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Abstract—In cloud computing systems, assigning a job to
multiple servers and waiting for the earliest copy to finish is an
effective method to combat the variability in response time of
individual servers. Although adding redundant replicas always
reduces service time, the total computing time spent per job
may be higher, thus increasing waiting time in queue. The total
time spent per job is also proportional to the cost of computing
resources. We analyze how different redundancy strategies, for
eg. number of replicas, and the time when they are issued and
canceled, affect the latency and computing cost. We get the
insight that the log-concavity of the service time distribution is
a key factor in determining whether adding redundancy reduces
latency and cost. If the service distribution is log-convex, then
adding maximum redundancy reduces both latency and cost.
And if it is log-concave, then having fewer replicas and canceling
the redundant requests early is more effective.

I. INTRODUCTION

A. Motivation

An increasing number of applications are now hosted on
the cloud. Some examples are streaming (NetFlix, YouTube),
storage (Dropbox, Google Drive) and computing (Amazon
EC2, Microsoft Azure) services. A major advantage of cloud
computing and storage is that the large-scale sharing of
resources provides scalability and flexibility. A side-effect
of the sharing of resources is the variability in the latency
experienced by the user due to queueing, pre-emption by
other jobs with higher priority, server outages etc. The prob-
lem becomes further aggravated when the user is executing
a job with several parallel tasks on the cloud, because the
slowest task becomes the bottleneck in job completion. Thus,
ensuring seamless, low-latency service to the end-user is a
challenging problem in cloud systems.

One method to reduce latency that has gained significant
attention in recent years is the use of redundancy. In cloud
computing, executing a task on multiple machines and wait-
ing of one to finish can significantly reduce the latency [1].
Similarly, in cloud storage systems requests to access the
content can be assigned to multiple replicas, such that it is
only sufficient to download one replica. This can help reduce
latency significantly.
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However, redundancy can result in increased use of re-
sources such as computing time, and network bandwidth.
In frameworks as Amazon EC2 and Microsoft Azure which
offer computing as a service, the server time spent is pro-
portional to the money spent in renting the machines. In this
work we aim to understand this trade-off between latency
and computing cost and propose scheduling policies that
can achieve a good trade-off. Our analysis also results in
some fundamental advances in the analysis of queues with
redundant requests.

B. Previous Work

Systems Work: One of the earliest instances of exploiting
redundancy to reduce latency is the use of multiple routing
paths [2] to send packets in networks. A similar idea has also
been recently studied in [3]. In large-scale cloud computing
frameworks such as MapReduce [4], the slowest tasks of
a job (stragglers) become a bottleneck in its completion.
Several recent works in systems such as [5], [6] explore
straggler mitigation techniques where redundant replicas of
straggling tasks are launched to reduce latency.

Although the use of redundancy has been explored in
systems literature, there is little work on the rigorous analysis
of how it affects latency, and in particular the cost of
resources. We now review some of that work.

Exponential Service Time: In distributed storage systems,
erasure coding can be used to store a content file on n servers
such that it can be recovered by accessing any k out of the
n servers. Thus download latency can be reduced by forking
each request to all n servers and waiting for any k to respond.
In [7], [8] we found bounds on the expected latency using the
(n, k) fork-join model with exponential service time. This is
a generalization of the (n, n) fork-join system, which was
actively studied in queueing literature [9], [10]. In recent
years, there is a renewed interest in fork-join queues due to
their application to distribution computing frameworks such
as MapReduce. Another related model with a centralized
queue instead of queues at each of the n servers was analyzed
in [11]. Most recently, [12] presents an analysis of latency
with heterogeneous job classes for the replicated (k = 1)
case with exponential service time.
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TABLE I: Optimal redundancy strategies when the service time is log-concave or log-convex. ‘Canceling redundancy early’
means that we cancel redundant tasks when any 1 task reaches the head of its queue, instead of waiting for it to be served.

Log-concave service time Log-convex service time
Latency-optimal Cost-optimal Latency-optimal Cost-optimal

Cancel redundancy
early or keep it?

