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18-847F: Special Topics in 
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Foundations of Cloud and Machine Learning 
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Lecture 3: Overview of ML Infrastructure

Foundations of Cloud and Machine Learning 
Infrastructure



Topics Covered
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Cloud	Computing Distributed	Storage

Machine	Learning
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Let us recap what we learnt..
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Let us recap what we learnt..
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Cloud	Computing
o MapReduce, Spark

o Scheduling in Parallel Computing

o Straggler Replication

o Task Replication in Queueing Systems



Scheduling in Parallel Computing: 1990’s

o Bin-Packing
o Need job size estimates

o Processor Sharing, i.e. switching b/w threads for different jobs
o Need processor speed estimates

o Load-balancing: Work stealing, Power-of-choice
o Need queue length estimates
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KEY ISSUE: Job sizes, server speeds & queue lengths are unpredictable

REASON: Large-scale resource sharing àVariability in service
• Virtualization, server outages etc.
• Norm and not an exception [Dean-Barroso 2013]

2000’s: The Cloud Computing Era
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MapReduce

Spark: In-memory

Sparrow: Low-Latency Cluster Scheduling

Dolly: Attack of the Clones

Cloud Frameworks
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The Tale of Tails
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Tail at Scale: 99%ile latency can be much higher than average



The Tale of Tails
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Tail at Scale: 99%ile latency much higher than average



Straggler Replication
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Task	1

Task	2

Task	3

Task	4

PROBLEM: Slowest tasks become a bottleneck
SOLUTION: Replicate the stragglers and wait for one copy

Task	4

Eg.	MapReduce,	
Apache	Spark	launch	
1	replica,	keep	original	

copy

PARAMETERS
p: Frac. of tasks replicated
r: # additional replicas
c: kill/keep  original task



Task Replication in Cloud Computing

IDEA: Assign task to multiple servers and wait for earliest copy

COST

o Additional computing time at servers

o Increased queuing delay for other tasks
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Wait	for	the	
earliest	copy	to	

finish,	and	
cancel	the	rest



Design Questions

o How many replicas to launch?

o Which queues to join?

o When to issue and cancel the replicas?
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Cloud Spot Markets
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o Sell it on the spot market for a lower price!

Morning Afternoon Evening Night

Spot	Instance	Price

On	Demand	price

Pr
ic
e



Guest Lecture: Prof. Carlee Joe-Wong
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o Bidding and pricing strategies for spot markets

Morning Afternoon Evening Night

Spot	Instance	Price

On	Demand	price

Bid

Pre-empted	
at	this	time



Let us recap what we learnt..
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Cloud	Computing Distributed	Storage
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Let us recap what we learnt..
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Distributed	Storage
o RAID systems

o Coding for locality/repair

o Systems implementation of codes

o Reducing latency in content 

download

a b a+b



RAID: Redundant Array of 
Independent Disks (1987)
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o Levels RAID 0, RAID 1, … : design for different goals such 

as reliability, availability, capacity etc.

o One of the inventors, Garth Gibson is at CMU



o With an (n,k) MDS code, any k out of n chunks are sufficient
o Facebook, Google, Microsoft use (14,10) or (7,4) codes
o Currently used for cold data, increasing for hot data

Erasure Coded Storage 
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Any	k=2	out	of	n=3
are	sufficient



Codes for Efficient Repair
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• Exact	repair

• Functional	repair



Guest Lecture: Prof. Rashmi Vinayak
Hitchhiker Codes and EC-Cache
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Needs	8	symbols	
to	repair

Needs	6	symbols	
to	repair



The (n,k) fork-join model
[GJ-Liu-Soljanin 2012,14]

o Request all n chunks, wait for any k to be downloaded
o Each chunk takes service time X ~ FX

λ

k = 1: Replicated Case
k = n: Fork-join system actively studied in 90’s 22

Wait for any 2 
out of 3 chunks

Download
requests

(3,2) fork-join



Coded Computing and ML
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A
x

o So far: Coding for storage

o Codes can also speed up computing and machine learning

o Example: Matrix-Vector Multiplication



Coded Computing and ML
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x

o So far: coding for storage

o Codes can also speed up computing and machine learning!

o Example: Matrix-Vector Multiplication

A1

A2



Coded Computing and ML
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o So far: coding for storage

o Codes can also speed up computing and machine learning!

o Example: Matrix-Vector Multiplication

x
A1

x
A2

x

A1+A2

Need	only	2	out	of	3	to	finish



Coded Data Shuffling
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A1

A2

A3

PS

A4

A1

A3

A2

A4

PS	Broadcasts	A2+A3



Coded MapReduce
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Guest Lecture: Sanghamitra Dutta
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Short-dot codes



Last Module: Machine Learning
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Cloud	Computing Distributed	Storage

Machine	Learning
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Last Module: Machine Learning
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Machine	Learning

Model	
replica

PARAMETER	SERVER
w’	=	w	– α	Δw

Model	
replica

Model	
replica

w Δw

o SGD Methods, Convergence

o DistBelief, Alexnet

o Synchronous, Asynchronous SGD

o GANs, Reinforcement Learning



The unprecedented ML boom



The Origins: 1950

Alan	Turing



Neural Networks: Perceptron 1957



Back-propagation Algorithm

Geoff	Hinton	 (U.	Toronto,	Google)



MNIST (LeCun et al 1998)



ImageNet and ILSVRC (2012)

Fei-Fei Li,	Stanford	



ImageNet and ILSVRC



Why the sudden success?

o Availability of massive datasets like Imagenet

o Computing power to train deep neural networks
o Parallelization
o GPUs

o Algorithmic advances:
o Momentum, Adagrad, Adam etc.



