Using Efficient Redundancy to
Reduce Latency in Cloud Systems

Gauri Joshi

joint work with Emina Soljanin, Gregory Wornell

Ticket Counter Queues

(

Q

)

el

Q\(Q\ f&ﬁ

Q\(

Ticket Counter Queues

A L

(Q\ Q\(

Abandon when any
one reaches the

head of the queue (Q\ Q\ (

Ticket Counter Queues

-

Answers depend on:
e Randomness of the service time

PETSI o« customer arrival rate —

the t
NS /

May
wait

Replication to Reduce Latency in the Cloud

o Large-scale resource sharing = Variability in service time
* Virtualization, Server outages, Network Packet Loss

The (n,1) fork-join model

o Fork a job into tasks at n servers, and wait for any one to finish
o Cancel the redundant tasks immediately
o Each task takes time X to finish, X ~ F, i.i.d. across servers

[][]
L[]
[][]
(n,K) fork-join: Erasure Coded Storage, or Approx. Computing

[Joshi-Liu-Soljanin 2012, 14]
k = n: Famously hard fork-join queue

Wait for any 1
to finish, and
cancel the rest

Poisson Arrivals
at Rate A

U

Variants of the (n,1) fork-join system

(n, 1) fork-early-cancel system
Fork to all n servers
Cancel redundant tasks as soon as 1 task begins service

(n, r, 1) partial-fork-join system
Fork into tasks at r out of n servers.
Wait for any 1 task to finish and cancel the rest

Can reduce cost, but we lose the diversity provided by
redundancy

Performance Metrics

Expected Latency E[T]
Expected time from arrival until any 1 task is served
= Waiting time in queue + Service Time

Expected Computing Cost E[C]
Total expected time spent by servers per job.
Does not include waiting time in queue

No Queueing

2 -C>_> E|T] = E[X1.,]

. C [Xl n]

<'9

5

minimum of
ni.i.d rvs
X1, Xy, o X,

Related Previous Work

Queues with Redundancy
o (n,Kk) fork-join with exponential service time [Joshi-Liu-Soljanin 2012,14]
o Exponential service time, heterogeneous jobs [Gardner et al 2015]

o When is it better to fork to all n servers?
[Shah-Lee-Ramchandran 2013] [Koole-Righter 2008]

Contributions

o Impact of redundancy on the latency, and the computing cost
o ‘Log-concavity’ of the service time is a key factor

o Using E[C] to compare systems in high traffic regime

Outline

o Forking to n and waiting for 1 to finish
 How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
 When is early cancellation better?

o Partial forking to r out of n servers
 Optimal choice of r
 Which r servers to fork to?

10

Outline

o Forking to n and waiting for 1 to finish
 How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
 When is early cancellation better?

o Partial forking to r out of n servers
 Optimal choice of r
 Which r servers to fork to?

11

(n,1) Fork-join system

Forking to n and waiting for 1 to finish

Bl O~
e (O
NI @E=

The n tasks of each job start at the same time!

i i

12

Equivalent to an M/G/1 Queue!

Forking to n and waiting for 1 to finish

" [@ad—

BO- YDl

i i

- O_X> M/G/1 Queue

The n tasks of each job start at the same time!

M/G/1 Queue

Pollaczek-Khinchine Formula

Arrival Service dist Fy
e — OEE O
Pollaczek-Khinchine Formula
E[X?
E[T] = E[X] A X

14

Proof of PK formula

Residual service time

>

X1

A

4
XZ

NN

\B .
—

v NS
ETy] = E[Ny| -E[X]|+ E[R]
= \E[T,,] - E[X] + E[;(Q]
E[X?]

~2(1 — AE[X])

15

What are E[T] and E[C]?

Forking to n and waiting for 1 to finish

" [@ad—

BO- YO0l

i i

- O_X> M/G/1 Queue

What are E[T] and E[C]?

Forking to n and waiting for 1 to finish

O
B O

i i
|

" [@ad—

BE O

M/G/1 Queue

v

replication

= E[X] without }

E[C] = nE[X.,]

E|T] = E[X1:n] +

AE[XT,]

Pollaczek-
Khinchine Formula

2(1 = AE[X7:0])

17

How does cost E[C] vary with r?

L [GJ-Soljanin-Wornell
E[C] o TE[XLT] Allerton 2015]

O
ec,-e QSG
S

Constant

v

LOG-CONCAVE . EXPONENTIAL LOG-CONVEX N
X

‘)X

log Pr(X>x)
log Pr(X>x)

=
log Pr(X>x)

—

o Some distributions are neither log-concave nor log-convex

o Studied in reliability theory, economics
18

Properties and Examples

LOG-CONCAVE Pr(X>x) LOG-CONVEX Pr(X>x)

Optimistic Memory Pessimistic Memory
Pr(X >z +tX >t) <Pr(X >z) Pr(X>z+tX>t)>Pr(X >z

The more you wait, the time

The more you wait, the time
remaining is shorter

remaining is longer
A M

Eg. Shifted Exponential Eg. Hyper Exponential (Mixture of Exp.)