Low load: Keep Redundancy,
High load: Cancel early

Cancel early Keep Redundancy Keep Redundancy

Partial forking to r out
of n servers

Low load: r = n (fork to all),
High load: r = 1 (fork to one)

r = 1 r = n r = n

General Service Time: Few practical systems have expo-
nentially distributed service time. For example, studies of
download time traces from Amazon S3 [13], [14] indicate
that the service time is not exponential in practice, but instead
a shifted exponential. For service time distributions that are
‘new-worse-than-used’ [15], it is shown in [16] that it is
optimal to fork a job to maximum number of servers. The
choice of scheduling policy for new-worse-than-used (NWU)
and new-better-than-used (NBU) distributions is also studied
in [17]–[19]. The NBU and NWU notions are closely related
to the log-concavity of service time studied in this work.

The Cost of Redundancy: If the service time is assumed
to be exponential, then adding redundancy does not cause
any increase in cost of computing time. But since the expo-
nential assumption does not generally hold true in practice,
it is important to determine the cost of using redundancy.
Simulation results with non-zero fixed cost of removal of
redundant requests is considered in [18]. The total server time
spent on each job is considered in [20], [21] for a distributed
system without queueing of requests. In [22] we presented an
analysis of the latency and cost of the (n, k) fork-join with
and without early cancellation of redundant tasks.

C. Our Contributions

In this work, we consider a general service time distri-
bution, unlike exponential service time assumed in many
previous works. We analyze the impact of redundancy on the
latency, and also the computing cost (total server time spent
per job). Incidentally, our computing cost metric serves as a
powerful tool to compare different redundancy strategies in
the high traffic regime.

The analysis gives the insight that the log-concavity (log-
convexity) of the tail distribution F̄X of service time is a key
factor in determining when redundancy helps. Here are some
instances, that are also summarized in Table I. For example,
a redundancy strategy is to fork each job to queues at n
servers, and wait for any one replica to finish. An alternate
strategy is to cancel the redundant replicas as soon as any
one reaches the head of its queue. We can show that early
cancellation of redundancy can reduce both latency and cost
for log-concave F̄X , but it is not effective for log-convex
F̄X . In another instance, suppose we fork each job to only a
subset r out of the n servers. Then we can show that forking
to more servers (larger r) is always better for log-convex F̄X .
But for log-concave F̄X , larger r reduces latency only in the
low traffic regime, and always increases the computing cost.
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Fig. 1: The (3, 1) fork-join system. When any 1 out of 3
tasks of a job is served, the remaining 2 tasks abandon their
queues immediately.
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Fig. 2: The (3, 1) fork-early cancel system. When any 1 out
of 3 tasks of a job starts service, the others abandon their
queues.

II. PROBLEM FORMULATION

A. Fork-Join Model and its Variants

Consider a distributed system with n statistically identical
servers. We define the (n, 1) fork-join system as follows.

Definition 1 ((n, 1) fork-join system). Each incoming job is
forked into n tasks that join first-come first-serve queues at
the n servers. When any one task is served, all remaining
tasks are canceled and abandon their queues immediately.

The term ‘task’ refers to a replica of the job. This is a
special case of the (n, k) fork-join system considered in [7],
[8] where any k out of n tasks are sufficient to complete
the job. General k > 1 arise in approximate computing, or
in content download from erasure coded distributed storage.
Fig. 1 illustrates the (3, 1) fork-join system.

Instead of waiting for any one task to finish, we could
cancel the redundant tasks early, when any task starts service.
A similar idea has been proposed in systems work [6]. We
refer to this variant as the (n, 1) fork-early cancel system
defined formally as follows.
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Definition 2 ((n, 1) fork-early cancel system). Each incom-
ing job is forked to the n servers. When any task starts
service, we cancel the redundant tasks immediately. If more
than one tasks start service simultaneously, we preserve any
one task chosen uniformly at random.

Fig. 2 illustrates the (3, 1) fork-early cancel system. Early
cancellation can save the total time spent per job (computing
cost), but could result in an increase in latency because of
loss of diversity. In Section IV we compare the (n, 1) fork-
join and the (n, 1) fork-early-cancel systems.