Core of ML: Gradient Descent (GD)



Simplest ML example: Regression

Given	a	big	dataset	of	(x1,	y1),	(x2,	y2),	(x3,	y3),	(x4,	y4),	….(xN,	yN)
Find	the	optimal	weights	w

x

y

y = wa + wbx



Core of ML: Gradient Descent (GD)

min
w

F (w) = min
w

1

N

NX

i=1

r(yi �w

T
x)2

F (w)

F (w⇤)



Core of ML: Gradient Descent (GD)

w0

w1

wt+1 = wt � ⌘rF (wt)

w2

rF (w1)

rF (w0)



Exercise: Find the update rule for wa and wb

Given	a	big	dataset	of	(x1,	y1),	(x2,	y2),	(x3,	y3),	(x4,	y4),	….(xN,	yN)
Find	the	optimal	weights	w	=	(wa,	wb)	

x

y

y = wa + wbx



Gradient Descent (GD)

Too	expensive	
for	large	
datasets



Stochastic Gradient Descent (SGD)

Easy,	but	possibly	
too	noisy



Mini-batch SGD

Less	noisy,	but	also	
computationally	

tractable



Exercise: How does variance scale  with m?

If

What	is	the	variance	of	the	gradient	update	in	mini-batch	SGD?

V ar(rF (w, ⇠i)) = �2

wt+1 = wt � ⌘
mX

i=1

1

m
rF (wt, ⇠i)



Convergence of SGD

Decay	Rate

E[F (wk)� F⇤] 
⌘LM

2c
+ (1� ⌘c)k�1(F (w0)� F⇤ �

⌘LM

2c
)

Error	Floor

How	does	decay	rate	and	error	floor	change	with	
• η (Learning	Rate)	?
• M	(Second	moment	of	gradient)	?



Many other variants of SGD

• Momentum SGD

• Nesterov Momentum

• AdaGrad

• Adam

• AdaDelta

• RMS prop



Many other variants of SGD



Many other variants of SGD



SGD and Backpropagation

a

b

c

1

2

x(1)

x(2)
y

w1a

w2c

w1b

Given	a	big	dataset	of	(x1,	y1),	(x2,	y2),	(x3,	y3),	(x4,	y4),	….(xN,	yN)
Find	the	optimal	weights	w

w2a



SGD and Backpropagation

a

b

c

1

2

x(1)

x(2)
y

w1a

w2c

w1b w2a

Input	to	a			=		inpa = w1a x1	+	w2a x2
Output	of	a		=		outa =	g	(inpa)



Distributed Deep Learning
Data	Parallelism



Distributed Deep Learning
Model	Parallelism



Synchronous SGD

wt+1 = wt � ⌘
KX

k=1

1

K
rF (wt, ⇠k)



Q: What is the convergence rate and error floor?

wt+1 = wt � ⌘
KX

k=1

1

K
rF (wt, ⇠k)



Q: What is the time to complete each iteration?

E[T ] = E[max(X1, X2, . . . XK)]

Slowest	Learner	is	
the	bottleneck

L1

L2

L3

PS
w0 w1 w2

L1

L2

L3

PS
w0 w1 w2

Fully Sync-SGD K-Sync SGD

L1

L2

L3

PS

K-Batch Sync SGD

w0 w1 w2



Q: How can we reduce it?

E[T ] = E[max(X1, X2, . . . XK)]

Slowest	Learner	is	
the	bottleneck

L1

L2

L3

PS
w0 w1 w2

L1

L2

L3

PS
w0 w1 w2

Fully Sync-SGD K-Sync SGD

L1

L2

L3

PS

K-Batch Sync SGD

w0 w1 w2



Asynchronous SGD: Don’t wait for all

L1

L2

L3

PS
w0 w1 w3

Async SGD K-Async SGD

w2

L1

L2

L3

PS
w0 w1 w3w2

K-Batch Async SGD

L1

L2

L3

PS
w0 w1 w3w2

Asynchronous	SGD	cuts	the	latency	tail.
But,	what	effect	does	it	have	on	the	error?



Variants of Distributed SGD

• Synchronous SGD

• Asynchronous SGD

• HogWild

• Elastic-Averaging SGD



Hyper-Parameter Tuning

Need to choose the right

• Learning rate

• Mini-batch size

• Momentum

• Number of layers 

• Number of neurons per layer



Hyper-Parameter Tuning



Generative Adversarial Networks



Reinforcement Learning



Reinforcement Learning