[N
—_

Pr(X>x)

19

Latency E[T

Latency vs. Cost as n varies

Forking to n and waiting for 1 to finish

A = 0.25, Log-concave X ~ A + Exp(0.5), varying n

10

® oo A0
\ e A=1 [

6]
} Log-convex X ~ HyperExp (p =0.4, 0.5, diff u,)
4+ , \ 5 T T T
I oo (=1 ®
: e @ (=15 I’
2r * - \..“.——_.___.__.__; 4_.'. Lo =2 II_
i e ’ ,
I] | | = 1
0 2 4 6 8 10 g’ et)/ I
Computing Cost E[C] E’ , ’ // II
‘% 7 / 1
’ / I
/ /
/ I
/
* ")

Il Il Il
1.0 1.1 1.2 1.3 1.4
Computing Cost E[C] 20

Outline

o Forking to n and waiting for 1 to finish
* When does redundancy reduce both E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
 When is early cancellation better?

o Partial forking to r out of n servers
 Optimal choice of r
 Which r servers to fork to?

21

(n,1) Fork-early-cancel System
Canceling redundant tasks when any 1 task starts service

0o
L

—————————

PR

b b

22

Equivalent to an M/G/n queue!

Canceling redundant tasks when 1 task starts service

Choose first
empty server

X
Central Queue O_—)
LEOEN +— O

O~

M/G/n Queue

b

. E[WM/M/”] [Lee-Loughton 1959]

Waiting time of
J M/M/n queue

<nE[X;.,,] for
log-concave X

¥

23

Cancel Early or Keep Redundancv?

Early cancel gives lower E[C]

Log concave X ~ 2 + Exp(0.5),n=4 o
35 & | . . P)’. - lower E[T] in high load
& o (n, 1) fork-join
30 ¢ 4 (n,1) fork-early-cancel |
? '
T 25} | .
S b I
& I [
g 20} 1
2 ! I
3 ! I
g 15 F I .
g ' 4 Log-convex X ~ HyperExp(p=0.1, 1.5, 0.5)
1]
& 10} » 4, 1 1 : : . . '
.I 4 & o (n,1) fork-join A
5| ree? 1 Y[&4 (01)fork-earl 1 |
+ed 3:."‘(-0-0-0' > 04000 (n,1) fork-early-cance ’, .
¢ 12k Vi 7 -
0 I I I I i / ’
0.0 0.2 0.4 0.6 0.8 = ,
), arrival rate of jobs B 10r ¢ I‘]
T]l ’ i
- /.
& o 7
2 6 ’ ¢ 7
=9 » ’
& ’
gl 4+ ¢ |
. - ’
Keeping Redundancy better 2 40 ,_._’_,_,.._..:_._._.(|
-0 o |-.- d -.-?- .- 1 1 1
00.0 0.5 1.0 1.5 2.0 2.5

A, arrival rate of jobs

24

Outline

o Forking to n and waiting for 1 to finish
 How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
 When is early cancellation better?

o Partial forking to r out of n servers
 Optimal choice of r
 Which r servers to fork to?

25

Partial forking to r out of n servers

Questions:
 How many servers to fork to? (Optimal r)
* Which r servers to fork to? (Optimal Scheduling Policy)

BT X

— X
Group 1 _- Q_) O_’
L Ogo> O

A - A
OO - X
Fork to one of —= O_)
groups, chosen 7 - X Fork to r=2 X
atrandom L servers chosen O—)

Group 2
atrandom
Group-based random assgnt Uniform random assgnt

26

Group-based Random Policy

Group 1

A —
Fork to one of
groups, chosen

atrandom

Group2 —

* The r tasks of each job start at the same time

e Each group behaves as an independent (r,1) fork-join system with
arrival rate Ar/ n

E[C] = rE[X;..]

27

Evaluating E[T] Is hard for other policies

o Depends on how many tasks are in front of each replica
o Also, the locations of the replicas of the tasks in front

PRRE

N\

A%

_—

Latency E[T]

Aoy 1IN terms of E[C]

[GJ-Soljanin-Wornell MAMA 2015]

e - . . S S S B B B B B B B e e B B B B

>

. n
Task Arrival Rate A Mgy = ——

E[C]

for any symmetric policy

29

N

>~ ~ Lower E[C] = Higher A,
Q - Lower E[T] in high traffic

Latency E[T]

P——————

>

Task Arrival Rate A)\ _

Problem reduces to finding the strategy that minimizes E[C]

30

E[C] in terms of relative task start times

For relative task starttimeso=t, st,<t,... <t

C=8+(S—t))T+(S—t3)"..+(S—t,.)"

where S = min(Xy, Xy + t3,... X, + t,-), the time when
earliest task starts, until any 1 task finishes

1 Pr(X>x)
’3\2 Pr(X>x) Pr(X>x-t,)
N
- Pr(X>x) Pr(X>x-t,) Pr(X>x-t)
+ I >
0=t t, t X

31

E[C] in terms of relative task start times

E[C]= 4 +2xN\ +3%[4 + .