Due to the network cost of issuing and canceling tasks, it
may be prohibitively expensive to fork a job to all n servers.
Thus, we consider a partial forking variant defined as follows.

Definition 3 ((n, r, 1) partial fork-join system). Each incom-
ing job is forked into r out of the n servers. When any one
task is served, the redundant tasks are canceled immediately
and the job exits the system.

The r servers can be chosen according to different schedul-
ing policies such as random, round-robin, least-work-left etc.
Partial forking can save total computing time as well as the
network cost, which is proportional to the number of servers
each job is forked to. In Section V we develop insights into
the best choice of r and the scheduling policy to achieve a
good latency-cost trade-off.

Other variants include a combination of partial forking
and early cancellation, or delaying invocation of some of the
redundant tasks. Although not considered here, our analysis
techniques can be extended to these variants.

B. Arrival and Service Distributions

Consider that jobs arrive to the system at rate λ per second,
according to a Poisson process. The Poisson assumption is
required only for the exact analysis and bounds of latency
E [T ] (defined below). The results for cost E [C], and the
insights into choosing the best redundancy strategy hold for
any arrival process.

After a task of the job reaches the head of its queue, the
time taken to serve it can be random due to various factors
such as virtualization, disk seek time, server outages, pre-
emption by other jobs etc. We model this task service time
by the random variable X > 0, with cumulative distribution
function FX(x) and assume that it is i.i.d. across requests and
servers. Dependence of the service time on the job size can
be modeled by adding a constant to X . For example, some
recent work [13], [14] on analysis of content download from
Amazon S3 observed that X is shifted exponential, where ∆
is proportional to the size of the content and the exponential
part is the random delay in starting the data transfer.

We use F̄X(x) to denote Pr(X > x), the tail distribution
(inverse CDF) of X . We use X1:n to denote the smallest of
n i.i.d. random variables X1, X2, . . . Xn.

C. Latency and Cost Metrics

We now define the metrics of the latency and resource cost
whose trade-off is analyzed in the rest of the paper.

Definition 4 (Latency). The latency E [T ] is defined as the
expected time from when a job arrives, until when any one
of its tasks is complete.

Definition 5 (Computing Cost). The expected computing cost
E [C] is the expected total time spent by the servers serving
a job, not including the time spent in the queue.

If a task is canceled before it reaches the head of its
queue, the cost incurred at that server is zero. In computing-
as-a-service frameworks, the expected computing cost is
proportional to money spent on renting machines to run a
job on the cloud. Although not analyzed explicitly in this
paper, we note that there is also a network cost of issuing
and canceling the redundant tasks, proportional to n for the
(n, 1) fork-join and fork-early-cancel system, and r in the
(n, r, 1) partial-fork-join system.

III. PRELIMINARY CONCEPTS

We present some preliminary concepts that are vital for
understanding the results presented in the rest of the paper.

A. Using E [C] to Compare Systems

Since the cost metric E [C] is the expected time spent by
servers on each job, higher E [C] implies higher expected
waiting time for subsequent jobs. Since the latency E [T ] is
dominated by the waiting time at high arrival rates, E [C] can
be used to compare different redundancy policies in the high
traffic regime. In particular, we can only compare policies
that are symmetric across the servers, defined formally as
follows.

Definition 6 (Symmetric Policy). In a symmetric policy, the
tasks of each job are forked one or more of the n servers
such that the expected task arrival rate is equal across the
servers.

Most commonly used policies: random, round-robin, short-
est queue etc. are symmetric across the n servers. In Claim 1,
we express the service capacity in terms on E [C]. Corollary 1
then follows because higher service capacity implies lower
latency in the high load regime.

Claim 1 (Service Capacity in terms of E [C]). For a system
of n servers with a symmetric redundancy policy, and any
arrival process with rate λ, the service capacity, that is, the
maximum λ such that E [T ] <∞ is

λmax =
n

E [C]
(1)

Proof. For a symmetric policy, the mean time spent by each
server per job is E [C] /n. Thus the server utilization is ρ =
λE [C] /n. To keep the system stable such that E [T ] < ∞,
the server utilization must be less than 1. The result in (1)
follows from this.

