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Replication to Reduce Latency in the Cloud

o Large-scale resource sharing = Variability in service time
* Virtualization, Server outages, Network Packet Loss




The (n,1) fork-join model

o Fork a job into tasks at n servers, and wait for any one to finish
o Cancel the redundant tasks immediately
o Each task takes time X to finish, X ~ F, i.i.d. across servers

[ ][]
L[]
[ ][]
(n,K) fork-join: Erasure Coded Storage, or Approx. Computing

[Joshi-Liu-Soljanin 2012, 14]
k = n: Famously hard fork-join queue

Wait for any 1
to finish, and
cancel the rest

Poisson Arrivals
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Variants of the (n,1) fork-join system

(n, 1) fork-early-cancel system
Fork to all n servers
Cancel redundant tasks as soon as 1 task begins service

(n, r, 1) partial-fork-join system
Fork into tasks at r out of n servers.
Wait for any 1 task to finish and cancel the rest

Can reduce cost, but we lose the diversity provided by
redundancy



Performance Metrics

Expected Latency E[T]
Expected time from arrival until any 1 task is served
= Waiting time in queue + Service Time

Expected Computing Cost E[C]
Total expected time spent by servers per job.
Does not include waiting time in queue

No Queueing
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Related Previous Work

Queues with Redundancy
o (n,Kk) fork-join with exponential service time [Joshi-Liu-Soljanin 2012,14]
o Exponential service time, heterogeneous jobs [Gardner et al 2015]

o When is it better to fork to all n servers?
[Shah-Lee-Ramchandran 2013] [Koole-Righter 2008]

Contributions

o Impact of redundancy on the latency, and the computing cost
o ‘Log-concavity’ of the service time is a key factor

o Using E[C] to compare systems in high traffic regime



Outline

o Forking to n and waiting for 1 to finish
 How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
 When is early cancellation better?

o Partial forking to r out of n servers
 Optimal choice of r
 Which r servers to fork to?
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(n,1) Fork-join system

Forking to n and waiting for 1 to finish
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The n tasks of each job start at the same time!
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Equivalent to an M/G/1 Queue!

Forking to n and waiting for 1 to finish
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The n tasks of each job start at the same time!




M/G/1 Queue

Pollaczek-Khinchine Formula

Arrival Service dist Fy
e — OEE O
Pollaczek-Khinchine Formula
E[X?
E[T] = E[X] A X
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Proof of PK formula

Residual service time
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What are E[T] and E[C]?

Forking to n and waiting for 1 to finish

" [@ad—

BO- YO0l

i i

- O_X> M/G/1 Queue




What are E[T] and E[C]?

Forking to n and waiting for 1 to finish
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M/G/1 Queue

v

replication

= E[X] without }

E[C] = nE[X.,]

E|T] = E[X1:n] +

AE[XT,]

Pollaczek-
Khinchine Formula

2(1 = AE[X7:0])
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How does cost E[C] vary with r?

L [GJ-Soljanin-Wornell
E[C] o TE[XLT] Allerton 2015]
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LOG-CONCAVE . EXPONENTIAL LOG-CONVEX N
X

‘)X

log Pr(X>x)
log Pr(X>x)

=
log Pr(X>x)

—

o Some distributions are neither log-concave nor log-convex

o Studied in reliability theory, economics
18



Properties and Examples

LOG-CONCAVE Pr(X>x) LOG-CONVEX Pr(X>x)

Optimistic Memory Pessimistic Memory
Pr(X >z +tX >t) <Pr(X >z) Pr(X>z+tX>t)>Pr(X >z

The more you wait, the time

The more you wait, the time
remaining is shorter

remaining is longer
A M

Eg. Shifted Exponential Eg. Hyper Exponential (Mixture of Exp.)

[N
—_

Pr(X>x)
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Latency E[T

Latency vs. Cost as n varies

Forking to n and waiting for 1 to finish

A = 0.25, Log-concave X ~ A + Exp(0.5), varying n
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Outline

o Forking to n and waiting for 1 to finish
* When does redundancy reduce both E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
 When is early cancellation better?

o Partial forking to r out of n servers
 Optimal choice of r
 Which r servers to fork to?
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(n,1) Fork-early-cancel System
Canceling redundant tasks when any 1 task starts service
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Equivalent to an M/G/n queue!

Canceling redundant tasks when 1 task starts service

Choose first
empty server

X
Central Queue O_—)
LEOEN +— O

O~

M/G/n Queue

b

. E[WM/M/”] [Lee-Loughton 1959]

Waiting time of
J M/M/n queue

<nE[X;.,,] for
log-concave X

¥
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Cancel Early or Keep Redundancv?

