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Recap: Distributed SGD
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Recap: Distributed SGD

What is the problem?

v" Communication delay

v' Straggler/Staleness

ru
—
-
=)




Key Ideas



Elastic Averaging SGD

Key Ideas:

v Workers maintain their local parameters

Dist. SGD: EASGD:

Each worker

' Each worker
computes g;(w;&;) locally update w*




Elastic Averaging SGD

Key Idea:

v" Don't let local parameters go far away from central parameter

Dist. SGD: EASGD:

' Minimize
P
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Update Rule: Sync. version



Update Rule

worker w’ = w' — ng(w') — Elastic Force;

server Wy =W + E Elastic Force;
i
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Elastic Force; = a(w® — ) = np(w
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Update Rule
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Update Rule
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Workers do one local UPDATE
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Update Rule

Central
O Global time = 0
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Update Rule

Global time = 1
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Central
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Update Rule

Global time = 1

Workers do 1 local UPDATE

wy = w' —ng(w';¢")

Local minimum
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Update Rule

Global time = 1

“Elastic Force”!

Workers go BACK.
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Local minimum
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Update Rule

Global time = 2

“Elastic force”!

Server moves FORWARD!
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Worker 1

Update Rule

Central

\

!

Global time = 2

LOCAL UPDATES

Worker 2

o

O %

Local minimum

18



Update Rule
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Async. & momentum variants
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Variant o1: Asynchronous EASGD

Central
® Global time = 0 _ .
Worker 2 Configurable commun. period
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Variant o1: Asynchronous EASGD

Central

Global time = 1
/ Worker 2
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Worker
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Variant o1: Asynchronous EASGD

Central

/ Worker 2

® Worker 1 finishes another T updates
Worker \ Worker 2 doesn't

Global time = 2
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Local minimum
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Variant o1: Asynchronous EASGD

Central
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Variant o1: Asynchronous EASGD

Central

/ Worker 2

Worker 1 \ \

o O—
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*

Local minimum

Global time = 3
Worker 2 finishes its first T updates
Worker 1 doesn't finish its third T updates

This algorithm is robust w.r.t. the
communication periodT.
Increase T, reduce comm. overhead!
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Variant 02: Momentum EASGD

Central

® Global time = 0
Worker 2 Local worker uses Nesterov momentum SGD.
O
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Local minimum

Local workers converge faster!
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Theoretical Analysis



Stability Analysis

The objective we want to optimize in each
iteration can be formulized as:

n
minimize Z F(w")
i=1
subject to w' —w =0
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n
minimize Z F(w")
i=1

subject to w’ —w =0

Stability Analysis
Alternating Direction Methods for Multipliers (ADMM)

‘ minimize i {F(’wz) — N(w" — ) + g(wz - "D)z}
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Stability Analysis
Alternating Direction Methods for Multipliers (ADMM)

minimize ; F(w’) - minimize i {F(’wz) — N(w' —w) + g(wz B U})Z}
i=1

subject to w’ —w =0

One dimensional quadratic case + Round-Robin scheme
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Stability Analysis

Alternating Direction Methods for Multipliers (ADMM)
minimize F(w" - | . .
; (') me) minimize Y [F(w@) N (wh — ) + g(w" _ w)z}
i=1

subject to w’ —w =0

Key takeaway

v" In 1-D quadratic case, ADMM algorithm can exhibit chaotic behavior, leading to exponential divergence.

v The analytic condition for ADMM to be stable is still unknown, while for EASGD it is very simple.
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Stability Analysis

Some basic convergence analysis in:
v One dimensional quadratic case
v Multi-dimensional quadratic case

v’ Strongly convex case

Hasn’t been studied sufficiently!

Key takeaway

v" In 1-D quadratic case, ADMM algorithm can exhibit chaotic behavior, leading to exponential divergence.

v The analytic condition for ADMM to be stable is still unknown, while for EASGD it is very simple.
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Experimental Results



Experimental Setup

Hardware ML Model
v" Running on a GPU-cluster v" 7(or 11)-layer CNN
v’ Parameter-sever framework v' Tested on CIFAR-10 and IMAGENET

height

OOOOOWV width
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P=4
Results on CIFAR-10 FoaxP-09
Training Loss Training Loss
EASGD
T=1
T=64
Wallclock Time : Wallclock Time ]

Key Takeaway:

v" EAMSGD significantly outperforms comparator methods for all values of T

v EASGD can work well even when T = 1000.
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P=4
Similar Results on ImageNet b= axp=09
Test Error Test Error
Downpour vs Downpour vs
Wallclock Time ] Wallclock Time ]
Key Takeaway:

v" EAMSGD significantly outperforms comparator methods.
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EASGD is a special case of
Cooperative SGD.

v" Provided a convergence analysis for non-convex objectives (sync. version)

v" Identified the best choice of the elasticity parameter

v" Generalized the idea of elastic force and developed new comm. efficient SGD
variants

"Cooperative SGD: A Unified Framework for the Design and Analysis of Communication-
Efficient SGD Algorithms”
Jianyu Wang and Gauri Joshi. arXiv preprint.
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