Corollary 1. The symmetric redundancy strategy that results
in a lower E [C], also gives lower E [T ] in the high traffic
regime, when λ is close to the service capacity.
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B. Log-concavity of F̄X

When the tail distribution F̄X of service time is either
‘log-concave’ or ‘log-convex’, we get clear insights into how
redundancy affects latency and cost. Log-concavity of F̄X is
defined formally as follows.

Definition 7 (Log-concavity and log-convexity of F̄X ). The
tail distribution F̄X is said to be log-concave (log-convex) if
log Pr(X > x) is concave (convex) in x for all x ∈ [0,∞).

For brevity, when we say X is log-concave (log-convex)
in this paper, we mean that F̄X is log-concave (log-convex).
An interesting implication of log-concavity is that if F̄X is
log-concave,

Pr(X > x+ t|X > t) ≤ Pr(X > x) (2)

The inequality is reversed if F̄X is log-convex1. Equality
holds for the exponential distribution, which is both log-
convex and log-concave. As a result the mean residual life
E [X − t|X > t] decreases (increases) with the elapsed time
t if F̄X is log-concave (log-convex).

The numerical results in this paper use the shifted expo-
nential, and hyper exponential as examples of log-concave
and log-convex distributions respectively. The shifted ex-
ponential, denoted by ShiftedExp(∆, µ) is an exponential
with rate µ, plus a constant shift ∆ ≥ 0. The hyper-
exponential distribution, denoted by HyperExp(µ1, µ2, p). It
is a mixture of two exponentials with rates µ1 and µ2 where
the exponential with rate µ1 occurs with probability p.

If we fork a job to all r idle servers and wait for any 1 copy
to finish, the expected computing cost E [C] = rE [X1:r].
Lemma 1 below gives how rE [X1:r] varies with r for log-
concave (log-convex) F̄X . It is central to proving several key
results in this paper.

Lemma 1. If X is log-concave (log-convex), rE [X1:r] is
non-decreasing (non-increasing) in r.

The proof of Lemma 1 is omitted here and can be found in
the extended version [23]. We refer readers to [24] for other
properties and examples of log-concave distributions.

C. Relative Task Start Times

The relative start times of the n tasks of a job is an
important factor affecting the latency and cost. Let the
relative task start times be t1 ≤ t2 ≤ · · · tn where t1 = 0
without loss of generality and ti for i > 1 are measured
from the instant when the earliest task starts service. For
instance, if n = 3 tasks start at times 3, 4 and 7, then t1 = 0,
t2 = 4− 3 = 1 and t3 = 7− 3 = 4 respectively. In the case
of partial forking when only r tasks are invoked, we can
consider tr+1, · · · tn to be ∞.

Let S be the time from when the earliest task starts service,
until any one task finishes. Thus it is minimum of X1 +

1The definition of the notion ‘new-better-than-used’ considered in [16] is
same as (2). Other names used to refer to new-better-than-used distributions
are ‘light-everywhere’ in [18] and ‘new-longer-than-used’ in [19].

X 

X 

X 

λ 

λ 
 
λ 

Abandon 

X1:3 

M/G/1 Queue 

λ ⌘

(3,1) fork-join 

Fig. 3: Equivalence of the (n, 1) fork-join system with an
M/G/1 queue with service time X1:n, the minimum of n
i.i.d. random variables X1, X2, . . . , Xn.

t1, X2 + t2, · · ·Xn + tn, where Xi are i.i.d. with distribution
FX . The tail distribution of S is given by

Pr(S > s) =

n∏
i=1

Pr(X > s− tn) (3)

The computing cost C is given by,

C = S + |S − t2|+ + · · ·+ |S − tn|+. (4)

The relative task start times ti affect C in two opposing
ways. The negative part of each term in (4) increases with
ti, but the expected value of S increases (3) with ti. By
analyzing (4) we get several crucial insights in the rest of
the paper. For instance, in Section V we show that when
F̄X is log-convex, having t1 = t2 = · · · = tn = 0 gives
the lowest E [C]. Then using Claim 1 we can infer that it is
optimal to fork a job to all n servers when F̄X is log-convex.

