveh Mahadaviani, who help me grow in

research over the years. I also got the chance to be a teaching assistant for the brand

new Introduction to Inference (6.008) class. Working on the assignments, exams and

notes with Greg, Lizhong, Ramesh Sridharan and George Chen taught me how much

effort goes into designing a class.

I would also like to thank all the faculty members who I interacted with over

the years, in particular, my academic advisor Asu Ozdaglar, Lizhong Zheng, Polina

Golland, Bob Gallager, Muriel Medard, Alan Oppenheim, Yury Polyanskiy and Guy

Bresler. During my graduate years, I also spent two great summers at Google Moun-

tain View where I got a chance to work first-hand with Google’s unbelievable com-

5

puting infrastructure, under the mentorship of Arif Merchant, Alex Shraer, and Brett

Schein. This experience pushed me to remove many assumptions in my research, and

strive to bring theory closer to practice.

I thank all my current and past labmates for making the Signals, Information and

Algorithms (SiA) Lab a vibrant, welcoming home within MIT: Qing, Da, Ying-zong,

Atulya, James, Maryam, Yuval, Arya, Ligong, Uri, Or, Hongchao, Lisa, Gal, Ganesh,

Joshua, Adam and other alumni and visitors. Qing He has been my office-mate for the

past six years, and is one of my closest friends at MIT. Da Wang was an amazing senior

who helped me navigate the lab, and MIT in general. I also enjoyed my interactions

with neighboring groups in RLE and LIDS. And I thank our lab administrator Tricia

O’ Donnell for making this community possible. Outside the lab, I had the pleasure

to be involved in student groups such as MIT Sangam, Graduate Women of Course

6, and EECS REFS where I learnt to work together in a team. Most importantly,

I made incredibly fun and caring friends: Diviya, Mina, Radhika, Sayalee and many

others (too many to name here), who stood by me during tough times.

My dream of coming to MIT would not have come true without the world-class

academic training I received at my alma mater IIT Bombay. I thank all my teachers

whose passion for learning and teaching has brought me this far. Most importantly

I thank my first teachers: my parents Vibhavari and Diwakar Joshi for their strife to

give me the best possible education. Finally, I want to thank my husband Shreerang

Chhatre for his unconditional love and friendship, and for being my pillar of strength

whenever I was overwhlemed and stressed. This thesis would be impossible without

his support.

This work was supported in part by NSF under Grant No. CCF-1319828, AFOSR

under Grant No. FA9550-11-1-0183, Schlumberger Foundation Faculty for the Future

Fellowship, and the Claude E. Shannon Research Assistantship.

6

Contents

1 Introduction 21

1.1 Motivation . 21

1.2 Goals . 22

1.3 Summary and Organization . 23

1.3.1 Task Replication in Cloud Computing 23

1.3.2 Fast Content Download from Coded Storage 24

1.3.3 Erasure Coding for Smooth Streaming 25

1.4 Bibliographical Notes . 26

I Task Replication in Cloud Computing 29

2 Replication of Queued Tasks 31

2.1 Introduction . 31

2.1.1 Related Works . 32

2.1.2 Contributions . 34

2.2 Problem Formulation . 35

2.2.1 System Model . 35

2.2.2 Replication Strategy . 35

2.2.3 Performance Metrics . 37

2.3 Preliminary Concepts . 39

2.3.1 Using E [C] to Compare Systems 39

2.3.2 Log-concavity of F̄X . 40

7

2.3.3 Relative Task Start Times . 41

2.4 Full Replication (r = n) . 42

2.4.1 Latency-Cost Analysis . 42

2.4.2 Cancel-on-finish or Cancel-on-start? 46

2.5 Partial Replication (r ≤ n) . 48

2.5.1 Latency-Cost Analysis: Group-based policy 49

2.5.2 Bounds on expected cost E [C] 51

2.5.3 Optimal Replication strategy 52

2.6 Concluding Remarks . 58

2.6.1 Summary . 58

2.6.2 Future Directions . 59

3 Straggler Replication in Parallel Computing 61

3.1 Introduction . 61

3.1.1 Organization . 62

3.2 Problem Formulation . 62

3.2.1 Notation . 63

3.2.2 System Model . 63

3.2.3 Scheduling Policy . 64

3.2.4 Performance Metrics . 65

3.3 Single-fork policy analysis . 66

3.3.1 Performance characterization 67

3.3.2 Examples of the Effect of Tail Distribution 71

3.4 Empirical execution time distributions 77

3.4.1 Latency and Cost Estimation 77

3.4.2 Demonstration using Google Cluster Trace 78

3.4.3 Scheduling policy selection . 82

3.5 Concluding remarks . 83

3.5.1 Main Implications . 83

3.5.2 Future Directions . 84

8

4 Future Directions 85

4.1 Recent Model Generalizations . 85

4.1.1 Exact Analysis of T . 85

4.1.2 Cancellation Overheads . 86

4.1.3 Correlated Tasks . 87

4.1.4 Data Locality . 88

4.1.5 Coded and Approximate Computing 88

4.2 Heterogeneous servers . 89

4.2.1 Problem Formulation . 89

4.2.2 Two Server Motivating Example 91

4.3 Unknown Service Distribution . 94

4.3.1 Statistical Log-concavity Tests 94

4.3.2 Multi-arm bandits . 95

II Fast Content Download from Coded Storage 97

5 Background and Problem Formulation 99

5.1 Introduction . 99

5.1.1 Motivation . 99

5.1.2 Previous Work . 100

5.1.3 Our Contributions . 101

5.2 Problem Formulation . 101

5.2.1 The (n, k) fork-join model and its variants 102

5.2.2 Performance Metrics . 105

5.3 Organization . 106

6 Latency-Cost Analysis 107

6.1 The (n, k) Fork-join system . 107

6.1.1 Bounds on Latency . 108

6.1.2 Bounds on Computing Cost 111

6.1.3 Choosing k: The Diversity-Parallelism Trade-off 112

9

6.2 Variants of the (n, k) fork-join system 115

6.2.1 The (n, k) fork-early-cancel system 115

6.2.2 The (n, r, k) partial-fork-join system 116

6.3 Concluding Remarks . 117

7 Future Directions 119

7.1 The (n, rf , r, k) fork-join model . 119

7.1.1 Choosing Parameters rf and r 120

7.1.2 Simulation Results . 122

7.2 Availability Codes . 123

7.3 Multiple Fountains . 124

III Erasure Coding for Smooth Streaming 125

8 Effect of Block-wise Feedback in Point-to-point Streaming 127

8.1 Introduction . 127

8.1.1 Motivation . 127

8.1.2 Previous Work . 128

8.2 System Model . 129

8.2.1 Source and Channel Model . 129

8.2.2 Packet Delivery . 129

8.2.3 Feedback Model . 130

8.3 Preliminaries . 130

8.3.1 Notions of Packet Decoding 130

8.3.2 Throughput and Delay Metrics 131

8.4 Immediate Feedback . 133

8.5 No Feedback . 133

8.6 General Block-wise Feedback . 135

8.7 Concluding Remarks . 139

10

9 Multicast Streaming with Immediate Feedback 141

9.1 Introduction . 141

9.2 System Model . 142

9.3 Structure of Coding Schemes . 143

9.4 Optimal Performance for One of Two Users 145

9.5 General Throughput-Smoothness Trade-offs 148

9.6 Concluding Remarks . 151

10 Future Directions 153

10.1 Model Generalizations . 153

10.1.1 Finite Buffer . 153

10.1.2 Dynamic Bandwidth . 154

10.1.3 Packet Dropping . 154

10.1.4 Streaming from Distributed Sources 154

10.2 Alternate Smoothness Metrics . 155

10.2.1 Playback Delay . 155

10.2.2 In-order Delivery Delay . 156

10.2.3 Probability of Interruption . 156

11 Concluding Remarks 157

11.1 Summary . 157

11.2 Broader Future Directions . 158

11.3 Final Remarks . 160

A Properties of Log-concavity 161

B Proof of Theorem 3 165

C Results from Order Statistics 169

C.1 Central order statistics . 169

C.2 Extreme order statistics . 169

11

D Proofs of Chapter 3 173

D.1 Latency and cost for general FX . 173

D.2 Latency and Cost for Pareto FX . 176

D.3 Latency and Cost for Shifted Exponential FX 178

E Proofs of Chapter 6 181

F Proofs of Chapter 8 185

G Proofs of Chapter 9 191

12

List of Figures

2-1 Examples of symmetric scheduling policies for r = 2 and n = 4. . . . 36

2-2 Illustration of the cancel-on-finish and cancel-on-finish policies for r =

2 and n = 3. 36

2-3 When r = n and c = cancel-on-finish, the system is equivalent to an

M/G/1 queue with service time X1:n, the minimum of n i.i.d. random

variables X1, X2, . . . , Xn. 43

2-4 The service time X ∼ ∆ + Exp(µ) (log-concave), with µ = 0.5,

λ = 0.25. As n increases along each curve, E [T] decreases and E [C]

increases. Only when ∆ = 0, latency reduces at no additional cost. . 44

2-5 The service time X ∼ HyperExp(0.4, µ1, µ2) (log-convex), with µ1 =

0.5, different values of µ2, and λ = 0.5. Expected latency and cost

both reduce as n increases along each curve. 44

2-6 When r = n and c = cancel-on-start, the system is equivalent to an

M/G/n queueing system with each server taking time X ∼ FX to serve

task, i.i.d. across servers and tasks. 46

2-7 For r = n = 4 and service time X ∼ ShiftedExp(2, 0.5) which is log-

concave, the cancel-on-start policy is better in the high traffic regime,

as given by Corollary 5. 47

2-8 For r = n = 4 and X ∼ HyperExp(0.1, 1.5, 0.5), which is log-convex,

the cancel-on-start policy is worse in both low and high traffic regimes,

as given by Corollary 5. 47

13

2-9 For the full replication of tasks at n = 4 servers, with shifted exponen-

tial service time X = ShiftedExp(∆, 0.5), cancel-on-start gives lower

latency for larger ∆. The task arrival rate λ = 0.25. 48

2-10 Latency versus cost for n = 12 servers with c = cancel-on-finish, r

increasing as 1, 2, 3, 4, 6, and 12 along each curve. The task service

time X ∼ Pareto(1, 2.2). As λ increases the replicas increase queueing

delay. Thus the optimal r∗ that minimizes E [T] shifts downward as λ

increases. 50

2-11 Expected cost E [C] versus r for X ∼ ShiftedExp(0.25, 0.5), n = 6

servers and different scheduling policies. The upper bound rE [X1:r]

is exact for the group-based random policy, and fairly tight for other

policies. 52

2-12 For X ∼ ShiftedExp(1, 0.5) which is log-concave, less (more) replicas

gives lower expected latency in the low (high) λ regime. 55

2-13 For X ∼ HyperExp(p, µ1, µ2) with p = 0.1, µ1 = 1.5, and µ2 = 0.5

which is log-convex, more replicas (larger r) gives lower expected la-

tency for all λ. 55

2-14 For service distribution ShiftedExp(1, 0.5) which is log-concave, uniform

random scheduling (which staggers relative task start times) gives lower

E [T] than group-based random for all λ. The system parameters are

n = 6, r = 2. 56

2-15 For service distribution HyperExp(0.1, 1.5, 0.5) which is log-convex, group-

based scheduling gives lower E [T] than uniform random in the high λ

regime. The system parameters are n = 6, r = 2. 56

2-16 Diversity scheduling policy that staggers task start times 57

3-1 Single-fork policy illustration . 65

3-2 Illustration of T and C for a job with two tasks, and two replicas of

each task. The latency T = max(8, 10) = 10, and the computing cost

is C = (8 + 6 + 10 + 5)/2 = 14.5. 67

14

3-3 Comparison of the expected latency E [T] obtained from simulation

(points) and analytical calculations (lines) for the shifted exponential

distribution ShiftedExp (1, 1). 72

3-4 Characterization for ShiftedExp (1, 1) and n = 400, by varying p in the

range of [0.05, 0.95]. 73

3-5 Comparison of the expected latency E [T] obtained from simulation

(points) and analytical calculations (lines) for the Pareto distribution

Pareto (2, 2). 74

3-6 Characterization for Pareto (2, 2) and n = 400, by varying p in the

range of [0.05, 0.95]. 76

3-7 Normalized histogram of the task execution times 79

3-8 The E [T]-E [C] trade-off for Job 1 (ID 6252284914) with 1026 tasks.

Each pair of adjacent dots corresponds to change in p by 0.01. . . . 80

3-9 The E [T]-E [C] trade-off for Job 2 (ID 6252315810) with 488 tasks.

Each pair of adjacent dots corresponds to change in p by 0.01. . . . 81

3-10 The E [T]-E [C] trade-off for the Job 3 (tail-shortened Job 2) with 485

tasks. Each pair of adjacent dots corresponds to change in p by 0.01. 81

4-1 System of K servers with heterogeneous service times X1, X2, . . . XK ,

independent across the servers. 90

4-2 Illustration of the policies compared in Section 4.2.2 91

4-3 The no replication strategy gives higher throughput whenX1 ∼ Exp(0.5)

and X2 ∼ ∆+0.25) (which is log-concave). The shift ∆ increases along

the x− axis. 93

4-4 The full replication strategy gives higher throughput whenX1 ∼ Exp(0.5)

and X2 ∼ HyperExp(p = 0.3, µ1 = 0.5, µ2) (which is log-convex). The

rate µ2 increases along the x− axis. 93

5-1 Storage is 50% higher, but response time (per server & overall) is re-

duced. 102

15

5-2 The (3, 2) fork-join system. When any 2 tasks of a job finish, the third

task abandons its queue. 103

5-3 The (3, 2) fork-early-cancel system. When any 2 tasks of a job start

service, the third task abandons its queue. The job is complete when

the 2 tasks finish. 104

6-1 The (3, 2) split-merge system. When one task finishes, that server

cannot start working on the next task in queue. Only when k = 2

tasks are served and the third abandons, the servers can move on to

the tasks of job B. 108

6-2 Bounds on latency E [T] versus k, alongside the corresponding sim-

ulation values. The service time distribution is Pareto(0.5, 2.5) with

n = 10, and λ = 0.5. The k = n upper bound is evaluated using

Lemma 13. 109

6-3 Bounds on latency E [T] versus k, alongside the corresponding simula-

tion values. The service time distribution is ShiftedExp(0.5, 0.75) with

n = 10, and λ = 0.5. The k = n upper bound is evaluated using

Lemma 13. 110

6-4 Bounds on cost E [C] versus k, alongside the corresponding simulation

values. The service time distribution is Pareto(0.5, 2.5) with n = 10,

and λ = 0.5. The bounds are tight for k = 1 and k = n. 111

6-5 Bounds on cost E [C] versus k, alongside the corresponding simulation

values. The service time distribution is ShiftedExp(0.5, 0.75) with n =

10, and λ = 0.5. The upper bound is tight for all k. 112

6-6 Expected latency versus k for task service timeX ∼ ShiftedExp(∆/k, 1.0),

and arrival rate λ = 0.5. As k increases, we lose diversity but the par-

allelism benefit is higher because each task is smaller. 113

6-7 Expected cost versus k for task service time X ∼ ShiftedExp(∆/k, 1.0),

and arrival rate λ = 0.5. As k increases, we lose diversity but the

parallelism benefit is higher because each task is smaller. 113

16

6-8 Expected latency versus storage overhead for task service time X ∼
ShiftedExp(∆/k, 1.0), and arrival rate λ = 0.5. For a storage overhead

of less than 2, we get a significant latency reduction. 114

6-9 Upper bound on latency E [T] with early cancellation versus k, along-

side the corresponding simulation values. The service time distribution

is ShiftedExp(0.5, 0.75) with n = 10, and λ = 0.5. 115

6-10 Expected latency E [T] versus computing cost E [C] as k varies. The

task service time X ∼ HyperExp(0.1, 1.5, 0.5) and arrival rate λ = 0.5.

For such log-convex distributions, the (n, k) fork-join performs better

for all k. 116

7-1 The latency-cost trade-off of the proposed redundancy strategy is close

to that of the best (n, r, k) partial-fork-join system. Service time X ∼
Pareto(1, 2.2), and the cost constraints are E [C] ≤ 5 and r ≤ rf ≤ 7

The first constraint is active in this example. 122

7-2 The latency-cost trade-off of the proposed redundancy strategy is close

to that of the best (n, r, k) partial-fork-join system. The service time

X is an equiprobable mixture of Exp(2) and ShiftedExp(1, 1.5), and the

cost constraints are E [C] ≤ 2 and r ≤ rf ≤ 5. The second constraint

is active in this example. 123

8-1 The trade-off between inter-delivery exponent λ and throughput τ with

success probability p = 0.6 for the immediate feedback (d = 1) and no

feedback (d =∞) cases. 134

8-2 Illustration of the time-invariant scheme x = [1, 0, 3, 0] with block size

d = 4. Each bubble represents a coded combination, and the num-

bers inside it are the indices of the source packets included in that

combination. The check and cross marks denote successful and erased

slots respectively. The packets that are “seen” in each block are not

included in the coded packets in future blocks. 136

17

8-3 The throughput-smoothness trade-off of the suggested coding schemes

in Definition 26 for p = 0.6 and various values of block-wise feedback

delay d. The trade-off becomes significantly worse as d increases. The

point labels on the d = 2 and d = 3 trade-offs are x vectors of the

corresponding codes. 139

9-1 Illustration of the optimal coding scheme when the source always give

priority to user U1. The third and fourth columns show the packets

decoded at the two users. Cross marks indicate erased slots for the

corresponding user. 145

9-2 Markov chain model of packet decoding with the coding scheme given

by Claim 9, where U1 is the primary user. The state index i represents

the number of gaps in decoding of U2 minus that for U1. The states i′

are the advantage states where U2 gets a chance to decode its required

packet. 146

9-3 Plots of the inter-delivery exponent λ2 of the piggybacking user U2,

versus the success probability p2 throughput τ2. The value of p2 varies

from p1 to 1 on each curve. The exponent saturates at − log(1 − p1),

which is equal to λ1, the exponent of the primary user U1. 148

9-4 Markov chain model of packet decoding with the priority-(q1, q2) coding

scheme given by Definition 30. The state index i represents the number

of gaps in decoding if U2 compared to U1 and qi is the probability of

giving priority to the Ui when it is the lagger, by transmitting its

required packet sri . and . 149

9-5 Plot of the throughput-smoothness trade-off for q1 = 1 and as q2 varies.

The success probabilities p1 = 0.5 and p2 = 0.4. 150

9-6 Plot of the throughput-smoothness trade-off for different values p1 =

p2. On each curve, q1 = q2 varies from 0 from 1. 151

18

G-1 Markov model used to determine the inter-delivery exponent λ2 of user

U2. The absorbing state F is reached when an in-order packet is de-

coded by U2. The exponent of the distribution of the time taken to

reach this state is λ2. 193

G-2 Markov model used to determine the inter-delivery exponent λ2 of user

U2. The absorbing state F is reached when an in-order packet is de-

coded by U2. The exponent of the distribution of the time taken to

reach this state is λ2. 196

19

20

Chapter 1

Introduction

1.1 Motivation

The amount of data stored in the Internet cloud is rapidly increasing. According to a

recent report [1], there is over one exabyte, that is, over a billion gigabytes worth of

files currently stored on the cloud. This content includes videos, photos, documents

which can be accessed by the users via services such as YouTube, NetFlix, Dropbox,

Google Drive, Microsoft Azure, Amazon S3 etc. These cloud services are changing

the world by allowing millions of people low-cost access to the enormous computing

power of data centers.

Besides low-cost access, two major demands of users from cloud services are:

high reliability, and low delay. There is a large body of research focused on the

first demand. In particular, research in information theory and coding [2, 3] aims to

find the fundamental limits, and design coding schemes to maximize the information

reliably communicated over a noisy channel. Coding is also used distributed storage

systems such as [4] to provide reliability against node failures. Recent work [5, 6]

proposes new codes that allow efficient repair of failed nodes.

The second demand for low delay, which is relatively less explored in the context

of cloud storage and computing, is becoming increasingly important as a measure of

the quality. Ensuring fast and seamless service is critical for cloud services because

delayed response turns away users, causing revenue loss. For example, Google recently

21

reported a 20% loss of search traffic when there was a mere 0.5 sec increase in the

delay in loading search results. As pointed out in [7] applications are becoming more

interactive, and need to respond to user actions quickly (within 100 ms) to feel fluid

and natural.

However, guaranteeing such sub-second response times is challenging because there

can be random delays in the cloud due to factors such as server outages, virtualization,

congestion, and network packet loss. The key reason behind this variability is the

large-scale sharing of resources in the cloud, and limited centralized control on their

allocation. As noted in [7], such delays are the norm and not an exception in today’s

cloud systems .

1.2 Goals

In this thesis we seek to understand how redundancy can be used to reduce delay in

the following three areas of cloud infrastructure: computing, storage and streaming

communication. For example, in cloud computing systems, we can assign a task to

multiple machines and wait for any one replica to finish. Similarly in cloud storage

systems, latency can be reduced by sending redundant requests to multiple replicas

of the content and waiting for one of the replicas to be downloaded. In stream-

ing, retransmitting older undecoded packets can enable faster in-order decoding and

playback. This reduction in delay comes at the cost of additional resources such as

network bandwidth, storage space, or computing time. We characterize the trade-off

between delay and resource usage and develop strategies to reduce delay with efficient

use of available resources.

This thesis also brings to the forefront a combination of diverse tools from coding

theory, queueing and scheduling. The importance of delay as a metric of performance

calls for the use of these tools. We believe that our analysis framework and tools can

also be applied to a wide variety of other latency-sensitive applications beyond the

scope of cloud services, for example crowdsourcing, traffic scheduling etc.

22

1.3 Summary and Organization

This section summarizes the key contributions of the three parts of this thesis, and

describes the organization of chapters within these parts.

1.3.1 Task Replication in Cloud Computing

In Part I we develop an understanding of how launching redundant tasks affects the

cost, as well as queueing delay for other tasks. This leads to cost-efficient strategies

that can make cloud computing faster, yet sustainable.

Log-concavity of task service time: Replicating each task and waiting for the

earliest copy can help combat random service delays. But it generally costs additional

computing resources, and also increases waiting time in queue for subsequent tasks.

Chapter 2 provides a framework to answer fundamental questions about queues with

redundancy such as: 1) how many replicas to launch? 2) which queues to join? and

3) when should we cancel the redundant tasks? We discover that the log-concavity

of the task service time X governs the choice of the number of replicas, and when

we should cancel them. If X is log-convex, that is, the task service time is highly

variable, then launching more replicas reduces latency (service time plus waiting time

in queue) as well as the computing cost. Thus surprisingly, adding more replicas

improves the overall service rate of the system of servers. On the other hand, if X is

log-concave it is more cost-efficient to have fewer replicas, and cancel the redundant

tasks earlier.

Replicating Straggling Tasks: In Chapter 3 we consider a related problem of min-

imizing the latency of a large computing job with parallel tasks. The tasks that are

run on the slowest machines, which are referred to as stragglers, become a bottleneck

in the completion of the job. To alleviate the problem of stragglers, systems such

as MapReduce launch replicas of the slowest tasks. We provide a theoretical frame-

work to understand how the replication of stragglers affects the latency and the cost

23

of additional computing time. This analysis helps identify regimes where straggler

replication can drastically reduce latency, and also reduce the computing cost. We

propose replication strategies that can give a better latency-cost trade-off than the de-

fault in MapReduce, as indicated by our experiments with Google Cluster Trace data.

Future Directions: In Chapter 4 we discuss several generalizations of the model

considered in Chapter 2 and Chapter 3, and future research directions. We also de-

scribe the preliminary insights on two future directions that are of particular interest

to us: considering heterogeneous servers, and scheduling with the service time distri-

bution is unknown. With these generalizations we aim to devise a unified scheduling

policy for cloud computing frameworks.

1.3.2 Fast Content Download from Coded Storage

In Part II we use redundancy to speed-up content download from distributed cloud

storage. In cloud storage, content is often replicated at multiple servers. Similar to

the cloud computing scenario considered in Part I, we can send requests to multiple

replicas and wait for the earliest copy. Instead of replication, erasure coding can also

provide diversity, but with lower storage space. For example, with an (n, k) Reed-

Solomon code, downloading any k out of n chunks of a file are sufficient to recover it.

In Part II, we study the interplay between content download delay and resource cost

from such coded storage systems. The key results are summarized below.

Introducing the (n, k) fork-join system : In Chapter 5 we describe the back-

ground and previous work on content download from distributed storage. Then we

introduce the (n, k) fork-join system to model delay in content download. Each down-

load request assigned to n different servers that store coded chunks of the file. It is

sufficient for any k < n chunks to recover the file. The k = 1 case corresponds to

replicated storage.

Latency-Cost Analysis: In Chapter 6 we analyze the latency (expected waiting

24

time in queue plus service time) of the (n, k) fork-join system. Finding the latency of

the (n, n) fork-join queue is a famously hard problem, even with exponential service

time. An exact expression for n = 2 was given by [8], while only bounds are known

for general n [9,10]. In Chapter 6 we extend these latency bounds to the (n, k) fork-

join system, and arbitrary service time distributions. We also find bounds on the

cost of computing time spent per job. This analysis can be used to choose the op-

timal k, and also estimate the maximum request arrival rate supported by the system.

Future Directions: In Chapter 7 we describe future research directions that build

on the fork-join queueing framework. A future direction of particular interest is to

develop new erasure codes for fast content download. After our work on delay analysis

of coded storage, one such class of codes called availability codes was proposed in [11].

These codes allow parallel reads from disjoint groups of nodes and can help support

more users simultaneously. Recently, [12] analyzed the performance of these codes

using the fork-join framework.

1.3.3 Erasure Coding for Smooth Streaming

Streaming services such as Netflix and YouTube contribute to more than 50% of to-

day’s Internet traffic. Unlike traditional file transfer where only total delay matters,

streaming requires fast and in-order playback of packets. In streaming communica-

tion, the cost of redundancy is the bandwidth used to retransmit lost packets transmit

redundant packet combinations to recover from packet losses. Thus the source needs

to strike a balance between transmitting new and old packets. In Part III we present

erasure codes that combine packets in an effective way to ensure smooth playback

with minimum interruptions. Some key insights are summarized below.

Effect of Feedback: Feedback about past packet erasures can help the source adapt

future transmissions. Chapter 8 shows that frequent feedback can drastically improve

smoothness of playback. We propose easy-to-implement erasure codes that give a

close to optimal trade-off between throughput and smoothness of packet delivery.

25

Multicast Streaming: When there are multiple users with varying channel qualities

requesting the same stream, the next packet required by one user may be redundant

for the other. In Chapter 9 we propose and analyze coding schemes that balance the

priorities given to different users.

In Chapter 10 we present interesting future directions including dynamic band-

width, packet dropping, and streaming from multiple sources. More broadly, the

analysis of in-order streaming blends tools from renewal processes and large devia-

tions with traditional coding theory. These tools have are also used in interesting

subsequent work; see e.g. [13–15].

Finally, Chapter 11 concludes the thesis and presents broader future research

directions beyond the realm of cloud infrastructure.

1.4 Bibliographical Notes

Preliminary versions of Chapter 2 appear in the papers

[16] G. Joshi, E. Soljanin, and G. Wornell, “Efficient Replication of Queued Tasks

for Latency Reduction in Cloud Systems”, Proceedings of the Allerton Conference on

Communication, Control and Computing, Oct 2015

[17] G. Joshi, E. Soljanin, and G. Wornell, “Efficient Redundancy Techniques for

Latency Reduction in Cloud Systems”, submitted to ACM Transactions on Modeling

and Performance Evaluation of Computing Systems, arXiv:1506.0339

Preliminary versions of Chapter 3 appear in the papers

[18] D. Wang, G. Joshi, and G. Wornell, “Efficient Task Replication for Fast Response

Times in Parallel Computation”, Proceedings of ACM SIGMETRICS, June 2014

[19] D. Wang, G. Joshi, and G. Wornell, “Using Straggler Replication to Reduce

Latency in Large-Scale Parallel Computing”, Proceedings of ACM SIGMETRICS

Distributed Cloud Computing (DCC) Workshop, Jun 2015, arXiv:1503.03128

26

Preliminary versions of Chapter 6 appear in the papers

[20] G. Joshi, Y. Liu, and E. Soljanin, “Coding for Fast Content Download”, Pro-

ceedings of Allerton Conference on Communication, Control and Computing, Oct

2012

[21] G. Joshi, Y. Liu, and E. Soljanin, “On Delay-Storage Trade-offs in Content

Download from Coded Distributed Storage Systems”, IEEE Journal on Selected Areas

of Communications, May 2014

[22] G. Joshi, E. Soljanin, and G. Wornell, “Queues with Redundancy: Latency-

Cost Analysis”, Proceedings of ACM Sigmetrics Mathematical Modeling and Analysis

(MAMA) Workshop, Jun 2015

Preliminary versions of Chapter 8 and Chapter 9 appear in papers

[23] G. Joshi, Y. Kochman, and G. Wornell, “Effect of Block-wise Feedback on the

Throughput-Delay Trade-off in Streaming”, Proceedings of the INFOCOM Workshop

on Communication and Networking Techniques for Contemporary Video, Apr 2014

[24] G. Joshi, Y. Kochman, and G. Wornell, “Throughput-Smoothness Trade-offs

in Multicasting an Ordered Packet Stream”, Proceedings of the IEEE International

Conference on Network Coding, June 2014

[25] G. Joshi, Y. Kochman, and G. Wornell, “On Throughput-Smoothness Trade-offs

in Streaming Communication”, arXiv:1511.08143, Nov 2015

27

28

Part I

Task Replication in Cloud

Computing

29

Chapter 2

Replication of Queued Tasks

2.1 Introduction

An increasing number of applications are now hosted on the cloud, and latency is an

important quality metric in these services. Users expect fast response from the cloud

services, as seamless as using a personal computer to run the application. And this

requirement is becomes more stringent with the emergence of more interactive and

collaborative applications.

A major advantage of hosting applications on the cloud is that the large-scale

sharing of resources provides scalability and flexibility. However, a side-effect of the

loosely coordinated sharing of resources is the variability in the latency experienced by

the users. This can be due to various factors such as queueing, pre-emption by other

jobs with higher priority, server outages etc. The problem becomes further aggravated

when the user is executing a job with several parallel tasks on the cloud, because the

slowest task becomes the bottleneck in job completion. Thus, ensuring seamless,

low-latency service to the end-user is a challenging problem in cloud systems.

One method to reduce latency that is gaining significant attention in recent years

is the use of redundancy. In cloud computing, running a task on multiple machines

and waiting for the earliest copy to finish can significantly reduce the latency [7].

However, redundancy can result in increased use of resources such as computing

time, and network bandwidth. For example, in frameworks such as Amazon EC2

31

and Microsoft Azure which offer computing as a service, the server time spent is

proportional to the money spent in renting the machines. In this work we provide an

understanding of when the benefits of task replication in cloud computing outweigh

the additional computing and network cost.

2.1.1 Related Works

Scheduling for Parallel Computing : There is a rich literature on scheduling for

parallel computing, especially by the 1990s. One line of work is bin-packing strategies

that aim to maximize the efficient of packing jobs with different computing time and

resource requirements into processors. This is an NP-complete problem in general,

but there are good heuristics available [26,27]. Another line of work is load-balancing

strategies that take into account the existing load on the servers when assigning jobs.

Some examples are work stealing [28], where lightly loaded servers steal jobs from

heavily loaded servers. To avoid polling all the servers, randomized load balancing

strategies such as power-of-choice scheduling [29, 30] assign each job to the shortest

of d randomly chosen queues.

A common thread in these approaches is that they need estimates of the re-

source requirements of jobs, and queue lengths and memory utilization at the servers.

Cloud computing frameworks consists of thousands of non-dedicated, geographically

dispersed servers that are being shared by many processes simultaneously. Thus, cen-

tralized and scalable monitoring of the system to get complete and accurate estimates

of the job sizes and server load is very challenging. This calls for ‘stateless’ scheduling

strategies that can handle random fluctuations in response time without monitoring

the servers.

Systems Work on Task Replication : The idea of task replication to cope

with server variability started to be used in late 1990s and early 2000s [31,32]. It was

implemented at a large-scale in Google’s MapReduce [33] via the back-up tasks option.

Several recent works in systems such as [34, 35] further explore techniques to launch

redundant replicas of straggling tasks are launched to reduce latency. Although the

use of redundancy has been explored in systems literature, there is little work on

32

the rigorous analysis of how it affects latency, and in particular the cost of resources.

Next we review some of the theoretical work on the effect of redundancy on queueing

delay and resource utilization in cloud systems.

Note that in general, the use of redundancy to reduce latency is not new. One

of the earliest instances is the use of multiple routing paths [36] to send packets in

networks. See [37, Chapter 7] for a detailed survey of other related work. Recently a

similar idea has been studied in systems [38].

Exponential Service Time : In distributed storage systems, erasure coding can

be used to store a content file on n servers such that it can be recovered by accessing

any k out of the n servers. In [20, 21] we model this as an (n, k) fork-join queueing

systems and found bounds on the expected latency with exponential service time.

This is a generalization of the (n, n) fork-join system, which was actively studied

in queueing literature [8–10] around two decades ago. In recent years, there is a

renewed interest in fork-join queues due to their application to distributed computing

frameworks such as MapReduce.

Another related model with a centralized queue instead of queues at each of the n

servers was analyzed in [39]. Most recently, an analysis of latency with heterogeneous

task classes for the replicated (k = 1) case is presented in [40]. Other related works

include [12,41,42].

General Service Time : Few practical systems have exponentially distributed

service time. For example, studies of download time traces from Amazon S3 [43, 44]

indicate that the service time is not exponential in practice, but instead a shifted

exponential. For service time distributions that are ‘new-worse-than-used’ [45], it

is shown in [46] that it is optimal to replicate each task at maximum number of

servers. The choice of scheduling policy for new-worse-than-used (NWU) and new-

better-than-used (NBU) distributions is also studied in [47–49]. The NBU and NWU

notions are closely related to the log-concavity of service time studied in this work.

The Cost of Redundancy : If we assume exponential service time then redun-

dancy does not cause any increase in cost of server time. But since this is not true

in practice, it is important to determine the cost of using redundancy. Simulation

33

results with non-zero fixed cost of removal of redundant requests are presented in [48].

The total computing time E [C] spent per job is considered in [18, 50] (Chapter 3 of

this thesis) for a distributed system without considering queueing of requests. In [22]

(Chapter 6 of this thesis) we present a latency-cost analysis of the (n, k) fork-join

system, which generalizes the replication framework considered in this chapter.

2.1.2 Contributions

Assigning a task to multiple servers and waiting for the earliest copy to finish is an

effective method to combat the variability in response time of individual servers, and

thus reduce average latency. But replication may result in higher cost of computing

resources, as well as an increase in queueing delay due to higher traffic load. Thus it

is non-trivial to answer fundamental design questions such as:

1. How many replicas to launch?

2. Which servers to assign the replicas to?

3. When to issue and cancel redundant tasks?

This chapter provides a framework to answer such questions about queues with

redundancy, and understand when and how task replication gives a cost-efficient

latency reduction. A key insight is that a property called the ‘log-concavity’ of the

task service distribution is a key factor in determining whether replication helps. If

the service distribution is log-convex, then adding maximum replication reduces both

latency (waiting time plus service time) as well as cost. And if it is log-concave, then

less redundancy, and early cancellation of redundant tasks is more effective.

The rest of the chapter is organized as follows. In Section 2.2 we describe the

system model, and the performance metrics used to compare replication strategies.

In Section 2.4 we first consider the case when each task is replicated at all servers,

and determine the best way to cancel redundant tasks. In Section 2.5 we generalize

to partial replication and gain insights into the number of replicas, choice and servers,

and when to cancel the redundant replicas.

34

2.2 Problem Formulation

2.2.1 System Model

Consider a distributed system with n statistically identical servers. Tasks arrive to

the system at rate λ per second according to a Poisson process1. All incoming tasks

are assigned to first-come first-served queues at one or more servers. The number of

replicas and how they are issued and canceled is same for all tasks. The replication

strategy is defined concretely in Section 2.2.2 below.

