
Using Efficient Redundancy to
Reduce Latency in Cloud Systems

Gauri Joshi

joint work with Emina Soljanin, Gregory Wornell

1

Ticket Counter Queues

2

Ticket Counter Queues

Abandon	when	any	
one	reaches	the	
head	of	the	queue

3

Ticket Counter Queues

Maybe	its	better	to	
wait	until	one	
person	actually	gets	
the	ticket..

Q1:	Wait	for	1	person	to	reach	the	counter,	or	until	they	
actually	get	the	tickets?

Q2:	How	many,	and	which	queues	should	we	join?

Answers	depend	on:
• Randomness	of	the	service	time
• Customer	arrival	rate

4

Replication to Reduce Latency in the Cloud

o Large-scale resource sharing à Variability in service time
• Virtualization, Server outages, Network Packet Loss

5

The (n,1) fork-join model

o Fork a job into tasks at n servers, and wait for any one to finish
o Cancel the redundant tasks immediately
o Each task takes time X to finish, X ~ FX i.i.d. across servers

Wait	for	any	1	
to	finish,	and	
cancel	the	rest

FX

FX

FX

Poisson Arrivals
at Rate λ

(n,k) fork-join: Erasure Coded Storage, or Approx. Computing
[Joshi-Liu-Soljanin 2012, 14]
k = n: Famously hard fork-join queue

1

2

n

6

Variants of the (n,1) fork-join system

(n, 1) fork-early-cancel system
Fork to all n servers
Cancel redundant tasks as soon as 1 task begins service

(n, r, 1) partial-fork-join system
Fork into tasks at r out of n servers.
Wait for any 1 task to finish and cancel the rest

Can reduce cost, but we lose the diversity provided by
redundancy

7

Performance Metrics
Expected Latency E[T]
Expected time from arrival until any 1 task is served
= Waiting time in queue + Service Time

Expected Computing Cost E[C]
Total expected time spent by servers per job.
Does not include waiting time in queue

minimum	of	
n	i.i.d rvs
X1,	X2,	..	Xn

No	Queueing
FX

FX

FX

1

2

n

8

Related Previous Work

Queues with Redundancy
o (n,k) fork-join with exponential service time [Joshi-Liu-Soljanin 2012,14]
o Exponential service time, heterogeneous jobs [Gardner et al 2015]
o When is it better to fork to all n servers?

[Shah-Lee-Ramchandran 2013] [Koole-Righter 2008]

Contributions
o Impact of redundancy on the latency, and the computing cost
o ‘Log-concavity’ of the service time is a key factor
o Using E[C] to compare systems in high traffic regime

9

Outline

o Forking to n and waiting for 1 to finish
• How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
• When is early cancellation better?

o Partial forking to r out of n servers
• Optimal choice of r
• Which r servers to fork to?

10

Outline

o Forking to n and waiting for 1 to finish
• How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
• When is early cancellation better?

o Partial forking to r out of n servers
• Optimal choice of r
• Which r servers to fork to?

11

(n,1) Fork-join system
Forking to n and waiting for 1 to finish

X

X

X

λ

λ

λ

The	n	tasks	of	each	job	start	at	the	same	time!

12

Equivalent to an M/G/1 Queue!
Forking to n and waiting for 1 to finish

X

X

X

X1:n

M/G/1 Queue

λ

λ

λ

λ

The	n	tasks	of	each	job	start	at	the	same	time!

13

M/G/1 Queue
Pollaczek-Khinchine Formula

14

Service	dist FXArrival
Rate λ

E[T] = E[X] +
E[X2]

2(1� �E[X])

Pollaczek-Khinchine Formula

Proof of PK formula

15

Re
sid

ua
l	s
er
vi
ce
	ti
m
e

Time

X1 X2

E[Tw] = E[Nw] · E[X] + E[R]

= �E[Tw] · E[X] +
E[X2]

2

=
E[X2]

2(1� �E[X])

What are E[T] and E[C]?
Forking to n and waiting for 1 to finish

X

X

X

X1:n

M/G/1 Queue

λ

λ

λ

λ

16

What are E[T] and E[C]?
Forking to n and waiting for 1 to finish

X

X

X

X1:n

M/G/1 Queue

λ

λ

λ

λ

Pollaczek-
Khinchine Formula

=	E[X]	without	
replication

17

How does cost E[C] vary with r?

o Some distributions are neither log-concave nor log-convex
o Studied in reliability theory, economics

18

lo
g	
Pr
(X
>x
) x

lo
g	
Pr
(X
>x
) x

E[C] = rE[X1:r]
[GJ-Soljanin-Wornell
Allerton 2015]

EXPONENTIAL

Constant	

x

LOG-CONCAVE LOG-CONVEX
lo
g	
Pr
(X
>x
)

Properties and Examples

19

The more you wait, the time
remaining is shorter

The more you wait, the time
remaining is longer

LOG-CONCAVE Pr(X>x) LOG-CONVEX Pr(X>x)

Optimistic Memory Pessimistic Memory

Pr
(X
>x
)

x

1

0

Pr
(X
>x
)

x

1

0

Eg.	Shifted	Exponential Eg.	Hyper	Exponential	(Mixture	of	Exp.)