IV. (n, 1) SYSTEM WITH AND WITHOUT EARLY
CANCELLATION

We now analyze the latency and cost of the (n, 1) fork-join
and (n, 1) fork-early-cancel systems defined in Section II.
We get the insight that it is better to cancel redundant tasks
early if F̄X is log-concave and traffic is high. But if F̄X is
log-convex, retaining the redundant tasks is always better.

A. Latency-Cost Analysis

Lemma 2. The latency T of the (n, 1) fork-join system is
equivalent in distribution to that of an M/G/1 queue with
service time X1:n.

Proof. Consider the first job that arrives to a (n, 1) fork-join
system when all servers are idle. Thus, the n tasks of this
job start service at their respective servers simultaneously.
The earliest task finishes after time X1:n, and all other tasks
are immediately. So, the tasks of all subsequent jobs arriving
to the system also start simultaneously at the n servers as
illustrated in Fig. 3. Hence, arrival and departure events, and
the latency of an (n, 1) fork-join system is equivalent in
distribution to an M/G/1 queue with service time X1:n.

Theorem 1. The expected latency and computing cost of an
(n, 1) fork-join system are given by

E [T ] = E
[
TM/G/1

]
= E [X1:n] +

λE
[
X2

1:n

]
2(1− λE [X1:n])

(5)

E [C] = n · E [X1:n] (6)
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Fig. 4: The service time X ∼ ∆+Exp(µ) (log-concave), with
µ = 0.5, λ = 0.25. As n increases along each curve, E [T ]
decreases and E [C] increases. Only when ∆ = 0, latency
reduces at no additional cost.

where X1:n = min(X1, X2, . . . , Xn) for i.i.d. Xi ∼ FX .

Proof. By Lemma 2, the latency of the (n, 1) fork-join
system is equivalent in distribution to an M/G/1 queue
with service time X1:n. The expected latency of an M/G/1
queue is given by the Pollaczek-Khinchine formula (5). The
expected cost E [C] = nE [X1:n] because each of the n
servers spends X1:n time on the job. This can also be seen
by noting that S = X1:n when ti = 0 for all i, and thus
C = nX1:n in (4) .

In Corollary 2 and Corollary 3 we characterize how E [T ]
and E [C] vary with n. The behavior of E [C] follows from
Lemma 1.

Corollary 2. For the (n, 1) fork-join system with any service
distribution FX , the expected latency E [T ] is non-increasing
with n.

Corollary 3. If F̄X is log-concave (log-convex), then E [C]
is non-decreasing (non-increasing) in n.

Fig. 4 and Fig. 5 show the expected latency versus cost
for log-concave and log-convex F̄X , respectively. In Fig. 4,
the arrival rate λ = 0.25, and X is shifted exponential
ShiftedExp(∆, 0.5), with different values of ∆. For ∆ > 0,
there is a trade-off between expected latency and cost. Only
when ∆ = 0, that is, X is a pure exponential (which is
generally not true in practice), we can reduce latency without
any additional cost. In Fig. 5, arrival rate λ = 0.5, and
X is hyperexponential HyperExp(0.4, 0.5, µ2) with different
values of µ2. We get a simultaneous reduction in E [T ] and
E [C] as n increases. The cost reduction is steeper as µ2

increases.

B. Early Task Cancellation

We now analyze the (n, 1) fork-early-cancel system, where
we cancel redundant tasks as soon as any task reaches the
head of its queue. Intuitively, early cancellation can save
computing cost, but the latency could increase due to the loss
of diversity advantage provided by retaining redundant tasks.
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Fig. 5: The service time X ∼ HyperExp(0.4, µ1, µ2) (log-
convex), with µ1 = 0.5, different values of µ2, and λ = 0.5.
Expected latency and cost both reduce as n increases along
each curve.
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Fig. 6: Equivalence of the (n, 1) fork-early cancel system to
an M/G/n queue with each server taking time X ∼ FX to
serve task, i.i.d. across servers and tasks.