After a task reaches the head of its queue, the time taken to serve it can be random

due to various factors such as disk seek time, network congestion, and sharing of

computing resources between multiple processes. We model it by the service time

X > 0, with cumulative distribution function (CDF) FX(x) and assume that it is

i.i.d. across requests and servers. Dependence of service time across servers can be

modeled by adding a constant to service time X. We use F̄X(x) = Pr(X > x) to

denote the tail distribution (inverse CDF) of X. And the notation Xk:n stands for

the kth smallest of n i.i.d. random variables X1, X2, . . . , Xn.

2.2.2 Replication Strategy

We focus on three parameters (r, π, c) of a replication strategy: the number of replicas

r, choice of servers π and the cancellation policy c. Each task is replicated at r out

of the n servers. The servers are chosen according to a scheduling policy π.

We focus on ‘symmetric’ scheduling policies π, defined formally as follows.

Definition 1 (Symmetric Scheduling Policy). A scheduling policy is said to be sym-

metric if the expected fraction of tasks assigned to each server is equal across the

servers.

Examples of symmetric policies illustrated in Fig. 2-1 are:

1The Poisson assumption is required only for the exact analysis and bounds on latency. Other
results on comparing different replication strategies holds for any arrival process.

35

A	

A	

B	

C	

C	

D	

X

X

X
λ

B	

D	

X Choose r
servers at
random

A	

A	

B	

C	

C	

D	

X

X

X
λ

B	
 D	

X

Group 1

Group 2

Choose one
group at
random

GROUP-BASED RANDOM UNIFORM RANDOM

Figure 2-1: Examples of symmetric scheduling policies for r = 2 and n = 4.

A	

A	

B	

B	
 C	

C	

X

X

X

λ

Abandon

Start of service

A	

A	

B	

B	
 C	

C	

X

X

X

Abandon

1 task served

λ

CANCEL-ON-FINISH CANCEL-ON-START

Abandon

Figure 2-2: Illustration of the cancel-on-finish and cancel-on-finish policies for r = 2
and n = 3.

• Group-based random: This policy holds when r divides n. The n servers

are divided into n/r groups of r servers each. Each task is replicated across all

servers in one of these groups, chosen uniformly at random.

• Uniform Random: Each task is replicated at any r out of n servers, chosen

uniformly at random.

Note that these two policies are ‘stateless’: they do not require information about

the state of the servers (queue lengths, memory load etc.) or about the task size and

resource requirements. Another stateless symmetric policy is round-robin scheduling.

Some common state-aware policies that are also symmetric include join-the-shortest-

queue, least-work-left, and power-of-choice scheduling.

The third parameter of the replication strategy (r, π, c) is the cancellation policy

36

c. We consider the following two cancellation policies illustrated in Fig. 2-2:

• Cancel-on-finish: When any one replica of a task is served, all other replicas

are canceled and abandon their queues immediately.

• Cancel-on-start: When any one replica of a task reaches the head of its queue

and starts service, all other replicas are canceled and abandon their queues

immediately. If multiple replicas start service simultaneously, we retain any

one chosen uniformly at random.

The cancel-on-start strategy has been previously explored in [35] and it is shown

to be effective in reducing latency, without increasing load on the system.

Remark 1 (Relation to Power-of-choice Scheduling). Power-of-choice scheduling pro-

posed by Mitzenmacher in [29] is closely related to the replication strategy for any r,

with π = uniform random scheduling and c = cancel-on-start. In power-of-r schedul-

ing, a task is assigned to the shortest of r randomly chosen queues. Instead joining

the shortest, we assign the task to all r queues, and retain the earliest replica that

starts service. As a result the cancel-on-start policy is able to find the queue with the

‘least work left’ among the r queues. Thus cancel-on-start will give lower latency than

power-of-r scheduling.

Although we focus on these three parameters (r, π, c) here, there can be more

general replication strategies. For example, instead of issuing replicas upfront, we

can delay some of them to save the computing time spent by servers. Our analysis

also provides insights into whether delaying replicas improves the performance of the

system for a given task service distribution F̄X (see Section 2.5.3).

2.2.3 Performance Metrics

We now define the metrics of the latency and cost that are used to compare different

replication strategies (r, π, c). Our objective in the rest of the chapter will be to find

the strategy that gives the best latency-cost trade-off.

37

Definition 2 (Expected Latency). The expected latency E [T] is defined as the ex-

pected time from the arrival of a task until any one replica is served. It includes the

waiting time in queue and the time spent at the servers until the task is served.

Although E [T] is a good indicator of the average behavior, system designers are

often interested in the tail Pr(T > t) of the latency. For many queueing problems, de-

termining the distribution of response time T requires the assumption of exponential

service time. In order to consider arbitrary, non-exponential service time distribution

FX , we settle for analyzing the expected latency E [T] here. In Section 4.1.1 we give

preliminary insights on extending our analysis to determine the distribution of T .

Definition 3 (Expected Computing Cost). The expected computing cost E [C] is the

expected total time spent by the servers task and its replicas.

Note that E [C] does not include the time spent in the queue. Thus, if we

use the cancel-on-start policy that cancels replicas before they start service, then

E [C] = E [X] for any r and π. On the other hand, the cancel-on-finish policy may

result in higher E [C] because multiple servers may spend redundant time serving

replicas of the same task. In computing-as-a-service frameworks such as Amazon

Web Services (AWS), the expected computing cost is proportional to money spent

on renting machines from the cloud.

Although we focus on E [C] to account for the cost of redundancy, other practical

costs can be accounted for as follows:

• In practice there will be a non-zero delay in canceling replicas when a task

starts or finishes service. The cancellation delay can be added to the E [C] as

additional time spent by the servers.

• The signaling overhead of making Remote-Procedure Calls (RPCs) to issue and

cancel redundant tasks is proportional to the number of replicas r. To account

for it, we can impose an upper limit on r ≤ rmax.

38

2.3 Preliminary Concepts

We now present some preliminary concepts that are vital for understanding the results

presented in the rest of the chapter.

2.3.1 Using E [C] to Compare Systems

Since the cost metric E [C] is the expected time spent by servers on each task, higher

E [C] implies higher expected waiting time for subsequent tasks. As the arrival rate

λ increases, the waiting time becomes a dominant part of the latency. The maximum

supported arrival rate λ can be expressed in terms of E [C] as given by the following

claim.

Claim 1 (λmax in terms of E [C]). For a system of n servers with a given replica-

tion strategy (r, π, c), and any arrival process with rate λ, the maximum λ such that

expected latency E [T] <∞ is

λmax =
n

E [C]
(2.1)

Proof of Claim 1. For a symmetric policy, the mean time spent by each server per

task is E [C] /n. Thus the server utilization is ρ = λE [C] /n. To keep the system

stable such that E [T] <∞, the server utilization must be less than 1. The result in

(2.1) follows from this.

Definition 4 (Service Capacity λ∗max). The service capacity of the system λ∗max is

defined as the maximum λmax over all replication strategies (r, π, c).

Definition 5 (High and Low Traffic Regimes). When λ → λ∗max, the system is said

to be in the high traffic regime, such that expected waiting time in queue dominates

the latency E [T]. When λ → 0, the system is said to be in the low traffic regime,

such that expected waiting time tends to zero and E [T] only comprises of the expected

service time.

From Claim 1 and Definition 4 we can imply that E [C] can be used to compare

different replication policies in the high traffic regime, as given by Corollary 1 below.

39

Corollary 1. Given two symmetric strategies (r, π, c) and (r′, π′, c′), the strategy that

has lower E [C], also has lower E [T] in the high traffic regime (λ→ λ∗max).

Corollary 1 serves as a powerful technique to compare different replication strate-

gies in Section 2.5.3.

2.3.2 Log-concavity of F̄X

If we replicate a task at r idle servers and wait for any 1 copy to finish, the expected

computing cost E [C] = rE [X1:r], where X1:r = min(X1, X2, . . . , Xr), the minimum

of r i.i.d. realizations of random variable X. The behavior of this function rE [X1:r]

depends on when the tail distribution F̄X of service time is ‘log-concave’ or ‘log-

convex’. Log-concavity of F̄X is defined formally as follows.

Definition 6 (Log-concavity and log-convexity of F̄X). The tail distribution F̄X is

said to be log-concave (log-convex) if log Pr(X > x) is concave (convex) in x for all

x ∈ [0,∞).

For brevity, when we say X is log-concave (log-convex), we mean that F̄X is log-

concave (log-convex). Lemma 1 below gives how rE [X1:r] varies with r for log-concave

(log-convex) F̄X . It is central to proving several key results in this chapter.

Lemma 1. If X is log-concave (log-convex), then rE [X1:r] is non-decreasing (non-

increasing) in r.

The proof of Lemma 1 can be found in Appendix A.

The numerical results in this chapter use the shifted exponential, and hyper

exponential as examples of log-concave and log-convex distributions respectively.

The shifted exponential, denoted by ShiftedExp(∆, µ) is an exponential with rate

µ, plus a constant shift ∆ ≥ 0. The hyper-exponential distribution, denoted by

HyperExp(µ1, µ2, p) is a mixture of two exponentials with rates µ1 and µ2 where the

exponential with rate µ1 occurs with probability p. Interestingly, the exponential dis-

tribution Exp(µ) is both log-concave and log-convex. It is a special case of the shifted

40

exponential when ∆ = 0. Similarly, it is a special case of the hyper exponential

distribution when µ1 = µ2 = µ.

Log-concave distributions like the shifted exponential are more common in prac-

tical systems. Log-convex service times although less common, occur when there is

high variability in task service time. For example, CPU service times are often ap-

proximated by the hyperexponential distribution. Many practical systems also have

service times that are neither log-concave nor log-convex. We use the Pareto distri-

bution Pareto(xm, α) as an example of a distribution that is neither log-concave nor

log-convex. The Pareto distribution has been observed to fit service times in data

centers [7, 51]. Its tail distribution is given by,

Pr(X > x) =


(
xm
x

)α
x ≥ xm,

1 otherwise.

(2.2)

Log-concavity of X implies that X is ‘new-better-than-used’, a notion considered

in [46]. Other names for new-better-than-used distributions are ‘light-everywhere’ in

[48] and ‘new-longer-than-used’ in [49]. Many random variables with log-concave (log-

convex) F̄X are also light (heavy) tailed respectively, but neither property implies the

other. Unlike the tail of a distribution which characterizes how the maximum E [Xn:n],

behaves for large n, log-concavity (log-convexity) of characterizes the behavior of the

minimum E [X1:n], which is of primary interest in this work.

Some properties of log-concavity relevant to this work are given in Appendix A.

We refer readers to [52] for more properties and examples of log-concave distributions.

2.3.3 Relative Task Start Times

Since the replicas of each task experience different waiting times in their respective

queues, they may start service at different times. The relative start times of the

replicas is an important factor affecting the latency and cost. We denote the relative

start times by t1 ≤ t2 ≤ · · · tn where t1 = 0 without loss of generality. For instance,

if r = 3 replicas of task start at absolute times 3, 4 and 7, then their relative start

41

times are t1 = 0, t2 = 4 − 3 = 1 and t3 = 7 − 3 = 4. If we launch r < n replicas of

each task, then tr+1, · · · tn are infinite.

Let S be the time from when the earliest replica starts service, until any one

replica finishes. It is the minimum of X1 + t1, X2 + t2, · · ·Xn + tn, where Xi are i.i.d.

The tail distribution of S is given by

Pr(S > s) =
n∏
i=1

Pr(X > s− tn) (2.3)

The computing cost C can be expressed in terms of S and ti as follows.

C = S + (S − t2)+ + · · ·+ (S − tn)+ . (2.4)

Using (2.4) we get several crucial insights in the rest of the chapter. For instance,

in Section 2.5 we show that when F̄X is log-convex, having t1 = t2 = · · · = tn = 0 gives

the lowest E [C]. Then using Claim 1 we can infer that r = n with cancel-on-finish is

optimal when F̄X is log-convex.

2.4 Full Replication (r = n)

In this section we analyze the latency and cost with full replication (r = n), and

compare the two cancellation policies: cancel-on-finish and cancel-on-start. Since we

replicate each task at all n servers, the choice of servers π is trivial. From this analysis

we get the insight that cancel-on-start is better if F̄X is log-concave. On the other

hand, if F̄X is log-convex, using cancel-on-finish is better.

2.4.1 Latency-Cost Analysis

Lemma 2. If we launch r = n replicas of each task and cancel-on-finish, the latency

T of the system is equivalent in distribution to that of an M/G/1 queue with service

time X1:n.

Proof. Consider the first task that arrives when all servers are idle. The n replicas

42

A	

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

Abandon

A	
 B	
 C	

X1:3

M/G/1 Queue

λ ⌘

Figure 2-3: When r = n and c = cancel-on-finish, the system is equivalent to an
M/G/1 queue with service time X1:n, the minimum of n i.i.d. random variables
X1, X2, . . . , Xn.

start service at their respective servers simultaneously. The earliest replica finishes

after time X1:n, and all others are canceled immediately. So, the replicas of the

subsequent task also start simultaneously at the n servers as illustrated in Fig. 2-3.

Thus, the arrival and departure events, and as a result the latency T is equivalent in

distribution to an M/G/1 queue with service time X1:n.

Theorem 1. If we launch r = n replicas of each task and cancel-on-finish, the ex-

pected latency and computing cost are given by

E [T] = E
[
TM/G/1

]
= E [X1:n] +

λE [X2
1:n]

2(1− λE [X1:n])
(2.5)

E [C] = n · E [X1:n] (2.6)

where X1:n = min(X1, X2, . . . , Xn) for i.i.d. Xi ∼ FX .

Proof. By Lemma 2, the latency for r = n and cancel-on-finish is equivalent in dis-

tribution to an M/G/1 queue with service time X1:n. The expected latency of an

M/G/1 queue is given by the Pollaczek-Khinchine formula (2.5). The expected cost

E [C] = nE [X1:n] because each of the n servers spends X1:n time on each task. This

can also be seen by noting that S = X1:n when ti = 0 for all i, and thus C = nX1:n

in (2.4).

In Corollary 2 and Corollary 3 we characterize how E [T] and E [C] vary with n.

The behavior of E [C] follows from Lemma 1.

43

Corollary 2. For any service distribution FX , the expected latency E [T] in Theorem 1

is non-increasing with n.

Corollary 3. If F̄X is log-concave (log-convex), then E [C] is non-decreasing (non-

increasing) in n.

2 4 6 8 10

Expected Computing Cost E[C]

0

2

4

6

8

10

E
xp

ec
te

d
L

at
en

cy
E

[T
]

n = 1

n = 9

n = 1

n = 9

n = 1

n = 9

∆ = 0

∆ = 1

∆ = 1.5

Figure 2-4: The service time X ∼ ∆ + Exp(µ) (log-concave), with µ = 0.5, λ = 0.25.
As n increases along each curve, E [T] decreases and E [C] increases. Only when
∆ = 0, latency reduces at no additional cost.

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Expected Computing Cost E[C]

0

1

2

3

4

5

E
xp

ec
te

d
L

at
en

cy
E

[T
]

n = 9

n = 1

n = 9

n = 1

n = 9

n = 1

µ2 = 1

µ2 = 1.5

µ2 = 2

Figure 2-5: The service time X ∼ HyperExp(0.4, µ1, µ2) (log-convex), with µ1 = 0.5,
different values of µ2, and λ = 0.5. Expected latency and cost both reduce as n
increases along each curve.

Fig. 2-4 and Fig. 2-5 show the expected latency versus cost for log-concave and

log-convex F̄X respectively. In Fig. 2-4, the arrival rate λ = 0.25, and X is shifted

44

exponential ShiftedExp(∆, 0.5), with different values of ∆. For ∆ > 0, there is a

trade-off between expected latency and cost. Only when ∆ = 0, that is, X is a pure

exponential (which is generally not true in practice), we can reduce latency without

any additional cost. In Fig. 2-5, arrival rate λ = 0.5, and X is hyperexponential

HyperExp(0.4, 0.5, µ2) with different values of µ2. We get a simultaneous reduction in

E [T] and E [C] as n increases. The cost reduction is steeper as µ2 increases.

Let us now analyze full replication (r = n) with the cancel-on-start cancellation

policy, where we cancel redundant tasks as soon as any task reaches the head of its

queue. Intuitively, cancel-on-start can save computing cost, but the latency could

increase due to the loss of diversity advantage provided by retaining redundant tasks.

Lemma 3. If we launch r = n replicas of each task and cancel-on-start, the latency

T of the system is equivalent in distribution to that of an M/G/n queue with service

time X.

Proof. With the cancel-on-start cancellation policy, as soon as any replica of a task

reaches the head of its queue, all others are canceled immediately. The redundant

replicas help find the queue with the least work left, and exactly one replica of each

task is served by the first server that becomes idle. Thus, as illustrated in Fig. 2-6,

the latency is equivalent in distribution to an M/G/n queue.

Theorem 2. If we launch r = n replicas of task and cancel-on-start, the expected

latency and computing cost are given by

E [T] = E
[
TM/G/n

]
, (2.7)

E [C] = E [X] , (2.8)

where TM/G/n is the response time of an M/G/n queueing system with service time

X ∼ FX .

The proof of Theorem 2 follows directly from Lemma 3. The exact analysis of

mean response time E
[
TM/G/n

]
has long been an open problem in queueing theory.

45

A	

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

Abandon

A	
 B	
 C	

X

X

X Central Queue

Choose first
idle server

M/G/3 Queue

λ ⌘

Figure 2-6: When r = n and c = cancel-on-start, the system is equivalent to an
M/G/n queueing system with each server taking time X ∼ FX to serve task, i.i.d.
across servers and tasks.

A well-known approximation given by [53] is,

E
[
TM/G/n

]
≈ E [X] +

E [X2]

2E [X]2
E
[
WM/M/n

]
(2.9)

where E
[
WM/M/n

]
is the expected waiting time in an M/M/n queueing system with

load ρ = λE [X] /n. It can be evaluated using the Erlang-C model [54, Chapter 14].

and is given by

E
[
WM/M/n

]
=

ρ(nρ)n

n!(1− ρ)2λ

(
n−1∑
i=0

(nρ)i

i!
+

(nρ)n

n!(1− ρ)

)−1

. (2.10)

2.4.2 Cancel-on-finish or Cancel-on-start?

Using Theorem 1 and Theorem 2 we can now compare the cancel-on-finish and cancel-

on-start policies. First let us compare the computing cost E [C] with the two cancel-

lation policies. Corollary 4 below follows from Lemma 1.

Corollary 4. If F̄X is log-concave (log-convex), then r = n and cancel-on-start gives

lower (higher) E [C] than r = n with cancel-on-finish.

Next we compare the latency E [T] in two extreme traffic regimes: low traffic

(λ→ 0) and high traffic (λ→ λ∗max), where λ∗max is the service capacity of the system

introduced in Definition 4.

46

0.0 0.2 0.4 0.6 0.8 1.0

λ, the arrival rate

0

5

10

15

20

25

30

35

E
xp

ec
te

d
L

at
en

cy
E

[T
]

Cancel-on-finish
Cancel-on-start

Figure 2-7: For r = n = 4 and service time X ∼ ShiftedExp(2, 0.5) which is log-
concave, the cancel-on-start policy is better in the high traffic regime, as given by
Corollary 5.

0.0 0.5 1.0 1.5 2.0

λ, the arrival rate

0

5

10

15

20

25

30

35

E
xp

ec
te

d
L

at
en

cy
E

[T
]

Cancel-on-finish
Cancel-on-start

Figure 2-8: For r = n = 4 and X ∼ HyperExp(0.1, 1.5, 0.5), which is log-convex,
the cancel-on-start policy is worse in both low and high traffic regimes, as given by
Corollary 5.

Corollary 5. Cancel-on-finish gives lower E [T] than cancel-on-start in low traffic for

any X. In high traffic, cancel-on-start gives lower (higher) E [T] than cancel-on-finish

if F̄X is log-concave (log-convex).

The low traffic insights in Corollary 5 follow by substituting λ = 0 in Theorem 1

and Theorem 2. By Corollary 1, in the high traffic regime, the system with lower E [C]

has lower E [T]. Thus the high traffic insights in Corollary 5 follow from Corollary 4.

47

Fig. 2-7 and Fig. 2-8 illustrate Corollary 5. Fig. 2-7 shows a comparison of E [T]

with the cancel-on-finish and cancel-on-start cancellation policies for r = n = 4, and

service time X ∼ ShiftedExp(2, 0.5). We observe that cancel-on-start gives lower E [T]

in the high traffic regime. In Fig. 2-8 we observe that when X is HyperExp(0.1, 1.5, 0.5)

which is log-convex, cancel-on-start is worse in both small and large traffic regimes.

0.0 0.5 1.0 1.5 2.0 2.5

∆, constant shift in the service time

0

2

4

6

8

10

12

14

16

18

L
at

en
cy
E

[T
]

Cancel-on-finish
Cancel-on-start

Figure 2-9: For the full replication of tasks at n = 4 servers, with shifted exponential
service time X = ShiftedExp(∆, 0.5), cancel-on-start gives lower latency for larger ∆.
The task arrival rate λ = 0.25.

In general, cancel-on-start is better when X is less variable (lower coefficient of

variation). For example, a comparison of E [T] with cancel-on-finish and cancel-on-

start as ∆, the constant shift of service time ShiftedExp(∆, µ) varies is illustrated in

Fig. 2-9. When ∆ is small, there is more randomness in the service time of a task,

and hence keeping redundant tasks running gives more diversity, and thus lower E [T].

But as ∆ increases, task service times are more deterministic due to which it is better

to cancel the redundant tasks early.

2.5 Partial Replication (r ≤ n)

For applications with a large number of servers n, full replication of each task can

be expensive due to the network cost of issuing and cancel the redundant tasks. In

48

this section, we analyze the latency and cost with partial replication (r ≤ n) and

determine the best replication strategy in different regimes.

2.5.1 Latency-Cost Analysis: Group-based policy

The latency and cost with partial replication is hard in general, but is tractable for

the group-based random scheduling policy. Recall that in the group-based random

policy, each task is replicated across one of n/r groups chosen uniformly at random.

Then each group behaves like an independent system of r servers with full replication,

and arrival rate λr/n. Thus, the expected latency and cost with cancel-on-finish and

cancel-on-start are given by Lemma 4 and Lemma 5 below. Their proof follows from

Theorem 1 and Theorem 2, with n replaced by r and λ replaced by λr/n respectively.

Lemma 4 (π = group-based random, c = cancel-on-finish). If each task is repli-

cated at r servers according to the group-based random policy, and tasks are canceled

according to the cancel-on-finish policy, then the expected latency and cost are given

by

E [T] = E [X1:r] +
λrE [X2

1:r]

2(n− λrE [X1:r])
(2.11)

E [C] = rE [X1:r] (2.12)

From Corollary 1 and (2.15) we can infer that the maximum arrival rate λ that

can be supported when each task is replicated at r servers and c = cancel-on-finish

is,

λmax =
n

E [C]
=

n

rE [X1:r]
(2.13)

Lemma 5 (π = group-based random, c = cancel-on-start). If each task is replicated at

r servers according to the group-based random policy, and tasks are canceled according

49

to the cancel-on-start policy, then the expected latency and cost are given by

E [T] = E
[
TM/G/r

]
(2.14)

E [C] = E [X] (2.15)

where TM/G/r is the response time of an M/G/r queueing system with arrival rate

λr/n and service time distribution FX .

Using Lemma 4 and Lemma 5 we can find the number of replicas r, and the

cancellation policy that gives the best latency-cost trade-off for any given service

distribution FX and arrival rate λ. For example, Fig. 2-10 shows the latency versus

cost trade-off for n = 12 servers, and task service time X ∼ Pareto(1, 2.2). The

number of replicas r, which is also the size of each group increases along each curve,

and different curves correspond to different values of arrival rate λ. As the arrival rate

λ increases, replicating each task costs more and also increases the queueing delay.

Thus the optimal r∗ decreases as λ increases.

0 2 4 6 8 10 12 14

Expected Computing Cost E[C]

1.0

1.5

2.0

2.5

3.0

3.5

E
xp

ec
te

d
L

at
en

cy
E

[T
]

r∗ = 6

r∗ = 4
r∗ = 3

λ = 0.2

λ = 0.5

λ = 0.8

Figure 2-10: Latency versus cost for n = 12 servers with c = cancel-on-finish, r
increasing as 1, 2, 3, 4, 6, and 12 along each curve. The task service time X ∼
Pareto(1, 2.2). As λ increases the replicas increase queueing delay. Thus the optimal
r∗ that minimizes E [T] shifts downward as λ increases.

50

2.5.2 Bounds on expected cost E [C]

For other non-group-based symmetric policies, it is difficult to directly analyze of

E [T] and E [C] because the replicas of the task can start service at different times

in their respective queues. Instead, we develop bounds on E [C] for log-concave and

log-convex F̄X , via which we can infer the best replication strategy in Section 2.5.3.

The scheduling policy π and cancellation policy c determine the relative starting

times of the tasks 0 = t1 ≤ t2 ≤ · · · ≤ tn. For instance, if c = cancel-on-start, t1 = 0

and all other ti are infinity because only one task enters service. In another instance

if π= group-based random, and c = cancel-on-finish as considered in Section 2.5.1,

ti = 0 for 1 ≤ i ≤ r, and ti+1, . . . , tn are infinite. For other symmetric policies the

relative task start times are random. Theorem 3 below gives bounds on E [C] that

are independent of the relative task start times.

Theorem 3. Suppose a task is replicated at r out of n servers according to any

symmetric scheduling policy. For any relative task start times ti, E [C] can be bounded

as follows.

rE [X1:r] ≥ E [C] ≥ E [X] if F̄X is log-concave (2.16)

E [X] ≥ E [C] ≥ rE [X1:r] if F̄X is log-convex (2.17)

If ti = 0 for all 1 ≤ i ≤ n, E [C] = nE [X1:n] for any FX . In the other extreme case,

when t1 = 0 and t2 = t3 = · · · = tn =∞, E [C] = E [X] for any FX .

To prove Theorem 3 we take expectation on both sides in (2.4), and show that

for log-concave and log-convex F̄X , we get the bounds in (2.16) and (2.17), which

are independent of the relative task start times ti. The detailed proof is given in

Appendix B.

In Fig. 2-11 we show the bounds on E [C] alongside simulation values for different

scheduling policies, when X is ShiftedExp(0.25, 0.5) (log-concave). We observe that

the upper bound rE [X1:r] is tight for group-based random scheduling (plotted only

when r divided n = 6). The upper bound is slightly loose for other scheduling policies.

51

1 2 3 4 5 6

r, number of replicas of each task

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

C
om

pu
ti

ng
C

os
t
E

[C
]

Upper Bound rE[X1:r]

Group-based Random
Uniform Random
Join r shortest queues
Lower Bound E[X]

Figure 2-11: Expected cost E [C] versus r for X ∼ ShiftedExp(0.25, 0.5), n = 6 servers
and different scheduling policies. The upper bound rE [X1:r] is exact for the group-
based random policy, and fairly tight for other policies.

The upper and lower bounds coincide at r = 1 and r = n. Similarly for log-convex

the actual E [C] is close to its lower bound rE [X1:r].

In the sequel, we use the bounds in Theorem 3 to gain insights into the best

replication strategy (r, π, c) when F̄X is log-concave or log-convex.

2.5.3 Optimal Replication strategy

In this section, our objective is to determine the replication strategy (r, π, c) that

achieve the best latency-cost trade-off. In particular, we study two extreme traffic

regimes: low traffic (λ → 0) and high traffic (λ → λ∗max), where λ∗max is the service

capacity of the system introduced in Definition 4.

Low Traffic Regime (λ→ 0)

In the low traffic regime with λ→ 0, the waiting time in queue tends to zero. Thus all

replicas of a task start service at the same time, irrespective of the scheduling policy

π. We only consider the cancel-on-finish strategy here; cancel-on-start is equivalent

to r = 1 with cancel-on-finish in low traffic. The expected latency and cost are then

52

given by

E [T] = E [X1:r] (2.18)

E [C] = rE [X1:r] (2.19)

From (2.18) it follows that the maximum redundancy strategy, r = n with cancel-

on-finish, minimizes latency E [T] for any service distribution F̄X . The expected cost

E [C] in (2.19) however may increase or decrease depending upon the log-concavity

of F̄X as given by Lemma 1. If F̄X is log-concave (log-convex), then r = 1 (r = n)

minimizes the cost.

High Traffic Regime (λ→ λ∗max)

The bounds on E [C] in Section 2.5.2, together with Corollary 1 serve as a powerful

tool to compare different strategies in the high traffic regime. The replication strategy

that minimizes E [C] also minimizes E [T] in high traffic.

Theorem 4 (Optimal Replication Strategy). For log-convex F̄X , r = n with cancel-

on-finish is optimal. For log-concave F̄X , r = n with cancel-on-start is optimal in

high traffic.

Proof. By Corollary 1, the optimal replication strategy in high traffic is the one that

minimizes E [C]. For log-convex F̄X , r = n with cancel-on-finish achieves the lower

bound E [C] = nE [X1:n] in (2.17) with equality. Thus, r = n with cancel-on-finish is

the optimal strategy in the high traffic regime.

For log-concave F̄X , both r = 1 with cancel-on-finish and r = n with cancel-on-

start achieve the lower bound E [C] = E [X] in (2.16) with equality. However, r = n

with cancel-on-start gives lower latency because the redundant tasks help find the

shortest queue in the system.

Due to the network cost of issuing and canceling the replicas, there may be an

upper limit r ≤ rmax on the number of replicas. The optimal strategy under this

constraint is given by Lemma 6 below.

53

Lemma 6 (Optimal Strategy under r ≤ rmax). For log-convex F̄X , r = rmax with

cancel-on-finish is optimal. For log-concave F̄X , r = rmax with cancel-on-start is

optimal in high traffic.

The proof is similar to Theorem 4 with n replaced by rmax.

The bounds on E [C] also help determine the optimal policy (r, π, c) when some pa-

rameters are fixed. For example, if only cancel-on-finish is possible, then the optimal

r for any symmetric scheduling policy π is given by the following lemma.

Lemma 7 (Optimal r given c =cancel-on-finish). For any symmetric policy π and

c =cancel-on-finish, r = 1 (r = n) is optimal in high traffic for log-concave (log-

convex) F̄X .

Proof. If F̄X is log-convex, it follows from Theorem 4 that the optimal strategy is

r = n. For log-concave F̄X , both r = 1 with cancel-on-finish and r = n with cancel-

on-start achieve the lower bound E [C] = E [X] in (2.17) with equality. But since c

can only be cancel-on-finish, r = 1 is optimal.

In Fig. 2-12 and Fig. 2-13 we plot E [T] versus λ for different values of r. Each

task is assigned to r out of n = 6 servers according to the group-based random policy.

For each curve, the λ at which latency goes to infinity is given by,

λmax =
n

rE [X1:r]
(2.20)

In Fig. 2-12 the service time distribution is ShiftedExp(∆, µ) (which is log-concave)

with ∆ = 1 and µ = 0.5. When λ → 0, more redundancy (higher r) gives lower

E [T], but in the high traffic regime, r = 1 gives lowest E [T]. On the other hand in

Fig. 2-13, for a log-convex distribution HyperExp(p, µ1, µ2), in the high traffic regime

E [T] decreases as r increases.

Remark 2. Lemma 7 was previously proven for new-better-than-used (new-worse-

than-used) instead of log-concave (log-convex) F̄X in [46, 48], using a combinatorial

argument. Using Theorem 3, we get an alternative, and arguably simpler proof of

54

0.0 0.5 1.0 1.5 2.0

λ, the arrival rate

0

5

10

15

20

25

30

35

40

E
xp

ec
te

d
L

at
en

cy
E

[T
]

r = 1
r = 2
r = 3

Figure 2-12: For X ∼ ShiftedExp(1, 0.5) which is log-concave, less (more) replicas
gives lower expected latency in the low (high) λ regime.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

λ, the arrival rate

0

5

10

15

20

25

30

35

40

E
xp

ec
te

d
L

at
en

cy
E

[T
]

r = 1
r = 2
r = 3

Figure 2-13: For X ∼ HyperExp(p, µ1, µ2) with p = 0.1, µ1 = 1.5, and µ2 = 0.5 which
is log-convex, more replicas (larger r) gives lower expected latency for all λ.

this result. Our version is somewhat weaker because log-concavity implies new-better-

than-used but the converse is not true in general (see Property 3 in Appendix A).

Given r and c =cancel-on-finish, we can also compare different policies π of choos-

ing the r servers for each task. The choice of the r servers determines the relative

starting times of the tasks. If all the r tasks start at the same time (true for the

group-based random policy), E [C] = rE [X1:r]. By comparing with the bounds in

Theorem 3 that hold for any relative task start times we get the following result.

55

Lemma 8 (Choosing π given r, and c = cancel-on-finish). Given r, if F̄X is log-

concave (log-convex), the symmetric policy that results in the tasks starting at the

same time (ti = 0 for all 1 ≤ i ≤ r) results in higher (lower) E [T] in the high traffic

regime than one that results in 0 < ti <∞ for one or more i.

0.0 0.5 1.0 1.5 2.0

λ, the arrival rate

0

10

20

30

40

50

60

E
xp

ec
te

d
L

at
en

cy
E

[T
]

Group-based random
Uniform Random

Figure 2-14: For service distribution ShiftedExp(1, 0.5) which is log-concave, uniform
random scheduling (which staggers relative task start times) gives lower E [T] than
group-based random for all λ. The system parameters are n = 6, r = 2.

0 1 2 3 4 5

λ, the arrival rate

0

10

20

30

40

50

60

E
xp

ec
te

d
L

at
en

cy
E

[T
]

Group-based random
Uniform Random

Figure 2-15: For service distribution HyperExp(0.1, 1.5, 0.5) which is log-convex,
group-based scheduling gives lower E [T] than uniform random in the high λ regime.
The system parameters are n = 6, r = 2.

Lemma 8 is illustrated in Fig. 2-14 and Fig. 2-15 for n = 6 and r = 2. The

r tasks may start at different times with the uniform random policy, whereas they

56

always start simultaneously with the group-based random policy. Thus, in the high

λ regime, that uniform random policy results lower latency for log-concave F̄X , as

observed in Fig. 2-14. But for log-convex F̄X , group-based forking is better in the

high λ regime as seen in Fig. 2-15. For low λ, uniform random policy is better for

any F̄X because it gives lower expected waiting time in queue.

Remark 3. Lemma 8 helps compare a group-based policy with a non-group-based

policy, but not two non-group-based policies. In general a policy that ‘staggers’ the

relative task start times to a larger extent is better (worse) for log-concave (log-convex)

F̄X . But the exact nature of the staggering of task start times that results in better

latency-cost trade-off remains to be understood.

A	

A	

B	

C	

C	

D	

X

X

X

B	

D	

X

E	

E	

F	

F	

Figure 2-16: Diversity scheduling policy that staggers task start times

For example, a policy that staggers the task start times is illustrated in Fig. 2-16.

The replicas of each task to queues that have different tasks waiting in front.

Remark 4 (Delaying replicas). Instead of issuing all replicas of a task upfront, the

replicas could be delayed. Depending on the waiting time in each queue, these delays

can result in relative task start times 0 = t1 ≤ t2 ≤ · · · ≤ tr of the replicas. Then the

bounds of E [C] in Theorem 3 can be used to infer whether delaying replicas improves

the latency-cost performance of the replication strategy.

57

Log-concave service time Log-convex service time
Latency-optimal Cost-optimal Latency-optimal Cost-optimal

Number of
replicas r

Low λ: r = n,
High λ: r = 1

r = 1 r = n r = n

When to cancel
the replicas?

Low λ: Cancel-on-finish ,
High λ: Cancel-on-start

Cancel-on-
start

Cancel-on-finish Cancel-on-
finish

Table 2.1: Summary of insights on how to replicate tasks and cancel them

2.6 Concluding Remarks

2.6.1 Summary

In cloud systems, the large-scale sharing of a pool of commodity servers results in

random fluctuations in server response time. Also, there is limited centralized mon-

itoring of the server loads, and the size of incoming computing tasks. As a result,

we need scheduling policies that can handle service time variability and ensure fast

execution of tasks, with little or no knowledge of the state of the system. In this

work, we study the effectiveness of task replication in coping with service variability

and reducing latency.

Intuitively, replicating tasks at multiple servers and waiting for the earliest copy

reduces latency, but uses additional resources such as computing time at the servers.