Latency vs. Cost as n varies
Forking to n and waiting for 1 to finish

2 4 6 8 10

Computing Cost E[C]

0

2

4

6

8

10

La
te

nc
y

E
[T

]

� = 0

� = 0.5

� = 1

λ = 0.25, Log-concave X ~ Δ + Exp(0.5), varying n

For pure
exponential, latency

reduced at zero
additional cost

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Computing Cost E[C]

0

1

2

3

4

5

La
te

nc
y

E
[T

]

µ2 = 1

µ2 = 1.5

µ2 = 2

Log-convex X ~ HyperExp (p =0.4, 0.5, diff µ2)

Latency and
Cost both

reduce with n!

20

Outline

o Forking to n and waiting for 1 to finish
• When does redundancy reduce both E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
• When is early cancellation better?

o Partial forking to r out of n servers
• Optimal choice of r
• Which r servers to fork to?

21

(n,1) Fork-early-cancel System
Canceling redundant tasks when any 1 task starts service

X

X

X

λ

λ

λ

22

Equivalent to an M/G/n queue!
Canceling redundant tasks when 1 task starts service

X

X

X

X

X

X

Central Queue

Choose first
empty server

M/G/n Queue

E[T] ⇡ E[X] +
E[X2]

2E[X]
· E[WM/M/n]

E[C] = E[X]

λ

λ

λ

λ

Waiting	time	of	
M/M/n	queue

[Lee-Loughton	1959]

< nE[X1:n]		for	
log-concave	X

23

Cancel Early or Keep Redundancy?

0.0 0.2 0.4 0.6 0.8 1.0

�, arrival rate of jobs

0

5

10

15

20

25

30

35

E
xp

ec
te

d
La

te
nc

y
E

[T
]

(n, 1) fork-join
(n, 1) fork-early-cancel

Log concave X ~ 2 + Exp(0.5), n = 4

0.0 0.5 1.0 1.5 2.0 2.5

�, arrival rate of jobs

0

2

4

6

8

10

12

14

16

E
xp

ec
te

d
La

te
nc

y
E

[T
]

(n, 1) fork-join
(n, 1) fork-early-cancel

Early	cancel	gives	lower	E[C]	
à lower	E[T]	in	high	load

Keeping	Redundancy	better	
for	both	low	and	high	loads

Log-convex X ~ HyperExp(p=0.1, 1.5, 0.5)

24

Outline

o Forking to n and waiting for 1 to finish
• How redundancy affects E[T] and E[C]?

o Canceling redundant tasks as soon as 1 starts
• When is early cancellation better?

o Partial forking to r out of n servers
• Optimal choice of r
• Which r servers to fork to?

25

Partial forking to r out of n servers
Questions:

• How many servers to fork to? (Optimal r)
• Which r servers to fork to? (Optimal Scheduling Policy)

X

X

X
λ

X

Group 1

Group 2

Fork to one of
groups, chosen
at random

X

X

X
λ

X Fork to r=2
servers chosen
at random

Group-based	random	assgnt Uniform	random	assgnt

26

Group-based Random Policy
X

X

X
λ

X

Group 1

Group 2

Fork to one of
groups, chosen
at random

• The	r	tasks	of	each	job	start	at	the	same	time
• Each	group	behaves	as	an	independent	(r,1)	fork-join	system	with	

arrival	rate	λr/	n

E[C] = rE[X1:r]

E[T] = E[X1:r] +
�rE[X2

1:r]

2(n� �rE[X1:r])

27

o Depends on how many tasks are in front of each replica
o Also, the locations of the replicas of the tasks in front

Evaluating E[T] is hard for other policies

28

X

X

X

X

λmax in terms of E[C]
[GJ-Soljanin-Wornell MAMA 2015]

29

La
te
nc
y	
E[
T]

Task	Arrival	Rate	λ

for	any	symmetric	policy

Lower E[C] à Higher λmax

à Lower E[T] in high traffic

30
Problem	reduces	to	finding	the	strategy	that	minimizes	E[C]

La
te
nc
y	
E[
T]

Task	Arrival	Rate	λ

Lower	E[C]	

For relative task start times 0 = t1 ≤ t2 ≤ t3 … ≤ tr ,

where the time when
earliest task starts, until any 1 task finishes

E[C] in terms of relative task start times

31

S = min(X1, X2 + t2, . . . Xr + tr), where Xi ⇠ FX , i.i.d.

Pr
(S

>x
)

x

1 Pr(X>x)

Pr(X>x) Pr(X>x-t2)

C = S + (S � t2)
+ + (S � t3)

+..+ (S � tr)
+

Pr(X>x) Pr(X>x-t2) Pr(X>x-t3)

t2
0 = t1 t3

E[C] in terms of relative task start times

32

Pr
(S

>x
)

x

1 Pr(X>x)

Pr(X>x) Pr(X>x-t2)

Pr(X>x) Pr(X>x-t2) Pr(X>x-t3)

t2
0 = t1 t3

E[C]	= +	2	× +	3	× +		..