Comparing it to (n, 1) fork-join system, we gain the insight
that early cancellation is better when F̄X is log-concave, but
ineffective for log-convex F̄X .

Theorem 2. The expected latency and cost of the (n, 1) fork-
early-cancel system are given by

E [T ] = E
[
TM/G/n

]
, (7)

E [C] = E [X] , (8)

where TM/G/n is the response time of an M/G/n queueing
system with service time X ∼ FX .

Proof. In the (n, 1) fork-early-cancel system, when any
one tasks reaches the head of its queue, all others are
canceled immediately. The redundant tasks help find the
shortest queue, and exactly one task of each job is served
by the first server that becomes idle. Thus, as illustrated in
Fig. 6, the latency of the (n, 1) fork-early-cancel system
is equivalent in distribution to an M/G/n queue. Hence
E [T ] = E

[
TM/G/n

]
and E [C] = E [X].

The exact analysis of mean response time E
[
TM/G/n

]
has

long been an open problem in queueing theory. A well-known
approximation given by [25] is,

E
[
TM/G/n

]
≈ E [X] +

E
[
X2
]

2E [X]
2E
[
WM/M/n

]
(9)
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Fig. 7: For the (4, 1) system with service time X ∼
ShiftedExp(2, 0.5) which is log-concave, early cancellation
is better in the high λ regime, as given by Corollary 5.

where E
[
WM/M/n

]
is the expected waiting time in an

M/M/n queueing system with load ρ = λE [X] /n. It can
be evaluated using the Erlang-C model [26, Chapter 14]. We
now compare the latency and cost with and without early
cancellation given by Theorem 2 and Theorem 1. Corollary 4
below follows from Lemma 1.

Corollary 4. If F̄X is log-concave (log-convex), then E [C]
of the (n, 1) fork-early-cancel system is greater than equal
to (less than or equal to) that of (n, 1) fork-join system.

In the low λ regime, the (n, 1) fork-join system gives lower
E [T ] than (n, 1) fork-early-cancel because of higher diversity
due to redundant tasks. By Corollary 1, the high λ regime,
the system with lower E [C] has lower expected latency.

Corollary 5. If F̄X is log-concave, early cancellation gives
higher E [T ] than (n, 1) fork-join when λ is small, and
lower in the high λ regime. If F̄X is log-convex, then early
cancellation gives higher E [T ] for both low and high λ.

Fig. 7 and Fig. 8 illustrate Corollary 5. Fig. 7 shows a
comparison of E [T ] with and without early cancellation of
redundant tasks for the (4, 1) system with service time X ∼
ShiftedExp(2, 0.5). We observe that early cancellation gives
lower E [T ] in the high λ regime. In Fig. 8 we observe that
when X is HyperExp(0.1, 1.5, 0.5) which is log-convex, early
cancellation is worse for both small and large λ.

In general, early cancellation is better when X is less
random (lower coefficient of variation). For example, a
comparison of E [T ] with (n, 1) fork-join and (n, 1) fork-
early-cancel systems as ∆, the constant part of service time
ShiftedExp(∆, µ) varies indicates that early cancellation is
better for larger ∆. When ∆ is small, there is more random-
ness in the service time, and hence keeping the redundant
tasks running gives more diversity and lower E [T ]. But as
∆ increases, task service times are more deterministic and
the diversity benefit of having redundant tasks is smaller.