Replication can also increase queueing delay for subsequent tasks. We analyze the

impact of redundancy on two metrics: the latency (expected service plus waiting time

in queue) E [T], and the computing cost (total expected server time spent per job)

E [C]. Using these metrics our objective is to determine the best replication strategy:

the number of replicas r, choice of servers π and cancellation policy c.

We identify that the log-concavity of service time is a key factor governing the

choice of a redundancy strategy. The main insights are summarized in Table 2.1.

Surprising, for log-convex service distributions, more redundancy reduces both latency

and cost. Thus replication in fact improves the efficiency of the system of servers.

On the other hand, for log-concave service time, more redundancy is bad in the high

58

traffic regime. Thus it is better to cancel redundant tasks early, or launch fewer

replicas to begin with. Also, our computing cost metric E [C] serves as a powerful

tool to compare different redundancy strategies under high traffic.

2.6.2 Future Directions

Several generalizations of the system model have been studied in recent works, while

others open for future research. In Chapter 4 we describe some of these research

directions, and present preliminary insights on two directions of particular interest

to us: considering heterogeneous servers, and scheduling task replication when the

service time FX is unknown.

In Chapter 3 we study one such generalization studied in depth. Consider a job

with many parallel tasks, such that all tasks need to finish to complete the job. Then

the slowest tasks, or the stragglers become a bottleneck. In Chapter 3 we develop an

understanding of how to best replicate these slowest tasks, or ‘stragglers’ to minimize

latency with little or no additional resource usage.

Another generalization is to consider ‘coding’ of tasks instead of replication such

that any k out of n tasks are sufficient to complete the job. Part II analyzes the

interplay between latency and cost by introducing and analyzing the (n, k) fork-join

system.

59

60

Chapter 3

Straggler Replication in Parallel

Computing

3.1 Introduction

In Chapter 2 we considered replication of tasks in parallel computing at the task

level, and determined the best way to replicate assuming that all tasks use the same

replication strategy. Computing frameworks such as MapReduce/Hadoop [33] and

Apache Spark [55] employ massive parallelization by dividing a large job into many

tasks that can be executed parallely on different machines. These frameworks can

be used to run optimization and machine learning algorithms that can be easily

divided into independent parallel tasks, for example alternating direction method of

multipliers (ADMM) [56] and Markov Chain Monte-Carlo (MCMC) [57].

A key challenge in executing a job that consists of a large number of parallel

tasks is the latency in waiting for the slowest tasks, or the “stragglers” to finish.

As pointed out in [7, Table 1], the latency of executing many parallel tasks could

be significantly larger (140 ms) than the median latency of a single task (1 ms).

MapReduce and Apache Spark launch a “backup” copy of the straggling tasks to

speed up the job [33, 58]. This is also referred to as “speculative execution”. A line

of systems work [34, 35, 58] and references therein further developed this idea. For

example, Apache Spark implements “speculative execution” to allow relaunching slow

61

running tasks [59].

While task replication has been studied in systems literature and also adopted in

practice, there is not much work on mathematical analysis of replication strategies.

In this chapter we develop a mathematical framework to analyze such straggler repli-

cation strategies. In particular, the choice of a straggler replication strategy involves

optimizing the following aspects:

• Fractions of remaining tasks declared as stragglers

• How many replicas to launch for each straggler

• Whether to kill original copy or not

We characterize how these aspects impact the trade-off between latency and com-

puting cost, and identify regimes where replicating a small fraction of tasks drastically

reduces latency while also saving computing cost. These insights allow one to apply

optimization to search for scheduling policies based on one’s sensitivity to computing

latency and computing cost.

3.1.1 Organization

The rest of this chapter is organized as follows. In Section 3.2 we introduce notation,

formulate the problem, and define performance metrics used in this chapter. In

Section 3.3 we provide an analysis of single-fork task replication policies and defer all

proofs to Appendix D. Then in Section 3.4 we describe an algorithm that finds a good

scheduling policy for execution time distributions that are not analytically tractable

(e.g., empirical distributions from real-world traces). In Section 3.5 we conclude with

a discussion of the implications and future perspectives.

3.2 Problem Formulation

We now describe the system model, and propose the performance metrics used to

evaluate a task replication strategy.

62

3.2.1 Notation

First, we define some notation used in this chapter. Lower-case letters (e.g., x) denote

a particular value of the corresponding random variable, which is denoted in upper-

case letters (e.g., X). We denote the cumulative distribution function (c.d.f.) of X

by FX(x). Its complement, the tail distribution is denoted by F̄X(x) , 1 − FX(x).

We denote the upper end point of FX by

ω (FX) , sup {x : FX(x) < 1} . (3.1)

For i.i.d. random variables X1, X2, · · · , Xn, we define Xj:n as the j-th order statis-

tic, i.e., the j-th smallest of the n random variables.

3.2.2 System Model

We consider a job consisting of n parallel tasks, where n is large1 and each task is

assigned to a different machine. We use the probability distribution FX to model

the random variation in machine response time due to factors such as congestion,

queueing, virtualization, and competing jobs being run on the same machines, and

assume this execution time distribution is independent and identically distributed

(i.i.d.) across machines. The identical assumption of FX implies tasks in this job

are assigned to machines with processing power proportional to task size, with the

simplest case being a group of homogeneous tasks are assigned to a group of homoge-

neous machines. The independent assumption of FX could be satisfied when machine

response times fluctuate independently over time, or when each new task (or new

replica) is assigned to a new machine that is not previously used to run tasks of the

current job. Note that we treat the variability that FX captures as an exogenous

factor from a user’s perspective—in general a user renting machines from a cloud

computing service has little or no control over other jobs that share the resources.2

1Analysis of real-world trace data shows that it is common for a job to contain hundreds or even
thousands of tasks [51].

2A system designer may be able to influence this variability by adjusting the resource sharing
among different jobs, another interesting direction that is beyond the scope of this work.

63

3.2.3 Scheduling Policy

A scheduling policy or scheduler assigns one or more replicas of each task to different

machines, possibly at different time instants. The scheduler receives instantaneous

feedback notifying it when a machine finishes its assigned task. There is no intermedi-

ate feedback indicating the status of processing of a task. Upon receiving notification

that at least one replica of each of the n tasks has finished, the scheduler kills all

the other replicas immediately. We focus our attention on a set of policies called

single-fork policies, defined as follows.

Definition 7 (Single-fork scheduling policy). A single-fork scheduling policy π (p, r)

launches all n tasks at time 0. It waits until (1 − p)n tasks finish. For each of the

remaining pn straggling tasks, it chooses one of the following two actions:

• replicate and keep the original copy (πkeep (p, r)): launch r new replicas;

• replicate and kill the original copy (πkill (p, r)): kill the original copy and

launch r + 1 new replicas.

When the earliest replica of a task finishes, all the other remaining replicas of the

same task are terminated.

Note that in both scenarios there are a total of r + 1 replicas running after the

forking point. Fig. 3-1 illustrates these two cases of keeping or killing the original copy

of a task. For simplicity of notation we assume that p is such that pn is an integer.

We note that p = 0 corresponds to running n tasks in parallel and waiting for all to

finish, which is the baseline case without any replication or killing any original tasks.

Remark 5 (Backup tasks in MapReduce). The idea of “backup” tasks in Google’s

MapReduce [33], and “speculative execution” in Apache Spark [59] corresponds to a

single-fork policy with r = 1 and πkeep. The value of p is tuned dynamically and hence

not specified in [33]. The spark.speculation.quantile configuration corresponds

to p in the single-fork policy.

64

task k
original copy

replica 1... ...
replica r

“fork”

(a) Keep the original copy (πkeep)

task k

new replica

replica 1... ...
replica r

“fork”

(b) Kill the original copy (πkill)

Figure 3-1: Single-fork policy illustration

Although we focus on single-fork policies in this chapter, the analysis can be

generalized to multi-fork policies, where new replicas of straggling tasks are launched

at multiple times during the execution of the job [60, Section 6.4]. Although forking

multiple times can give a better latency-cost trade-off, the additional cost of launching

and killing replicas may outweigh the incremental benefit.

3.2.4 Performance Metrics

We now define the latency and cost metrics used to compare straggler replication

policies and understand when and how replication is useful.

Definition 8 (Expected latency). Given a scheduling policy, the expected latency

E [T] is the expected value of T , the time taken for at least one replica of each of the

n tasks to finish. It can be expressed as

E [T] = E
[

max
i∈{1,2,...,n}

Ti

]
, (3.2)

where Ti is the time when at least one replica of task i finishes. More specifically,

suppose the scheduler launches r replicas of each of the n tasks at times ti,j for j =

0, 1, 2, . . . r, then

Ti = min
0≤j≤r

(ti,j +Xi,j), (3.3)

where Xi,j are i.i.d. draws from the execution time distribution FX .

65

Definition 9 (Expected cost). The expected computing cost E [C] is the sum of the

running times of all machines, normalized by n, the number of tasks in the job.

The running time is the time from when the task is launched on a machine, until it

finishes, or is killed by the scheduler. More specifically, suppose the scheduler launches

r replicas of each of the n tasks at times ti,j for j = 0, 1, 2, . . . r, then

C ,
1

n

n∑
i=1

r∑
j=0

(Ti − ti,j)+ , (3.4)

where Ti is given in (3.3) and (x)+ = max(0, x).

Infrastructure as a Service (IaaS) providers such as Amazon Web Services (AWS),

Microsoft Azure, and Google Cloud Platform charge users by the time and the number

of machines used. Then the money spent by a user to rent the machines is proportional

to our cost metric E [C].

Fig. 3-2 illustrates the execution of a job with two tasks, and evaluation of the

corresponding latency T and cost C. Given two tasks, we launch two replicas of task

1 t1,1 = 0 and t1,2 = 2, and two replicas of task 2 at t2,1 = 0 and t2,2 = 5. The

task execution times are X1,1 = 8, X1,2 = 7, X2,1 = 11, and X2,2 = 5. Machine M1

finishes the task first at time t = 8, T1 = 8 and the second replica running on M2 is

terminated before it finishes executing. Similarly, machine M4 finishes task 2 at time

T2 = 10, and the replica running on M3 is terminated. Thus the latency of the job

is T = max {T1, T2} = 10. The cost is the sum of all running times normalized by n,

i.e., C = (8 + 6 + 10 + 5)/2 = 14.5.

3.3 Single-fork policy analysis

In this section we analyze the trade-off between the performance metrics E [T] and

E [C] for the single-fork policy defined in Definition 7. This analysis gives the insight

that the choice of the best single fork policy π (p, r) depends on two key characteristics

of FX : 1) whether the tail is heavy, light or exponential, and 2) whether the distribu-

tion is new-longer-than-used, new-shorter-than-used or neither. In Section 3.3.2 we

66

M1

M2

M3

M4

X1,1

X1,2

X2,1

X2,2

T1 = 8 T2 = 100 t1,2 = 2 t2,2 = 5

t

Figure 3-2: Illustration of T and C for a job with two tasks, and two replicas of
each task. The latency T = max(8, 10) = 10, and the computing cost is C =
(8 + 6 + 10 + 5)/2 = 14.5.

demonstrate this insight that Shifted exponential and Pareto distributions that have

been observed in cloud computing frameworks. All proofs are deferred to Appendix D.

3.3.1 Performance characterization

As defined in Definition 7, under the single-fork policy, a task is a “straggler” if

it has not finished execution by the time of “forking”. The amount of additional

time after the “fork” point needed for a straggling task to complete depends on the

number of replicas r and whether we kill or keep the original copy. We called this

residual execution time and denote it by random variable Y . Its distribution FY can

be expressed in terms of FX as given by Lemma 9 below.

Lemma 9 (Residual execution time of stragglers). As n → ∞, the tail distribution

F̄Y of the residual execution time (after the forking point) of each of the pn straggling

tasks is

F̄Y (y) =

F̄X (y)r+1 for πkill (p, r) ,

1
p
F̄X (y)r F̄X

(
y + F−1

X (1− p)
)

for πkeep (p, r) ,

(3.5)

given that p > 0 and y ≥ 0.

The proof of Lemma 9 is given in Appendix D. For example, if we kill the original

67

copy and choose r = 2, the tail of distribution F̄Y = F̄ 2
X , because two identical replicas

with distribution FX are launched at the forking point. For a job with a large number

of tasks n, the expected latency and cost can be expressed in terms of FX , FY and

the single-fork policy parameters p and r as given by Theorem 5 below.

Theorem 5 (Single-Fork Latency and Cost). For a computing job with n tasks, and

task execution time distribution FX , the latency and cost metrics as n→∞ are

E [T] = F−1
X (1− p) + E [Ypn:pn] , (3.6)

E [C] =

∫ 1−p

0

F−1
X (h)dh+ pF−1

X (1− p) + (r + 1)p · E [Y] , (3.7)

where FY is specified in Lemma 9 and E [Ypn:pn] is the expected maximum of pn i.i.d.

random variables drawn from FY .

Note that the choice of keeping or killing the original copy impacts the latency

and cost metrics purely through the distribution of Y (as shown in (3.5)), and hence

is not explicitly mentioned in Theorem 5.

A key observation from Theorem 5 is that the execution time before forking,

F−1
X (1 − p), is a quantity independent with respect to n and monotonically non-

increasing with p, while the execution time after forking, E [Ypn:pn], is monotonically

non-decreasing with pn. In certain regimes, increasing p (and with proper choice

of r), the time reduction in first stage outweighs the time increase in the second

stage, reducing the overall execution latency. We now give a sketch of the proof of

Theorem 5. A detailed proof can be found in Appendix D.

Proof Sketch of Theorem 5 . The latency T of a single fork policy π (p, r;n) can be

decomposed into T (1), the time to execute the first (1− p)n tasks, and T (2), the time

to execute the pn straggling tasks. The expected value of T (1) is

E
[
T (1)

]
= E

[
X(1−p)n:n

]
≈ F−1

X (1− p) for large n, (3.8)

where (3.8) follows from the Central Value Theorem (Theorem 14) which states that

the ((1− p)n)th order statistic concentrates sharply around F−1
X (1− p) as n→∞.

68

The second part of the latency, T (2) is the maximum of the residual time Y for

each of the pn straggling tasks finish. Thus, E
[
T (2)

]
= E [Ypn:pn]. The behavior of

the maximum order statistic of a large number of random variables is given by the

Extreme Value Theorem Theorem 16, and its behavior as n → ∞ depends on the

domain of attraction of X and is given by Lemma 10 below. The domain of attraction

DA (·) of X in turn depends on its tail behavior (exponential, heavy or light). For

example, exponentially decaying distributions belong to DA (Λ) while heavy-tailed

distributions belong to DA (Φξ).

Similarly, the expected cost E [C] can be evaluated by decomposing it into two

parts: before and after the replication of straggling tasks. The details can be found

in the proof in Appendix D.

Lemma 10. The asymptotic behavior of E [Ypn:pn] as n→∞ is given by

E [Ypn:pn] =


ãpnγEM + b̃pn FX ∈ DA (Λ) ,

ãpnΓ
(

1− 1
(r+1)ξ

)
FX ∈ DA (Φξ) ,

b̃pn − ãpnΓ
(

1 + 1
((1−l)r+1)ξ

)
FX ∈ DA (Ψξ) .

where we set l = 0 for πkill and l = 1 for πkeep, and DA (·) denotes domain of attrac-

tion, which can be determined for a distribution using Lemma 23 and Theorem 15.

The terms ãpn and b̃pn are the normalizing constants of FY given in Theorem 16, γEM

is the Euler-Mascheroni constant,

γ ,
∫ ∞

1

(
1

bxc −
1

x

)
dx ≈ 0.577, (3.9)

and Γ(·) is the Gamma function,

Γ(t) ,
∫ ∞

0

xt−1e−x dx. (3.10)

To decide whether to kill or to keep the original copy of the straggling task, we

are essentially comparing the additional time needed for the original time to finish

69

and the completion time for a new copy. This depends on FX(·) and in Lemma 11

we identify distributions FX for which killing the original task is better than keeping

the original task for any r and p, and vice versa.

Lemma 11 (Whether to kill or keep original task). If X satisfies the new-longer-

than-used property, that is,

Pr(X > x+ a|X > a) ≤ P [X > x] for all x, a ≥ 0, (3.11)

πkeep (p, r) gives lower latency E [T] than πkill (p, r) for any r and p. Similarly, if X is

new-shorter-than-used with the reverse inequality in (3.11), πkill (p, r) leads to lower

E [T]. In addition, for the asymptotic case n → ∞, we can apply Theorem 5 and

relax the condition in (3.11) to

Pr(X > x+ F−1
X (1− p)|X > F−1

X (1− p)) ≤ P [X > x] for all x ≥ 0. (3.12)

To prove this result we observe that when X is new-longer-than-used, Y (defined

in (3.5)) with πkill (p, r) stochastically dominates the case of keeping the original task.

The detailed proof is presented in Appendix D.

Remark 6. The notions ‘new-longer-than-used’ and ‘new-shorter-than-used’ are closely

related to log-concave and log-convex distributions defined Chapter 2. All log-concave

(log-convex) distributions are new-longer-than-used (new-shorter-than-used), but the

converse is not true. Thus, if X is log-concave (log-convex) then πkill (p, r) gives lower

latency than πkeep (p, r) for any r and p.

Thus, the hyper-exponential distribution which is log-convex is also new-shorter-

than-used, and the shifted exponential distribution which is log-concave is also new-

longer-than-used. In [61] ‘new-longer-than-used’ is called ‘new-better-than-used’ in

the context of residual life-time. Note that these notions are related to light and

heavy-tailed distributions but neither implies the other. For example, the Pareto

distribution is a heavy-tailed distribution, but is neither new-shorter-than-used nor

new-longer-than-used.

70

3.3.2 Examples of the Effect of Tail Distribution

By Theorem 5 the scaling of E [Ypn:pn] with n depends on whether the task service

time X is heavy, light or exponential tailed. And by Lemma 11, we know that the

choice between πkill or πkeep is governed by whether X is new-longer-than-used or

new-shorter-than used.

In this section we consider two execution time distributions: Shifted exponential

and Pareto, for which the latency-cost trade-off in Theorem 5 is tractable. The

shifted exponential distribution has an exponential tail, while Pareto distribution has

a heavy tail. The shifted exponential distribution is new-longer-than-used. The tail

Pr(X > x) of the Pareto distributionis new-shorter-than-used for x ≥ xm, but not

otherwise. Thus, Pareto is neither new-longer-than-used nor new-shorter-than-used.

For these two distributions we demonstrate how the tail, and the residual life of the

service time distribution affect the choice of the best single-fork policy.

Shifted exponential execution time

Consider that the task execution time distribution FX is a shifted exponential distri-

bution ShiftedExp (∆, µ). Its tail distribution function is given by

Pr(X > x) =

e
−µ(x−∆) for x ≥ ∆,

1 otherwise.

(3.13)

The shifted exponential distribution has an exponentially decaying tail. It is lower

bounded by a constant ∆, aiming to capture the delay due to machine start-up or

task initialization. Due to this constant ∆, the shifted exponential distribution is

new-longer-than-used. The special case ∆ = 0 corresponds to the pure exponential

distribution, which is both new-longer-than-used and new-shorter-than-used, which

implies that it is memoryless.

Theorem 6. For a computing job with n tasks, if the execution time distribution of

71

200 400 600 800 1,000

5

6

7

n

E [T]
p = 0.1

200 400 600 800 1,000

5

6

7

n

E [T]
p = 0.2

r = 1 & kill
original copy

r = 1 & keep
original copy

r = 2 & kill
original copy

r = 2 & keep
original copy

Figure 3-3: Comparison of the expected latency E [T] obtained from simulation
(points) and analytical calculations (lines) for the shifted exponential distribution
ShiftedExp (1, 1).

each task is ShiftedExp (∆, µ), then as n→∞, the latency and cost metrics are

E [T] =


2r+1
r+1

∆ + 1
(r+1)µ

(lnn− r ln p+ γEM) for πkeep (p, r)

2∆ + 1
(r+1)µ

(lnn− r ln p+ γEM) for πkill (p, r)

, (3.14)

E [C] =


∆ + 1

µ
+ p

[
∆ + r

(1−e−µ∆)
µ

]
for πkeep (p, r)

∆ + 1
µ

+ p(r + 2)∆ for πkill (p, r)

, (3.15)

where γEM is the Euler-Mascheroni constant defined in (3.9).

Fig. 3-3 compares the latency obtained from Monte-Carlo simulation and analyt-

ical calculations for the shifted exponential distribution, indicating that the latency

obtained from analytical calculation is very close to the simulated performance for

n ≥ 100, especially for the case with killing the original task.

We can draw the following observations from Theorem 6. Given r and whether we

kill or keep the original task, replicating earlier (larger p) gives an Θ(ln p) decrease in

latency, and a linear increase the cost. This is also illustrated in Figures 3-4a and 3-4b

for execution time distribution ShiftedExp (1, 1) and n = 400. Fig. 3-4c illustrates the

latency-cost trade-off.

For the special case of ∆ = 0 by Theorem 6, the cost E [C] = 1/µ, which is

72

independent of p and r. But latency always reduces with r and p. This suggests

that we can achieve arbitrarily low latency without any increase in cost. However, in

practice the minimum time to complete a task is non-zero. Thus, pure exponential

task service time is not a useful model for the purpose of analyzing task replication.

baseline r = 1 & kill original copy r = 2 & kill original copy

r = 0 & kill original copy r = 1 & keep original copy r = 2 & keep original copy

0 0.1 0.2 0.3 0.4
4

6

8

p

E [T]

(a) Expected latency E [T]

0 0.1 0.2 0.3 0.4

2

2.5

3

3.5

p

E [C]

(b) Expected cost E [C]

2 4 6

4

6

8

E [C]

E [T]

(c) Trade-off between E [T] and E [C]

Figure 3-4: Characterization for ShiftedExp (1, 1) and n = 400, by varying p in the
range of [0.05, 0.95].

73

200 400 600 800 1,000

10

15

n

E [T]
p = 0.1

200 400 600 800 1,000

10

15

n

E [T]
p = 0.2

r = 1 & kill
original copy

r = 1 & keep
original copy

r = 2 & kill
original copy

r = 2 & keep
original copy

Figure 3-5: Comparison of the expected latency E [T] obtained from simulation
(points) and analytical calculations (lines) for the Pareto distribution Pareto (2, 2).

Pareto execution time

The tail distribution function of the Pareto distribution Pareto (α, xm) is

Pr(X > x) ,


(
xm
x

)α
x ≥ xm,

1 otherwise

(3.16)

It has been observed to fit task execution time distributions in data centers [7, 51].

The Pareto distribution has a heavy-tail that decays polynomially. Pareto is neither

new-longer-than-used nor new-shorter-than-used.

Theorem 7. For a computing job with n tasks, if the execution time distribution of

each task is Pareto (α, xm), then as n→∞, the latency and cost metrics are

E [T] = xmp
−1/α + Γ

(
1− 1

(r + 1)α

)
ãpn, (3.17)

E [C] = xm
α

α− 1
− xm

p1−1/α

α− 1
+ (r + 1)pE [Y] . (3.18)

The values of ãpn and E [Y] depend on the whether we choose to keep or kill the

original task, and are given as follows.

74

Case 1: Killing the original task

ãpn = (pn)
1

(r+1)αxm, (3.19)

E [Y] =
(r + 1)α

(r + 1)α− 1
xm. (3.20)

Case 2: Keeping the original task

The term ãpn is the solution to

n1/αxr+1
m = xmp

−1/αãrpn + ãr+1
pn . (3.21)

and E [Y] is evaluated numerically as discussed in the proof.

Similar to Fig. 3-3, Fig. 3-5 compares the latency obtained from simulation and

analytical calculations for the Pareto distribution, which again demonstrates the ef-

fectiveness of the asymptotic theory. Based on Theorem 7, we can derive how E [T]

scales with n in the following corollary.

Corollary 6. For a computing job with n tasks, if the execution time distribution of

each task is Pareto (α, xm), then the expected latency satisfies

E [T] = Θ
(
n1/(α(r+1))

)
.

Corollary 6 indicates that

• the heavier the tail (smaller α), the faster E [T] grows with n;

• the latency reduction due to redundancy r diminishes as r increases due to the

1/(r + 1) factor in the exponent.

In Figures 3-6a and 3-6b we plot the expected latency and cost as p varies, for

different values of r. The black dot is the baseline case (p = 0), where no replication

is used and we simply wait for the original copies of all n tasks to finish. Note that

r = 0 and keeping the original copy is also equivalent to the baseline case, and thus

not plotted in the figures. The diminishing return of increasing r in terms of latency

75

reduction is clearly demonstrated. In addition, we observe that a small amount of

replication (small p and r) can reduce latency significantly in comparison with the

baseline case. But as p increases further, the latency may increase (as observed for

r = 0) because of the second term in (3.6).

baseline r = 1 & kill original copy r = 2 & kill original copy

r = 0 & kill original copy r = 1 & keep original copy r = 2 & keep original copy

0 0.1 0.2
0

20

40

60

p

E [T]

(a) Expected latency E [T]

0 0.1 0.2
3.5

4

4.5

5

p

E [C]

(b) Expected cost E [C]

3.5 4 4.5 5
0

20

40

60

p∗0≈ 0.03

p∗1≈ 0.05

p∗2 ≈ 0.02

E [C]

E [T]

(c) Trade-off between E [T] and E [C]

Figure 3-6: Characterization for Pareto (2, 2) and n = 400, by varying p in the range
of [0.05, 0.95].

Intuition suggests that replicating earlier (larger p) and more (higher r) will in-

crease the cost E [C]. But Figures 3-6a and 3-6b show that this is not necessarily true.

76

Since we kill replicas of task when one of its replicas finish, there could in fact be a

saving in the computing cost. However this benefit diminishes as p and r increase

above a certain threshold.

Fig. 3-6c shows the latency versus the computing cost for different values of r,

with p varying along each curve. Depending upon the latency requirement and limit

on the cost, one can choose an appropriate operating point on this trade-off. This plot

again demonstrates the non-intuitive phenomenon that it is possible to reduce latency

(from 70 to about 15 for r = 1 and r = 2 cases) and computing cost simultaneously.

3.4 Empirical execution time distributions

In certain practical systems it may be difficult to fit the empirical behavior of the

task execution time to a well-characterized distribution, thus making the latency-

cost analysis using the framework presented in Section 3.3 difficult. In this section we

propose an algorithm to estimate the latency and cost from the empirical distribution

of task execution time. Applying our algorithm to the Google Cluster Trace data [62],

we show that it is possible to improve upon the performance of the default replication

policy in MapReduce-style frameworks.

3.4.1 Latency and Cost Estimation

To estimate the latency and cost from empirical execution time samples, we apply the

bootstrapping method [63] that uses the empirical distribution as an approximation

of the true distribution.

Since the performance metrics E [T] and E [C] are functions of both X and Y , we

need samples for both X and Y . Drawing samples of Y is more involved, especially

for the case of killing the original task. To handle this, we leverage our analysis in

Lemma 9 and compute F̂Y (·) based on (3.5), thus avoiding excessive sampling. We

present the algorithm for performance characterization in Algorithm 3.1.

By Theorem 14, the standard deviation of the error in estimating E [C] and T̃1, first

term in E [T], converges to zero as O(1/
√
mn), where m is the number of times the

77

Algorithm 3.1 Latency and cost estimation

INPUT: x = [x1, x2, . . . , xn], n task execution duration samples (no replication,
no original task killing)
Compute the empirical c.d.f. F̂X(x) from x
Compute c.d.f. F̂Y (y) using (3.5)
for i = 1, 2, . . .m do

Draw n samples x̂ = [x̂1, x̂2, . . . , x̂n] from F̂X
Sort x̂ in ascending order: [x̂(1), x̂(2), . . . , x̂(n)]
k ← n(1− p); k′ ← np

T̃
(i)
1 ← x̂(k) (the k-th smallest sample in x̂)

C̃
(i)
1 ←

∑k
j=1 x̂(j)

Draw k′ samples ŷ = [ŷ1, ŷ2, . . . , ŷk′] from F̂Y
T̃

(i)
2 ← max1≤j≤k′ ŷj
Y

(i)
sum ←

∑k′

j=1 ŷj

C̃
(i)
2 ← pnT̃

(i)
1 + (r + 1)Y

(i)
sum

T̃ (i) ← T̃
(i)
1 + T̃

(i)
2

C̃(i) ← 1
n

[
C̃

(i)
1 + C̃

(i)
2

]
end for
T̃ ← mean of T̃ (i) for i = 1, 2, . . .m
C̃ ← mean of C̃(i) for i = 1, 2, . . .m
OUTPUT: [T̃ , C̃]

sampling procedure is repeated. And generally T̃2, the maximum order statistic term

in E [T], converges to zero as O (1/
√
m). Thus, the estimation of C̃ is more robust

than that of T̃ . Nonetheless, with large enough m, we can make the estimation errors

of both metrics small enough.

3.4.2 Demonstration using Google Cluster Trace

The Google Cluster Trace data [62] gives timestamps of events such as SCHEDULE,

EVICT, FINISH, FAIL, KILL etc. for each of the tasks of computing jobs that are

run on Google’s cluster machines. In this section we apply Algorithm 3.1 to two jobs

in the Google Cluster Trace, and observe performance trade-offs in task execution

distribution based on real-world data.

In our demonstration we only consider tasks with SCHEDULE and FINISH times,

as we would like to obtain samples that represent a normal execution (not killed or

78

0 1000 2000 3000 4000 5000 6000
Task duration (second)

0.000

0.002

0.004

0.006

0.008

0.010

Fr
ac

tio
n

of
 s

am
pl

es

(a) Job 1: Google cluster Job
6252284914 (1026 tasks)

0 200 400 600 800 1000 1200 1400 1600
Task duration (second)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Fr
ac

tio
n

of
 s

am
pl

es

(b) Job 2: Google cluster Job
6252315810 (488 tasks)

100 150 200 250 300 350 400 450 500 550
Task duration (second)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
ac

tio
n

of
 s

am
pl

es

(c) Job 3: Tail-shortened Job
6252315810 (485 tasks)

Figure 3-7: Normalized histogram of the task execution times

evicted). In a few rare cases, a task is associated with multiple SCHEDULE and

FINISH events due to duplicate execution. For these we choose to keep the first

occurrences in each event category.

We choose two jobs (Job ID 6252284914 and 6252315810) with different number

of tasks. For each task in a job, we obtain the task execution time by calculating the

time difference between SCHEDULE and FINISH. The normalized histograms of the

task execution times of the two jobs are shown in Fig. 3-7a and Fig. 3-7b respectively.

Both the distributions indicate heavy tail behavior of the task execution time, where

the heavy tail is more pronounced in Fig. 3-7a. In addition, to show the importance

of stragglers, we modify the trace for Job 6252315810 by removing the 3 samples with

execution time longer than 1400 seconds, leading to the execution time distribution

shown in Fig. 3-7c.

We then apply these execution time samples as inputs to Algorithm 3.1 with

m = 1000. By varying the value of r (r ∈ {1, 2, 3}) and p (0 ≤ p ≤ 0.5), we plot the

E [T]-E [C] trade-offs for all three jobs in Figures 3-8 to 3-10.

For the two Google cluster jobs (Job 1 and 2), we observe that a small amount

of replication (small p) reduces both E [T] and E [C] significantly, demonstrating the

effectiveness of replication for real-world execution time distributions. In both cases,

it is better to replicate while keeping the original task, because at the “fork” point,

the additional time needed for the original copy to finish is more likely to be shorter

than the execution time of a new copy. We also observe that for the Job 2 (Job ID

79

800 820 840 860 880 900 920 940 960
Expected Cost E[C] per task

1500

2000

2500

3000

3500

4000

4500

5000

5500

Ex
pe

ct
ed

 L
at

en
cy

 E
[T

]

p=0.0

p=0.5

p=0.0

p=0.5

p=0.0

p=0.5

(807, 2008)

(815, 1798)

(807, 2008)

(815, 1798)

MapReduce setting (r=1)
r= 2 & keep original copy

r= 3 & keep original copy

(a) Original copy kept πkeep

800 1000 1200 1400 1600 1800 2000
Expected Cost E[C] per task

1500

2000

2500

3000

3500

4000

4500

5000

5500

Ex
pe

ct
ed

 L
at

en
cy

 E
[T

]

p=0.0

p=0.5

p=0.0

p=0.5

p=0.0

p=0.5

r= 1 & kill original copy
r= 2 & kill original copy
r= 3 & kill original copy

(b) Original copy killed πkill

Figure 3-8: The E [T]-E [C] trade-off for Job 1 (ID 6252284914) with 1026 tasks. Each
pair of adjacent dots corresponds to change in p by 0.01.

6252315810), too much redundancy may hurt, because at some point increasing p

actually leads to increases in both E [T] and E [C]. However, this phenomenon does

not exist for Job 1 (Job ID 6252284914) when r = 2 or r = 3. We conjecture this is

due to the tail in Fig. 3-7a is heavier than that in Fig. 3-7b.

We recall that the back-up tasks option in MapReduce uses r = 1 and keeps the

original task, and show that for certain jobs it may be more desirable to improve

the performance trade-off by using more replicas, such as in Job 1, where a higher

r could lead to lower latency E [T] with a slightly higher cost E [C]. For example,

πkeep (p, r = 1) achieves (E [C] ,E [T]) = (807, 2008), while πkeep (p, r = 2) achieves

(E [C] ,E [T]) = (815, 1798). For Job 2, the trade-off improvement via using a higher

r is less significant, as Fig. 3-9 indicates. Finally, for both jobs we observe that

increasing r has a diminishing effect on the reduction of E [T].

For the tail-shortened trace histogram in Fig. 3-7c, killing the original copy in-

creases the latency, because it is too “impatient”—the original copy is likely to finish

before a new copy of the task. On the other hand, if we keep the original copy,

adding a small amount of redundancy again can reduce latency and computing cost

simultaneously, as shown in Fig. 3-10a. Lastly, Fig. 3-10 indicates that killing and

replicating can lead to worse performance trade-off, so one needs to apply replication

80

285 290 295 300 305 310
Expected Cost E[C] per task

400

600

800

1000

1200

1400

1600

Ex
pe

ct
ed

 L
at

en
cy

 E
[T

]
p=0.0

p=0.5

p=0.0

p=0.5

p=0.0

p=0.5

MapReduce setting (r=1)
r= 2 & keep original copy
r= 3 & keep original copy

(a) Original copy kept πkeep

200 300 400 500 600 700 800
Expected Cost E[C] per task

600

700

800

900

1000

1100

1200

1300

1400

1500

Ex
pe

ct
ed

 L
at

en
cy

 E
[T

]

p=0.0

p=0.5

p=0.0

p=0.5

p=0.0

p=0.5

r= 1 & kill original copy
r= 2 & kill original copy
r= 3 & kill original copy

(b) Original copy killed πkill

Figure 3-9: The E [T]-E [C] trade-off for Job 2 (ID 6252315810) with 488 tasks. Each
pair of adjacent dots corresponds to change in p by 0.01.

285 290 295 300 305 310
Expected Cost E[C] per task

430

440

450

460

470

480

490

500

510

520

Ex
pe

ct
ed

 L
at

en
cy

 E
[T

]

p=0.0

p=0.5

p=0.0

p=0.5

p=0.0

p=0.5

MapReduce setting (r=1)
r= 2 & keep original copy
r= 3 & keep original copy

(a) Trade-off with original copy kept πkeep

200 300 400 500 600 700 800
Expected Cost E[C] per task

500

550

600

650

700

750

Ex
pe

ct
ed

 L
at

en
cy

 E
[T

]

p=0.0

p=0.5

p=0.0

p=0.5

p=0.0

p=0.5

r= 1 & kill original copy
r= 2 & kill original copy
r= 3 & kill original copy

(b) Trade-off with original copy killed πkill

Figure 3-10: The E [T]-E [C] trade-off for the Job 3 (tail-shortened Job 2) with 485
tasks. Each pair of adjacent dots corresponds to change in p by 0.01.

with care.

We draw the following observations from the above examples:

• Replication often reduces E [T] and E [C] simultaneously.

• A small amount of replication usually suffices and too much replication leads

to a sharp increase in E [C].

81

• If FX is new-longer-than-used, we should keep the original task.