If	replicas	start	together	
E[C]	=	r	E[X1:r]

Bounds on E[C], independent of the
relative task start times

33

For relative task start times 0 = t1 ≤ t2 ≤ t3 … ≤ tr ,

where the time when
earliest task starts, until any 1 task finishes

S = min(X1, X2 + t2, . . . Xr + tr), where Xi ⇠ FX , i.i.d.

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For any relative task
start times 0	=	t1 ≤	t2 ≤	t3	…	≤	tr ,

C = S + (S � t2)
+ + (S � t3)

+..+ (S � tr)
+

E[X]  E[C]  rE[X1:r], if Pr(X > x) is log-concave

E[X] � E[C] � rE[X1:r], if Pr(X > x) is log-convex

Proof Idea

34

Pr
(S

>x
)

x

1 Pr(X>x)

Pr(X>x) Pr(X>x-t2)

Pr(X>x) Pr(X>x-t2) Pr(X>x-t3)

t2
0 = t1 t3

E[C]	= +	2	× +	3	× +		..

Does	the	area-reduction	
due	to	product	of	two	
tails	outweigh	the	2	x	

factor?

Using E[C] bounds to determine optimal r

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For a symmetric policy
resulting in any relative task start times,

For	any	X,	if and	if	

E[X]  E[C]  rE[X1:r], if F̄X is log-concave

E[X] � E[C] � rE[X1:r], if F̄X is log-convex

COROLLARY: The value of r that minimizes E[C] (and hence
minimizes E[T] in high load regime) is

r = 1, if F̄X is log-concave

r = n, if F̄X is log-convex

r = 1,E[C] = E[X] r = n,E[C] = nE[X1:n]

35

0.0 0.5 1.0 1.5 2.0 2.5

�, the arrival rate of download jobs

0

20

40

60

80

100

E
xp

ec
te

d
La

te
nc

y
E

[T
]

r = 1
r = 2
r = 3

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

�, the arrival rate of download jobs

0

5

10

15

20

25

30

E
xp

ec
te

d
La

te
nc

y
E

[T
]

r = 1
r = 2
r = 3

Low	traffic:	r	=	n
High	traffic	r	=	1

Log-convex X ~ HyperExp(0.1, 1.5, 0.5)

Log-concave X ~ ShiftedExp(1, 0.5), n =6

36

La
te
nc
y	
E[
T]

Task	Arrival	rate	λ
La
te
nc
y	
E[
T]

Task	Arrival	rate	λ

More	replicas	
always	better

~	4	fold
reduction

Latency versus λ for different r
Uniform Random Scheduling

E[X]  E[C]  rE[X1:r], if F̄X is log-concave

E[X] � E[C] � rE[X1:r], if F̄X is log-convex

THEOREM [GJ-Soljanin-Wornell Allerton 2015]: For a symmetric policy
resulting in any relative task start times,

For	any	X,	if and	if	

Given r, using E[C] bounds to determine the best
scheduling policy

Equality when 0 = t1 = t2 = t3 .. = tr (simultaneous task start times)

COROLLARY: In the high traffic regime,
• Log-convex: Group-based policy gives lowest E[T]
• Log-concave: Better to stagger the relative task start times

37

r = 1,E[C] = E[X] r = n,E[C] = nE[X1:n]

Which servers to fork to?
Choice of Scheduling Policy

0.0 0.5 1.0 1.5 2.0

�, the arrival rate of download jobs

0

5

10

15

20

25

30

35

40

E
xp

ec
te

d
La

te
nc

y
E

[T
]

Group-based random
Uniform Random

0 1 2 3 4 5

�, the arrival rate of download jobs

0

10

20

30

40

50

60

E
xp

ec
te

d
La

te
nc

y
E

[T
]

Group-based random
Uniform Random

Uniform	random	
always	does	better

Group-based	random	
better	in	high	load

Log-concave X ~ ShiftedExp(1, 0.5), n =6

Log-convex X ~ HyperExp(0.1, 1.5, 0.5)

38

Main Takeaways

39

Lower E[C] à Higher service capacity

à Lower E[T] in high traffic

Retaining less replicas
better in high traffic

More replication
always better

lo
g	
Pr
(X
>x
) x

LOG CONCAVE

lo
g	
Pr
(X
>x
) x

LOG CONVEX

Arbitrary service dist. FX and arrival rate λ

o Neither log-concave nor log-convex dists.,

eg. Pareto (polynomial tail decay)

o Latency-cost analysis tractable for group-based policy

40

X

X

X
λ

X

Group 1

Group 2

Fork to one of
groups, chosen
at random

Pr
(X
>x
)

X1:2λ/2

X1:2

Group 2

⌘
λ/2

Group 1

Latency versus Cost as r varies
Group-based policy

41Choose	suitable	r	based	on	cost	sensitivity	

0 2 4 6 8 10 12 14

Expected Computing Cost E[C]

1.2

1.4

1.6

1.8

2.0

E
xp

ec
te

d
La

te
nc

y
E

[T
]

Pareto	(xm =	1,	α	=	2.2),	Arrival	rate	λ =	0.6,	n	=12	servers

r=1

r=2

r=12

r=6r=3 r=4

~35	%
reduction