V. (n, r, 1) PARTIAL-FORK-JOIN SYSTEM

We now analyze the latency-cost trade-off for the (n, r, 1)
partial-fork-join system where an incoming job is forked to
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Fig. 8: For the (4, 1) system with X ∼
HyperExp(0.1, 1.5, 0.5), which is log-convex, early
cancellation is worse in both low and high λ regimes,
as given by Corollary 5.
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Fig. 9: (4, 2, 1) partial-fork-join system, where each job is
forked to r = 2 servers, chosen according to the group-based
random or uniform random policies.

some r out n servers and we wait for any 1 task to finish. The
r servers are chosen using a symmetric policy (Definition 6).
Some examples of symmetric policies are:

1) Group-based random: This policy holds when r di-
vides n. The n servers are divided into n/r groups of
r servers each. A job is forked to one of these groups,
chosen uniformly at random.

2) Uniform Random: A job is forked to any r out of n
servers, chosen uniformly at random.2

Fig. 9 illustrates the (4, 2, 1) partial-fork-join system with
the group-based random and the uniform-random policies. In
the sequel, we develop insights into the best r and the choice
of servers for a given service distribution FX .

A. Latency-Cost Analysis

In the group-based random policy, each group behaves as
an (r, 1) fork-join system, the r tasks of a job starting service
simultaneously. Thus, the expected latency and cost follow
from Theorem 1 as given in Lemma 3 below.

2In the (n, r, 1) partial-fork-join with uniform random policy, we replicate
the task at r randomly chosen queues. Instead, in the power-of-r scheduling
[27], a job is assigned to the shortest of r randomly chosen queues. Power-
of-r is similar to early cancellation of r−1 out of r tasks, even before they
join the queues. Thus, by Corollary 5, we conjecture that for log-convex
F̄X , the (n, r, 1) partial-fork-join system gives lower latency than power-
of-r scheduling.
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Lemma 3 (Group-based random). The expected latency and
cost when each job is forked to one of n/r groups of r servers
each are given by

E [T ] = E [X1:r] +
λrE

[
X2

1:r

]
2(n− λrE [X1:r])

(10)

E [C] = rE [X1:r] (11)

Proof. Since the job arrivals are split equally across the
n/r groups, such that the arrival rate to each group is a
Poisson process with rate λr/n. The r tasks of each job
start service at their respective servers simultaneously, and
thus each group behaves like an independent (r, 1) fork-
join system with Poisson arrivals at rate λr/n. Hence, the
expected latency and cost follow from Theorem 1.

Using (11) and Claim 1, we can infer that the service
capacity (maximum supported λ) for an (n, r, 1) system with
group-based random policy is

λmax =
n

rE [X1:r]
(12)

From (12) we can infer that the r that minimizes rE [X1:r]
results in the highest service capacity, and hence the lowest
E [T ] in the high traffic regime. By Lemma 1, the optimal r
is r = 1 (r = n) for log-concave (log-convex) F̄X .

For other symmetric policies, it is difficult to get an exact
analysis of E [T ] and E [C] because the tasks of a job can
start at different times. However, we can get bounds on E [C]
depending on the log-concavity of X , given in Theorem 3
below.

Theorem 3. Consider an (n, r, 1) partial-fork join system,
where a job is forked into tasks at r out of n servers chosen
according to a symmetric policy. For any relative task start
times ti, E [C] can be bounded as follows.

rE [X1:r] ≥ E [C] ≥ E [X] if F̄X is log-concave (13)
E [X] ≥ E [C] ≥ rE [X1:r] if F̄X is log-convex (14)

In the extreme case when r = 1, E [C] = E [X], and when
r = n, E [C] = nE [X1:n].

To prove Theorem 3 we take expectation on both sides in
(4), and show that for log-concave and log-convex F̄X , we
get the bounds in (13) and (14), which are independent of
the relative task start times ti. The detailed proof is omitted
here, but can be found in the extended version [23].

In the sequel, we use the bounds in Theorem 3 to gain
insights into choosing the best r and best scheduling policy
when F̄X is log-concave or log-convex.

B. Optimal value of r

By Lemma 1, rE [X1:r] is non-decreasing (non-increasing)
with r for log-concave (log-convex) F̄X . By this fact and
Theorem 3, we get the following corollaries about how E [C]
and E [T ] vary with r.