3.4.3 Scheduling policy selection

With the trade-off between latency E [T] and computing cost E [C] provided in Algo-

rithm 3.1, a user can formulate an optimization problem to choose the best scheduling

policy based on one’s sensitivity to latency and computing cost. In addition, one can

incorporate additional constraints, such as rmax, the maximum number of copies to

replicate r, due to the communication overhead of issuing and canceling tasks.

For example, a latency-sensitive user may choose to define the optimal scheduling

policy via the following constrained optimization problem:

minimize E [T (π)] , (3.22)

subject to E [C(π)] ≤ E [C(π0)] , (3.23)

r ≤ rmax,

where π0 is the baseline scheduling policy without replication and rmax the maximum

allowed number of copies for a task. On the other hand, a cost-sensitive user may

choose to define the optimal scheduling policy via the following optimization problem:

minimize E [T (π)] + λnE [C(π)] , (3.24)

subject to r ≤ rmax,

where λ indicates the relative importance of computing cost, because E [C] is approx-

imately proportional to the cost of cloud computing instances. While it is difficult

to determine closed-form optimal solutions to (3.22) and (3.24), we observe that

constrained optimization methods such as the Constrained Optimization BY Linear

Approximation (COBYLA) method [64] are effective in searching for the optimal so-

lution due to the low dimensionality of the search space. In Table 3.1, we present the

scheduling policies obtained via these two different optimization formulations.

82

Baseline Latency-sensitive Cost-sensitive with λ = 0.1
Job E [T] E [C] p∗ r∗ keep/kill E [T] E [C] p∗ r∗ keep/kill E [T] E [C]
Job 1 5068 882 0.343 4 keep 1676 881 0.234 1 keep 2213 806
Job 2 1418 296 0.038 4 keep 463 291 0.181 4 keep 542 286
Job 3 520 290 0.044 4 keep 432 290 0.173 1 keep 480 285

Table 3.1: Scheduling policy obtained via latency-sensitive optimization in (3.22) and
cost-sensitive optimization in (3.24).

3.5 Concluding remarks

3.5.1 Main Implications

Replication of the slowest tasks of a computing job (straggling tasks) has been ob-

served to be highly effective in frameworks such as MapReduce to speed-up job com-

pletion. In this chapter we provide a theoretical framework to understand the effect

of straggler replication on the job completion latency, and the additional computing

time spent on running the replicas.

Using tools from extreme value theory, we characterize the latency-cost trade-off

in terms of the task execution time distribution FX . We focus on three parameters

of a replication strategy: 1) fraction of slowest tasks of a job that are considered as

stragglers, 2) number of replicas of each straggling task, and 3) whether we should

kill the original copy of the task and relaunch it on a new machine.

This analysis gives the insight that the scaling of job completion latency with the

number of tasks depends on the whether the tail of FX is heavy, light, or exponential.

And, the choice of whether we should kill or keep the original task depends on whether

FX is new-longer-than-used or new-shorter-than-used. For example, if FX is the

shifted exponential distribution, which is new-longer-than-used, then it is better to

keep the original task running. Our latency-cost analysis helps identify regimes where

replicating a small fraction of stragglers can drastically reduce latency and reduce

computing cost as well.

We also propose a bootstrapping-based algorithm to estimate the latency and cost

from empirical traces of execution time. Using this algorithm on the Google Cluster

Trace data, we demonstrate that careful choice of the replication strategy can improve

83

the latency-cost trade-off as compared to the default option in MapReduce.

3.5.2 Future Directions

Generalizations of this straggler replication model include considering heterogeneous

servers, dependencies between tasks (some tasks need to complete in order to begin

others), and taking into account queueing delay of tasks as considered in Chapter 2

for the single task case. Another direction is to analyze approximate computing,

where we need only a subset of the tasks of a job to complete, a relevant model for

information retrieval and machine learning jobs. This idea is developed in the context

of coded distributed storage in Part II. Finally, we aim to develop an algorithm that

learns the task execution time distribution FX online, and uses it to decide when and

how many replicas to launch. This has an exploration-exploitation trade-off, similar

to the multi-arm bandit problems studied in reinforcement learning [65]. Preliminary

insights on this problem are described in the Chapter 4.

84

Chapter 4

Future Directions

In Chapter 2 we analyze the effect of task replication on queues in cloud systems.

Chapter 3 generalizes the model to consider replication of the stragglers in a job with

many parallel tasks. In recent years there is a flurry of works building on this idea

of using redundancy to reduce delay in cloud systems. In Section 4.1 we describe

some of these generalizations of the model considered in Chapter 2. Next we describe

preliminary insights on two generalizations of particular interest to us: heterogeneous

servers (Section 4.2), and unknown service distributions (Section 4.3). Broader re-

search directions of beyond the realm of cloud infrastructure, such as crowdsourcing

are described in Chapter 11.

4.1 Recent Model Generalizations

4.1.1 Exact Analysis of T

In Chapter 2 and Chapter 3 the latency metric is E [T], the expected waiting plus

service time. Although the expected value is a good indicator of the average behavior,

often system designers are interested in the tail, for example the 99th percentile la-

tency. For a majority of queueing problems, determining the distribution of response

time T requires the assumption of exponential service time. Considering the expected

latency E [T] in Chapter 2 allowed us to look at arbitrary service time FX and dis-

85

cover that log-concavity is the key property governing the choice of the replication

strategy.

The exact analysis of T is tractable in some regimes. For the full replication

(r = n) case, we can determine the distribution of T using Lemma 2 and Lemma 3.

For example, when r = n and cancel-on-finish, T is equivalent in distribution to the

latency of an M/G/1 queue with service time X1:n. Then transform analysis [54,

Chapter 25] can be used to determine the distribution of T . The Laplace-Stieltjes

transform T (s) of the probability density function of fT (t) of T is given by,

T (s) =
sX1:n(s)

(
1− λ

E[X1:n]

)
s− λ(1−X1:n(s))

, (4.1)

whereX1:n(s) is the Laplace-Stieltjes transform of the service time distribution fX1:n(x).

When r < n, the analysis of T is hard in general. An exact analysis of T when

each task is replicated at r < n servers chosen uniformly random is presented in [66],

albeit for exponential service time. The analysis is highly non-trivial problem even

with the exponential service time assumption and requires using a numerical package

to solve a set of differential equations.

To go to general service times [49, 67] uses a very interesting approach of deter-

mining latency-optimality gaps. For new-better-than-used (NBU) and new-worse-

than-used (NWU) service distributions they propose replication strategies and show

that their latency T is within a provably small gap from the latency of the optimal

scheduling policy. The proof approach uses a series of elegant stochastic ordering ar-

guments. However, it is hard to generalize this arbitrary service distributions beyond

the NBU and NWU distributions.

4.1.2 Cancellation Overheads

So far we assumed that cancellation of redundant tasks is instantaneous. However in

practice there may be a significant delay in cancelling tasks, which can diminish the

benefits of replication.

86

We now present preliminary insights in the low traffic regime where all servers are

idle. Consider that a task is replicated at r servers. As soon as one replica finishes,

that server contacts other replicas to cancel them. This cancellation process takes ∆

seconds of time at each of the r servers. Then the latency and cost are given by

E [T] = min(X1, X2, . . . , Xr) + ∆ (4.2)

E [C] = r(min(X1, X2, . . . , Xr) + ∆) (4.3)

From (4.2) and (4.3), we observe that the latency and cost with cancellation delay

is equivalent to that for instantaneous cancellation with service time X ′ = X + ∆.

Adding ∆ makes the effective service time X ′ ‘more log-concave’. Thus less or no

replication would give a better latency-cost trade-off.

Going beyond the low traffic regime and analyzing the effect of cancellation delays

in presence of queueing delays is a hard problem. It has been systematically studied

in recent work [68] for the two server case with exponential service time. In [68] the

cancellation delay is also considered to be an exponential random variable. Build-

ing on this work and understanding how cancellation delays affect servers with an

arbitrary given distribution FX is an open problem.

4.1.3 Correlated Tasks

In our analysis we assume that the service time X is i.i.d. across tasks and servers.

However, in practice the time taken to serve a task is usually proportional to its

size. Thus when the same task is assigned to two servers, there would be correlation

between their service times.

To account for this, we can replace X by X ′ = d + X, where d is the part of the

service time proportional to the size of the task, and X is the random delay due to

the server. More generally, d can be a random variable D. Analysis of the effect of

D is presented in recent work [69]. In the context of storage systems we also studied

correlated task service times in [21].

87

4.1.4 Data Locality

In both Chapter 2 and Chapter 3, we assume that all servers have the data required

to execute each task that enters the systems. However very often this is not true

in practice because servers may need to fetch the necessary data to run a task and

thus take a longer time to finish it. Consider these effects of data locality is a future

research direction.

Tasks scheduling policies taking into account these data locality constraints are

proposed in [70], without replication of tasks. They consider a hierarchical structure

of servers in a data center such that serving a task close to its data (for example

within the same rack) results in faster service than at a server that is further away.

Analyzing how replication strategies would be affected by these variations in service

rates is open problem. A possible first step to approach it is to consider heterogeneous

servers as described in Section 4.2.

The effect of data locality constraints on the task can also be considered via

heterogeneous task classes, which are analyzed in [40]. Tasks belonging to a particular

class can only be assigned to one or more servers that have the necessary data to serve

data. Thus some classes of tasks can be replicated more than others. The paper [40]

provides an understanding of whether the replication of one class adversely affects

another class of tasks that are not replicated.

4.1.5 Coded and Approximate Computing

In Chapter 3 we consider a job with n parallel tasks such that all tasks need to

complete to finish the job. Then the slowest tasks become a bottleneck and we need

to apply straggler replication techniques to cut the tail latency.

In the context of storage systems described in Part II, we consider that a file is

divided into k chunks and coded into n chunks. Then if we request all n chunks, any k

are sufficient to recover the file. Thus, coding helps avoid the problem the stragglers.

Coding can also be applied in the context of cloud computing, as explored in [71,72]

recently. In [72], the authors propose methods to ‘code’ in machine learning problems

88

such as matrix multiplication, and demonstrate significant latency reductions.

Even without coding over the tasks, there are applications where an approximate

result is sufficient to complete a computing job. For example, when stochastic gradient

descent is run in a distributed fashion [73], each task corresponds to a gradient update

using a small batch of training samples. Then it is not necessary to complete all

the tasks for the parameters to reach the desired accuracy. Developing a rigorous

understanding of latency in such problems is an open future direction.

4.2 Heterogeneous servers

In this section we describe preliminary insights on scheduling tasks to a set of hetero-

geneous servers. Task replication on heterogeneous servers has been considered in [67]

for NBU and NWU service time distributions. The paper provides the insight that

it is optimal to replicate tasks on a set of servers that all have NWU distributions.

Conversely, for a set of servers that all have NBU distributions, it is optimal to not

replicate tasks. However, whether we can pair one server with a NWU distribution

with another that has a NBU distribution is unknown. More generally, scheduling

task replication on heterogeneous servers with arbitrary service distributions that

may be neither NBU or NWU, is an open problem.

In the sequel we formulate the problem concretely and describe our initial steps

towards the solution. We get the insight that servers can be ‘paired’ via replication

such that together, their service rate is higher than the sum of the individual servers.

Thus, counter-intuitively, task replication can in fact improve the efficiency of the

system of servers.

4.2.1 Problem Formulation

Consider a system of K servers, illustrated in Fig. 4-1. The time taken by server i

to finish a task assigned to it is a random variable Xi, independent and identically

distributed across tasks assigned to that server. The service times are also indepen-

dent across different servers. We consider that there are a large number of tasks n in

89

1	
 2	
 3	
 4	

X2

X1

XK

Assign to 1 or
more idle
servers

Figure 4-1: System of K servers with heterogeneous service times X1, X2, . . . XK ,
independent across the servers.

a centralized queue. The scheduler can assign each task to one or more idle servers.

The difference between this model and that of Chapter 2 is that for tractability of

analysis, we consider a centralized queue of tasks rather than distributed queues at

each server. Also, we assume that a large number of tasks are already in the queue

instead of considering Poisson task arrivals. There is a centralized scheduler that

assigns each task to one or more servers. As soon as one replica finishes, the others

are cancelled immediately.

We evaluate the performance of a scheduling policy π in terms of the throughput

R̄ which is defined as follows.

Definition 10 (Throughput R̄). Let Tn be the time when the nth task departs from

the system of K servers. Then the throughput is defined as

R̄ = lim
n→∞

n

Tn
(4.4)

Our objective is to maximize R̄ for n→∞. In the sequel we show that R̄ can be

expressed in terms of the expected computing time which is defined as follows.

Definition 11 (Expected Computing Time E [C]). The expected computing time

E [C] is the total expected time spent by the servers per task.

Claim 2. The throughput-optimal policy has to be a work-conserving, such that it

does not allow any server to be idle when one or more tasks are remaining in the

central queue.

90

Proof. Suppose a task has r replicas that start at times 0 = t1 ≤ t2 ≤ . . . tr at different

servers. The time spent by the task in the system is S = min(X1, X2 + t2, . . . Xr + tr).

Using a non-work-conserving policy that idles one or more of these servers for a non-

zero time will strictly increase S. This in turn will result in a strict increase Tn,

and thus decrease R̄. Even at the end of the execution when only the last task is

left in the system, it is always sub-optimal to let any server idle. The throughput-

optimal policy would replicate the last remaining task at all K servers. Thus, the

throughput-optimal policy has to be work-conserving.

Claim 3. The scheduling policy that minimizes E [C] maximizes the throughput R̄.

Proof. By Claim 2, the total busy time of each server is exactly equal to Tn under

the optimal policy. By law of large numbers and the definition of E [C],

R̄ = lim
n→∞

Tn
n

=
E [C]

K
(4.5)

Thus, the scheduling policy that minimizes E [C] also maximizes R̄.

4.2.2 Two Server Motivating Example

To illustrate how replication can increase the effective service rate of a system of

heterogeneous servers, let us consider the two server case. We compare two task

scheduling policies: no replication and full replication illustrated in Fig. 4-2. This

comparison provides insights into when it is better to pair the servers via replication.

1	

2	

3	

4	
 X2

X1

(a) No replication (π1): Assign each task
to the first idle server

1	

2	
 3	
 4	

1	
 X2

X1

Assign to
both servers

(b) Full replication (π2): Assign each task
to both servers and wait for one

Figure 4-2: Illustration of the policies compared in Section 4.2.2

91

No Replication (π1)

Each task is assigned to the first available idle server. For this policy, the expected

computing cost is given as follows

E [C(π1)] = Pr(Assign to Server 1)E [X1] + Pr(Assign to Server 2)E [X2] (4.6)

=
E [X2]

E [X1] + E [X2]
E [X1] +

E [X1]

E [X1] + E [X2]
E [X2] (4.7)

=
2

1/E [X1] + 1/E [X2]
(4.8)

Full Replication (π2)

Each task is assigned to both servers, and as soon as one replica finishes, the other is

canceled immediately.

E [C(π2)] = 2E [min(X1, X2)] (4.9)

Lemma 12. For a large number of tasks n→∞, the full replication policy π2 results

in higher throughput than the no replication policy π1 if and only if

1

E [min(X1, X2)]
>

1

E [X1]
+

1

E [X2]
(4.10)

Proof. By comparing E [C(π1)] and E [C(π2)] and applying Claim 3 we get Lemma 12.

Using Lemma 12 we can compare the two policies for any arbitrary distributions

of X1 and X2. If X1 and X2 are log-concave or log-convex then we get insights similar

to Chapter 2. If X1 and X2 are exponential with rates µ1 and µ2 respectively then

both sides of (4.10) will be equal. If X2 is log-concave (for eg. shifted exponential),

and X1 is exponential then no replication gives higher throughput, as illustrated in

Fig. 4-3. Similarly, if X2 is log-convex then the full replication policy π2 gives higher

throughput as illustrated in Fig. 4-4.

Instead of these two extreme policies: no replication and full replication, we can

92

0.0 0.5 1.0 1.5 2.0

∆, the constant additive term on exec time of Server 2

0.55

0.60

0.65

0.70

0.75

E
x
p
e
ct

e
d
 T

a
sk

 S
e
rv

ic
e
 R

a
te

No Replication (π1)

Full Replication (π2)

Figure 4-3: The no replication strategy gives higher throughput when X1 ∼ Exp(0.5)
and X2 ∼ ∆ + 0.25) (which is log-concave). The shift ∆ increases along the x− axis.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

µ2 , the rate of the exponential in HyperExp(0.3,0.5,µ2)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

T
h
ro

u
g
h
p
u
t

No Replication (π1)

Full Replication (π2)

Figure 4-4: The full replication strategy gives higher throughput when X1 ∼ Exp(0.5)
and X2 ∼ HyperExp(p = 0.3, µ1 = 0.5, µ2) (which is log-convex). The rate µ2 increases
along the x− axis.

also replicate tasks in a softer manner. For example, replicas could be added con-

ditionally if a task does not finish in some given time. We propose the following

scheduling policy that maximizes the instantaneous service rate of the system of

servers.

93

Definition 12 (Max-rate policy πR). Without loss of generality, consider that server

1 finishes its assigned task and becomes idle. At this instant, suppose server 2 has

spent t seconds on its current task. Let X ′2 be its residual execution time, whose

distribution is Pr(X ′2 > x) = Pr(X2 > t+ x)/Pr(X2 > t) for x, t ≥ 0. Then if

1

E [min(X1, X ′2)]
>

1

E [X1]
+

1

E [X ′2]
(4.11)

add a replica of the task running on server 2. Otherwise, assign a new task from the

centralized queue to server 1.

Generalizing this policy to K > 2 servers, and determine whether it is throughput-

optimal (we conjecture that it is optimal) is open for future research.

4.3 Unknown Service Distribution

In this section we discuss another model generalization of particular interest: how to

schedule tasks if the distribution FX is unknown? Can we learn it online and adapt

the scheduling policy? To the best of our knowledge, these questions have not been

addressed in previous works.

4.3.1 Statistical Log-concavity Tests

In Chapter 2 we saw that the log-concavity of the task service time X is an important

factor in determining whether replication helps. Also in Chapter 3, whether to kill or

to keep the original copy of a straggling task depends on whether X is new-longer-

than-used or new-shorter-than-used.

If X is not known beforehand, one way to choose the best replication strategy is

via statistical tests for log-concavity. One among many such tests presented in [74] is

the test for the increasing/decreasing hazard rate property. Given n empirical samples

arranged in increasing order X(1), X(2), . . . , X(n), we first define the normalized spacing

94

between order statistics defined as follows

Di = (n− i+ 1)(X(i) −X(i−1)), for i = 1, 2, 3, n (4.12)

If X is log-concave, then Di’s exhibit a downward trend with i. The Proschan and

Pyke test [75] uses this property and declares X as log-concave if

Pn =
∑
i<j

1(Di > Dj), (4.13)

is greater than some critical value. The function 1(E) is the indicator random variable

which is 1 if event E occurs, and 0 otherwise. Conversely, by flipping the inequality

sign in the indicator function we can test for log-convex distributions, which have

the decreasing hazard rate property. Other tests for the increasing/decreasing hazard

rate include the Epstein test [76, 77] and the Bickel and Doksum test [78]. Future

work includes using such tests to determine the best replication strategy.

More broadly, strict log-concavity or log-convexity of X may not be necessary for

the tests to be effective. Empirical samples may result in the erroneous classification

of a ‘near-log-convex’ distribution as log-convex. However, a replication strategy that

is optimal for log-convex distributions may still perform very well for such ‘near-log-

convex’ distributions. We seek to develop a deeper understanding of how the error in

the statistical test affects the performance of the replication strategy inferred from it.

4.3.2 Multi-arm bandits

Instead of estimating whether the distribution is log-concave or log-convex, we can

try to directly adapt the optimal replication strategy based on empirical samples of

service time. We now describe some initial thoughts on this approach.

Choosing the best arm r

Consider a simplified problem where we have n servers with i.i.d. task service times

X, and assume that the arrival rate λ → 0 such that the queues at the servers are

95

empty. Each task can be assigned to r out of the n servers. As soon as one replica

finishes, the others are canceled immediately. Our objective is to find the optimal r∗

that minimizes the cost rE [X1:r].

If we launch r replicas for kr tasks we get samples X
(1)
1:r , X

(2)
1:r , . . . , X

(kr)
1:r and can

use them to estimate E [X1:r]. Thus this can be posed as a multi-arm bandit problem

with n arms. The difference from the classic multi-arm bandit problem is that the

arms are correlated through the distribution X. Samples X
(1)
1:r , X

(2)
1:r , . . . X

(kr)
1:r can be

used to generate samples X
(1)
1:r′ , X

(2)
1:r′ , . . . from arm r′ 6= r, albeit with more error than

drawing samples from arm r′ directly.

Future work includes developing an algorithm that converges to the optimal r∗

with minimum number of total samples from the n arms. Accounting for the effect

of queueing at the servers is a natural generalization of this model.

Heterogeneous servers

In Section 4.2 we considered the problem of scheduling task replication on heteroge-

neous servers with distributions X1, X2, . . . Xn. If these distributions are unknown, we

can learn them online using a multi-arm bandit approach. In this problem there will

be an exploration-exploitation trade-off between finding faster servers by schedul-

ing tasks to them, and exploiting the currently estimated fastest servers and their

pairings.

96

Part II

Fast Content Download from

Coded Storage

97

Chapter 5

Background and Problem

Formulation

5.1 Introduction

5.1.1 Motivation

Large-scale cloud storage systems such as Amazon Elastic Block Store (EBS) [79] and

Google File System (GoogleFS) [80] have become the backbone of many applications,

e.g., searching, e-commerce, and cluster computing. Content files stored on these

systems may be simultaneously requested by multiple users. Content download time

includes the time taken for a user to compete with the other users for access to the

disks, and the time to acquire the data from the disks. Fast content download is

important for delay-sensitive applications such as video streaming, VoIP, as well as

collaborative tools like Dropbox [81] and Google Docs [82].

In large-scale distributed storage systems, disk failures are the norm and not

an exception [7]. To protect the data from disk failures, cloud storage providers

today simply replicate content throughout the storage network over multiple disks.

In addition to fault tolerance, replication makes the content quickly accessible since

multiple users requesting a content can be directed to different replicas. However,

replication consumes a large amount of storage space. In data centers that process

99

massive data, using more storage space implies higher expenditure on electricity,

maintenance and repair, as well as the cost of leasing physical space.

Coding, which was originally developed for reliable communication in presence

of noise, offers a more efficient way to store data in distributed systems. The main

idea behind coding is to add redundancy so that a content, stored on a set of disks,

can be reconstructed by reading a subset of these disks. Previous work shows that

coding can achieve the same reliability against failures with lower storage space used.

It also allows efficient replacement of disks that have to be removed due to failure

or maintenance. We show that in addition to reliability and easy repair, coding also

gives faster content download because we only have to wait for content download

from a subset of the disks.

5.1.2 Previous Work

Research in coding for distributed storage was galvanized by the results reported

in [83]. Prior to that work, literature on distributed storage recognized that, when

compared with replication, coding can offer huge storage savings for the same reli-

ability levels. But it was also argued that the benefits of coding are limited, and

are outweighed by certain disadvantages and extra complexity. Namely, to provide

reliability in multi-disk storage systems, when some disks fail, it must be possible to

restore either the exact lost data or an equivalent reliability with minimal download

from the remaining storage. This problem of efficient recovery from disk failures was

addressed in some early work [84]. But in general, the cost of repair regeneration

was considered much higher in coded than in replication systems [85], until [83] es-

tablished existence and advantages of new regenerating codes. This work was then

followed by several related papers, for e.g., [86–88] and references therein.

Currently erasure codes are used for ‘cold’ that is, less frequently accessed content

for which access delay is not pertinent. However for ‘hot’ or highly accessed content

that is frequently requested by many users simultaneously, replication is prevalent.

Users can be directed to any one replica of the content. Only recently [39,89,90] was it

realized that, in addition to reliability, coding can guarantee the same level of content

100

accessibility, but with lower storage than replication. In [89], the scenario that when

there are multiple requests, all except one of them are blocked and the accessibility is

measured in terms of blocking probability is considered. In [90], multiple requests are

placed in a queue instead of blocking and the authors propose a scheduling scheme

to map requests to servers (or disks) to minimize the waiting time.

Using redundancy in coding for delay reduction has also been studied in the

context of packet transmission in [36, 37, 91], and in some content retrieval scenar-

ios [92,93]. Although they share some common spirit, they do not consider the effect

of queueing of requests in coded distributed storage systems.

5.1.3 Our Contributions

In this part we present a queueing-theoeretic approach to understand the delay in

content access from coded distributed storage systems. To analyze the content access

delay (waiting time plus service time) we introduce a model called the (n, k) fork-join

system. In this system, each download request is assigned to queued at n servers

that store coded chunks. It exits the system when any k out of n chunks are read.

The (n, k) fork-join system is a fundamental generalization of the (n, n) fork-join

system studied in queueing theory literature. The (n, n) fork-join system in which

all n servers have to be read has been extensively studied in queueing and operations

research literature [9,10,94]. To the best of our knowledge, we are the first to propose

and analysis this queueing model in [20,21].

This work can also be viewed as a generalization of the setup in Chapter 2. In

Chapter 2 we launch r replicas of a task, wait for any one and then cancel the rest.

Here, we launch n tasks of a job and wait for any k to finish. This setup, although

more general, preceded the work in Chapter 2 via our papers [20,21].

5.2 Problem Formulation

We now formally define the fork-join model and its variants, and specify the latency

and resource cost metrics. Then in Chapter 6 we analyze the trade-off between

101

a+ b

b

a

a+ b

b

Figure 5-1: Storage is 50% higher, but response time (per server & overall) is reduced.

download latency and resource cost for these fork-join models.

5.2.1 The (n, k) fork-join model and its variants

Consider that a content F of unit size is divided into k chunks of equal size. It

is encoded to n ≥ k chunks using an (n, k) maximum distance separable (MDS)

code, and the coded chunks are stored on n different servers. MDS codes have the

property that any k out of the n chunks are sufficient to reconstruct the entire file.

An illustrative example with n = 3 servers and k = 2 is shown in Fig. 5-1. The

content F is split into equal blocks a and b, and stored on 3 servers as a, b, and a⊕ b,
the exclusive-or of blocks a and b. Thus each server stores content of half the size of

file F . Downloads from any 2 servers jointly enable reconstruction of F . In this part

we show that, in addition to error-correction, we can exploit such codes to reduce the

download time of the content.

Consider that download requests arrive according to a Poisson process with rate

λ. We refer to each request as a ‘job’. Each job can be sent to first-come first-served

queues at r ≥ k out of the n coded chunks. The time taken to download one coded

chunk is modeled by the random variable X, with distribution FX , and is assumed

to be i.i.d. across requests and servers. Dependence across servers due to the content

size can be modeled by adding a constant proportional to average job size to service

time X. For example, some recent work [43,44] on analysis of content download from

Amazon S3 observed that X is shifted exponential, where ∆ is proportional to the

102

A	

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

A	

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

Abandon

1 task served 2 tasks served

Figure 5-2: The (3, 2) fork-join system. When any 2 tasks of a job finish, the third
task abandons its queue.

size of the content and the exponential part is the random delay in starting the data

transfer. We use F̄X(x) = Pr(X > x) to denote the tail probability function of X. We

use Xk:n is used to denote the kth smallest of n i.i.d. random variables X1, X2, . . . Xn.

Since only k out of the n coded chunks are sufficient to recover the content, the

redundant requests serve the purpose of providing diversity against queueing and

service delays. We refer to each sub-request to a coded chunk as a ‘task’. With

this nomenclature, we can now refer to the processing of a download request as a

computing job that is divided into r tasks, such that finishing any k tasks is sufficient

to complete the job. Thus, going beyond the content download setup, this framework

can also be used to estimate the latency of approximate computing.

Depending upon the number of redundant tasks issued and when they are can-

celed, we can have different queueing models as defined below.

Definition 13 ((n, k) fork-join system). Each incoming job is forked into n tasks that

join a first-come first-serve queue at each of the n servers. When any k tasks finish

service, all remaining tasks are canceled and abandon their queues immediately.

Fig. 5-2 illustrates the (3, 2) fork-join system. The job exits the system when any 2

out of 3 tasks are complete. The k = 1 case corresponds to the full replication system

with cancel-on-finish studied in Chapter 2, where a job is replicated at n servers and

we wait for one of the replicas to finish.

103

A	

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

Abandon Abandon

Start of service Start of service

Figure 5-3: The (3, 2) fork-early-cancel system. When any 2 tasks of a job start
service, the third task abandons its queue. The job is complete when the 2 tasks
finish.

Instead of waiting for k tasks to finish, we could cancel the redundant tasks as

soon as k tasks start service. A similar idea has been proposed in systems work [35]

in the context of parallel computing. This variant, called the (n, k) fork-early-cancel

system is formally defined as follows.

Definition 14 ((n, k) fork-early-cancel system). An incoming job is forked into n

tasks that join queues at the n servers. When any k tasks start service, we cancel

the redundant tasks immediately. If more than k tasks start service simultaneously,

we retain any k chosen uniformly at random. The job is complete when these k tasks

finish.

Fig. 5-3 illustrates the (n, k) fork-early-cancel system for n = 3 and k = 2. The

k = 1 case corresponds to the full replication system with cancel-on-start studied in

Chapter 2. Early cancellation of redundant tasks can possibly save computing cost

(formally defined in Section 5.2.2), and also reduce queueing delay for subsequent

tasks in the queues.

In another variant, we fork a job to r out of the n servers. We refer to this as the

(n, r, k) partial fork-join system defined as follows.

Definition 15 ((n, r, k) partial fork-join system). Each incoming job is forked into

r ≥ k out of the n servers. When any k tasks finish service, the redundant tasks are

canceled immediately and the job exits the system.

104

The r servers can be chosen according to a symmetric scheduling policy, for ex-

ample uniform random, round-robin, least-work-left etc. Launching fewer redundant

tasks (r close to k) compromises diversity, but we can save 1) the resource cost, and

2) queueing delay for subsequent tasks. Other variants of the fork-join system in-

clude a combination of partial forking and early cancellation explored in Chapter 7,

or delaying invocation of some of the redundant tasks. Although not studied in detail

here, our analysis techniques can be possibly extended to these variants.

5.2.2 Performance Metrics

Forking a job (download request) into more redundant tasks (requesting more coded

chunks) generally results in additional cost of computing resources. We now define

the latency and cost metrics, and analyze their trade-off afterwards in Chapter 6.

Definition 16 (Latency). The latency E [T] is defined as the expected time from when

a job arrives until when k of its tasks are complete.

Setting k = 1 makes the latency definition equivalent to the latency metric in

Chapter 2. The cost of redundancy can also be measured in the same way as Chap-

ter 2.

Definition 17 (Computing Cost). The computing cost E [C] is the expected total time

spent serving the tasks of a job, not including the waiting time in queue.

Claim 1 in Chapter 2 which shows that the maximum supported rate λmax =

n/E [C] also holds for this fork-join framework. By applying it, we can determine the

rate of download requests that a coded storage system can support.

In addition to the cost of computing time, we consider the storage overhead, and

the network cost of launching and canceling redundant requests. Unlike C, these do

not depend on the service time X, but are simply functions of n, r and k.

• Storage Overhead: The storage overhead of a file of unit size coded using an

(n, k) MDS code is s = n/k units.

105

• Network Cost: The network cost is defined as the number of redundant tasks.

It is equal to n for the (n, k) fork-join and fork-early-cancel systems, and r for

the (n, r, k) partial-fork-join system.

5.3 Organization

The rest of this part is organized as follows. In Chapter 6, we analyze the latency of

the (n, k) fork-join system, and present its trade-off with the computing, storage and

network costs. In Chapter 7, we present future directions to generalize the problem

setup. In particular, we discuss a generalized fork-join model called the (n, rf , r, k)

fork-join system.

106

Chapter 6

Latency-Cost Analysis

In this chapter we analyze the latency and cost of the fork-join system and its variants

defined in Section 5.2. The latency analysis of fork-join systems is a notoriously hard

problem studied in the nineties [8–10]. Even for the traditional fork-join queue (k = n

case in Definition 13 with exponential service time), an exact expression for latency

can be found only for n = 2 [8]. Only bounds are known for general k with exponential

FX [9, 10]. In recent years there is a renewal of interest in fork-join systems due to

their application in computing frameworks such as MapReduce.

In Section 6.1 we generalize the latency bounds in [9, 10] to the (n, k) fork-join

model, and to any arbitrary service time distribution FX . We also present the first

bounds on computing cost, which help estimate the maximum arrival rate λmax sup-

ported by the system. In Section 6.2 we analyze variants the early cancellation and

partial forking variants of the (n, k) fork-join model. This section provides insights

into the best strategy to assign download requests to the coded chunks, and when to

cancel them. All proofs are deferred to Appendix E.

6.1 The (n, k) Fork-join system

In this section we give bounds on the latency and computing cost of the (n, k) fork-

join system. Then we discuss the practical implications of these bounds in helping

understand how many users can be served by the coded storage, and how fast they

107

A	

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

1 task served

A	

A	

A	

B	

B	

B	

C	

C	

C	

X

X

X

λ

Abandon

2 tasks served

Figure 6-1: The (3, 2) split-merge system. When one task finishes, that server cannot
start working on the next task in queue. Only when k = 2 tasks are served and the
third abandons, the servers can move on to the tasks of job B.

are served. The analysis also helps understand the diversity-parallelism trade-off in

choosng the parameter k of the underlying (n, k) maximum-distance-separable (MDS)

code.

6.1.1 Bounds on Latency

Theorem 8. The latency E [T] of the (n, k) fork-join system is bounded as

E [T] ≤ E [Xk:n] +
λE [X2

k:n]

2(1− λE [Xk:n])
, (6.1)

E [T] ≥ E [Xk:n] +
λE [X2

1:n]

2(1− λE [X1:n])
. (6.2)

The detailed proof is given in Appendix E. To get the upper bound (6.13), we use

a related queueing system called the split-merge system illustrated in Fig. 6-1. In the

(n, k) split-merge system, the servers are blocked from serving subsequent jobs until

at least k tasks of the current job are served. Thus, the (n, k) split-merge system

gives higher latency than the (n, k) fork-join system. To get the lower bound (6.14),

we use the waiting time of the (n, 1) fork-join system to lower bound that of the (n, k)

fork-join system.

Fig. 6-2 shows the latency bounds and simulation values vs. k for n = 10, λ = 0.5,

and X following the Pareto distribution with xm = 0.5 and α = 2.5. For k = n, we

108

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
xp

ec
te

d
L

at
en

cy
E

[T
]

Upper Bound
Simulation
Lower Bound

Figure 6-2: Bounds on latency E [T] versus k, alongside the corresponding simulation
values. The service time distribution is Pareto(0.5, 2.5) with n = 10, and λ = 0.5.
The k = n upper bound is evaluated using Lemma 13.

can get a tighter bound than (6.13) by generalizing the approach used in [9].

Lemma 13 (Tighter Upper bound when k = n). For the case k = n, another upper

bound on latency is given by,

E [T] ≤ E [max (R1, R2, · · ·Rn)] , (6.3)

where Ri are i.i.d. realizations of the response time R of an M/G/1 queue with arrival

rate λ, service distribution FX .

Transform analysis [54, Chapter 25] can be used to determine the distribution of

R, the response time of an M/G/1 queue in terms of FX(x). The Laplace-Stieltjes

transform R(s) of the probability density function of fR(r) of R is given by,

R(s) =
sX(s)

(
1− λ

E[X]

)
s− λ(1−X(s))

, (6.4)

where X(s) is the Laplace-Stieltjes transform of the service time distribution fX(x).

The upper bound in [9] follows as a corollary to Lemma 13.

Corollary 7 (Equation (2) in [9]). If k = n and the service time distribution FX is

109

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

0

10

20

30

40

50

60

70

L
at

en
cy
E

[T
]

Upper Bound
Simulation
Lower Bound

Figure 6-3: Bounds on latency E [T] versus k, alongside the corresponding simulation
values. The service time distribution is ShiftedExp(0.5, 0.75) with n = 10, and λ = 0.5.
The k = n upper bound is evaluated using Lemma 13.

exponential with rate µ > λ, the upper bound is given by

E [T] ≤ Hn
1

µ− λ (6.5)

where Hn is the nth harmonic number
∑n

j=0 1/j.

The lower bound (6.14) can be improved if the service time FX is shifted expo-

nential.