Early cancel gives lower E[C]

Log concave X ~ 2 + Exp(0.5),n=4 o
35 & | . . P )’. - lower E[T] in high load
& o (n, 1) fork-join
30 ¢ 4 (n,1) fork-early-cancel |
? '
T 25} | .
S b I
& I [
g 20} 1
2 ! I
3 ! I
g 15 F I .
g ' 4 Log-convex X ~ HyperExp(p=0.1, 1.5, 0.5)
1 ]
& 10} » 4, 1 1 : : . . '
.I 4 & o (n,1) fork-join A
5| ree? 1 Y[ &4 (01)fork-earl 1 |
+ed 3:."‘(-0-0-0' > 04000 (n,1) fork-early-cance ’, .
¢ 12k Vi 7 -
0 I I I I i / ’
0.0 0.2 0.4 0.6 0.8 = ,
), arrival rate of jobs B 10r ¢ I‘ ]
T ]l ’ i
- /.
& o 7
2 6 ’ ¢ 7
=9 » ’
& ’
gl 4+ ¢ |
. - ’
Keeping Redundancy better 2 40 ,_._’_,_,.._..:_._._.( |
-0 o |-.- d -.-?- .- 1 1 1
00.0 0.5 1.0 1.5 2.0 2.5

A, arrival rate of jobs

24



Outline

o Forking to n and waiting for 1 to finish
 How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
 When is early cancellation better?

o Partial forking to r out of n servers
 Optimal choice of r
 Which r servers to fork to?
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Partial forking to r out of n servers

Questions:
 How many servers to fork to? (Optimal r)
* Which r servers to fork to? (Optimal Scheduling Policy)

BT X

— X
Group 1 _- Q_) O_’
L Ogo> O

A - A
OO - X
Fork to one of —= O_)
groups, chosen 7 - X Fork to r=2 X
atrandom L servers chosen O—)

Group 2
atrandom
Group-based random assgnt Uniform random assgnt
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Group-based Random Policy

Group 1

A —
Fork to one of
groups, chosen

atrandom

Group2 —

* The r tasks of each job start at the same time

e Each group behaves as an independent (r,1) fork-join system with
arrival rate Ar/ n

E[C] = rE[X;..]
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Evaluating E[T] Is hard for other policies

o Depends on how many tasks are in front of each replica
o Also, the locations of the replicas of the tasks in front

PRRE
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Latency E[T]

Aoy 1IN terms of E[C]

[GJ-Soljanin-Wornell MAMA 2015]
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for any symmetric policy
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N

>~ ~ Lower E[C] = Higher A,
Q - Lower E[T] in high traffic

Latency E[T]

P——————

>

Task Arrival Rate A )\ _

Problem reduces to finding the strategy that minimizes E[C]
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E[C] in terms of relative task start times

For relative task starttimeso=t, st,<t,... <t

C=8+(S—t))T+(S—t3)"..+(S—t,.)"

where S = min(Xy, Xy + t3,... X, + t,-), the time when
earliest task starts, until any 1 task finishes

1 Pr(X>x)
’3\2 Pr(X>x) Pr(X>x-t,)
N
- Pr(X>x) Pr(X>x-t,) Pr(X>x-t)
+ I >
0=t t, t X
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E[C] in terms of relative task start times

E[C]= 4 +2xN\ +3%[ 4 + .

If replicas start together
E[C] =r E[X,,]
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Bounds on E[C], independent of the
relative task start times

For relative task starttimeso=t, st,<t,... st

C=8+(S—t))T+(S—t3)T..+(S—t,)"

where §' = min (X, X + t2,... X, + t,.), thetime when
earliest task starts, until any 1 task finishes

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For any relative task
starttimesO0=t; <t, <t;..<t,,

E[X] < E[C] < rE[X;..], if Pr(X > z) is log-concave
E[X] > E[C] > rE[X;.,], if Pr(X > z) is log-convex
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Proof Idea

E[C]= 4 +2xN\ +3%[ 4 + .

due to product of two
tails outweigh the 2 x
factor?
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Using E[C] bounds to determine optimal r

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For a symmetric policy
resulting in any relative task start times,

E[X] < E[C] < rE[X;.,], if Fx is log-concave
E[X] > E[C] > rE[X}.,], if Fx is log-convex

Forany X, if r = 1, E[C] = E[X]andif r = n, E|C] = nE|X;.,,]

h _d

COROLLARY: The value of r that minimizes E[C] (and hence
minimizes E[T] in high load regime) is

r =1, if Fx is log-concave

r =n, it Fx is log-convex
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Latency E[T]

Latency versus A for different r
Uniform Random Scheduling
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Given r, using E[C] bounds to determine the best
scheduling policy

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For a symmetric policy
resulting in any relative task start times,

E[X] < E[C] < rE[X;.,.]) if Fx is log-concave
E[X] > E[C] > rE[X}.,]| if Fx is log-convex

Forany X, if r = 1, E[C] = E[X]andif r = n, E|C] = nE|X;.,,]

Equality when O =t, =1, =1;.. = t, (Simultaneous task start times)

h

COROLLARY: In the high traffic regime,
* Log-convex: Group-based policy gives lowest E[T]

* Log-concave: Better to stagger the relative task start times
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Expected Latency E[T]

Which servers to fork to?
Choice of Scheduling Policy

Log-concave X ~ ShiftedExp(1, 0.5), n =6
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Main Takeaways

LOG CONCAVE LOG CONVEX
> >
2 2
& S
e S
v v
Retaining less replicas More replication
better in high traffic always better

n

Lower E[C] = Higher service capacity \,,,, = ——
[C]=> Hig pacity EC]

—> Lower E[T] in high traffic
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Arbitrary service dist. Fy and arrival rate A

1__

o Neither log-concave nor log-convex dists.,

Pr(X>x)
o
Q1

eg. Pareto (polynomial tail decay)

o Latency-cost analysis tractable for group-based policy

Group 1

= IO~

40



Latency versus Cost as r varies
Group-based policy

Pareto (x,,=1, a = 2.2), Arrival rate A = 0.6, n =12 servers
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Expected Computing Cost E[C]

Choose suitable r based on cost sensitivity
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