If replicas start together
E[C] =r E[X,,]

32

Bounds on E[C], independent of the
relative task start times

For relative task starttimeso=t, st,<t,... st

C=8+(S—t))T+(S—t3)T..+(S—t,)"

where §' = min (X, X + t2,... X, + t,.), thetime when
earliest task starts, until any 1 task finishes

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For any relative task
starttimesO0=t; <t, <t;..<t,,

E[X] < E[C] < rE[X;..], if Pr(X > z) is log-concave
E[X] > E[C] > rE[X;.,], if Pr(X > z) is log-convex

33

Proof Idea

E[C]= 4 +2xN\ +3%[4 + .

due to product of two
tails outweigh the 2 x
factor?

34

Using E[C] bounds to determine optimal r

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For a symmetric policy
resulting in any relative task start times,

E[X] < E[C] < rE[X;.,], if Fx is log-concave
E[X] > E[C] > rE[X}.,], if Fx is log-convex

Forany X, if r = 1, E[C] = E[X]andif r = n, E|C] = nE|X;.,,]

h _d

COROLLARY: The value of r that minimizes E[C] (and hence
minimizes E[T] in high load regime) is

r =1, if Fx is log-concave

r =n, it Fx is log-convex

35

Latency E[T]

Latency versus A for different r
Uniform Random Scheduling

Log-conc

100

80

(=]
o
T

N
o

[\
(e}
T

0
0

ave X ~ ShiftedExp(1, 0.5), n =6

T

[B) r:l
4 r=2
B8 r=3

’

/ s
II ‘,d
»

sa=0-0:0-02-F1 42047’7
.0 0.5

1.0 1.5 2.0

Task Arrival rate A

More replicas
always better

Latency E[T]

Low traffic: r=n
High trafficr=1

3

-9 r=1 4
25k"" r=2 ’
- | r=3 A

K

2 F ~ ® | /]
4f0|d I' 1

1 '!

15

10} » 4
o £y
»”~ %
5 e v : o
_ _.—.' _ P
Earititeaea et ET
0. 0.5 1.0 1.5 2.0 2.5 3.0 3.5
" Task Arrival rate A

reduction o

7

Log-convex X ~ HyperExp(0.1, 1.5, 0.5)

4
/

36

Given r, using E[C] bounds to determine the best
scheduling policy

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For a symmetric policy
resulting in any relative task start times,

E[X] < E[C] < rE[X;.,.]) if Fx is log-concave
E[X] > E[C] > rE[X}.,]| if Fx is log-convex

Forany X, if r = 1, E[C] = E[X]andif r = n, E|C] = nE|X;.,,]

Equality when O =t, =1, =1;.. = t, (Simultaneous task start times)

h

COROLLARY: In the high traffic regime,
* Log-convex: Group-based policy gives lowest E[T]

* Log-concave: Better to stagger the relative task start times

37

Expected Latency E[T]

Which servers to fork to?
Choice of Scheduling Policy

Log-concave X ~ ShiftedExp(1, 0.5), n =6

40 —
e @ Group-based random ! .
351 ¢ 4 Uniform Random ,l l" Umform random
Wl é k always does better
1
1
25 | 1 , _
! 1
20 }' ” R
1
15| S 4 . Log-convex X ~ HyperExp(0.1, 1.5, 0.5)
60 T T T T v
10 | ,l g, . & ® Group-based random '/
‘,d ¢ ’ 50 || & 9 Uniform Random yf i
’ g4
or -< 4 ¢ - i ’é
o o-0-09-09=0=03-¢ = ,
0 ' ' L = 40| F]
0.0 0.5 1.0 L5 20 & ad
A, the arrival rate of download jobs fg /
g 30f A .
3 &
3 ¢
Group-based random 220 ’t 1
3 o/
. . ‘8
10} 5, 1
R Xl
ou;o-o-ro-o-v-".""'"" . .
0 1 2 3 4 5

A, the arrival rate of download jobs

38

Main Takeaways

LOG CONCAVE LOG CONVEX
> >
2 2
& S
e S
v v
Retaining less replicas More replication
better in high traffic always better

n

Lower E[C] = Higher service capacity \,,,, = ——
[C]=> Hig pacity EC]

—> Lower E[T] in high traffic

39

Arbitrary service dist. Fy and arrival rate A

1__

o Neither log-concave nor log-convex dists.,

Pr(X>x)
o
Q1

eg. Pareto (polynomial tail decay)

o Latency-cost analysis tractable for group-based policy

Group 1

= IO~

40

Latency versus Cost as r varies
Group-based policy

Pareto (x,,=1, a = 2.2), Arrival rate A = 0.6, n =12 servers

A ! ! ! ! !
r=1 X
2.0} 1 _
- |
=] " X
s
Li 1.8} v ~35% L7 r=12
Q \ H
= ; reduction e
= L6l 1 P
= ' e)
e 1 ’
8 e
D 1.4} k L -
& 2 N X
pd r= -
£ 3"' ~% ~
12} =2 vz r=6 -
0 2 4 6 8 10 12 14

Expected Computing Cost E[C]

Choose suitable r based on cost sensitivity

41