Lemma 14 (Tighter Lower Bound for Shifted Exponential FX). The latency E [T]

is lower bounded by,

E [T] ≥ ∆ +
1

nµ
+

λ

((
∆ + 1

nµ

)2

+
(

1
nµ

)2
)

2
(

1− λ
(

∆ + 1
nµ

)) +
k−1∑
j=1

1

(n− j)µ− λ. (6.6)

When FX is exponential, the lower bound on latency which is given in [21] follows

as a corollary to Lemma 14 by setting ∆ = 0.

Corollary 8 (Theorem 2 in [21]). If the service time distribution FX is exponential

110

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

E
xp

ec
te

d
C

om
pu

ti
ng

C
os

t
E

[C
]

Upper Bound
Simulation
Lower Bound

Figure 6-4: Bounds on cost E [C] versus k, alongside the corresponding simulation
values. The service time distribution is Pareto(0.5, 2.5) with n = 10, and λ = 0.5.
The bounds are tight for k = 1 and k = n.

with rate µ > λ, the latency E [T] is bounded below as

E [T] ≥
k−1∑
j=0

1

(n− j)µ− λ (6.7)

6.1.2 Bounds on Computing Cost

Theorem 9. The computing cost E [C] of the (n, k) fork-join system is bounded as

E [C] ≤ (k − 1)E [X] + (n− k + 1)E [X1:n−k+1] , (6.8)

E [C] ≥
k∑
i=1

E [Xi:n] + (n− k)E [X1:n−k+1] . (6.9)

The main idea behind proving Theorem 9 is our observation that for each job,

some n− k + 1 of its tasks start service simultaneously, which allowed us to analyze

them separately. The bounds are tight for k = 1 and k = n as seen in Fig. 6-4.

Fig. 6-4 shows the bounds alongside simulation plot of the computing cost E [C]

when FX is Pareto(xm, α) with xm = 0.5 and α = 2.5. The arrival rate λ = 0.5, and

n = 10 with k varying from 1 to 10 on the x-axis. We observe that the bounds on

111

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

6

8

10

12

14

16

18

20

C
om

pu
ti

ng
C

os
t
E

[C
]

Upper Bound
Simulation
Lower Bound

Figure 6-5: Bounds on cost E [C] versus k, alongside the corresponding simulation
values. The service time distribution is ShiftedExp(0.5, 0.75) with n = 10, and λ = 0.5.
The upper bound is tight for all k.

E [C] are tight for k = 1 and k = n, which can also be inferred from (6.15) and (6.16).

In Fig. 6-5 we plot the bounds for FX = ShiftedExp(∆, µ), with ∆ = 0.5 and µ = 0.75

and all other parameters being same as in Fig. 6-4. When FX is shifted exponential,

the upper bound is in fact tight for all k, 1 ≤ k ≤ n and equals n∆ + k/µ. This can

be proved using the memoryless property of the exponential tail.

The bounds on the computing cost E [C] given by Theorem 9 allow us to get

bounds on the maximum arrival rate λmax = n/E [C] of download requests that the

coded storage system is able to support. And the latency bounds in Theorem 8 help

estimate the queueing plus service delay experienced by users.

6.1.3 Choosing k: The Diversity-Parallelism Trade-off

In Fig. 6-2 the expected latency E [T] increases with k, because we need to wait for

more tasks to complete, and the service time X is independent of k. But in most

computing and storage applications, the service time X is decreases as k increases

because each task becomes smaller. We refer to this as the ‘parallelism benefit’ of

splitting a job into more tasks. But as k increases, we lose the ‘diversity benefit’

provided by having to wait only for a subset of the tasks to finish. Thus, there is a

112

diversity-parallelism trade-off in choosing the optimal k∗ that minimizes E [T].

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

0

2

4

6

8

10

12

14

16

E
xp

ec
te

d
L

at
en

cy
E

[T
]

k∗ = 1 k∗ = 3
k∗ = 4

k∗ = 1 k∗ = 3
k∗ = 4

k∗ = 1 k∗ = 3
k∗ = 4

∆ = 0.25

∆ = 1.0

∆ = 1.75

Figure 6-6: Expected latency versus k for task service time X ∼ ShiftedExp(∆/k, 1.0),
and arrival rate λ = 0.5. As k increases, we lose diversity but the parallelism benefit
is higher because each task is smaller.

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

2

4

6

8

10

12

14

16

18

20

E
xp

ec
te

d
C

os
t
E

[C
]

∆ = 0.25

∆ = 1.0

∆ = 1.75

Figure 6-7: Expected cost versus k for task service time X ∼ ShiftedExp(∆/k, 1.0),
and arrival rate λ = 0.5. As k increases, we lose diversity but the parallelism benefit
is higher because each task is smaller.

We demonstrate this diversity-parallelism trade-off in Fig. 6-6 for service time

X ∼ ShiftedExp(∆k, µ), with µ = 1.0, and ∆k = ∆/k. As k increases, we lose

diversity but the parallelism benefit is higher because each task is smaller. As ∆

increases, the optimal k∗ shifted upward because the service distribution becomes

113

‘less random’ and so there is less diversity benefit. Fig. 6-7 shows the corresponding

computing cost E [C] as k varies. We observe that for small k, both E [T] and E [C]

decrease with k. Thus, choosing the right k can reduce both latency and cost.

We can also observe the diversity-parallelism trade-off mathematically in the low

traffic regime, for X ∼ ShiftedExp(∆/k, µ). If we take λ → 0 in (6.14) and (6.13),

both bounds coincide and we get,

lim
λ→∞

E [T] = E [Xk:n] =
∆

k
+
Hn −Hn−k

µ
, (6.10)

where Hn =
∑n

i=1 1/i, the nth harmonic number. The parallelism benefit comes from

the first term in (6.10), which reduces with k. The diversity of waiting for k out of

n tasks causes the second term to increase with k. The optimal k∗ that minimizes

(6.10) strikes a balance between these two opposing trends.

1 2 3 4 5 6 7 8 9 10

Storage Overhead n/k units

0

2

4

6

8

10

E
xp

ec
te

d
L

at
en

cy
E

[T
]

∆ = 0.25

∆ = 1.0

∆ = 1.75

Figure 6-8: Expected latency versus storage overhead for task service time X ∼
ShiftedExp(∆/k, 1.0), and arrival rate λ = 0.5. For a storage overhead of less than 2,
we get a significant latency reduction.

Fig. 6-8 shows the trade-off between latency E [T] and storage overhead n/k. The

task service time X ∼ ShiftedExp(∆/k, 1.0), and arrival rate λ = 0.5. As k decreases,

E [T] decreases because we need to wait for fewer tasks, but the storage overhead

increases. When k decreases from 10 to 5, the storage overhead is 2 units. Thus, at

the expense of this additional storage cost, we get a significant latency reduction.

114

6.2 Variants of the (n, k) fork-join system

We now analyze the latency and cost of the two fork-join variants defined in Sec-

tion 5.2. Comparing the variants with the (n, k) fork-join system helps determine the

best policy to issue and cancel redundant tasks.

6.2.1 The (n, k) fork-early-cancel system

Theorem 10 (Latency-Cost with Early Cancellation). The cost E [C] and an upper

bound expected latency E [T] with early cancellation is given by

E [C] = kE [X] (6.11)

E [T] ≤ E [max (R1, R2, · · ·Rk)] (6.12)

where Ri are i.i.d. realizations of R, the reponse time of an M/G/1 queue with arrival

rate λk/n and service distribution FX .

The Laplace-Stieltjes transform of the response time R of an M/G/1 queue with

service distribution FX(x) and arrival rate is same as (6.4), with λ replaced by λk/n.

1 2 3 4 5 6 7 8 9 10

k, the number of servers we need to wait for

0

10

20

30

40

50

60

L
at

en
cy
E

[T
]

Upper Bound
Simulation

Figure 6-9: Upper bound on latency E [T] with early cancellation versus k,
alongside the corresponding simulation values. The service time distribution is
ShiftedExp(0.5, 0.75) with n = 10, and λ = 0.5.

115

0 2 4 6 8 10 12 14 16 18

Computing Cost E[C]

0

2

4

6

8

10

12

14

L
at

en
cy
E

[T
]

(n, k) fork-join
(n, k) fork-early-cancel

Figure 6-10: Expected latency E [T] versus computing cost E [C] as k varies. The task
service time X ∼ HyperExp(0.1, 1.5, 0.5) and arrival rate λ = 0.5. For such log-convex
distributions, the (n, k) fork-join performs better for all k.

Fig. 6-9 shows the upper bound on E [T] with early cancellation, alongside the

simulation values. The number of servers n = 10, the service time distribution is

ShiftedExp(0.5, 0.75), and λ = 0.5.

By comparing the cost E [C] = kE [X] in (6.11) to the bounds in Theorem 9

without early cancellation, we can get insights into when early cancellation is effective

for a given service time distribution FX . For example, when F̄X is log-convex, the

upper bound in (6.15) is smaller than kE [X]. Thus we can infer that early cancellation

is not effective when X is log-convex, as demonstrated in Fig. 6-10. This insight also

matches with that in Fig. 2-8 for the k = 1 case.

6.2.2 The (n, r, k) partial-fork-join system

Instead of forking each download request (job) to all n coded chunks (dividing the job

into n tasks), we can use partial forking. This variant is refered to as (n, r, k) partial

fork-join system as defined in Definition 15. Since the latency-cost analysis of (n, k)

fork-join system is hard as seen in Section 6.1.1 and Section 6.1.2, the analysis of its

generalization, the (n, r, k) partial-fork-join is even harder. However it is possible for

a group-based scheduling policy as given by Lemma 15 below.

116

Lemma 15. Consider that the n servers are divided into n/r groups of r ≥ k servers

each, assuming r divides n. Each incoming job is forked to the one of the groups

chosen uniformly at random. Then latency and cost can be bounded as follows

E [T] ≤ E [Xk:r] +
λrE [X2

k:r]

2(n− λrE [Xk:r])
, (6.13)

E [T] ≥ E [Xk:r] +
λrE [X2

1:r]

2(n− λrE [X1:r])
. (6.14)

E [C] ≤ (k − 1)E [X] + (r − k + 1)E [X1:r−k+1] , (6.15)

E [C] ≥
k∑
i=1

E [Xi:r] + (r − k)E [X1:r−k+1] . (6.16)

Proof. Each group of r servers behaves like an independent (r, k) fork-join system

with arrival rate λr/n. Then using Theorem 8 and Theorem 9 we get the above

bounds for the (n, r, k) partial-fork-join system.

These bounds can help determine the optimal r for a given X, k, and λ.

6.3 Concluding Remarks

In this chapter we presented a latency-cost analysis of the (n, k) fork-join system

and its two variants: the (n, k) fork-early-cancel and (n, r, k) partial-fork-join sys-

tems, defined in Chapter 5. These bounds help understand how many users can be

supported by a coded storage systems, and how fast they can be served. They also

provide insights into the choice of the parameter k on the underlying (n, k) code. The

insights on how the service distribution X affects the redundancy strategy are similar

to Chapter 2. Log-concave distributions benefit less from redundancy (smaller k).

117

118

Chapter 7

Future Directions

In this chapter we present future research directions generalizing the problem setup

in Chapter 5. In Section 7.1 we propose and analyze the (n, rf , r, k) model, which

is a combination of the (n, k) fork-early-cancel and (n, r, k) partial-fork-join systems.

As an alternative to the (n, k) MDS codes studied in our work, in Section 7.2 and

Section 7.3 we discuss the use of other erasure codes for fast content download.

7.1 The (n, rf , r, k) fork-join model

We introduce a general fork-join variant that is a combination of the partial fork

introduced in Section 5.2, and partial early cancellation of redundant tasks. This

model helps formulate a redundancy strategy to minimize the latency, subject to

computing and network cost constraints. This strategy can also be used on traces of

task service time when a closed-form expressions of FX and its order statistics are

not known.

Definition 18 ((n, rf , r, k) fork-join system). For a system of n servers and a job

that requires k tasks to complete, we do the following:

• Fork the job to rf out of the n servers.

• When any r ≤ rf tasks are at the head of queues or in service already, cancel

all other tasks immediately. If more than r tasks start service simultaneously,

119

retain r randomly chosen ones out of them.

• When any k ≤ r tasks finish, cancel all remaining tasks immediately.

Note that k tasks may finish before some r start service, and thus we may not need

to perform the partial early cancellation in the second step above.

The rf − r tasks that are canceled early, help find r queues out of the rf with the

least work left, thus reducing waiting time. From the r tasks retained, waiting for

any k to finish provides diversity and hence reduces service time.

The special cases (n, n, n, k), (n, n, k, k) and (n, r, r, k) correspond to the (n, k)

fork-join and (n, k) fork-early-cancel and (n, r, k) partial-fork-join systems respec-

tively.

7.1.1 Choosing Parameters rf and r

We propose a strategy to choose rf and r to minimize expected latency E [T], subject

to a computing cost constraint is E [C] ≤ γ, and a network cost constraint is rf ≤
rmax. We impose the second constraint because forking to more servers results in

higher network cost of remote-procedure-calls (RPCs) to launch and cancel the tasks.

Claim 4 (General Redundancy Strategy). Good heuristic choices of rf and r to

minimize E [T] subject to constraints E [C] ≤ γ and rf ≤ rmax are

r∗f =rmax, (7.1)

r∗ = arg min
r∈[0,rmax]

T̂ (r), s.t. Ĉ(r) ≤ γ (7.2)

where T̂ (r) and Ĉ(r) are estimates of the expected latency E [T] and cost E [C], defined

as follows:

T̂ (r) , E [Xk:r] +
λrE [X2

k:r]

2(n− λrE [Xk:r])
, (7.3)

Ĉ(r) , rE [Xk:r] . (7.4)

120

To justify the strategy above, observe that for a given r, increasing rf gives higher

diversity in finding the shortest queues and thus reduces latency. Since rf − r tasks

are canceled early before starting service, rf affects E [C] only mildly, through the

relative task start times of r tasks that are retained. So we conjecture that it is

optimal to set rf = rmax in (7.1), the maximum value possible under network cost

constraints. Changing r on the other hand does affect both the computing cost and

latency significantly. Thus to determine the optimal r, we minimize T̂ (r) subject to

constraints Ĉ(r) ≤ γ and r ≤ rmax as given in (7.2).

The estimates T̂ (r) and Ĉ(r) are obtained by generalizing Lemma 4 for group-

based random forking to any k, and r that may not divide n. When the order statistics

of FX are hard to compute, or FX itself is not explicitly known, T̂ (r) and Ĉ(r) can

be also be found using empirical traces of X.

The sources of inaccuracy in the estimates T̂ (r) and Ĉ(r) are as follows.

1. For k > 1, the latency estimate T̂ (r) is a generalization of the split-merge

queueing upper bound in Theorem 8. Since the bound becomes loose as k

increases, the error |T̂ (r)− E [T]| increases with k.

2. The estimates T̂ (r) and Ĉ(r) are by definition independent of rf , which is not

true in practice. As explained above, for rf > r, the actual E [T] is generally

less than T̂ (r), and E [C] can be slightly higher or lower than Ĉ(r).

3. Since the estimates T̂ (r) and Ĉ(r) are based on group-based forking, they con-

sider that all r tasks start simultaneously. Variability in relative task start times

can result in actual latency and cost that are different from the estimates. For

example, from Theorem 3 we can infer that when F̄X is log-concave (log-convex),

the actual computing cost E [C] is less than (greater than) Ĉ(r).

The factor (1) above is the largest source of inaccuracy, especially for larger k

and λ. Since the estimate T̂r is an upper bound on the actual latency, the r∗ and

r∗f recommended by the strategy are smaller than or equal to their optimal values.

Factors (2) and (3) only affect the relative task start times and generally result in a

smaller error in estimating E [T] and E [C].

121

7.1.2 Simulation Results

We now present simulation results comparing the proposed strategy given in Claim 4

with the (n, r, k) partial-fork-join system with r varying from k to n. The service time

distributions considered here are neither log-concave nor log-convex, thus making it

hard to directly infer the best redundancy strategy using the analysis presented in

the previous sections.

In Fig. 7-1 the service time X ∼ Pareto(1, 2.2), n = 10, k = 1, and arrival

rate λ = 0.25. The computing and network cost constraints are E [C] ≤ 5 and

rf ≤ 7 respectively. We observe that the proposed strategy gives a significant latency

reduction as compared to the no redundancy case (r = k in the (n, r, k) partial-

fork-join system). Subject to the computing and network cost constraints, r = 4

minimizes the latency of the (n, r, k) partial-fork-join system. We observe that the

proposed strategy gives a latency-cost trade-off very close to that of the best partial-

fork-join system. Using partial early cancellation (rf > r) in the proposed strategy

gives a slight reduction in latency in comparison with the best (n, r, k) partial-fork-

join system. The cost E [C] increases slightly, but remains less than γ.

2 4 6 8 10

Expected Computing Cost E[C]

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

E
xp

ec
te

d
L

at
en

cy
E

[T
]

No Redundancy: rf = r = k

(n, r, k) partial-fork-join for k ≤ r ≤ n

Best (n, r, k) partial-fork-join
Proposed Strategy r∗ = 5, r∗f = 7

Figure 7-1: The latency-cost trade-off of the proposed redundancy strategy is close
to that of the best (n, r, k) partial-fork-join system. Service time X ∼ Pareto(1, 2.2),
and the cost constraints are E [C] ≤ 5 and r ≤ rf ≤ 7 The first constraint is active
in this example.

122

1.05 1.10 1.15 1.20 1.25 1.30 1.35

Expected Computing Cost E[C]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
xp

ec
te

d
L

at
en

cy
E

[T
]

No Redundancy: rf = r = k

(n, r, k) partial-fork-join for k ≤ r ≤ n

Best (n, r, k) partial-fork-join
Proposed Strategy r∗ = r∗f = 5

Figure 7-2: The latency-cost trade-off of the proposed redundancy strategy is close to
that of the best (n, r, k) partial-fork-join system. The service time X is an equiprob-
able mixture of Exp(2) and ShiftedExp(1, 1.5), and the cost constraints are E [C] ≤ 2
and r ≤ rf ≤ 5. The second constraint is active in this example.

In Fig. 7-2 we show a case where the cost E [C] does not always increase with the

amount of redundancy r. The task service time X is a mixture of an exponential

Exp(2) and a shifted exponential ShiftedExp(1, 1.5), each occurring with equal prob-

ability. All other parameters are same as in Fig. 7-1. The proposed strategy found

using Claim 4 is r∗ = r∗f = rmax = 5, limited by the rf ≤ rmax constraint rather than

the E [C] ≤ γ constraint. It coincides with the best (n, r, k) partial-fork-join system.

7.2 Availability Codes

In this part we considered that the content is coded using an (n, k) maximum distance

separable (MDS) code. MDS codes provide reliability against failure of any n − k

out of the n servers. However, repairing a failed node can be expensive because k

chunks need to downloaded from other servers. This can cost a prohibitive amount

of network bandwidth. Regenerating codes proposed in [5, 86] allow low-cost repair

with minimum amount of data communicated over the network. Locally repairable

codes [95, 96] minimize the number of nodes accessed to repair failed nodes.

123

Due to these properties erasure codes are starting to be used at a large-scale in

cloud storage systems. However, they are mostly used to store ‘cold’ or less frequently

accessed data. As more ‘hot’ data is erasure-coded in cloud systems, ensuring fast

content access is important, in addition to reliability and easy repair. This calls for

codes that are designed for fast content download. One such class of codes is proposed

in [11], building on locally repairable codes. These codes allow parallel reads from

disjoint sets of nodes, while still maintaining a high code rate. A code is said to have

(r, t)-availability if the content distributed across on n nodes can be recovered from t

disjoint groups of r nodes each.

Recently [12] analyzed the delay of these codes using our fork-join queueing frame-

work. To alleviate the difficulty of analysis encountered in [12], we plan to focus on

maximizing the request arrival rate λmax that a coded storage system can support.

The analysis of λmax would be more tractable than E [T]. We believe that [11,12] are

only the beginning of the construction and analysis of codes for fast content download

from distributed storage.

7.3 Multiple Fountains

In the codes discussed so far, an entire chunk of the content is downloaded from k out

of the n chunks. Partially downloaded chunks cannot be used to decode the file. If the

content is coded using a rateless fountain code [97,98], then such decoding would be

possible. For example, suppose a content file consisting of K packets. We can create

M coded combinations using a fountain code such that any K (slightly more than K

in practice) packets are sufficient to decode the file. The M coded combinations can

be distributed across n servers. Then, downloading k1, k2, .. kn packets each from

the servers such that k1 + k2 + · · ·+ kn ≥ K is sufficient to decode the file. A future

direction is to analyze the delay and determine the optimal way to store and request

coded packets from the servers.

124

Part III

Erasure Coding for Smooth

Streaming

125

Chapter 8

Effect of Block-wise Feedback in

Point-to-point Streaming

8.1 Introduction

8.1.1 Motivation

A recent report [99] shows that 62% of the Internet traffic in North America comes

from real-time streaming applications. Unlike traditional file transfer where only

total delay matters, streaming imposes delay constraints on each individual packet.

Further, many applications require in-order playback of packets at the receiver. Pack-

ets received out of order are buffered until the missing packets in the sequence are

successfully decoded. In audio and video applications some packets can be dropped

without affecting the streaming quality. However, other applications such as remote

desktop, and collaborative tools such as Dropbox [81] and Google Docs [82] have

strict order constraints on packets, where packets represent instructions that need to

be executed in order at the receiver.

Thus, there is a need to develop transmission schemes that can ensure in-order

packet delivery to the user, with efficient use of available bandwidth. To ensure that

packets are decoded in order, the transmission scheme must give higher priority to

older packets that were delayed, or received in error. However, repeating old packets

127

instead of transmitting new packets results in a loss in the overall rate of packet

delivery to the user, i.e., the throughput. Thus there is a fundamental trade-off

between throughput and in-order decoding delay.

The throughput loss incurred to achieve smooth in-order packet delivery can be

significantly reduced if the source receives feedback about packet losses. Then the

source can adapt its future transmission strategy to strike the right balance between

old and new packets. In this chapter we study this interplay between feedback and

the throughput-smoothness trade-off.

8.1.2 Previous Work

When there is immediate and error-free feedback, it is well understood that a simple

Automatic-repeat-request (ARQ) scheme is both throughput and delay optimal. But

only a few papers in literature have analyzed streaming codes with delayed or no

feedback. Fountain codes [97] are capacity-achieving erasure codes, but they are not

suitable for streaming because the decoding delay is proportional to the size of the

data. Streaming codes without feedback for constrained channels such as adversarial

and cyclic burst erasure channels were first proposed in [100], and also extensively

explored in [101, 102]. The thesis [100] also proposed codes for more general erasure

models and analyzed their decoding delay. These codes are based upon sending

linear combinations of source packets; indeed, it can be shown that there is no loss

in restricting the codes to be linear.

However, decoding delay does not capture in order packet delivery, which is re-

quired for streaming applications. This aspect is captured in the delay metrics in [103]

and [104], which consider that packets are played in-order at the receiver. The au-

thors in [103] analyze the playback delay of real-time streaming for uncoded packet

transmission over a channel with long feedback delay. In [104,105] we show that the

number of interruptions in playback scales Θ(log n) for a stream of length n.

In this chapter we use a metric called smoothness exponent to measure the quality

of streaming. We aim to understand how the frequency of feedback about erasures

affects the design of codes to ensure smooth point-to-point streaming. In Section 8.2

128

and Section 8.3 we describe the system model, and preliminary concepts respectively.

Then we consider the extreme cases of immediate feedback and no feedback in Sec-

tion 8.4 and Section 8.5 respectively. In Section 8.6 we propose coding schemes for

the general case of block-wise feedback after every d slots. The longer proofs are

deferred to Appendix F.

8.2 System Model

8.2.1 Source and Channel Model

The source has a large stream of packets s1, s2, · · · , sn to be transmitted to a user

over a point-to-point channel. The encoder creates a coded packet yn = f(s1, s2 ..sn)

in each slot n and transmits it over the channel. The encoding function f is known

to the receiver. For example, if yn is a linear combination of the source packets, the

coefficients are included in the transmitted packet so that the receiver can use them to

decode the source packets from the coded combination. Without loss of generality, we

can assume that yn is a linear combination of the source packets. The coefficients are

chosen from a large enough field such that the coded combinations are independent

with high probability.

Each coded combination is transmitted to the user over an i.i.d. erasure channel

such that every transmitted packet is received successfully with probability p, and

otherwise received in error and discarded. An erasure channel is a good model when

encoded packets have a set of checksum bits that can be used to verify with high

probability whether the received packet is error-free.

8.2.2 Packet Delivery

The application at the user requires the stream of packets to be in order. Packets re-

ceived out of order are buffered until the missing packets in the sequence are decoded.

We assume that the buffer is large enough to store all the out-of-order packets. Every

time the earliest undecoded packet is decoded, a burst of in-order decoded packets is

129

delivered to the application. For example, suppose that s1 has been delivered and s3,

s4, s6 are decoded and waiting in the buffer. If s2 is decoded in the next slot, then

s2, s3 and s4 are delivered to the application.

8.2.3 Feedback Model

We consider that the source receives block-wise feedback about channel erasures after

every d slots. Thus, before transmitting in slot kd + 1, for all integers k ≥ 1, the

source knows about the erasures in slots (k−1)d+1 to kd. It can use this information

to adapt its transmission strategy in slot kd + 1. Block-wise feedback can be used

to model a half-duplex communication channel where after every d slots of packet

transmission, the channel is reserved to send d bits of feedback to the source about

the status of decoding. The extreme case d = 1, corresponds to immediate feedback

when the source has complete knowledge about past erasures. And when d→∞, the

block-wise feedback model converges to the scenario where there is no feedback to

the source. Note that the feedback can be used to estimate p, the success probablity

of the erasure channel, when it is unknown to the source. Thus, the coding schemes

we propose for d <∞ are universal; they can be used even when the channel quality

of unknown to the source.

8.3 Preliminaries

8.3.1 Notions of Packet Decoding

We now define some notions of packet decoding that aid the presentation and analysis

of coding schemes in the following chapters.

Definition 19 (Innovative Packets). A coded packet is said to be innovative if it is

linear independent with respect to the coded packets received by the user until that

time.

Definition 20 (Seen Packets). The transmitted marks a packet sk as “seen” by a

130

user when it knows that the user has successfully received a coded combination that

only includes sk and packets si for 1 ≤ i < k.

Since the packets are required strictly in-order, the transmitter can stop including

sk in coded packets when it is seen by the user. This is because the user can decode

sk once all si for i < k are decoded.

8.3.2 Throughput and Delay Metrics

We now define the metrics for throughput and smoothness of in-order packet delivery.

Definition 21 (Throughput). If In is the number of packets delivered in-order to a

user until time n, the throughput is defined as,

τ = lim
n→∞

In
n
. (8.1)

The maximum possible throughput is τ = p, where p is the success probability

of the erasure channel. The receiver application may require a minimum level of

throughput. For example, if applications with playback require τ to be greater than

the playback rate. The bandwidth required is proportional to 1/τ .

The throughput captures the overall rate at which packets are delivered, irre-

spective of their delays. If the channel did not have any erasures, packet sk would

be delivered to the user in slot k. The random erasures, and absence of immediate

feedback about past erasures results in variation in the time at which packets are

delivered. We capture the burstiness in packet delivery using the following delay

metric.

Definition 22 (Smoothness Exponent). Let Dk be in-order decoding delay of packet

sk, the earliest time at which all packets p1, · · · pk are decoded. The smoothness expo-

nent γ
(s)
k is defined as the asymptotic decay rate of Dk, which is given by

γ
(s)
k = − lim

n→∞
log Pr(Dk > n)

n
(8.2)

131

The relation (8.2) can also be stated as Pr(D > n)
.
= e−nγ where

.
= stands for

asymptotic equality defined in [106, Page 63]. For simplicity of analysis we define

another delay exponent, the inter-delivery defined as follows. Theorem 11 shows

the equivalence of the smoothness and the inter-delivery exponent for time-invariant

schemes.

Definition 23 (Inter-delivery Exponent). Let T1 be the first inter-delivery time, that

is, the first time instant when one or more packets are decoded in-order. The inter-

delivery exponent λ is defined as the asymptotic decay rate of T1, which is given by

λ = − lim
n→∞

log Pr(T1 > n)

n
(8.3)

In this work we focus on time-invariant transmission schemes where the coding

strategy is fixed across blocks of transmission, formally defined as follows.

Definition 24 (Time-invariant schemes). A time-invariant scheme is represented by

a vector x = [x1, · · ·xd] where xi, for 1 ≤ i ≤ d, are non-negative integers such that∑
i xi = d. In each block we transmit xi independent linear combinations of the i

lowest-index unseen packets in the stream, for 1 ≤ i ≤ d.

The above class of schemes is referred to as time-invariant because the vector x is

fixed across all blocks. Note that there is no loss of generality in restricting the length

of the vector x to d. This is because each block can provide only up to d innovative

coded packets, and hence there is no advantage in adding more than d unseen packets

to the stream in a given block.

Theorem 11. For a time-invariant scheme, the smoothness exponent γ
(s)
k of packet

sk for any k ≤ ∞ is equal to λ, the inter-delivery exponent.

The proof is given in Appendix F. As a result of this equivalence between γ
(s)
k and

λ, we study the trade-off between throughput τ and the inter-delivery exponent λ in

the rest of this chapter.

132

8.4 Immediate Feedback

We first consider the extreme case of immediate feedback (d = 1), where the source

has complete knowledge of past erasures before transmitting each packet. We can

show that a simple automatic-repeat-request (ARQ) scheme is optimal in both τ and

λ. In this scheme, the source transmits the lowest index unseen packet, and repeats

it until the packet successfully goes through the channel.

Since a new packet is received in every successful slot, the throughput τ = p, the

success probability of the erasure channel. The ARQ scheme is throughput-optimal

because the throughput τ = p is equal to the information-theoretic capacity of the

erasure channel [106]. Moreover, it also gives the optimal the inter-delivery exponent

λ because one in-order packet is decoded in every successful slot. To find λ, first

observe that the tail distribution of the time T1, the first inter-delivery time is,

Pr(T1 > n) = (1− p)n (8.4)

Substituting this in Definition 23 we get the exponent λ = − log(1 − p). Thus, the

trade-off for the immediate feedback case is (τ, λ) = (p,− log(1− p)).
From this analysis of the immediate feedback case we can find limits on the range of

achievable (τ, λ) for any feedback delay d. Since a scheme with immediate feedback

can always simulate one with delayed feedback, the throughput and delay metrics

(τ, λ) achievable for any feedback delay d must lie in the region 0 ≤ τ ≤ p, and

0 ≤ λ ≤ − log(1− p).

8.5 No Feedback

Now we consider the other extreme case (d = ∞), corresponding to when there is

no feedback to the source. We propose a coding scheme that gives the best (τ, λ)

trade-off among the class of full-rank codes, defined as follows.

Definition 25 (Full-rank Codes). In slot n we transmit a linear combination of all

packets s1 to sV [n]. We refer to V [n] as the transmit index in slot n.

133

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput τ

In
te

r−
d
e
liv

e
ry

 E
x
p
o
n
e
n
t
 λ

No Feedback

Immediate
Feedback

(p, −log(1−p))

(r, D(r || p))

Figure 8-1: The trade-off between inter-delivery exponent λ and throughput τ with
success probability p = 0.6 for the immediate feedback (d = 1) and no feedback
(d =∞) cases.

Conjecture 1. Given transmit index V [n], there is no loss of generality in including

all packets s1 to sV [n].

We believe this conjecture is true because the packets are required in-order at the

receiver. Thus, every packet sj, j < V [n] is required before packet sV [n] and there is

no advantage in excluding sj from the combination. Hence we believe that there is no

loss of generality in restricting our attention to full-rank codes. A direct approach to

verifying this conjecture would involve checking all possible channel erasure patterns.

Theorem 12. The optimal throughput-smoothness trade-off among full-rank codes

is (τ, λ) = (r,D(r‖p)) for all 0 ≤ r < p. It is achieved by the coding scheme with

V [n] = drne for all n.

The term D(r‖p) is the binary information divergence function, which is defined

for 0 < p, r < 1 as

D(r‖p) = r log
r

p
+ (1− r) log

1− r
1− p, (8.5)

where 0 log 0 is assumed to be 0. As r → 0, D(r‖p) converges to − log(1− p), which

is the best possible λ as given in Section 8.4.

134

Fig. 8-1 shows the (τ, λ) trade-off for the immediate feedback and no feedback

cases, with success probability p = 0.6. The optimal trade-off with any feedback

delay d lies in between these two extreme cases.

8.6 General Block-wise Feedback

We now analyze the (τ, λ) trade-off with general block-wise feedback delay of d slots.

We restrict our attention to the class of time-invariant coding schemes defined in

Section 8.3.2.

Given a vector x, define pd, as the probability of decoding the first unseen packet

during the block, and Sd as the number of innovative coded packets that are received

during that block. We can express τx and λx in terms of pd and Sd as,

(τx, λx) =

(
E[Sd]

d
,−1

d
log(1− pd)

)
, (8.6)

where we get throughput τx by normalizing the E[Sd] by the number of slots in the

slots. We can show that the probability Pr(T1 > kd) of no in-order packet being

decoded in k blocks is equal (1− pd)k. Substituting this in (8.3) we get λx.

Example 1. Consider the time-invariant scheme x = [1, 0, 3, 0] where block size d =

4. That is, we transmit 1 combination of the first unseen packet, and 3 combinations of

the first 3 unseen packets. Fig. 8-2 illustrates this scheme for one channel realization.

The probability pd and E[Sd] are,

pd = p+ (1− p)
(

3

3

)
p3(1− p)0 = p+ (1− p)p3, (8.7)

E[Sd] =
3∑
i=1

i ·
(

4

i

)
pi(1− p)4−i + 3p4 = 4p− p4, (8.8)

where in (8.8), we get i innovative packets if there are i successful slots for 1 ≤ i ≤ 3.

But if all 4 slots are successful we get only 3 innovative packets. We can substitute

(8.7) and (8.8) in (8.6) to get the (τ, λ) trade-off.

135

Block 3

1 1

3

2

1

3

2

1

3

2

Block 1

2

Block 2

2

5

4 4

5

2 2

4

5

2 2 2 2

44 4

6 6 6

Figure 8-2: Illustration of the time-invariant scheme x = [1, 0, 3, 0] with block size
d = 4. Each bubble represents a coded combination, and the numbers inside it are
the indices of the source packets included in that combination. The check and cross
marks denote successful and erased slots respectively. The packets that are “seen” in
each block are not included in the coded packets in future blocks.

Remark 7. Time-invariant schemes with different x can be equivalent in terms of the

(τ, λ). In particular, given x1 ≥ 1, if any xi = 0, and xi+1 = w ≥ 1, then the scheme

is equivalent to setting xi = 1 and xi+1 = w − 1, keeping all other elements of x the

same. This is because the number of independent linear combinations in the block,

and the probability of decoding the first unseen is preserved by this transformation.

For example, x = [1, 1, 2, 0] gives the same (τ, λ) as x = [1, 0, 3, 0].

In Section 8.4 we saw that with immediate feedback, we can achieve (τ, λ) =

(p,− log(1− p)). However, with block-wise feedback we can achieve optimal τ (or λ)

only at the cost of sacrificing the optimality of the other metric. We now find the

best achievable τ (or λ) with optimal λ (or τ).

Claim 5 (Cost of Optimal Exponent λ). With block-wise feedback after every d slots,

and inter-delivery exponent λ = − log(1 − p), the best achievable throughput τ =

(1− (1− p)d)/d.

Proof. If we want to achieve λ = − log(1 − p), we require pd in (8.6) to be equal to

1 − (1 − p)d. The only scheme that can achieve this is x = [d, 0, · · · , 0], where we

transmit d copies of the first unseen packet. The number of innovative packets Sd

received in every block is 1 with probability 1−(1−p)d, and zero otherwise. Hence, the

best achievable throughput is τ = (1− (1−p)d)/d with optimal λ = − log(1−p).

This result gives us insight on how much bandwidth (which is proportional to

136

1/τ) is needed for a highly delay-sensitive application that needs λ to be as large as

possible.

Claim 6 (Cost of Optimal Throughput τ). With block-wise feedback after every

d slots, and throughput τ = p, the best achievable inter-delivery exponent is λ =

− log(1− p)/d.

