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Introductions 
About me: John Gasper, PhD 
•  Time at CMU-Qatar:  Aug-2010 – present. 
• Courses:  

•  Regression and Forecasting 
•  Stochastic Modeling and Simulation 
•  Decision Analysis 
•  Game Theory for Business (strategic decision making) 
•  Behavioral Decision Making (Psychology of decision making) 

•  Full disclosure: I’m not a computer security expert.   



Outline 
Day 1: Why do we care / what is the data 
Day 2: 
• Correlation and summary statistics 
• Regression Modeling 
•  Logistic Regression and prediction 
•  Potential uses of machine learning and classification.  



Understanding Data and Analysis 
•  Everyone – from upper level executives to analysts – will make 

better decisions with a better understanding of data and data 
analysis.   

• What kinds of data do you deal with or collect in your 
organizations? 



Describing Data 
Graphical displays of data. 
•  Present meaningful data 
• Define data unambiguously 
• Do not distort the data – no 3D effects, please.  
•  Present the data efficiently. 
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Describing Data 
Convey the appropriate information 



Describing Data 
Leverage opacity or colors to highlight intensity 
 
 
 
 
 
 
 
 
 
 
 
•  8 hours of firewall data for networking devices split into 5-minute totals.  
•  x-axis = number of network sessions & y-axis= number of bytes  
•  Size of each bubble” is proportional to the packet count.  



Describing Data 
Strive to move beyond summarizing a single variable.  
•  Think about relationships between variables 



Describing Data 
Graphical summaries of data can be incredibly useful 
• Benefits 

•  Understanding how data are dispersed. Not just the average amount, but 
what are possible outcomes? 

•  A lot of intuition about relationships between variables 

• Dangers 
•  Sometimes oversimplifies the relationships 
•  Can be misleading 



Designation:  0.98 Correlation:  −0.95 Correlation:  −0.02

Correlation:  0.4 Correlation:  −0.67 Correlation:  0.02

Describing Data: Correlation 
One of the most used and fundamental ways to describe the 
relationships between variables is correlation: -1 < ρ < 1 



Designation:  0.98 Correlation:  −0.95 Correlation:  −0.02

Correlation:  0.4 Correlation:  −0.67 Correlation:  0.02

Describing Data: Correlation 
• One of the most used and fundamental ways to describe the 

relationships between variables is correlation: -1 < ρ < 1 



Describing Data: Correlation 
But don’t be fooled by significant correlations.  
• Bivariate scatterplots are good starting places but can be 

misleading 

Also remember that Correlation is NOT Causation.   
•  Just because two things are correlated doesn’t mean that one 

causes the other (as much as we might like it to) 



Example: ZA infections 
• USA Zero Access infection data 



Example: ZA infections 
• Bivariate plots: 

cor = .97 cor = .86 

cor = .25 



Statistical Modeling: Regression 
One of the most commonly used statistical modeling techniques 
used is linear regression 



Statistical Modeling: Regression 
What does it do? 
•  Still a correlational analysis, but allows you to partial out other 

effects 
y = �0 + �1x1 + �2x2 + . . . + �kxk + "
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Simple Regression 
Results? 
 
 
 
 
 
 
 
 
 
Says that with every increase of 10,000 people we see, on 
average, about 8.3 more computers infected.   



Multiple Regression 
• What about UFOs?  Are they infecting computers?  



Multiple Regression 
• Multiple regression with UFO sighting and Population: 



Multiple Regression 
UFOs really are infect computers???   
• Again, probably not.. 
•  There could be lots of reasons.  Ideas? 

• Reported UFO sightings could be related to education level. I 
don’t have education in the data so we can’t check, but maybe. 

• UFO sightings are highly correlated with population  
•  A problem known as “collinearity” in Regression-speak.  

• Outliers; there might be a few 
• Could just be random  

à Good modeling isn’t just looking for statistical significance.  



Prediction 
1.  Regression analysis is useful for looking at relationships 

between variables (e.g., population and ZA infections) 
2.  Also useful for prediction 

•  Basic linear regression is useful for predicting a quantitative variable: how 
many computers will be infected? 

When the prediction task is qualitative, basic regression (OLS) 
isn’t the best choice. 
•  Suppose we wanted to detect if a system was infected? 



Prediction 
Simple example that’s easy to see: 
•  Suppose we have memory and processor data 



Prediction 
With two variables it’s easy to see but with more, nearly 
impossible.   
• Need a way to classify, given memory processor data, the 

probability of being infected. 



Logistic Regression 
A common method to predict a 0-1 event is Logistic Regression.   
• Details of Logistic Regression go beyond a 2-day mini course. 

Not Easily 
Interpretable  



Logistic Regression 
• However we can use simulation to make sense of these outputs 

•  The previous model predicts that if Memory and Processor usage are both 
1 standard deviation above the average, then there is an 87% chance the 
computer is infected, versus a 3% if at average levels! 



Logistic Regression 
• Obviously we could see some relationship from the initial 

scatterplot: 

• What happens when we have lots of different factors that could 
contribute?   
•  That’s the power of the statistical prediction, it works the same.  



Prediction tasks 
• What are some other prediction tasks that use in your 

organizations? (or would like to use)  

•  There are all kinds of useful prediction tasks that statistical 
models can help do 
•  Higher risk or more vulnerable employees 
•  High risk phishing links 
•  Non computer security predictions?   



Machine Learning 
• Building appropriate statistical models takes time 

•  The faster we can develop, implement, and respond to these 
models/results the better we’ll do 
•  Time till Compromise vs Time till Detection 

• Can we automate some of these models so that they optimally 
change and “learn” over time? 
• Yes: machine learning.   



Machine Learning 
• Machine learning techniques go well beyond the scope of a two 

day overview course. 

• Many many successful applications 
•  Classic example: spam filtering 
•  Potential applications?  Automated threat detections, automated sentiment 

analysis, many more 

It’s not a magic bullet 
• Classic problem with Machine Learning: over-fitting the data. 
• Can be computationally intensive 
•  It’s a growing field that is honestly still relatively young. 