Corollary 6 (Expected Cost vs. r). For a symmetric policy,
forking of each job to r out of n servers, r = 1 (r = n)
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Fig. 10: For X ∼ ShiftedExp(1, 0.5) which is log-concave,
forking to less (more) servers reduces expected latency in the
low (high) λ regime.
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Fig. 11: For X ∼ HyperExp(p, µ1, µ2) with p = 0.1, µ1 =
1.5, and µ2 = 0.5 which is log-convex, forking to more
servers (larger r) gives lower expected latency for all λ.

minimizes the expected cost E [C] when F̄X is log-concave
(log-convex).

Corollary 7 (Expected Latency vs. r). In the low-traffic
regime, forking to all servers (r = n) gives the lowest E [T ]
in the low λ regime for any service time distribution FX . In
the high traffic regime, r = 1 (r = n) gives lowest E [T ] if
F̄X is log-concave (log-convex).

Corollary 7 is illustrated by Fig. 10 and Fig. 11 where
E [T ] is plotted versus λ for different values of r. Each job
is assigned to r servers chosen uniformly at random from
n = 6 servers. In Fig. 10 the service time distribution is
ShiftedExp(∆, µ) (which is log-concave) with ∆ = 1 and
µ = 0.5. When λ is small, more redundancy (higher r)
gives lower E [T ], but in the high λ regime, r = 1 gives
lowest E [T ] and highest service capacity. On the other hand
in Fig. 11, for a log-convex distribution HyperExp(p, µ1, µ2),
in the high load regime E [T ] decreases as r increases.

Corollary 7 was previously proven for new-better-than-
used (new-worse-than-used) instead of log-concave (log-
convex) F̄X in [16], [18], using a combinatorial argument.
Using Theorem 3, we get an alternative, and arguably simpler
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way to prove this result. Note that our version is slightly
weaker because log-concavity implies new-better-than-used
but the converse is not true in general.

C. Choice of the r servers

For a given r, we now compare different policies of
choosing the r servers for each job. The choice of the r
servers determines the relative starting times of the tasks. If
all the r tasks start at the same time, E [C] = rE [X1:r]. By
comparing with the bounds in Theorem 3 that hold for any
relative task start times we get the following result.

Corollary 8 (Cost for different policies). Given r, if F̄X is
log-concave (log-convex), the symmetric policy that results
in the tasks starting at the same time (ti = 0 for all 1 ≤
i ≤ r) results in higher (lower) E [C] than one that results
in 0 < ti <∞ for some i.

Corollary 9 (Latency in high λ regime). Given r, if F̄X is
log-concave (log-convex), the symmetric policy that results in
the tasks starting at the same time (ti = 0 for all 1 ≤ i ≤ r)
results in higher (lower) E [T ] in the high traffic regime than
one that results in 0 < ti <∞ for some i.

For example, lets us compare the group-based random and
uniform random policies. The r tasks may start at different
times with the uniform random policy, whereas they always
start simultaneously with group-based random policy. Thus,
in the high λ regime, that uniform random policy results
lower latency for log-concave F̄X . But for log-convex F̄X ,
group-based forking is better in the high λ regime.

VI. CONCLUDING REMARKS

We consider a redundancy model where a computing job is
replicated at multiple servers, and we wait for any one copy to
finish and cancel the rest. We analyze how redundancy affects
the latency, and the cost of computing time, and demonstrate
how the log-concavity of service time is a key factor in
determining the best redundancy strategy. For example, if
the service time is log-convex, adding maximum redundancy
reduces both latency and cost. For log-concave service time,
can reduce latency, but increases the cost of computing time.
Thus, adding fewer replicas, and canceling redundant tasks
early is more effective, especially in the high traffic regime.

Using these insights, in [23], we propose a general redun-
dancy strategy for an arbitrary service time distribution, that
may be neither log-concave nor log-convex. Ongoing work
includes developing online strategies to simultaneously learn
the service distribution, and the best redundancy strategy.
More broadly, the proposed redundancy techniques can be
used to reduce latency in several applications beyond the
realm of cloud storage and computing systems, for example
crowdsourcing, algorithmic trading, manufacturing etc.
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