Proof. If we want to achieve τ = p, we need to guarantee an innovation packet in every

successful slot. The only time invariant scheme that ensures this is x = [1, 0, · · · , 0, d−
1], or its equivalent vectors x as given by Remark 7. With x = [1, 0, · · · , 0, d− 1], the

probability of decoding the first unseen packet is pd = p. Substituting this in (8.6)

we get λ = − log(1− p)/d, the best achievable λ when τ = p.

Tying back to Fig. 8-1, Claim 5 and Claim 6 correspond to moving leftwards and

downwards along the dashed lines from the optimal trade-off (p,− log(1− p)). From

Claim 5 and Claim 6 we see that both τ and λ are Θ(1/d), keeping the other metric

optimal.

Next we want to find the coding scheme that maximizes λ for any given throughput

τ . We first prove that any convex combination of achievable points (τ, λ) can be

achieved.

Lemma 16 (Combining of Time-invariant Schemes). By randomizing between time-

invariant schemes x(i) for 1 ≤ i ≤ B, we can achieve the throughput-smoothness

trade-off given by any convex combination of the points (τx(i) , λx(i)).

The proof of Lemma 16 is deferred to Appendix F. The main implication of

Lemma 16 is that, to find the best (τ, λ) trade-off, we only have to find the points

(τx, λx) that lie on the convex envelope of the achievable region spanned by all possible

x.

For general d, it is hard to search for the (τx, λx) that lie on the optimal trade-off.

We propose a set of time-invariant schemes that are easy to analyze and give a good

(τ, λ) trade-off. In Theorem 13 we give the (τ, λ) trade-off for the proposed codes

and show that for d = 2 and d = 3, it is the best trade-off among all time-invariant

schemes.

137

Definition 26 (Proposed Codes for general d). For general d, we propose using the

time-invariant schemes with x1 = a and xd−a+1 = d− a, for a = 1, · · · d.

In other words, in every block of d slots, we transmit the first unseen packet a

times, followed by d − a combinations of the first d − a + 1 unseen packets. These

schemes span the (τ, λ) trade-off as a varies from 1 to d, with a higher value of a

corresponding to higher λ and lower τ . In particular, observe that the a = d and

a = 1 codes correspond to codes given in the proofs of Claim 5 and Claim 6.

Theorem 13 (Throughput-Smoothness Trade-off for General d). The codes proposed

in Definition 26 give the trade-off points

(τ, λ) =

(
1− (1− p)a + (d− a)p

d
,−a

d
log(1− p)

)
. (8.9)

for a = 1, · · · d.

Proof. To find the (τ, λ) trade-off points, we first evaluate E[Sd] and pd. With prob-

ability 1 − (1− p)a we get 1 innovative packet from the first a slots in a block. The

number of innovative packets received in the remaining d − a slots is equal to the

number of successful slots. Thus, the expected number of innovative coded packets

received in the block is

E[Sd] = 1− (1− p)a + (d− a)p (8.10)

If the first a slots in the block are erased, the first unseen packet cannot be decoded,

even if all the other slots are successful. Hence, we have pd = 1−(1−p)a. Substituting

E[Sd] and pd in (8.6), we get the trade-off in (8.9).

By Lemma 16, we can achieve any convex combination of the (τ, λ) points in (8.9).

In Lemma 17 we show that for d = 2 and d = 3 this is the best trade-off among all

time-invariant schemes.

Lemma 17. For d = 2 and d = 3, the codes proposed in Definition 26 give the best

(τ, λ) trade-off among all time-invariant schemes.

138

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput τ

In
te

r−
d
e
liv

e
ry

 E
x
p
o
n
e
n
t
 λ

d = 1

d = 2

d = 3

d = 10

d = 50

d = 100

d = ∞

(p, −log(1−p))

(r, D(r || p))

[1,0,2]

[1,1]

[2,0][3,0,0]

[2,1,0]

Figure 8-3: The throughput-smoothness trade-off of the suggested coding schemes
in Definition 26 for p = 0.6 and various values of block-wise feedback delay d. The
trade-off becomes significantly worse as d increases. The point labels on the d = 2
and d = 3 trade-offs are x vectors of the corresponding codes.

The proof is given in Appendix F. Fig. 8-3 shows the trade-off given by (8.9) for

different values of d. We observe that the trade-off becomes significantly worse as d

increases. Thus we can imply that frequent feedback to the source is important in

delay-sensitive applications to ensure fast in-order delivery of packets. As d → ∞,

and a = αd, the trade-off converges to ((1−α)p,−α log(1− p)) for 0 ≤ α ≤ 1, which

is the line joining (0,− log(1− p)) and (p, 0). It does not converge to the (r,D(r‖p))
curve without feedback because we consider that d goes to infinity slower than the n

used to evaluate the asymptotic exponent of Pr(T1 > n).

By Lemma 17 the proposed codes are optimal for d = 2 and d = 3 among all time-

invariant schemes. Numerical results suggest that even for general d these schemes

give a trade-off that is close to the best trade-off among all time-invariant schemes.

8.7 Concluding Remarks

In this chapter, we consider the problem of streaming over an erasure channel when the

packets are required in-order, and investigate the trade-off between the throughput

139

and the smoothness of in-order packet delivery. Our analysis shows that frequent

feedback about channel erasures drastically improves the smoothness, for the same

throughput. We present a spectrum of coding schemes that span different points

on the throughput-smoothness trade-off. Depending upon the delay-sensitivity and

bandwidth limitations of the applications, one can choose a suitable operating point

on this trade-off. In the next chapter we generalize to the multicast scenario, where

the source wants to transmit the stream to multiple users over a shared channel.

Chapter 10 we discuss other generalizations and future research directions.

140

Chapter 9

Multicast Streaming with

Immediate Feedback

9.1 Introduction

In Chapter 8 we studied the effect of feedback delay on the throughput-smoothness

trade-off in point-to-point streaming. When there are multiple users, in addition to

the throughput-smoothness trade-off of each user, there is a trade-off between the

different users depend upon how the source prioritizes them. Even the immediate

feedback case becomes non-trivial. In this chapter we study this multicast scenario

and gain understanding of how the source can strike a balance between giving priority

to different users.

The use of network coding in multicast packet transmission has been studied

in [107–112]. The authors in [107] use as a delay metric the number of coded packets

that are successfully received, but do not allow immediate decoding of a source packet.

For two users, the paper shows that a greedy coding scheme is throughput-optimal

and guarantees immediate decoding in every slot. However, optimality of this scheme

has not been proved for three or more users. In [108], the authors analyze decoding

delay with the greedy coding scheme in the two user case. However, both these delay

metrics do not capture the aspect of in-order packet delivery.

In-order packet delivery for multicast with immediate feedback is considered in

141

[109–111]. These works consider that packets are generated by a Poisson process and

are greedily added to all future coded combinations. Another related work is [112]

which also considers Poisson packet generation in a two-user multicast scenario and

derives the stability condition for having finite delivery delay. However, in practice

the source can use feedback about past erasures to decide which packets to add to

the coded combinations, instead of just greedy coding over all generated packets.

In Section 9.2 we generalize the system model in Chapter 8 to the multicast

scenario. In Section 9.3 we identify the structure of coding schemes required to

simultaneously satisfy the requirements of multiple users. In Section 9.4 we use this

structure to find the best coding scheme for the two user case, where one user is

always given higher priority. In Section 9.5 we generalize this scheme to allow tuning

the level of priority given to each user. The analysis of both these cases is based on a

new Markov chain model of packet decoding. We propose coding schemes which allow

us to tune the level of priority given to each user and hence achieve different points on

its throughput-smoothness trade-off. The longer proofs are deferred to Appendix G.

9.2 System Model

The system model is a generalized version of that in Section 8.2. Instead of a single

user, the source is transmitting a common packet stream s1, s2, · · · , sn to K users

U1, U2, · · · , UK . We consider an i.i.d. erasure channel to each user such that every

transmitted packet is received successfully at user Uk with probability pk, and other-

wise received in error and discarded. The erasure events are independent across the

users.

The throughput and smoothness metrics are same as in Section 8.3. We denote the

throughput and smoothness exponent of user Uk by τk and λk respectively. In addition

to the notions of packet decoding defined in Section 8.3 we define one additional notion

of the ‘required’ packet of each user.

Definition 27 (Required packet). The required packet of Ui is its earliest undecoded

packet. Its index is denoted by ri.

142

In other words, sri is the first unseen packet of user Ui. For example, if packets

s1, s3 and s4 have been decoded at user Ui, its required packet sri is s2.

Instead of considering block-wise feedback to the source, we focus on the immedi-

ate feedback (d = 1) case. This feedback can be used to estimate pi for 1 ≤ i ≤ K, the

success probablities of the erasure channels, when they are unknown to the source.

The case of general feedback delay d is hard to analyze and open for future work.

Remark 8. For the no feedback case (d = ∞) we can extend Theorem 12 to show

that the optimal throughput-smoothness trade-off for user Uk, k = 1, 2, · · ·K among

full-rank codes is (τk, λk) = (r,D(r‖pk)), if 0 ≤ r ≤ pk. If r > pk then λk = 0 for user

Uk. Since we are transmitting a common stream, the rate r of adding new packets is

same for all users.

9.3 Structure of Coding Schemes

The best possible trade-off is (τi, λi) = (pi,− log(1−pi)), and it can be achieved when

there is only one user, and the source uses a simple Automatic-repeat-request (ARQ)

protocol where it keeps retransmitting the earliest undecoded packet until that packet

is decoded. In this chapter our objective is to design coding strategies to maximize τ

and λ for the two user case. For two or more users we can show that it is impossible

to achieve the optimal trade-off (τ, λ) = (pi,− log(1 − pi)) simultaneously for all

users. We now present code structures that maximize throughput and inter-delivery

exponent of the users.

Claim 7 (Include only Required Packets). In a given slot, it is sufficient for the

source to transmit a combination of packets sri for i ∈ I where I is some subset of

{1, 2, · · ·K}.

Proof. Consider a candidate packet sc where c 6= ri for any 1 ≤ i ≤ K. If c < ri

for all i, then sc has been decoded by all users, and it need not be included in the

combination. For all other values of c, there exists a required packet sri for some

i ∈ {1, 2, · · ·K} which, if included instead of sc, will allow more users to decode their

143

required packets. Hence, including that packet instead of sc gives a higher smoothness

exponent λ.

Claim 8 (Include only Decodable Packets). If a coded combination already includes

packets sri with i ∈ I, and Uj, j /∈ I has not decoded all sri for i ∈ I, then a scheme

that does not include srj in the combination gives a better throughput-smoothness

trade-off than a scheme that does.

Proof. If Uj has not decoded all sri for i ∈ I, the combination is innovative but does

not help decoding an in-order packet, irrespective of whether srj is included in the

combination. However, if we do not include packet srj , Uj may be able to decode one

of the packets sri , i ∈ I, which can save it from out-of-order packet decoding in a

future slot. Hence excluding srj gives a better throughput-smoothness trade-off.

Example 2. Suppose we have three users U1, U2, and U3. User U1 has decoded

packets s1, s2, s3 and s5, user U2 has decoded s1, s3, and s4, and user U3 has decoded

s1, s2, and s5. The required packets of the three users are s4, s2 and s3 respectively.

By Claim 7, the optimal scheme should transmit a linear combination of one or more

of these packets. Suppose we construct combination of s4 and s2 and want to decide

whether to include s3 or not. Since user U3 has not decoded s4, we should not include

s3 as implied by Claim 8.

The choice of the initial packets in the combination is governed by a priority given

to each user in that slot. Claims 7 and 8 imply the following code structure for the

two user case.

Proposition 1 (Code Structure for the Two User Case). Every achievable trade-off

between throughput and inter-delivery exponent can be obtained by a coding scheme

where the source transmits sr1, sr2 or the exclusive-or, sr1 ⊕ sr2 in each slot. It

transmits sr1 ⊕ sr2 if and only if r1 6= r2, and U1 has decoded sr2 or U2 has decoded

sr1.

In the rest of this chapter we analyze the two user case and focus on coding

schemes as given by Proposition 1.

144

Time Sent U1 U2

1 s1 s1 7

2 s2 7 s2

3 s1 ⊕ s2 s2 s1

4 s3 s3 7

5 s4 s4 s4

Figure 9-1: Illustration of the optimal coding scheme when the source always give
priority to user U1. The third and fourth columns show the packets decoded at the
two users. Cross marks indicate erased slots for the corresponding user.

9.4 Optimal Performance for One of Two Users

In this section we consider that the source always gives priority to one user, called

the primary user. We determine the best achievable throughput-smoothness trade-off

for a secondary user that is “piggybacking” on such a primary user. For simplicity of

notation, let a , p1p2, b , p1(1 − p2), c , (1 − p1)p2 and d , (1 − p1)(1 − p2), the

probabilities of the four possible erasure patterns.

Without loss of generality, suppose that U1 is the primary user, and U2 is the

secondary user. Recall that ensuring optimal performance for U1 implies achieving

(τ1, λ1) = (p1,− log(1 − p1)). While ensuring this, the best throughput-smoothness

trade-off for user U2 is achieved by the coding scheme given by Claim 9 below.

Claim 9 (Optimal Coding Scheme). A coding scheme where the source transmits

sr1 ⊕ sr2 if U2 has already decoded sr1, and otherwise transmits sr1, gives the best

achievable (τ2, λ2) trade-off while ensuring optimal (τ1, λ1).

Proof. Since U1 is the primary user, the source must include its required packet sr1

in every coded combination. By Proposition 1, if the source transmits sr1 ⊕ sr2 if

U2 has already decoded sr1 , and transmits sr1 otherwise, we get the best achievable

throughput-smoothness trade-off for U2.

Fig. 9-1 illustrates this scheme for one channel realization.

Packet decoding at the two users with the scheme given by Claim 9 can be modeled

by the Markov chain shown in Fig. 9-2. The state index i can be expressed in terms

of the number of gaps in decoding of the users, defined as follows.

145

0 1

1’ 2’

−1 2

ba

a + dc + d

d

c

a + b

a

a + d a + d

c

c c

c

d

b

b b

Figure 9-2: Markov chain model of packet decoding with the coding scheme given
by Claim 9, where U1 is the primary user. The state index i represents the number
of gaps in decoding of U2 minus that for U1. The states i′ are the advantage states
where U2 gets a chance to decode its required packet.

Definition 28 (Number of Gaps in Decoding). The number of gaps in Ui’s decoding

is the number of undecoded packets of Ui with indices less than rmax = maxi ri.

In other words, the number of gaps is the amount by which a user Ui lags behind

the user that is leading the in-order packet decoding. The state index i, for i ≥ −1 is

equal to the number of gaps in decoding at U2, minus that for U1. Since the source

gives priority to U1, it always has zero gaps in decoding, except when there is a

c = p2(1 − p1) probability erasure in state 0, which causes the system goes to state

−1. The states i′ for i ≥ 1 are called “advantage” states and are defined as follows.

Definition 29 (Advantage State). The system is in an advantage state when r1 6= r2,

and U2 has decoded sr1 but U1 has not.

By Claim 9, the source transmits sr1 ⊕ sr2 when the system is in an advantage

state i′, and it transmits sr1 when the system is in state i for i ≥ −1. We now

describe the state transitions of this Markov chain. First observe that with probability

d = (1− p1)(1− p2), both users experience erasures and the system transitions from

any state to itself. When the system is in state −1, the source transmits sr1 . Since

sr1 has been already decoded by U2, the probability c = p2(1− p1) erasure also keeps

the system in the same state. If the channel is successful for U1, which occurs with

146

probability p1 = a+ b, it fills its decoding gap and the system goes to state 0.

The source transmits sr1 in any state i, i ≥ 1. With probability a = p1p2, both

users decode sr1 , and hence the state index i remains the same. With probability

b = p1(1 − p2), U1 receives sr1 but U2 does not, causing a transition to state i + 1.

With probability c = (1− p1)p2, U2 receives sr1 and U1 experiences an erasure due to

which the system moves to the advantage state i′. When the system is an advantage

state, having decoded sr1 gives U2 an advantage because it can use sr1⊕sr2 transmitted

in the next slot to decode sr2 . From state i′, with probability a, U1 decodes sr1 and

U2 decodes sr2 , and the state transitions to i − 1. With probability c, U2 decodes

sr2 , but U1 does not decode sr1 . Thus, the system goes to state (i− 1)′, except when

i = 1, where it goes to state 0.

Claim 10. The Markov chain in Fig. 9-2 is positive-recurrent and has unique steady-

state distribution if and only if b < c, which is equivalent to p1 < p2.

Lemma 18 (Trade-off for the Piggybacking user). When the source always gives

priority to user U1 it achieves the optimal trade-off (τ1, λ1) = (p1,− log(1− p1)). The

scheme in Claim 9 gives the best achievable (τ2, λ2) trade-off for piggybacking user

U2. The throughput τ2 is given by

τ2 = p1 if p2 > p1. (9.1)

If p2 ≤ p1, τ2 cannot be evaluated using our Markov chain analysis. The inter-delivery

exponent of U2 for any p1 and p2 is given by

λ2 = − log

max


(

1− c+ d+
√

(1− c+ d)2 + 4(bc+ cd− d)
)

2
, 1− p1

 .

(9.2)

In Fig. 9-3 we plot the inter-delivery exponent λ2 versus p2, which increases from p1

to 1 along each curve. The inter-delivery exponent λ2 increases with p2, but saturates

at − log(1 − p1), the inter-delivery exponent λ1 of the primary user. Since U2 is the

147

0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
2
, the success probability of U

2

In
te

r−
d

e
liv

e
ry

 E
x
p

o
n

e
n

t
λ

2

p
1
= 0.3

p
1
 = 0.4

p
1
 = 0.5

p
2
 = 1

p
2
 = p

1

Figure 9-3: Plots of the inter-delivery exponent λ2 of the piggybacking user U2, versus
the success probability p2 throughput τ2. The value of p2 varies from p1 to 1 on each
curve. The exponent saturates at − log(1 − p1), which is equal to λ1, the exponent
of the primary user U1.

secondary user it cannot achieve faster in-order delivery than the primary user U1.

9.5 General Throughput-Smoothness Trade-offs

For the general case, we propose coding schemes that can be combined to tune the

priority given to each of the two users and achieve different points on their throughput-

smoothness trade-offs.

Let rmax = max(r1, r2) and rmin = min(r1, r2), where r1 and r2 are the indices of

the required packets of the two users. We refer to the user with the higher index ri

as the leader(s) and the other user as the lagger. Thus, U1 is the leader and U2 is

the lagger when r1 > r2. If r1 = r2, without loss of generality we consider U1 as the

leader.

Definition 30 (Priority-(q1, q2) Codes). If the lagger Ui has not decoded packet srmax,

the source transmits srmin with probability qi and srmax otherwise. If the lagger has

decoded srmax , the source transmits srmax ⊕ srmin.

Note that the code given in Claim 9, where the source always gives priority to user

148

0 1 -1 2

2’ 1’ -1’

-2

-2’

(1-q1)c c

q1(a+b) q2(a+c)

b

b

q1(a+b) q2(a+c)

(1-q2)b

c

a
b c(1-q2)

a

a+d (1-q2)a+q2b+d (1-q1)a+q1c+d

a

a

c b

Figure 9-4: Markov chain model of packet decoding with the priority-(q1, q2) coding
scheme given by Definition 30. The state index i represents the number of gaps in
decoding if U2 compared to U1 and qi is the probability of giving priority to the Ui
when it is the lagger, by transmitting its required packet sri . and

U1 is a special case of priority-(q1, q2) codes with (q1, q2) = (1, 0). Another special

case is (q1, q2) = (0, 0) which is a greedy coding scheme that always favors the user

which is ahead in in-order delivery. The greedy coding scheme ensures throughput

optimality to both users, i.e. τ1 = p1 and τ2 = p2.

Remark 9. A generalization of priority-(q1, q2) codes is to consider priorities q
(i)
1 and

q
(i)
2 that depend on the state i of the Markov chain. A special case of this is q

(i)
1 = 1

for all states i ≥ −M , and q
(i)
2 = 1 for all states j ≤ N for integers M,N > 0. This

scheme corresponds to putting hard boundaries on both sides of the Markov chain. It

was analyzed in [24].

The Markov model of packet decoding with a priority-(q1, q2) code is as shown

in Fig. 9-4, which is a two-sided version of the Markov chain in Fig. 9-2. Same as

in Fig. 9-2, the index i of a state i of the Markov chain is the number of gaps in

decoding of U2 minus that for U1. User U1 is the leader when the system is in state

i ≥ 1 and U2 is the leader when i ≤ −1, and both users are leaders when i = 0.

The system is in the advantage state i′ if packet is decoded by the lagger but not the

leader. For simplicity of representation we define the notation d̄ , 1− d, q̄1 , 1− q1

and q̄2 , 1− q2.

149

0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Throughput

In
te

r−
d
e
liv

e
ry

 E
x
p
o
n
e
n
t

User 1

User 2

q
2
 = 0.26

q
2
 = 0.26

q
2
 = 1

Figure 9-5: Plot of the throughput-smoothness trade-off for q1 = 1 and as q2 varies.
The success probabilities p1 = 0.5 and p2 = 0.4.

Lemma 19 ((τ, λ) Trade-offs with Priority-(q1, q2) codes). Let µ = πi−1/πi for

i ≤ −1. Then the priority-(q1, q2) codes given by Definition 30 give the following

throughput for U2.

τ2 = p2

(
1− q1π−1

1− µ

)
if µ < 1 (9.3)

If µ > 1 then τ2 cannot be evaluated using our Markov chain analysis. On the other

hand, the inter-delivery exponent can be evaluated for any µ as given by

λ2 = − log max

(
d+ q1c+ q̄1b,(

2d+ q̄2a+ b+
√

(2d+ q̄2a+ b)2 − 4(d(b+ d) + q̄2(da− bc))
)

2

)
(9.4)

Similarly, let ρ = πi+1/πi for i ≥ 1. If ρ < 1, the expressions for throughput τ1 and

inter-delivery exponent λ1 of U1 are same as (9.3) and (9.4) with b and c, and q1 and

q2 interchanged, π−1 replaced by π1, and µ replaced by ρ.

Fig. 9-5 shows the throughput-smoothness trade-offs of the two users as q2 varies,

150

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput τ
1
 = τ

2

In
te

r−
d

e
liv

e
ry

 E
x
p

o
n

e
n

t
λ

1
 =

 λ
2

p
1
 = p

2
 = 0.4

p
1
 = p

2
 = 0.5

p
1
 = p

2
 = 0.6

Figure 9-6: Plot of the throughput-smoothness trade-off for different values p1 = p2.
On each curve, q1 = q2 varies from 0 from 1.

when q1 = 1, p1 = 0.5 and p2 = 0.4. To stabilize the right-side of the Markov chain

in Fig. 9-4 for these parameters we require q2 to be at least 0.25. As q2 increases

from 0.26 to 1 in Fig. 9-5 we observe that U2 gains in smoothness, at the cost of the

smoothness of U1. Also, both users lose throughput when q2 increases.

In Fig. 9-6 we show the effect of increasing q1 and q2 simultaneously for different

values of p1 = p2. As q1 = q2 increases, we get a better inter-delivery exponent for

both users, but at the cost of loss of throughput.

9.6 Concluding Remarks

In this chapter we consider the problem where multiple users request a packet stream

from the source over a shared channel with immediate feedback. While different

users decode different sets of packets, the source has to simultaneously ensure smooth

decoding at all of them. We study the inter-dependence of the throughput-smoothness

trade-offs for the two user case, and develop coding schemes to tune the priority given

to each user. A future research direction is to generalize the analysis beyond two users,

and also consider the effect of delayed feedback about erasures.

151

152

Chapter 10

Future Directions

In Chapter 8 and Chapter 9 we studied the interplay between throughput and smooth-

ness of streaming communication, and developed erasure codes that achieve a good

trade-off. In this chapter we discuss generalizations of the system model and future

research directions.

10.1 Model Generalizations

10.1.1 Finite Buffer

There can be two types of buffers at the receiver: the decoding buffer and the playback

buffer. The decoding buffer collects coded combinations received over the erasure

channel. Once enough combinations are received, the packets are decoded and sent

to the playback buffer. The playback buffer is drained at a constant rate at which

packets are played. Interruptions in playback occur when the playback buffer becomes

empty. In Chapter 8 and Chapter 9 we do not have a playback buffer: bursts of packets

are delivered to the application as soon as they are decoded in order. A playback

buffer is considered in [104, 105, 113]. Our analysis on the growth of playback delay

gives insights into the required size of playback buffer.

Interesting future directions include considering one or both of these buffers being

finite in size. In [113] we considered the case of a finite playback buffer, where we

153

proposed a dynamic bandwidth scheme called the buffer refill scheme. However,

determining the optimal packet transmission scheme is open for future work.

10.1.2 Dynamic Bandwidth

Instead of fixed bandwidth b packets per slot, if the bandwidth can be dynamically

adjusted, we can potentially better throughput-smoothness performance. Dynamic

bandwidth allows the source to better adapt future transmissions to feedback about

erasures. For example, when a large number of consecutive packets are erased, the

source can use more bandwidth to fill those gaps in decoding. Moreover, if the channel

has memory such that erasures occur in bursts, dynamic bandwidth can be used to

develop a water-pouring [2] type transmission strategy. Dynamic bandwidth was also

considered in [103] for uncoded streaming transmission. Analyzing and developing

erasure codes with dynamic bandwidth is open for future research.

10.1.3 Packet Dropping

In audio or video streaming, there is significant correlation between subsequent pack-

ets. Thus the quality perceived by the user remains unaffected if some packets are

dropped. If packet dropping is permitted, then the source can use the limited avail-

able bandwidth to transmit new packets instead of attempting to fill older gaps in

decoding. Thus, careful packet dropping can result in higher throughput for the

same smoothness perceived by the user. Choice of which packets to drop such that

the quality of streaming is maintained is an interesting future direction.

10.1.4 Streaming from Distributed Sources

In practical systems often there are multiple sources, for example caches in a peer-to-

peer network, that store the streaming data fully or in parts. The sources may have

different bandwidth limitations, and erasure probabilities while transmitting coded

packets to the user in each slot. Using the diversity of sources we can improve the

delay in decoding each individual packet. The throughput improvement of such coded

154

caching strategies has been explored in a line of recent works [114–116]. However

the analysis of smoothness of packet delivery from such distributed systems remains

unexplored. We aim extend the work on point-to-point streaming to consider how to

best store and combine the information received from each of the sources.

10.2 Alternate Smoothness Metrics

To capture the smoothness of packet delivery to the users, we considered smoothness

exponent λ, defined as the exponent of the in-order decoding delay Dk. We found it

particular tricky to come up with the best suited delay metric to evaluate the quality

of streaming. We now discuss some alternate metrics that are also meaningful for

streaming applications. In some regimes these metrics can be expressed in terms of

the smoothness exponent λ.

10.2.1 Playback Delay

When packets are being generated in real-time at the source and played back at a

constant rate at the receiver, playback delay (defined as the number of interrupted

slots) is a good metric of the streaming quality. The authors in [103] analyze the

playback delay of real-time streaming for uncoded packet transmission over a channel

with long feedback delay.

In [104,105] we show that the number of interruptions in playback scales Θ(log n)

for a stream of length n. We then proposed codes that minimize the pre-log term

for the no feedback and immediate feedback cases. For the no feedback case, the

playback delay grows as (1/λ) · log n, where λ = D(r‖p), the smoothness exponent.

Recent work [113] shows that if the stream is available beforehand (non real-time), it

is possible to guarantee constant number of interruptions, independent of n.

When the feedback to the source is delayed by d slots, the analysis of playback

delay becomes complicated, and is open for future research. In [105] we present some

preliminary insights on this problem. We express the playback delay in terms of a

random walk between two boundaries at a distance d from each other.

155

10.2.2 In-order Delivery Delay

For applications such as Dropbox and remote desktop, the packets are required in-

order, but are not played back at a constant rate. For example, a burst of in-order

instructions delivered to a remote desktop can be executed almost instantaneously.

Instead of playback delay, in-order delivery delay Dk is a good metric for such appli-

cations. In-order delivery delay is analyzed in [14] for the no feedback case. In [13]

the authors present bounds on the mean and variance of the in-order delivery delay

when the source receives delayed feedback about packet erasures.

In Chapter 8 and Chapter 9 we consider the exponent of the in-order delivery

delay Dk as the smoothness metric. Instead, we can also analyze the expected value

of in-order delivery delay. We refer to this as the ‘smoothness index’ and analyze it

for multicast streaming with immediate feedback in [24].

10.2.3 Probability of Interruption

In [117] the authors consider the probability of interruption in playback as the delay

metric. They study the trade-off between the throughput and the probability of

interruption due to buffer underflow. For our system model, the probability of buffer

underflow is same the probability of the inter-delivery delay T exceeding the size of

the buffer. Thus the probability of interruption is proportional to e−λB, where B is

the playback buffer size and λ is the smoothness exponent.

156

Chapter 11

Concluding Remarks

11.1 Summary

The cloud provides flexible and scalable access to computing via thousands on shared

servers in data centers. Fast and fluid response to users is one of the key metrics of

performance. With applications becoming more interactive, we as users are becoming

sensitive to even sub-second delays in response. Guaranteeing such low delays is chal-

lenging because service times can vary due to factors such as virtualization, outages,

packet loss etc. And it is difficult to set up centralized monitoring of the servers to

accurately estimate their state. In this thesis we use redundancy to reduce delay in a

stateless and cost-efficient manner.

In Part I we study the simple idea of replicating computing tasks and waiting for

the earliest to finish. Task replication can be a powerful and effective way to speed-up

computing, without requiring constant monitoring of the servers. However, it can cost

additional computing resources and increase queueing load at the servers. In Chap-

ter 2 we presented a framework to analyze queues with redundancy. This analysis

uncovered the surprising insight that for log-convex service distributions, replication

not only reduces latency but also makes the system more efficient. Chapter 3 explored

straggler replication strategies for computing jobs with many parallel tasks.

In Part II we generalized the task replication setup and analyze content download

from erasure coded storage. If a content is erasure coded with an (n, k) maximum-

157

distance-separable code, than any k out of n chunks are sufficient to recover it. Thus,

the delay in content access can be reduced by requesting all n chunks and waiting

for k. This idea led to the formulation and analysis of the (n, k) fork-join queueing

system and its variants. We can show that coding can significantly reduce latency,

without much computing and storage overhead.

Unlike traditional content download where only total delay matters, streaming

requires the packets of the content to be delivered fast and in-order. In Part III

we developed erasure codes that combine old and new packets effectively to ensure

smooth playback with limited available bandwidth.

A unified view of the three parts of this thesis is that we study techniques to

combat variability in the system and reduce delay, subject to the order and resource

constraints. Part I and Part II focus on the overall latency, without order constraints

tasks executed or the content downloaded. Part III accounts for these order con-

straints by considering in-order packet decoding. There are several unexplored inter-

sections of these three areas. For instance, order constraints on tasks are common in

cloud computing. In MapReduce the map tasks need to executed before reduce tasks.

Optimal scheduling of tasks on cloud servers by accounting for these dependencies

between tasks is a possible future direction. There are also interesting problems at

the intersection on Part II and Part III. A complementary solution to our work on

streaming codes is to access content at multiple caches to improve streaming quality.

11.2 Broader Future Directions

More broadly, it is well-known that the amount of data in the cloud is growing at

an alarming rate. Thus there is an urgent need to build infrastructure to store and

process this data in a fast, efficient and reliable fashion. This thesis develops a novel

mathematical framework to understand how redundancy can help combat random

service delays. Armed with this framework, we can approach problems of stochastic

variability in a wide range of applications. Some areas of particular interest are

described below.

158

• Large-scale Machine Learning: Machine learning algorithms constitute a large

fraction of the computing performed in the cloud today. These algorithms require

training of large neural networks using millions of training samples. For speed and

scalability, training can be parallelized by creating model replicas that communicate

with a central parameter server [73]. Such distributed learning frameworks suffer

from service variability and stragglers, and can benefit from strategies similar to

our work in Part I.

• Crowdsourcing: Humans are increasing becoming part of the cloud infrastruc-

ture. Tasks that require human intelligence can be assigned to workers via plat-

forms like Amazon Mechanical Turk. Although it is mostly used for small tasks

(e.g. image annotation) today, crowdsourcing has great potential in transforming

the way humans accomplish large projects. Redundancy techniques based on this

thesis can be applied to reduce the variability in waiting for workers to attempt

and complete tasks.

• Noisy Logic Devices: The building blocks of all cloud infrastructure are logic

gates and memory devices. Some emerging devices such as spintronic gates have

a curious accuracy-speed trade-off; their accuracy improves if we allow them more

time to settle. We are interested in developing techniques to guide circuit design

that strikes a balance between accuracy and speed.

• Energy Systems: In the electricity grid, matching the supply and demand is cru-

cial. This matching is becoming harder to achieve due to the increased integration

of stochastically varying renewable sources. At the same time, data from smart

meters provides novel opportunities to shift demand towards surplus supply. The

probabilistic modeling and analysis techniques used in this thesis can be applied to

construct data-driven scheduling to improve energy efficiency.

159

11.3 Final Remarks

In this thesis we explored the use of redundancy to reduce latency in cloud systems.

Redundancy in the form of repetition, and more generally coding has been used in

communication, network routing etc. for several decades. However its use was largely

unexplored in the context of scheduling in cloud systems. This thesis presents a

theoretical framework to study queueing systems with redundancy, and reduce delay

in a cost-efficient manner.

The central idea behind this work is to build a reliable system from a set of un-

reliable and unpredictable components. From the diversity in the future directions

discussed above, it is apparent that imperfect components arise in almost every prac-

tical system. And redundancy can help deal with those imperfections. We are curious

to explore many more applications of this simple, yet powerful idea.

160

Appendix A

Properties of Log-concavity

In this section we present some properties and examples of log-concave and log-convex

random variables that are relevant to this work. For more properties please see [52].

Property 1 (Jensen’s Inequality). If F̄X is log-concave, then for 0 < θ < 1 and for

all x, y ∈ [0,∞),

Pr(X > θx+ (1− θ)y) ≥ Pr(X > x)θ Pr(X > y)1−θ. (A.1)

The inequality is reversed if F̄X is log-convex.

Proof. Since F̄X is log-concave, log F̄X is concave. Taking log on both sides on (A.1)

we get the Jensen’s inequality which holds for concave functions.

In past literature sayingX is log-concave usually means that f is log-concave. This

implies that F and F̄ . However log-convex f , does not always imply log-convexity of

F and F̄ .

Property 2 (Scaling). If F̄X is log-concave, for 0 < θ < 1,

Pr(X > x) ≤ Pr(X > θx)1/θ (A.2)

The inequality is reversed if F̄X is log-convex.

161

Proof. We can derive (A.2) by setting y = 0 in (A.1).

Pr(X > θx+ (1− θ)0) ≥ Pr(X > x)θ Pr(X > 0)1−θ, (A.3)

Pr(X > θx) ≥ Pr(X > x)θ. (A.4)

To get (A.4) we observe that if F̄X is log-concave, then Pr(X > 0) has to be 1.

Otherwise log-concavity is violated at x = 0. Raising both sides of (A.4) to power

1/θ we get (A.2). The reverse inequality of log-convex F̄X can be proved similarly.

Property 3 (Sub-multiplicativity). If F̄X is log-concave, the conditional tail proba-

bility of X satisfies for all t, x > 0,

Pr(X > x+ t|X > t) ≤ Pr(X > x) (A.5)

⇔Pr(X > x+ t) ≤ Pr(X > x) Pr(X > t) (A.6)

The inequalities above are reversed if F̄X is log-convex.

Proof.

Pr(X > x) Pr(X > t) (A.7)

= Pr

(
X >

x

x+ t
(x+ t)

)
Pr

(
X >

t

x+ t
(x+ t)

)
, (A.8)

≥ Pr(X > x+ t)
x
x+t Pr(X > x+ t)

t
x+t , (A.9)

where we apply Property 2 to (A.8) to get (A.9). Equation (A.5) follows from (A.9).

Note that for exponential FX which is memoryless, (A.5) holds with equality.

Thus log-concave distributions can be thought to have ‘optimistic memory’, because

the conditional tail probability decreases over time. On the other hand, log-convex

distributions have ‘pessimistic memory’ because the conditional tail probability in-

creases over time. The definition of the notions ‘new-better-than-used’ in [46] is same

as (A.5). By Property 3 log-concavity of F̄X implies that X is new-better-than-used.

162

New-better-than-used distributions are referred to as ‘light-everywhere’ in [48] and

‘new-longer-than-used’ in [49].

Property 4 (Mean Residual Life). If F̄X is log-concave (log-convex), E [X − t|X > t],

the mean residual life after time t > 0 has elapsed is non-increasing (non-decreasing)

in t.

of Lemma 1. Lemma 1 is true for log-concave F̄X if rE [X1:r] ≤ (r + 1)E [X1:r+1] for

all integers r ≥ 1. This inequality can be simplified as follows.

rE [X1:r] ≤ (r + 1)E [X1:r+1] (A.10)

⇔ r

∫ ∞
0

Pr(X1:r > x)dx ≤
∫ ∞

0

(r + 1) Pr(X1:r+1 > x)dx, (A.11)

⇔ r

∫ ∞
0

Pr(X > x)rdx ≤
∫ ∞

0

(r + 1) Pr(X > x)r+1dx, (A.12)

⇔
∫ ∞

0

Pr

(
X >

x′

r

)r
dx′ ≤

∫ ∞
0

Pr

(
X >

x′

r + 1

)r+1

dx′, (A.13)

We get (A.11) using the fact that the expected value of a non-negative random

variable is equal to the integral of its tail distribution. To get (A.12) observe that

since X1:r = min(X1, X2, · · · , Xr) for i.i.d. Xi, we have Pr(X1:r > x) = Pr(X > x)r

for all x > 0. Similarly Pr(X1:r+1 > x) = Pr(X > x)r+1. Next we perform a change

of variables on both sides of (A.12) to get (A.13).

Now we use Property 2 to compare the two integrands in (A.13). Setting θ =

r/r + 1 and x = x′/r in Property 2, we get

Pr

(
X >

x′

r

)r
≤ Pr

(
X >

x′

r + 1

)r+1

for all x′ ≥ 0. (A.14)

Hence, by (A.14) and the equivalences in (A.10)-(A.13) it follows that for log-

concave F̄X if rE [X1:r] is non-decreasing in r. For log-convex F̄X , we can show that

rE [X1:r] is non-increasing in r by reversing all inequalities above.

Remark 10. If X is new-better-than-used (a weaker notion implied by log-concavity

163

of X), it can be shown that

E [X] ≤ rE [X1:r] for all integers r ≥ 1 (A.15)

This is weaker than Lemma 1 which shows the monotonicity of rE [X1:r] for log-

concave (log-convex) X.

Property 5 (Hazard Rates). If F̄X is log-concave (log-convex), then the hazard rate

h(x), which is defined by −F̄ ′X(x)/F̄X(x), is non-decreasing (non-increasing) in x.

Property 6 (Coefficient of Variation). The coefficient of variation Cv = σ/µ is the

ratio of the standard deviation σ and mean µ of random variable X. For log-concave

(log-convex) X, Cv ≤ 1 (Cv ≥ 1), and Cv = 1 when X is pure exponential.

Property 7 (Examples of Log-concave F̄X). The following random variables have

log-concave F̄X :

• Shifted Exponential (Exponential plus constant ∆ > 0)

• Uniform over any convex set

• Weibull with shape parameter c ≥ 1

• Gamma with shape parameter c ≥ 1

• Chi-squared with degrees of freedom c ≥ 2

Property 8 (Examples of Log-convex F̄X). The following random variables have

log-convex F̄X :

• Exponential

• Hyper Exponential (Mixture of exponentials)

• Weibull with shape parameter 0 < c < 1

• Gamma with shape parameter 0 < c < 1

164

Appendix B

Proof of Theorem 3

Proof of Theorem 3. Using (2.4), we can express the cost C in terms of the relative

task start times ti, and S as follows. Since only r tasks are invoked, the relative start

times tr+1, . . . , tn are equal to ∞.

C = S + (S − t2)+ + · · ·+ (S − tr)+ , (B.1)

where S is the time between the start of service of the earliest task, and when any 1

of the r tasks finishes. The tail distribution of S is given by

Pr(S > s) =
r∏
i=1

Pr(X > s− ti). (B.2)

By taking expectation on both sides of (B.1) and simplifying we get,

E [C] =
r∑

u=1

∫ ∞
tu

Pr(S > s)ds, (B.3)

=
r∑

u=1

u

∫ tu+1

tu

Pr(S > s)ds, (B.4)

=
r∑

u=1

u

∫ tu+1−tu

0

Pr(S > tu + x)dx, (B.5)

=
r∑

u=1

u

∫ tu+1−tu

0

u∏
i=1

Pr(X > x+ tu − ti)dx. (B.6)

165

We now prove that for log-concave F̄X , E [C] ≥ E [X]. The proof that E [C] ≤
E [X] when F̄X is log-convex follows similarly with all inequalities below reversed. We

express the integral in (B.6) as,

E [C] =
r∑

u=1

u

(∫ ∞
0

u∏
i=1

Pr(X > x+ tu − ti)dx−
∫ ∞

0

u∏
i=1

Pr(X > x+ tu+1 − ti)dx
)
,

(B.7)

=
r∑

u=1

(∫ ∞
0

u∏
i=1

Pr

(
X >

x′

u
+ tu − ti

)
dx′−

∫ ∞
0

u∏
i=1

Pr

(
X >

x′

u
+ tu+1 − ti

)
dx′
)
, (B.8)

= E [X] +
r∑

u=2

∫ ∞
0

(
u∏
i=1

Pr

(
X >

x′

u
+ tu − ti

)
−

u−1∏
i=1

Pr

(
X >

x′

u− 1
+ tu − ti

))
dx′, (B.9)

≥ E [X] , (B.10)

where in (B.7) we express each integral in (B.6) as a difference of two integrals from

0 to ∞. In (B.8) we perform a change of variables x = x′/u. In (B.9) we rearrange

the grouping of the terms in the sum; the uth negative integral is put in the u+1 term

of the summation. Then the first term of the summation is simply
∫∞

0
Pr(X > x)dx

which is equal to E [X]. In (B.9) we use the fact that each term in the summation in

(B.8) is positive when F̄X is log-concave. This is shown in Lemma 20 below.

Next we prove that for log-concave F̄X , E [C] ≤ rE [X1:r]. Again, the proof of

E [C] ≥ rE [X1:r] when F̄X is log-convex follows with all the inequalities below re-

versed.

166

E [C] ≤
r∑

u=1

u

∫ tu+1−tu

0

u∏
i=1

Pr

(
X >

u(x+ tu − ti)
r

)r/u
dx, (B.11)

=
r∑

u=1

(∫ ∞
0

u∏
i=1

Pr

(
X >

x′ + u(tu − ti)
r

)r/u
dx′−

∫ ∞
0

u∏
i=1

Pr

(
X >

x′ + u(tu+1 − ti)
r

)r/u
dx′
)
, (B.12)

=

∫ ∞
0

Pr

(
X >

x′

r

)r
dx′ +

r∑
u=2

(∫ ∞
0

u∏
i=1

Pr

(
X >

x′ + u(tu − ti)
r

)r/u
dx′−

∫ ∞
0

u−1∏
i=1

Pr

(
X >

x′ + (u− 1)(tu − ti)
r

) r
u−1

dx′
)
, (B.13)

≤ rE [X1:r] , (B.14)

where we get (B.11) by applying Property 2 to (B.6). In (B.12) we express the integral

as a difference of two integrals from 0 to ∞, and perform a change of variables

x = x′/u. In (B.13) we rearrange the grouping of the terms in the sum; the uth

negative integral is put in the u + 1 term of the summation. The first term is equal

to rE [X1:r]. We use Lemma 21 to show that each term in the summation in (B.13)

is negative when F̄X is log-concave.

Lemma 20. If F̄X is log-concave,

u∏
i=1

Pr

(
X >

x′

u
+ tu − ti

)
≥

u−1∏
i=1

Pr

(
X >

x′

u− 1
+ tu − ti

)
. (B.15)

The inequality is reversed for log-convex F̄X .

Proof of Lemma 20. We bound the left hand side expression as follows.

u∏
i=1

Pr
(
X >

x

u
+ tu − ti

)
= Pr(S > tu)

u∏
i=1

Pr
(
X >

x

u
+ tu − ti|X > tu − ti

)
, (B.16)

167

= Pr(S > tu) Pr
(
X >

x

u

)u−1
u−1 ×

u−1∏
i=1

Pr
(
X >

x

u
+ tu − ti|X > tu − ti

)
, (B.17)

≥ Pr(S > tu)
u−1∏
i=1

Pr
(
X >

x

u
+ tu − ti|X > tu − ti

) u
u−1

, (B.18)

≥ Pr(S > tu)
u−1∏
i=1

Pr

(
X >

x

u− 1
+ tu − ti|X > tu − ti

)
, (B.19)

=
u−1∏
i=1

Pr

(
X >

x

u− 1
+ tu − ti

)
(B.20)

where we use Property 3 to get (B.18). The inequality in (B.19) follows from applying

Property 2 to the conditional distribution Pr(Y > x′/u) = Pr(X > x′/u+ tu− ti|X >

tu − ti), which is also log-concave.

For log-convex F̄X all the inequalities can be reversed.

Lemma 21. If F̄X is log-concave,

u∏
i=1

Pr

(
X >

x+ u(tu − ti)
r

)r/u
≤

u−1∏
i=1

Pr

(
X >

x+ (u− 1)(tu − ti)
r

) r
u−1

(B.21)

The inequality is reversed for log-convex F̄X .

Proof of Lemma 21. We start by simplifying the left-hand side expression, raised to

the power (u− 1)/r.

u∏
i=1

Pr

(
X >

x+ u(tu − ti)
r

)u−1
u

= Pr
(
X >

x

r

)u−1
u

u−1∏
i=1

Pr

(
X >

x+ u(tu − ti)
r

)u−1
u

(B.22)

=
u−1∏
i=1

Pr
(
X >

x

r

) 1
u

Pr

(
X >

x+ u(tu − ti)
r

)u−1
u

(B.23)

≤
u−1∏
i=1

Pr

(
X >

x+ (u− 1)(tu − ti)
r

)
(B.24)

where (B.24) follows from the log-concavity of Pr(X > x), and the Jensen’s equality.

The inequality is reversed for log-convex F̄X .

168

Appendix C

Results from Order Statistics

C.1 Central order statistics

For an order statistic Xk:n, we called it a central order statistic if k ≈ np for some

p ∈ (0, 1). In this case, Xk:n is asymptotically normal, concentrated around the p-th

quantile of X, as indicated by the following result called the Central Value Theorem

(Theorem 10.3 in [118]).

Theorem 14 (Central Value Theorem). Given X1, X2, . . . , Xn
i.i.d.∼ F , if 0 < p < 1

and 0 < f(xp) <∞, where xp = F−1 (p), then for k = k(n) such that k = np+o (
√
n),

Xk:n
P→ N

(
xp,

p(1− p)
nf 2(xp)

)

where f(·) is the p.d.f. corresponds to F and
P→ denotes convergence in probability as

n→∞.

C.2 Extreme order statistics

Extreme value theory (EVT) is an asymptotic theory of extremes, i.e., minima and

maxima. It shows that if a distribution belongs to one of three families of distributions

Theorem 15), then its maxima can be well characterized asymptotically as given

169

by Theorem 16, which is also referred to as the Fisher-Tippett-Gnedenko Theorem

(Theorem 1.1.3 in [119]).

Theorem 15 (Domains of attraction). A distribution function FX has one of the

following domains of attraction if it satisfies the conditions of the extreme value dis-

tribution G(x) if and only if

1. FX ∈ DA (Λ) if and only if there exists η(x) > 0 such that

lim
x→ω(F)−

F̄ (x+ tη(x))

F̄ (x)
= e−t;

2. FX ∈ DA (Φξ) if and only if ω (F) =∞ and

lim
x→∞

F̄ (tx)

F̄ (x)
= t−ξ, t > 0;

3. FX ∈ DA (Ψξ) if and only if ω (F) <∞ and

lim
x→0+

F̄ (ω (F)− tx)

F̄ (ω (F)− x)
= tξ, t > 0;

where ω (x) = sup{x : FX(x) < 1}, the upper end point of the distribution FX .

Intuitively, F ∈ DA (Λ) corresponds to the case that F̄ has an exponentially

decaying tail, F ∈ DA (Φξ) corresponds to the case that F̄ has heavy tail (such as

polynomially decaying), and F ∈ DA (Ψξ) corresponds to the case that F̄ has a short

tail with finite upper bound.

Theorem 16 (Extreme Value Theorem). Given X1, . . . , Xn
i.i.d.∼ F , if there exist

sequences of constants an > 0 and bn ∈ R such that

P [(Xn:n − bn)/an ≤ x]→ G(x) (C.1)

as n→∞ and G(·) is a non-degenerate distribution. The extreme value distribution

G(x) and the values of an and bn depend on the domain of attraction (and hence the

tail behavior) of FX given by Theorem 15.

170

1. For FX ∈ DA (Λ),

an = η
(
F−1(1− 1/n)

)
, (C.2)

bn = F−1(1− 1/n) (C.3)

G(x) = Λ(x) = exp {− exp (−x)} (C.4)

where Λ(x) is called the Gumbel distribution.

2. For FX ∈ DA (Φξ),

an = F−1(1− 1/n), (C.5)

bn = 0, (C.6)

G(x) = Φξ(x) =

0 x ≤ 0

exp
{
−x−ξ

}
x > 0

. (C.7)

where Φξ(x) is called the Fréchet distribution.

3. For FX ∈ DA (Ψξ),

an = ω (F)− F−1(1− 1/n), (C.8)

bn = ω (F) , (C.9)

G(x) = Ψξ(x) =

exp
{
− (−x)ξ

}
x < 0,

1 x ≥ 0.

(C.10)

where Ψξ(x) is called the reversed-Weibull distribution.

Based on Theorem 16, we can derive the expected value of extreme values, as

shown in Lemma 22.

171

Lemma 22 (Expected Extreme Values).

E [Λ] = γEM,

E [Φξ] =

Γ (1− 1/ξ) ξ > 1

+∞ otherwise,

E [Ψξ] = −Γ (1 + 1/ξ) ,

where γEM is the Euler-Mascheroni constant and Γ(·) is the Gamma function, i.e.,

Γ(t) ,
∫ ∞

0

xt−1e−x dx.

We can also characterize the limit distribution of the sample extreme X1:n analo-

gously via Theorem 16 by

X1:n = min {X1, . . . , Xn} = −max {−X1, . . . ,−Xn} .

It is worth noting that the distribution function for −X may be in a different domain

of attraction from that of X.

172

Appendix D

Proofs of Chapter 3

D.1 Latency and cost for general FX

Proof of Lemma 9. First consider πkill where we relaunch the original copy, and add

r replicas for each of the pn straggling tasks. Thus, there are r + 1 identical replicas

of each task after forking. The residual execution time distribution FY (after time

T (1) when the replicas are added) of each task is the minimum of r + 1 i.i.d. random

variables with distribution FX . Hence,

Pr(Y > y) = Pr(min(X1, X2, . . . Xr+1) > y), (D.1)

F̄Y (y) = F̄X (y)r+1 for πkill. (D.2)

For πkill, there is 1 original replica and r new replicas of each of the straggling tasks.

Thus, the tail distribution F̄Y (y) = 1− FY (y) is given by

Pr(Y > y) = Pr(X1 > y + T (1)|X1 > T (1)) · Pr(min(X2, . . . Xr+1) > y), (D.3)

F̄Y (y) =
F̄X
(
y + T (1)

)
F̄X (T (1))

F̄X (y)r . (D.4)

173

As the number of tasks n→∞ by Theorem 14 we have T (1) → F−1
X (1− p). Hence,

F̄Y (y) =
F̄X
(
y + F−1

X (1− p)
)

p
F̄X (y)r for πkeep. (D.5)

Proof of Theorem 5. The expected latency E [T] can be divided into two parts: before

and after replication.

E [T] = E
[
T (1)

]
+ E

[
T (2)

]
,

= E
[
X(1−p)n:n

]
+ E

[
max

j=1,2,...,pn
Yj

]
,

= F−1
X (1− p) + E [Ypn:pn] . (D.6)

The time before forking T (1) is the time until (1 − p)n of the n tasks launched at

time 0 finish. Thus, its expected value E
[
T (1)

]
is the expectation of the (1 − p)nth

order statistic X(1−p)n:n of n i.i.d. random variables with distribution FX . By the

Central Value Theorem stated as Theorem 14, for n→∞, this term goes to inverse

CDF value F−1
X (1− p). At this forking point, the scheduler introduces replicas of the

pn straggling tasks. The distribution FY of the residual execution time (minimum

over the r + 1 replicas) of each straggling task is given by Lemma 9. Thus the term

E
[
T (2)

]
in (D.6) is the expected value of the maximum of pn i.i.d. random variables

with distribution FY .

Recall from Definition 9 that the expected cost E [C] is the sum of the running

times of all machines, normalized by the number of tasks n. We can analyze E [C] by

dividing it into sum of machine runtimes before and after forking.

E [C] = E
[
C(1)

]
+ E

[
C(2)

]
, (D.7)

E
[
C(1)

]
=

1

n

(1−p)n∑
i=1

E [Xi:n] +
np

n
E
[
T (1)

]
, (D.8)

=
1

n

(1−p)n∑
i=1

F−1
X

(
i

n

)
+ pF−1

X (1− p), (D.9)

=

∫ 1−p

0

F−1
X (h)dh+ pF−1

X (1− p). (D.10)

174

E
[
C(2)

]
=

1

n

pn∑
j=1

(r + 1)E [Yj] , (D.11)

= (r + 1)p · E [Y] . (D.12)

The cost before forking E
[
C(1)

]
consists of the cost for the (1− p)n tasks that finish

first, plus the cost for the pn straggling tasks. The first term in (D.8) is the sum of

the expected values of the smallest (1− p)n execution times. Using Theorem 14, we

can show that the ith term in the summation goes to F−1
X (i/n) as n→∞. Expressing

the sum as an integral over h = i/n we get the first term in (D.10). The second term

in (D.8), is the normalized running time of the pn straggling tasks before forking.

Substituting E
[
T (1)

]
from (D.6) and simplifying, we get (D.10).

The cost after forking, E
[
C(2)

]
is the normalized sum of the runtimes of the r+ 1

replicas of each of the pn straggling tasks. By Lemma 9, the residual execution time

of the jth straggling task is Yj ∼ FY . Since the scheduler kills all replicas as soon as

one replica finishes, the expected runtime for the jth straggling task is (r + 1)E [Yj].

Thus, the cost in (D.11) is the sum of (r + 1)E [Yj] over the pn tasks, normalized by

n. Since Yj are i.i.d, we can reduce this to (D.12).

To prove Lemma 10, we characterize the expected maximum of a large number

of random variables using Theorem 16. First, we state Lemma 23 which implies that

the domain of attraction (see Theorem 15) of FY is same as that of FX .

Lemma 23 (Domain of attraction for FY). Given a single fork policy π (p, r;n) with

0 < p < 1,

1. if FX ∈ DA (Λ), then FY ∈ DA (Λ);

2. if FX ∈ DA (Φξ), then FY ∈ DA
(
Φ(r+1)ξ

)
;

3. if FX ∈ DA (Ψξ), then FY ∈ DA
(
Ψ(r+1)ξ

)
for πkill (p, r) and FY ∈ DA (Ψξ) for

πkeep (p, r).

175

The proof follows directly from Lemma 9 and Theorem 15, and hence is omitted

here.

Proof of Lemma 10. We can use Lemma 23 to find the domain of attraction of FY .

Then from (C.1) we have

E [Yn:n] = ãnE [G(y)] + b̃n,

where E [G(y)] can be found using Theorem 16 and Lemma 22.

Proof of Lemma 11. When we kill the original copy, the residual execution time

Ykill = min {X1:r, XO} ,

where XO is the additional time needed for the original copy to finish, and satisfies

P [XO > x] = P [X > x+ t |X > t] ,

where t is the forking time. When we keep the original copy, the residual execution

time satisfies

Ykeep = min {X1:r, X} .

Then the proof follows from the properties of stochastic dominance of XO over X

and vice-versa depending on whether X is new-longer-than-used or new-shorter-than-

used.

D.2 Latency and Cost for Pareto FX

We prove Theorem 7, which evaluates the latency E [T] and computing cost E [C]

metrics when the task execution time distribution FX is the Pareto, as defined in

(3.16).

176

Proof of Theorem 7. From Theorem 5 we have

E [T] = F−1
X (1− p) + E [Ypn:pn] ,

= xmp
−1/α + ãpnE

[
Φ(r+1)α

]
, (D.13)

= xmp
−1/α + ãpnΓ

(
1− 1

1

(r + 1)α

)
. (D.14)

E [C] =

∫ 1−p

0

F−1
X (h)dh+ pF−1

X (1− p) + (r + 1)p · E [Y] , (D.15)

= xm

∫ 1−p

0

(1− h)−1/αdh+ pxmp
−1/α + (r + 1)p · E [Y] ,

= xm
α

α− 1
[1− p1−1/α] + xmp

1−1/α + (r + 1)p · E [Y] ,

= xm
α

α− 1
− xm

p1−1/α

α− 1
+ (r + 1)p · E [Y] . (D.16)

To obtain (D.13) we first observe that since FX is Pareto, by Theorem 15 it falls into

the Fréchet domain of attraction, i.e. FX ∈ DA (Φα). Then using Lemma 23 we can

show that FY ∈ DA
(
Φ(r+1)α

)
. Subsequently, using Theorem 16 and Lemma 22 we

get (D.14). To derive the expected cost (D.16) we substitute F−1
X (h) = xm(1−h)−1/α

in the first and second terms in (D.15) and simplify the expression. To find ãpn and

E [Y] in (D.14) and (D.16) respectively we consider the cases of killing the original

task (πkill) and keeping the original task (πkeep) separately.

Case 1: Killing the original task(πkill)

For a single-fork policy that kills the original task, the scheduler waits for (1 − p)n
tasks to finish and then relaunches each of the pn straggler tasks on a new machine.

Y = min(X1, X2, . . . Xr+1),

Y ∼ Pareto ((r + 1)α, xm) . (D.17)

From (C.5) in Theorem 16 we can evaluate ãpn as follows

ãpn = F−1
Y

(
1− 1

pn

)
= xm(pn)1/α.

177

And E [Y] of (D.17) can be evaluated as

E [Y] =
(r + 1)α

(r + 1)α− 1
xm. (D.18)

Case 2: Keeping the original task (πkeep)

For a single-fork policy that keeps the original task, the scheduler keeps the original

copy, and adds r additional replicas for each straggling task. Using Lemma 9 we can

show that

F̄Y (y) =
1

p

(
xm
y

)αr (
xm

y + xmp−1/α

)α
. (D.19)

From (C.5) in Theorem 16, ãpn = F̄−1
Y

(
1
pn

)
, which simplifies to

(pn)1/α =

(
1 +

ãpn
xmp−1/α

)(
ãpn
xm

)r
,

which simplifies to (3.21). The expected value of Y can be found by numerically

integrating F̄Y (y) in (D.19) over its support.

Proof of Corollary 6. For the case of killing the original task, it follows directly from

(3.17) and (3.19). For the case of keeping the original task, note that ãpn grows with

n, and hence when n is large enough, from (3.21) we have

ãr+1
pn ≤ n1/αxr+1

m ≤ 2ãr+1
pn , (D.20)

and then the result holds again following (3.17).

D.3 Latency and Cost for Shifted Exponential FX

Now we prove Theorem 6, which gives the latency-cost trade-off when the distribution

of the execution time X is a shifted exponential given by (3.13).

178

Proof of Theorem 6.

E [T] = F−1
X (1− p) + E [Ypn:pn] ,

= ∆− 1

µ
ln p+ ãpnE [Λ] + b̃pn, (D.21)

= ∆− 1

µ
ln p+ ãpnγEM + b̃pn. (D.22)

E [C] =

∫ 1−p

0

F−1
X (h)dh+ pF−1

X (1− p) + (r + 1)p · E [Y] , (D.23)

=

∫ 1−p

0

(
∆− 1

µ
ln(1− h)

)
dh+ p

(
∆− 1

µ
ln p

)
,

+ (r + 1)p · E [Y] , (D.24)

= ∆ +
1

µ
(p ln p+ (1− p)) + p∆− p

µ
ln p,

+ (r + 1)p · E [Y] , (D.25)

= ∆(1 + p) +
1− p
µ

+ (r + 1)p · E [Y] . (D.26)

To find E [Y], ãpn and b̃pn we consider the cases of relaunching (l = 0) and no re-

launching (l = 1) separately.

Case 1: Killing the original task (πkill)

Y = min {X1, X2, · · ·Xr+1} (D.27)

∼ ShiftedExp (∆, (r + 1)µ) (D.28)

E [Y] = ∆ +
1

(r + 1)µ
(D.29)

Based on Theorem 15, for η(y) = 1/((r + 1)µ) we have

lim
y→ω(FY)

F̄Y (y + uη(y))

F̄Y (y)
= e−u. (D.30)

By Theorem 16 and Theorem 15, the maximum of shifted exponential belongs to the

179

Gumbel family with

ãpn =
1

µ(1 + r)
,

b̃pn = F̄−1
Y (1/n) = ∆ +

ln(pn)

µ(r + 1)
.

Case 2: Keeping the original task (πkeep)

In the case of no relaunching,

Y = min {Exp (µ) ,∆ + Exp (rµ)} .

Note that the first term does not include ∆ because for large n the original task would

have run for at least ∆ seconds. Thus the tail distribution of Y is given by

F̄Y (y) =

e
−µy 0 < y < ∆,

eµr∆e−µ(r+1)y y ≥ ∆.

(D.31)

The expected value E [Y] is the integration of F̄Y (y) over its support.

E [Y] =

∫ ∆

0

e−µydy +

∫ ∞
∆

eµr∆e−µ(r+1)y,

=
1− e−µ∆

µ
+

e−µ∆

µ(r + 1)
.

By Theorem 16 and Theorem 15 similar to the relaunching case we have

ãpn = 1/ [µ(1 + r)] ,

b̃pn = F̄−1
Y (1/n) =

r

r + 1
∆ +

ln(pn)

µ(r + 1)
.

180

Appendix E

Proofs of Chapter 6

Proof of Theorem 8. To find the upper bound on latency, we consider a related queue-

ing system called the split-merge queueing system. In the split-merge system all the

queues are blocked and cannot serve the next tasks in queue until k tasks of the

current job finish. This phenomenon is illustrated in Fig. 6-1. Thus the latency of

the split-merge system serves as an upper bound on that of the fork-join system.

In the split-merge system we observe that jobs are served one-by-one, and no two

jobs are served simultaneously. So it is equivalent to an M/G/1 queue with Poisson

arrival rate λ, and service time Xk:n, the kth order statistic of the i.i.d. service times

X1, X2, · · ·Xn. The expected latency of an M/G/1 queue is given by the Pollaczek-

Khinchine formula [120, Chapter 5], and it reduces to the upper bound in (6.13).

To find the lower bound we consider a genie system where the job requires k out of

n tasks to complete, but all jobs arriving before it require only 1 task to finish. Then

the service time is E [Xk:n]. The expected waiting time in queue is equal to the second

term in (6.13) with k set to 1. Adding the expected service and the lower bound on

expected waiting time, we get the lower bound (6.14) on the expected latency.

Proof of Lemma 13. The bound above is a generalization of the bound for the (n, n)

fork-join system with exponential service time presented in [9]. To find the bound, we

first observe that the response times of the n queues form a set of associated random

variables [121]. Then we use the property of associated random variables that their

181

expected maximum is less than that for independent variables with the same marginal

distributions. Unfortunately, this approach cannot be directly extended to the (n, k)

fork-join system with k < n because this property of associated variables does not

hold for the kth order statistic for k < n.

Proof of Lemma 14. First we derive the lower bound for the case when service time

is a pure exponential with rate µ. The lower bound in (6.6) is a generalization of the

bound for the (n, n) fork-join system derived in [10]. The bound for the (n, n) system

is derived by considering that a job goes through n stages of processing. A job is said

to be in the jth stage if j out of n tasks have been served by their respective nodes

for 0 ≤ j ≤ n − 1. The job waits for the remaining n − j tasks to be served, after

which it departs the system. For the (n, k) fork-join system, since we only need k

tasks to finish service, each job now goes through k stages of processing. In the jth

stage, where 0 ≤ j ≤ k − 1, j tasks have been served and the job will depart when

k − j more tasks to finish service.

We now show that the service rate of a job in the jth stage of processing is at

most (n − j)µ. Consider two jobs B1 and B2 in the ith and jth stages of processing

respectively. Let i > j, that is, B1 has completed more tasks than B2. Job B2 moves

to the (j + 1)th stage when one of its n − j remaining tasks complete. If all these

tasks are at the heads of their respective queues, the service rate for job B2 is exactly

(n − j)µ. However since i > j, B1’s task could be ahead of B2’s in one of the n − j
pending queues, due to which that task of B2 cannot be immediately served. Hence,

we have shown that the service rate of in the jth stage of processing is at most (n−j)µ.

Thus, for pure exponential service time,

E [T] ≥
k−1∑
j=0

1

(n− j)µ− λ (E.1)

For the shifted exponential distribution, we can a closed-form expression for a

lower bound on latency. The first term gives the time taken to serve the first of the k

chunks of the file. The last term is the same as the last k−1 terms of the summation

in (E.1). It is the expected sum of the residual response times, without considering

182

the ∆ shift of the distribution.

Proof of Theorem 9. A central idea that is used in proving both the bounds is that

at least n− k + 1 out of the n tasks of a job i start service at the same time. This is

because when the kth task of job i−1 finishes, the remaining n−k tasks are canceled

immediately. These n− k + 1 queues start working on the tasks of job i at the same

time. Note that the result holds trivially if job i arrives when all n queues are idle.

To prove the upper bound we divide the n tasks into two groups, the k − 1 tasks

that can start early, and the n − k + 1 which start at the same time after the last

tasks of the previous job are terminated. We consider that all the k − 1 tasks in the

first group and 1 of the remaining n− k + 1 tasks needs to be served for completion

of the job. This gives an upper bound on the computing cost because we are not

taking into account the case where more than one tasks from the second group can

finish service before the k − 1 tasks in the first group. For the n− k + 1 tasks in the

second group, the computing cost is equal to n− k + 1 times the time taken for one

of them to complete. The computing time spent on the first k − 1 tasks is at most

(k− 1)E [X]. Adding this to the second group’s cost, we get the upper bound (6.15).

We observe that the expected computing cost for the k tasks that finish is at least∑k
i=1 E [Xi:n], which takes into account full diversity of the redundant tasks. Since

we need k tasks to complete in total, at least 1 of the remaining n−k+ 1 tasks needs

to be served. Thus, the computing cost of the (n − k) redundant tasks is at least

(n− k)E [X1:n−k+1]. Adding this to the lower bound on the first group’s cost, we get

(6.16).

Proof of Theorem 10. Since exactly k tasks are served, and others are cancelled before

they start service, it follows that the expected computing cost E [C] = kE [X].

To find an upper bound on the latency, consider a partial fork system without

redundancy where each job has k tasks that assigned to k out of n queues, chosen

uniformly at random. The job exits the system when all k tasks are complete. Al-

though only k tasks enter service in the (n, k) fork-early-cancel, it gives lower latency

because having the n − k redundant tasks provides diversity and helps find the k

183

shortest queues.

Now let us upper bound the latency E
[
T (pf)

]
of the partial fork-join system. Each

queue has arrival rate λk/n, and service distribution FX . Using the approach in [9]

we can show that the response times (waiting plus service time) Ri, 1 ≤ i ≤ k of

the k queues serving each job form a set of associated random variables. Using the

property that the expected maximum of k associated random variables is less than the

expected maximum of k independent variables with the same marginal distributions

we can show that,

E [T] ≤ E
[
T (pf)

]
(E.2)

≤ E [max (R1, R2, · · ·Rk)] (E.3)

where Ri are i.i.d. random variables with distribution same as the response time

of each queue. It is a standard result [54, Chapter 25] that the Laplace-Stieltjes

transform of the response time of an M/G/1 queue with service distribution FX(x)

is (6.4).

184

Appendix F

Proofs of Chapter 8

Proof of Theorem 11. The in-order decoding delay Dk of packet sk can be expressed

as a sum of inter-delivery times as follows.

Dk = T1 + T2 + . . . TW (F.1)

where W is the number of in-order delivery instants until packets s1, . . . sk are de-

coded. The random variable W can take values 1 ≤ W ≤ k, since multiple packets

may be decoded at one in-order delivery instants. Note that successive inter-delivery

times T1, T2, . . . , TW are not i.i.d. The tail probability Pr(T1 > t) of the first inter-

delivery time is,

Pr(T1 > t) ≥ Pr(Ti > t) for all integers i, t ≥ 0. (F.2)

This is because during the first inter-delivery time T1 we start with no prior infor-

mation. During time T1, the receiver may collect coded combinations that it is not

able to decode. For a time-invariant scheme, these coded combinations can result in

faster in-order decoding and hence a smaller Ti for i > 1.

We now find lower and upper bounds on Pr(Dk ≥ n) to find the decay rate of Dk.

185

The lower bound can be derived as follows.

Pr(Dk ≥ n) = EW [Pr(T1 + T2 + ..TW ≥ n)] (F.3)

≥ Pr(T1 ≥ n) (F.4)

.
= e−λn (F.5)

where (F.5) follows from Definition 23. Now we derive an upper bound on Pr(Dk > n).

Pr(Dk ≥ n) = EW [Pr(T1 + T2 + · · ·+ TW ≥ n)] (F.6)

≤ EW
[
Pr(T

(1)
1 + T

(2)
1 + · · ·+ T

(W)
1 ≥ n)

]
(F.7)

≤ EW

 ∑
ni:

∑W
i=1 ni=n

W∏
i=1

Pr(T
(i)
1 > ni)

 (F.8)

.
= EW

 ∑
ni:

∑W
i=1 ni=n

e−λ(n1+···+nW)

 (F.9)

= EW
[(
n+W − 1

W − 1

)
e−λn

]
(F.10)

.
= EW

[
e−λn

]
(F.11)

= e−λn (F.12)

where in (F.7) T
(i)
1 are i.i.d. samples from the probability distribution of the first

inter-delivery time T1. By (F.2), replacing Ti by T
(i)
1 gives an upper bound on the

probability Pr(Dk ≥ n). In (F.8) we upper bound the tail probability in (F.7) by

product of tail probabilities of each of the random variables T
(i)
1 , with ni being non-

negative integers that sum to n. The product in (F.8) double-counts certain events

and thus serves as a upper bound to Pr(T
(1)
1 + T

(2)
1 + · · ·+ T

(W)
1 ≥ n). By (8.3), each

term in the product in (F.8) asymptotically decays at rate λ. Thus we get (F.9) and

(F.10). Since W ≤ k << n, the binomial coefficient decays subexponentially, and we

get (F.12).

From (F.5) and (F.12) we can conclude that the asymptotic decay rate λ
(s)
k for

186

any k is equal to the inter-delivery exponent λ.

Proof of Theorem 12. We first show that the scheme with transmit index V [n] = drne
in time slot n achieves the trade-off (τ, λ) = (r,D(r‖p)). Then we prove the converse

by showing that no other full-rank scheme gives a better trade-off.

Achievability Proof: Consider the scheme with transmit index V [n] = drne,
where r represents the rate of adding new packets to the transmitted stream. The

rate of adding packets is below the capacity of the erasure channel. Thus it is easy

to see that the throughput τ = r. Let E[n] be the number of combinations, or

equations received until time n. It follows the binomial distribution with parameter

p. All packets s1 · · · sV [n] are decoded when E[n] ≥ V [n]. Define the event Gn =

{E[j] < V [j] for all 1 ≤ j ≤ n}, that there is no packet decoding until slot n. The

tail distribution of the first inter-delivery time T1 is,

Pr(T1 > n) =

dnre−1∑
k=0

Pr(E[n] = k) Pr(Gn|E[n] = k),

=

dnre−1∑
k=0

(
n

k

)
pk(1− p)n−k Pr(Gn|E[n] = k),

where Pr(Gn|E[n] = k) = 1−k/n as given by the Generalized Ballot theorem in [122,

Chapter 4]. Hence it is sub-exponential and does not affect the exponent of Pr(T1 > n)

and we have

Pr(T1 > n)
.
=

dnre−1∑
k=0

(
n

k

)
pk(1− p)n−k, (F.13)

.
=

(
n

dnre − 1

)
pdnre−1(1− p)n−dnre+1, (F.14)

.
= e−nD(r‖p), (F.15)

where in (F.13) we take the asymptotic equality
.
= to find the exponent of Pr(T1 > n),

and remove the Pr(Gn|E[n] = k) term because it is sub-exponential. In (F.14), we

only retain the k = dnre − 1 term from the summation because for r ≤ p, that term

187

asymptotically dominates other terms. Finally, we use the Stirlings approximation(
n
k

)
≈ enH(k/n) to obtain (F.15).

Converse Proof: First we show that the transmit index V [n] of the optimal

full-rank scheme should be non-decreasing in n. Given any scheme, we can permute

the order of transmitting the coded packets such that V [n] is non-decreasing in n.

This does not affect the throughput τ , but it can improve the inter-delivery exponent

λ because decoding can occur sooner when the initial coded packets include fewer

source packets.

We now show that it is optimal to have V [n] = drne, where we add new packets

to the transmitted stream at a constant rate r. Suppose a full-rank scheme uses rate

ri for ni slots for all 1 ≤ i ≤ L, such that
∑L

i=0 ni = n and
∑L

i=1 niri = nr. Then,

the tail distribution of T1 is,

Pr(T1 > n) =

d∑L
i=1 nirie−1∑
k=0

Pr(E[n] = k) Pr(Gn|E[n] = k), (F.16)

.
=

dnre−1∑
k=0

(
n

k

)
pk(1− p)n−k, (F.17)

.
= e−nD(r‖p). (F.18)

Varying the rate of adding packets affects the term Pr(Gn|E[n] = k) in (F.16), but

it is still ω(1/n) and we can eliminate it when we take the asymptotic equality in

(F.17). As a result, the in-order delay exponent is same as that if we had a constant

rate r of adding new packets to the transmitted stream. Hence we have proved that

no other full-rank scheme can achieve a better (τ, λ) trade-off than V [n] = dnre for

all n.

Proof of Lemma 16. Here we prove the result for B = 2, that is randomizing be-

tween two schemes. It can be extended to general B using induction. Given two

time-invariant schemes x(1) and x(2) that achieve the throughput-delay trade-offs

(τx(1) , λx(1)) and (τx(2) , λx(2)) respectively, consider a randomized strategy where, in

each block we use the scheme x(1) with probability µ and scheme x(2) otherwise. Then,

188

it is easy to see that the throughput on the new scheme is τ = µτx(1) + (1− µ)τx(2) .

Now we prove the inter-delivery exponent λ is also a convex combinations of λx(1)

and λx(2) . Let pd1 and pd2 be the probabilities of decoding the first unseen packet in

a block using scheme x(1) and x(2) respectively. Suppose in an interval with k blocks,

we use scheme x(1) for h blocks, and scheme x(2) in the remaining blocks, we have

Pr(T1 > kd) = (1− pd1)h(1− pd2)k−h. (F.19)

Using this we can evaluate λ as,

λ = λx(1) lim
k→∞

h

k
+ λx(2) lim

k→∞

k − h
k

(F.20)

= µλx(1) + (1− µ)λx(2) (F.21)

where we get (F.20) using (8.6). As k → ∞, by the weak law of large numbers, the

fraction h/k converges to µ.

Proof of Lemma 17. When d = 2 there are only two possible time-invariant schemes

x = [2, 0] and [1, 1] that give unique (τ, λ). By Remark 7, all other x are equivalent

to one of these vectors in terms (τ, λ). The vectors x = [2, 0] and [1, 1] correspond to

the a = 1 and a = 2 codes proposed in Definition 26. Hence, the line joining their

corresponding (τ, λ) points, as shown in Fig. 8-3, is the best trade-off for d = 2.

When d = 3 there are four time-invariant schemes x(1) = [1, 0, 2], x(2) = [2, 1, 0],

x(3) = [1, 2, 0] and x(4) = [3, 0, 0] that give unique (τ, λ), according to Definition 24

and Remark 7. The vectors x(1), x(2) and x(4) correspond to the codes with a = 1, 2, 3

in Definition 26. The throughput-delay trade-offs (τx(i) , λx(i)) for i = 1, 2, 4 achieved

by these schemes are given by (8.9). From Claim 5 and Claim 6 we know that

(τx(1) , λx(1)) and (τx(4) , λx(4)) have to be on the optimal trade-off. By comparing the

slopes of the lines joining these points we can show that the point (τx(2) , λx(2)) lies

above the line joining (τx(1) , λx(1)) and (τx(4) , λx(4)) for all p. Fig. 8-3 illustrates this

189

for p = 0.6. For the scheme with x(3) = [1, 2, 0], we have

(τx(3) , λx(3)) =
(
(3p− p3)/3,−(log(1− p)2(1 + p))/3

)
.

Again, by comparing the slopes of the lines joining (τx(i) , λx(i)) for i = 1, · · · 4 we can

show that for all p, (τx(3) , λx(3)) lies below the piecewise linear curve joining (τx(i) , λx(i))

for i = 1, 2, 4.

190

Appendix G

Proofs of Chapter 9

Proof on Claim 10. We now solve for the steady-state distribution of this Markov

chain. Let πi and π′i be the steady-state probabilities of states i for i ≥ −1 and

advantages states i′ for all i ≥ 0 respectively. The steady-state transition equations

are given by

(1− a− d)πi = b(πi−1 + π′i) + aπ′i+1 for i ≥ 1, (G.1)

(1− d)π′i = c(πi + π′i+1) for i ≥ 1, (G.2)

(1− c− d)π−1 = c(π0 + π′1), (G.3)

(1− a− d)π0 = aπ′1 + (a+ b)π−1. (G.4)

By rearranging the terms in (G.1)-(G.4), we get the following recurrence relation,

πi =
(1− a− d)

c
πi−1 −

b

c
πi−2 for i ≥ 2. (G.5)

Solving the recurrence in (G.5) and simplifying (G.1)-(G.4) further, we can express

πi, π
′
i for i ≥ 2 in terms of π1 as follows,

πi
πi−1

=
b

c
, (G.6)

π′i
πi

=
c

a+ c
. (G.7)

191

From (G.6) we see that the Markov chain is positive-recurrent and a unique steady-

state distribution if and only if b < c, which is equivalent to p1 < p2. If p1 ≥ p2, the

expected recurrence time to state 0, that is the time taken for U2 to catch up with U1

is infinity. When the Markov chain is positive recurrent, we can use (G.6) and (G.7)

to solve for all the steady state probabilities.

Proof of Lemma 18. Since we always give priority to the primary user U1, we have

(τ1, λ1) = (p1,− log(1 − p1)). When p1 < p2, we can express the throughput τ2

in terms of the steady state probabilities of the Markov chain in Fig 9-2. User U2

experiences a throughput loss when it is in state −1 and the next slot is successful.

Thus, when p2 > p1,

τ2 = p2(1− π−1), (G.8)

= p2

(
1− c− b

a+ c

)
= p1. (G.9)

If p1 ≥ p2, the system drifts infinitely to the right side. There is a non-zero probability

that in-order decoding via advantage states is not able to catch up and fill all gaps

in decoding of U2. Thus, we cannot evaluate τ2 using this Markov chain analysis.

To determine λ2, first observe that U2 decodes an in-order packet when the system

is in state 0 or states i′, for i ≥ 1, and the next slot is successful. As given by

Definition 23, the inter-delivery exponent λ2 is the asymptotic decay rate of Pr(T1 >

t), the probability that no in-order packet is decoded by U2 for t consecutive slots. To

determine λ, we add an absorbing state F to the Markov chain as shown in Fig. G-1,

such that the system transitions to F when an in-order packet is decoded by U2.

In Fig. G-1, all the states i and i′ for i ≥ 1 are fused into states I and I ′ because

this does not affect the probability distribution of the time to reach the absorbing state

F . The inter-delivery exponent λ2 is equal to the rate of convergence of this Markov

chain to its steady state, which is known to be (see [120, Chapter 4]) λ2 = − log ξ2

where ξ2 is the second largest eigenvalue of the state transition matrix of the Markov

192

0 I -1

I’

a+b b

a+c b c

d a+b+d c+d

d

a+c F
1

Figure G-1: Markov model used to determine the inter-delivery exponent λ2 of user
U2. The absorbing state F is reached when an in-order packet is decoded by U2. The
exponent of the distribution of the time taken to reach this state is λ2.

chain,

A =



d b 0 0 a+ c

0 a+ b+ d c 0 0

0 b d 0 a+ c

a+ b 0 0 c+ d 0

0 0 0 0 1


. (G.10)

Solving for the second largest eigen-value of A, we can show that

ξ2 = max

1− p1,

(
1− c+ d+

√
(1− c+ d)2 + 4(bc+ cd− d)

)
2

 . (G.11)

Hence the inter-delivery exponent λ2 = − log ξ2 is as given by (9.2).

Proof of Lemma 19. The state-transition equations of the Markov chain are as fol-

193

lows.

(d̄− a)π0 = a(π′1 + π′−1) + q1(a+ b)π−1 + q2(a+ c)π1 (G.12)

(d̄− q̄2a− q2b)πi = q2(a+ c)πi+1 + q̄2bπi−1 + bπ′i + aπ′i+1 for i ≥ 2 (G.13)

(d̄− q̄1a− q1c)πi = q1(a+ b)πi+1 + q̄1cπi+1 + cπ′i + aπ′i−1 for i ≤ −2 (G.14)

(d̄− q̄2a− q2b)π1 = q2(a+ c)π2 + b(π′−1 + π0 + π′1) + aπ′2 (G.15)

(d̄− q̄1a− q1c)π−1 = q1(a+ b)π−2 + c(π′−1 + π0 + π′1) + aπ′−2 (G.16)

d̄π′i = q̄2cπi + cπ′i+1 for i ≥ 1 (G.17)

d̄π′i = q̄2cπi + bπ′i+1 for i ≤ −1 (G.18)

Rearranging the terms, we get the following recurrence in the steady-state prob-

abilities on the right-side of the chain,

α3πi+3 + α2πi+2 + α1πi+1 + α0πi = 0 for i ≥ 1 (G.19)

where,

α3 = c(a+ c)q2 (G.20)

α2 = −cd̄+ bcq2 − (a+ c)q2d̄ (G.21)

α1 = d̄(d̄− bq2 − aq̄2) (G.22)

α0 = −d̄bq̄2 (G.23)

The characteristic equation of this recurrence has the roots 1, ρ and ρ′. We can

show that both ρ and ρ′ are positive and at least one of them is greater than 1. The

expression for the smaller root is,

ρ = −α3 + α2

2α3

−
√

(α3 + α2)2 + 4α3α0

2α3

(G.24)

The right-side of the Markov chain is stable if and only if ρ < 1. Thus, when ρ < 1,

194

the steady-state probabilities πi and π′i for i ≥ 1 are related by the recurrences,

πi+1

πi
= ρ and

π′i
πi

=
c(1− q2)

d̄− cρ (G.25)

Similarly, for the left side of the chain we have the recurrences,

πi+1

πi
= µ and

π′i
πi

=
b(1− q1)

d̄− bµ (G.26)

where

µ = −β3 + β2

2β3

−
√

(β3 + β2)2 + 4β3β0

2β3

(G.27)

with the expressions βk for k = 0, 1, 2, 3 being the same as αk with b and c inter-

changed, and q2 replaced by q1. We can use these recurrences we can express all

steady-state probabilities πi and π′i for i ≥ 1 in terms of π1, and the steady-state

probabilities πi and π′i for i ≤ −1 in terms of π−1. Then using the states transition

equation (G.12), and the fact that all the steady state probabilities sum to 1, we can

solve for all the steady-state probabilities of the Markov chain.

User U1 receives an innovative in every successful slot except when the source (with

probability q2) gives priority to U2 in states i, i ≥ 1. Thus, if ρ < 1 its throughput is

given by

τ1 = p1

(
1− q2

∞∑
i=1

πi

)
= p1

(
1− q2π1

1− ρ

)
(G.28)

Similarly if µ < 1 we have,

τ2 = p2

(
1− q1

−1∑
i=−∞

πi

)
= p2

(
1− q1π−1

1− µ

)
(G.29)

Similar to the proof of Lemma 18, we determine the inter-delivery exponent λ2 of

user U2 by adding an absorbing state F to the Markov chain as shown in Fig. G-2,

such that the system transitions to F when an in-order packet is decoded by U2. In

195

0 1 -1

1’

-2

q 2(
a+

c)

b q1(a+b)

b c(1-q2)

(1-q2)a+b+d (1-q1)b+q1c+d

d

F
a+c

q1(a+b)

(1-q
1)(a+c)

(1-q
1)(a+c)

d

a+c

1

Figure G-2: Markov model used to determine the inter-delivery exponent λ2 of user
U2. The absorbing state F is reached when an in-order packet is decoded by U2. The
exponent of the distribution of the time taken to reach this state is λ2.

Fig. G-2, all the states i and i′ for i ≥ 1 are fused into states I and I ′ because this

does not affect the probability distribution of the time to reach the absorbing state F .

The inter-delivery exponent λ2 = − log ξ2 where ξ2 is the second largest eigenvalue of

its state transition matrix of this Markov chain which is given by,

A =



d b 0 0 a+ c

0 q̄2a+ b+ d cq̄2 0 q2(a+ c)

0 b d 0 a+ c

q1(a+ b) 0 0 d+ q1c+ q̄1b q̄1(a+ c)

0 0 0 0 1


. (G.30)

Solving for the second largest eigen-value ξ2 of A, we get

ξ2 = max

d+ q1c+ q̄1b,

(
2d+ q̄2a+ b+

√
(2d+ q̄2a+ b)2 − 4(d(b+ d) + q̄2(da− bc))

)
2

 .

(G.31)

The inter-delivery exponent λ2 = − log ξ2 and is given by (9.4). The expression for

the inter-delivery exponent λ1 of user U1 is same as (9.4) with b and c, and q1 and q2

interchanged.

196

Bibliography

[1] Nasuni, “The State of the Cloud Industry Report.” http://www.ciosummits.

com/2013_Nasuni_CSP_Report.pdf, 2013.

[2] R. G. Gallager, Information theory and reliable communication. Wiley, 1968.

[3] E. Berkelamp, Algebraic coding theory. New York, USA: McGraw-Hill, 1968.

[4] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Redundant Arrays

of Inexpensive Disks (RAID),” in Proceedings of the ACM SIGMOD, vol. 17,

pp. 109–116, June 1988.

[5] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Net-

work coding for distributed storage systems,” IEEE Transactions on Informa-

tion Theory, vol. 56, pp. 4539–4551, Sept. 2010.

[6] N. Shah, K. V. Rashmi, P. Kumar, and K. Ramchandran, “Interference align-

ment in regenerating codes for distributed storage: Necessity and code con-

structions,” IEEE Transactions on Information Theory, vol. 58, pp. 2134–2158,

Apr. 2012.

[7] J. Dean and L. Barroso, “The Tail at Scale,” Communications of the ACM,

vol. 56, no. 2, pp. 74–80, 2013.

[8] L. Flatto and S. Hahn, “Two parallel queues created by arrivals with two de-

mands I,” SIAM Journal on Applied Mathematics, vol. 44, no. 5, pp. 1041–1053,

1984.

197

http://www.ciosummits.com/2013_Nasuni_CSP_Report.pdf
http://www.ciosummits.com/2013_Nasuni_CSP_Report.pdf

[9] R. Nelson and A. Tantawi, “Approximate analysis of fork/join synchronization

in parallel queues,” IEEE Transactions on Computers, vol. 37, pp. 739–743,

Jun. 1988.

[10] E. Varki, A. Merchant, and H. Chen, “The M/M/1 fork-join queue with variable

sub-tasks,” unpublished, available online, 2008.

[11] A. Rawat, D. Papailiopoulos, A. Dimakis, and S. Vishwanath, “Locality and

availability in distributed storage,” in Proceedings of IEEE International Sym-

posium on Information Theory (ISIT), pp. 681–685, June 2014.

[12] S. Kadhe, E. Soljanin, and A. Sprintson, “Analyzing the download time of

availability codes,” Jun 2015.

[13] J. Cloud, D. J. Leith, and M. Médard, “A Coded Generalization of Selective

Repeat ARQ,” Proceedings of IEEE Conference on Computer Communications

(INFOCOM), Apr. 2015.

[14] M. Karzand, D. J. Leith, J. Cloud, and M. Médard, “Low Delay Random Linear

Coding Over a Stream,” arXiv [cs.it] 1509.00167, Sept. 2015.

[15] F. Wu, Y. Sun, Y. Yang, K. Srinivasan, and N. Shroff, “Constant-delay and

constant-feedback moving window network coding for wireless multicast: Design

and asymptotic analysis,” IEEE Journal on Selected Areas in Communications,

vol. 33, pp. 127–140, Feb. 2015.

[16] G. Joshi, E. Soljanin, and G. Wornell, “Efficient replication of queued tasks for

latency reduction in cloud systems,” in Proceedings of the Allerton Conference

on Communication, Control and Computing, Oct. 2015.

[17] G. Joshi, E. Soljanin, and G. Wornell, “Efficient redundancy techniques for

latency reduction in cloud systems,” arXiv:1508.03599, Aug. 2015.

[18] D. Wang, G. Joshi, and G. Wornell, “Efficient task replication for fast response

times in parallel computation,” in Proceedings of ACM SIGMETRICS, June

2014.

198

[19] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to reduce la-

tency in large-scale parallel computing,” in Proceedings of the ACM SIGMET-

RICS Distributed Cloud Computing Workshop, June 2015.

[20] G. Joshi, Y. Liu, and E. Soljanin, “Coding for fast content download,” in Pro-

ceedings of the Allerton Conference on Communication, Control and Comput-

ing, pp. 326–333, Oct. 2012.

[21] G. Joshi, Y. Liu, and E. Soljanin, “On the Delay-storage Trade-off in Content

Download from Coded Distributed Storage,” IEEE Journal on Selected Areas

on Communications, May 2014.

[22] G. Joshi, E. Soljanin, and G. Wornell, “Queues with redundancy: Latency-cost

analysis,” in Proceedings of the ACM SIGMETRICS Workshop on Mathemati-

cal Modeling and Analysis, June 2015.

[23] G. Joshi, Y. Kochman, G. Wornell, “The Effect of Block-Wise Feedback on the

Throughput-Delay Trade-off in Streaming,” Apr. 2014.

[24] G. Joshi, Y. Kochman, G. Wornell, “Throughput-Smoothness Trade-offs in

Multicasting of an Ordered Packet Stream,” in Proceedings of the International

Symposium on Network Coding, June 2014.

[25] G. Joshi, Y. Kochman, G. Wornell, “Throughput-Smoothness Trade-offs in

Streaming Communication,” arXiv:1511.08143, Nov. 2015.

[26] D. Menasce, D. Saha, S. Porto, V. Almeida, and S. Tripathi, “Static and dy-

namic processor scheduling disciplines in heterogeneous parallel architectures,”

Journal of Parallel and Distributed Computing, vol. 28, pp. 1–18, July 1995.

[27] M. Maheswaran, S. Ali, H. J. Siegal, D. Hensgen, and R. F. Freund, “Dynamic

matching and scheduling of a class of independent tasks onto heterogeneous

computing systems,” in Proceedings of the Eighth Heterogeneous Computing

Workshop (HCW), pp. 30–44, 1999.

199

[28] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations

by work stealing,” Journal of the ACM, vol. 46, pp. 720–748, Sept. 1999.

[29] M. Mitzenmacher, The power of two choices in randomized load balancing. PhD

thesis, University of California Berkeley, CA, 1996.

[30] M. Mitzenmacher, B. Prabhakar, and D. Shah, “Load balancing with mem-

ory,” in Proceedings of the 43rd IEEE Symposium on Foundations of Computer

Science (FOCS), 2002.

[31] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wijckoff, “Charlotte: Metacom-

puting on the web,” Journal on Future Generation Computing Systems - Special

issue on metacomputing, vol. 15, pp. 559–570, Oct. 1999.

[32] W. Cirne, F. Brasileiro, D. Paranhos, L. Fabŕıcio W. Góes, and W. Voorsluys,

“On the efficacy, efficiency and emergent behavior of task replication in large

distributed systems,” Parallel Computing, vol. 33, no. 3, pp. 213–234, 2007.

[33] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large

clusters,” ACM Commun. Mag., vol. 51, pp. 107–113, Jan. 2008.

[34] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective strag-

gler mitigation: Attack of the clones,” in Proceedings of the 10th USENIX

Conference on Networked Systems Design and Implementation, pp. 185–198,

Apr. 2013.

[35] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: Distributed,

low latency scheduling,” in Proceedings of the ACM Symposium on Operating

Systems Principles (SOSP), pp. 69–84, 2013.

[36] N. F. Maxemchuk, “Dispersity routing,” Proceedings of the International Con-

ference on Communications (ICC), pp. 10–13, Jun. 1975.

[37] G. Kabatiansky, K. E., and S. S., Error correcting coding and security for data

networks: analysis of the superchannel concept. Wiley, 1st ed., Mar. 2005.

200

[38] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker,

“Low latency via redundancy,” in Proceedings of the ACM Conference on

Emerging Networking Experiments and Technologies (CoNEXT), pp. 283–294,

2013.

[39] N. Shah, K. Lee, and K. Ramachandran, “The MDS queue: Analyzing the La-

tency Performance of Erasure Codes,” in Proceedings on the IEEE International

Symposium on Information Theory, July 2014.

[40] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytiä, and

A. Scheller-Wolf, “Reducing latency via redundant requests: Exact analysis,”

in Proceedings of the ACM SIGMETRICS, Jun. 2015.

[41] A. Kumar, R. Tandon, and T. C. Clancy, “On the latency of heterogeneous

mds queue,” in Proceedings of the IEEE Global Communications Conference

(GLOBECOM), pp. 2375–2380, Dec. 2014.

[42] Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency and cost op-

timization for erasure-coded data center storage,” SIGMETRICS Performance

Evaluation Review, vol. 42, pp. 3–14, Sept. 2014.

[43] G. Liang and U. Kozat, “TOFEC: Achieving Optimal Throughput-Delay Trade-

off of Cloud Storage Using Erasure Codes,” Apr. 2014.

[44] S. Chen, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu, Y. Sun, and

N. B. Shroff, “When Queueing Meets Coding: Optimal-Latency Data Retriev-

ing Scheme in Storage Clouds,” Apr. 2014.

[45] J. Cao and Y. Wang, “The NBUC and NWUC classes of Life Distributions,”

Journal of Applied Probability, pp. 473–479, 1991.

[46] G. Koole and R. Righter, “Resource allocation in grid computing,” Journal of

Scheduling, vol. 11, pp. 163–173, June 2008.

201

[47] Y. Kim, R. Righter, and R. Wolff, “Job replication on multiserver systems,”

Advances in Applied Probability, vol. 41, pp. pp. 546–575, June 2009.

[48] N. Shah, K. Lee, and K. Ramchandran, “When do redundant requests reduce

latency?,” in Proceedings of the Allerton Conference on Communication, Con-

trol and Computing, Oct. 2013.

[49] Y. Sun, Z. Zheng, C. E. Koksal, K. Kim, and N. B. Shroff, “Provably delay effi-

cient data retrieving in storage clouds,” in Proceedings of the IEEE Conference

on Computer Communications (INFOCOM), Apr. 2015.

[50] D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to reduce

latency in large-scale parallel computing (extended version),” arXiv:1503.03128

[cs.dc], Mar. 2015.

[51] C. Reiss, A. Tumanov, G. Ganger, R. H. Katz, and M. A. Kozuch, “Towards un-

derstanding heterogeneous clouds at scale: Google trace analysis,” Intel Science

and Technology Center for Cloud Computing, Tech. Rep, 2012.

[52] M. Bagnoli and T. Bergstrom, “Log-concave probability and its applications,”

Economic Theory, vol. 26, no. 2, pp. pp. 445–469, 2005.

[53] A. M. Lee and P. A. Longton, “Queueing process associated with airline pas-

senger check-in,” Operations Research Quarterly, pp. 56–71, 1959.

[54] M. Harchol-Balter, Performance Modeling and Design of Computer Systems:

Queueing Theory in Action. Cambridge University Press, 2013.

[55] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

cluster computing with working sets,” in Proceedings of the 2nd USENIX con-

ference on Hot topics in cloud computing, vol. 10, p. 10, 2010.

[56] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers,”

Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

202

[57] W. Neiswanger, C. Wang, and E. Xing, “Asymptotically exact, embarrassingly

parallel MCMC,” arXiv:1311.4780 [cs, stat], Nov. 2013.

[58] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing,” in Proceedings of the

9th USENIX Conference on Networked Systems Design and Implementation,

pp. 15–28, 2012.

[59] Apache Software Foundation, “Apache spark configuration - scheduling (version

1.5.2).” https://spark.apache.org/docs/1.5.2/configuration.html. Accessed:

2016-01-03.

[60] D. Wang, Computing with Unreliable Resources: Design, Analysis and Algo-

rithms. PhD thesis, Massachusetts Institute of Technology, 2014.

[61] S. Kochar and D. Wiens, “Partial orderings of life distributions with respect to

their aging properties,” Naval Research Logistics, vol. 34, no. 6, pp. 823–829,

1987.

[62] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster data trace document

(version 2).” http://code.google.com/p/googleclusterdata/wiki/TraceVersion2.

Accessed: 2014-03-01.

[63] B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence

intervals, and other measures of statistical accuracy,” Statistical science, pp. 54–

75, 1986.

[64] M. J. D. Powell, “A view of algorithms for optimization without derivatives,”

Cambridge University Technical Report, no. DAMTP 2007/NA03, 2007.

[65] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cam-

bridge, MA, USA: MIT Press, 1st ed., 1998.

203

[66] K. Gardner, S. Zbarsky, M. Harchol-Balter, and A. Scheller-Wolf, “Analyzing

response time in the redundancy-d system,” in CMU-CS-15-141 archive, Dec.

2015.

[67] Y. Sun, C. E. Koksal, and N. B. Shroff, “On delay-optimal scheduling in queue-

ing systems with replications,” arXiv:1603.07322, Mar. 2016.

[68] K. Lee, R. Pedarsani, and K. Ramchandran, “On Scheduling Redundant Re-

quests with Cancellation Overheads,” in Proceedings of the Allerton Conference

on Communication, Control and Computing, Oct. 2015.

[69] F. Poloczek and F. Ciucu, “Contrasting effects of replication in parallel systems:

From overload to underload and back,” arXiv:1602.07978, Feb. 2016.

[70] Q. Xie and Y. Lu, “Priority algorithm for near-data scheduling: Throughput

and heavy-traffic optimality,” in Proceedings of the IEEE Conference on Com-

puter Communications (INFOCOM), Apr. 2015.

[71] S. Li, M. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,” in Proceed-

ings of the Allerton Conference on Communication, Control and Computing,

Oct. 2015.

[72] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,

“Speeding up distributed machine learning using codes,” in Proceedings of the

IEEE International Symposium on Information Theory (ISIT), July 2016.

[73] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. aurelio

Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng, “Large

scale distributed deep networks,” in Advances in Neural Information Processing

Systems 25, pp. 1223–1231, 2012.

[74] M. Y. An, “Log-concave probability distributions: Theory and statistical test-

ing,” tech. rep., Duke University, Department of Economics, Nov. 1995.

204

[75] R. Proschan and R. Pyke, “Tests for Monotone Failure Rate,” in Proceedings of

the Berkeley Symposium on Mathematical Statistics and Probability, pp. 292–

312, 1967.

[76] B. Epstein, “Tests for the Validity of the Assumption That the Underlying

Distribution of Life Is Exponential Part I,” Technometrics, vol. 2, pp. 83–101,

Feb. 1960.

[77] B. Epstein, “Tests for the Validity of the Assumption That the Underlying

Distribution of Life Is Exponential Part II,” Technometrics, vol. 2, pp. 167–

183, May 1960.

[78] P. Bickel and K. Doksum, “Tests on Monotone Failure Rate Based on Normal-

ized Spacings,” The Annals of Mathematical Statistics, vol. 40, pp. 1216–1235,

1969.

[79] Amazon EBS. http://aws.amazon.com/ebs/.

[80] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in ACM

SIGOPS Operating Systems Review, vol. 37, pp. 29–43, 2003.

[81] Dropbox. http://www.dropbox.com/.

[82] Google Docs. http://docs.google.com/.

[83] A. G. Dimakis, P. B. Godfrey, M. Wainwright, and K. Ramchandran, “Net-

work coding for distributed storage systems,” Proceedings of IEEE INFOCOM,

pp. 2000–2008, May 2007.

[84] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: an efficient scheme

for tolerating double disk failures in RAID architectures,” IEEE Transactions

on Computers, vol. 44, no. 2, pp. 192–202, 1995.

[85] R. Rodrigues and B. Liskov, “High availability in DHTs: Erasure coding vs.

replication,” in Proceedings of the International Workshop on Peer-to-Peer Sys-

tems, pp. 226–239, Feb. 2005.

205

http://aws.amazon.com/ebs/
http://www.dropbox.com/
http://docs.google.com/‎

[86] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran, “Explicit con-

struction of optimal exact regenerating codes for distributed storage,” Proceed-

ings of the Allerton Conference on Communication, Control and Computing,

pp. 1243 – 1249, Sep. 2009.

[87] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Interference

alignment in regenerating codes for distributed storage: necessity and code

constructions,” vol. 58, pp. 2134–2158, Apr. 2012.

[88] I. Tamo, Z. Wang and J. Bruck, “Zigzag Codes: MDS Array Codes With Op-

timal Rebuilding,” IEEE Transactions on Information Theory, vol. 59, no. 3,

pp. 1597–1616, 2013.

[89] U. Ferner, M. Médard, and E. Soljanin, “Toward sustainable networking: Stor-

age area networks with network coding,” in Proceedings of the Allerton Confer-

ence on Communication, Control and Computing, pp. 517–524, Oct. 2012.

[90] L. Huang, S. Pawar, H. Zhang, and Kannan Ramchandran, “Codes can re-

duce queueing delay in data centers,” in Proceedings of the IEEE International

Conference on Information Theory (ISIT), pp. 2766–2770, July 2012.

[91] Y. Liu, J. Yang, and S. C. Draper, “Exploiting route diversity in multi-packet

transmission using mutual information accumulation,” Allerton Conference on

Communication, Control and Computing, pp. 1793–1800, Sep. 2011.

[92] L. Xu, Highly Available Distributed Storage Systems. PhD thesis, California

Institute of Technology, 1998.

[93] E. Soljanin, “Reducing delay with coding in (mobile) multi-agent information

transfer,” Allerton Conference on Communication, Control and Computing,

pp. 1428–1433, Sep. 2010.

[94] C. Kim and A. K. Agrawala, “Analysis of the Fork-Join Queue,” IEEE Trans-

actions on Computers, vol. 38, pp. 250–255, Feb. 1989.

206

[95] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of code-

word symbols,” in IEEE Transactions on Information theory, vol. 58, pp. 6925–

6934, Nov. 2012.

[96] D. Papailiopoulos and A. Dimakis, “Locally repairable codes,” IEEE Transac-

tions on Information Theory, vol. 60, pp. 5843–5855, oct 2014.

[97] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann,

“Practical loss-resilient codes,” in ACM symposium on Theory of computing,

(New York, NY, USA), pp. 150–159, ACM, 1997.

[98] D. Mackay, “Fountain codes,” in Proceedings of IEE Communications, vol. 152,

pp. 1062–1068, Dec. 2005.

[99] Sandvine Intelligent Networks, “Global internet phenomena report.”

http://www.sandvine.com/downloads/documents/Phenomena_1H_2013/

Sandvine_Global_Internet_Phenomena_Report_1H_2013.pdf, Mar. 2013.

[100] E. Martinian, Dynamic Information and Constraints in Source and Channel

Coding. PhD thesis, MIT, Cambridge, USA, Sept. 2004.

[101] A. Badr, A. Khisti, W. Tan and J. Apostoupoulos, “Robust Streaming Erasure

Codes based on Deterministic Channel Approximations,” in Proceedings of the

International Symposium on Information Theory (ISIT), July 2013.

[102] P. Patil, A. Badr, A. Khisti and W. Tan, “Delay-Optimal Streaming Codes un-

der Source-Channel Rate Mismatch,” in Proceedings of the Asilomar Conference

on Signals, Systems and Computers, Nov. 2013.

[103] H. Yao, Y. Kochman and G. Wornell, “A Multi-Burst Transmission Strategy for

Streaming over Blockage Channels with Long Feedback Delay,” IEEE Journal

on Selected Areas in Communications, Dec. 2011.

[104] G. Joshi, Y. Kochman, G. Wornell, “On Playback Delay in Streaming Commu-

nication,” in Proceedings of the IEEE International Symposium on Information

Theory, July 2012.

207

http://www.sandvine.com/downloads/documents/Phenomena_1H_2013/Sandvine_Global_Internet_Phenomena_Report_1H_2013.pdf
http://www.sandvine.com/downloads/documents/Phenomena_1H_2013/Sandvine_Global_Internet_Phenomena_Report_1H_2013.pdf

[105] G. Joshi, On Playback Delay in Streaming Communication. Masters thesis,

Massachusetts Institute of Technology, 2012.

[106] T. Cover and J. Thomas, Elements of information theory. New York, NY, USA:

Wiley-Interscience, 2nd ed., 1991.

[107] L. Keller, E. Drinea and C. Fragouli, “Online Broadcasting with Network Cod-

ing,” in Proceedings of the IEEE Network Coding Theory and Applications,

pp. 1–6, Jan. 2008.

[108] J. Barros, R. Costa, D. Munaretto, and J. Widmer, “Effective Delay Control

in Online Network Coding,” in Proceedings of the International Conference on

Computer Communications (INFOCOM), pp. 208–216, Apr. 2009.

[109] A. Fu, P. Sadeghi, and M. Medard, “Delivery delay analysis of network coded

wireless broadcast schemes,” in Proceedings of the Wireless Communications

and Networking Conference (WCNC), pp. 2236–2241, 2012.

[110] J. Sundararajan, P. Sadeghi, and M. Médard, “A feedback-based adaptive

broadcast coding scheme for reducing in-order delivery delay,” in IEEE Work-

shop on Network Coding, Theory, and Applications, pp. 1–6, 2009.

[111] J. Sundararajan, D. Shah and M. Médard, “Online network coding for optimal

throughput and delay: the three-receiver case,” in International Symposium on

Information Theory and its Applications, Dec. 2008.

[112] Y. E. Sagduyu and A. Ephremides, “On broadcast stability region in random

access through network coding,” in Proceedings of the Allerton Conference on

Communication, Control and Computing, pp. 143–150, 2006.

[113] K. Mahadaviani, A. Khisti, G. Joshi, and G. Wornell, “Playback Delay in On-

Demand Streaming Communication with Feedback,” in Proceedings of the In-

ternational Symposium on Information Theory (ISIT), July 2015.

208

[114] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE

Transactions on Information Theory, vol. 60, pp. 2856–2867, May 2014.

[115] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi, “Hierarchi-

cal coded caching,” in Proceedings of the IEEE International Symposium on

Information Theory (ISIT), pp. 2142–2146, June 2014.

[116] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive con-

tent,” in Proceedings of the IEEE International Conference on Communications

(ICC), pp. 5559–5564, 2015.

[117] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakkottai, “Avoiding

Interruptions – A QoE Reliability Function for Streaming Media Applications,”

IEEE Journal on Selected Areas in Communications, vol. 29, pp. 1064–1074,

May 2011.

[118] H. A. David and H. N. Nagaraja, Order statistics. Hoboken, N.J.: John Wiley,

2003.

[119] L. de Haan and A. Ferreira, Extreme value theory an introduction. New York:

Springer, 2006.

[120] R. Gallager, Discrete Stochastic Processes. Kluwer Academic Publishers,

2nd ed., 2013.

[121] J. Esary, F. Proschan, and D. Walkup, “Association of random variables, with

applications,” Annals of Mathematics and Statistics, vol. 38, pp. 1466–1474,

Oct. 1967.

[122] R. Durrett, Probability: Theory and Examples. Cambridge University Press,

4th ed., 2010.

209

