
Disjunctive Conic Sets, Conic Minimal Inequalities, and Cut-Generating
Functions

Fatma Kılınç-Karzan
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This article summarizes the paper [15] and some recent developments which are concerned with the
disjunctive conic sets of form

S(A,K,B) := {x ∈ E : Ax ∈ B, x ∈ K},

where E is a finite dimensional Euclidean space with inner product 〈·, ·〉, A : E → Rm is a linear map,
∅ 6= B ⊂ Rm is a set of right hand side vectors, and K ⊂ E is a regular (closed, convex, full-dimensional,
and pointed) cone. We restrict our attention to the interesting cases where S(A,K,B) is nonempty and
nonconvex. Thus, we assume B 6= ∅ but make no other assumptions on B; in particular, B may be either
finite or infinite. Examples of regular cones include the nonnegative orthant Rn+, the second-order (Lorentz)
cone Ln, and the positive semidefinite cone Sn+.

Disjunctive conic sets arise naturally in the solution set representations of Mixed Integer Conic Programs
(MICPs) where nonlinear convex relations among variables are captured in the conic constraint x ∈ K and
integrality restrictions are encoded in A and B by an appropriate selection. These sets also form the basis
of fundamental structured relaxations used in generating cutting planes/surfaces for MICPs. For example,
a disjunctive conic sets S(A,K,B) can represent multi-term (or split) disjunctions on regular cones and
their cross-sections. Besides, the separation of a fractional solution from the feasible set of a Mixed Integer
Linear Program (MILP) can be encoded as a set S(A,Rn+,B) with a closed set B satisfying 0 /∈ B [5, 12,
14]. Moreover, the flexibility in the choice of B makes these sets a relevant model for conic optimization
problems with complementarity constraints. See [15, Sec 1.2] for illustrative examples.

The set S(A,Rn+,B) has compelled significant attention. When B is a finite set, S(A,Rn+,B) is nothing
but a disjunctive set such as those introduced and studied by Balas [2]. Johnson [14] characterized minimal
valid linear inequalities for S(A,Rn+,B) through support functions of certain sets. Jeroslow [12] and Blair
[5] presented similar characterizations via the value functions of MILPs with bounded feasible sets (in the
former) and with rational data (in the latter). This body of work has strong connections to the strong duality
theory for MILPs [1, 11].

In this paper, we generalize earlier results on classification and characterization of strong valid linear
inequalities for the convex hull description of S(A,K,B) to the case where K is a general regular cone
without relying on the prior assumptions such as the finiteness of B, etc. In order to capture dominance
relations among valid linear inequalities, we introduce the notion of conic minimality of an inequality. This
definition exposes a shortcoming in the usual minimality definition and offers a potential remedy via usingK
to encode structural information on the problem. We perform a systemic study of conic minimal inequalities
in terms of their existence, sufficiency, strength, necessary conditions and sufficient conditions for their
characterization, and establish connections with functions that generate these inequalities.

Introducing some notation

For a set Q ⊂ Rn, we denote its topological interior by int (Q) and its closed convex hull by conv(S).
The support function of a set Q ⊂ Rn is defined as σQ(z) := supq∈Rn{z>q : q ∈ Q}. Support functions
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are sublinear (positively homogeneous, subadditive, and thus convex); and when Q 6= ∅, we also have
σQ(0) = 0.

Given two Euclidean spaces E,F, we define the kernel of a linear map A : E → F as Ker(A) := {u ∈
E : Au = 0} and its image as Im(A) := {Au : u ∈ E}. We use A∗ to denote the conjugate linear map
given by the identity 〈y,Ax〉F = 〈A∗y, x〉E ∀(x ∈ E, y ∈ F). When the Euclidean space E is just Rn, we
use the dot product as the corresponding inner product.

For a given cone K ⊂ E, we let K∗ denote its dual cone given by K∗ := {y ∈ E : 〈x, y〉 ≥ 0 ∀x ∈ K}
and Ext(K) denote the set of the extreme rays of K. We let [n] := {1, . . . , n} for any positive integer n.

A hierarchy on valid linear inequalities

We pursue a principled study of the structure of valid linear inequalities defining the closed convex hull of
S(A,K,B). Given any vector µ ∈ E and a number µ0 ≤ ϑ(µ) where ϑ(µ) is defined as

ϑ(µ) := inf
x∈E
{〈µ, x〉 : x ∈ S(A,K,B)} ,

the linear inequality of the form 〈µ, x〉 ≥ µ0 is valid inequality for S(A,K,B). We refer to a valid inequality
〈µ, x〉 ≥ µ0 as trivial if µ0 = −∞, and as tight if µ0 = ϑ(µ). We say that a valid linear inequality for
S(A,K,B) is extreme if it is a valid equation or if it cannot be written as the sum of two distinct valid linear
inequalities (sums of valid equations are excluded here). While extreme inequalities are necessary and
sufficient for a complete description of conv(S(A,K,B)), their identification or algebraic characterization
is often quite complicated. We compromise on this by examining the structure of slightly larger classes of
inequalities—minimal and sublinear inequalities defined with respect to the cone K.

Let us start by pointing out a simple class of valid inequalities. From the definition ofK∗, any inequality
〈δ, x〉 ≥ 0 with δ ∈ K∗ is valid for S(A,K,B) since S(A,K,B) ⊆ K. We refer to these as cone-implied
inequalities. Cone-implied inequalities may be extreme in certain cases; even so, they are not interesting
because the constraint x ∈ K captures all of them.

Cone K in the description of S(A,K,B) plays a critical role in identifying dominance relations among
valid linear inequalities. Consider two valid inequalities for S(A,K,B) given by 〈µ, x〉 ≥ µ0 and 〈ρ, x〉 ≥
ρ0. We say that 〈ρ, x〉 ≥ ρ0 dominates 〈µ, x〉 ≥ µ0 with respect to the cone K whenever µ− ρ ∈ K∗ \ {0}
and ρ0 ≥ µ0. In fact, when 〈ρ, x〉 ≥ ρ0 dominates 〈µ, x〉 ≥ µ0, we have

〈µ, x〉 = 〈ρ, x〉︸ ︷︷ ︸
≥ρ0

+ 〈µ− ρ, x〉︸ ︷︷ ︸
≥0

≥ ρ0 ≥ µ0,

where the first inequality follows from x ∈ K and µ − ρ ∈ K∗. Then in such a case, 〈µ, x〉 ≥ µ0 is a
consequence of the inequality 〈ρ, x〉 ≥ ρ0 and the conic constraint x ∈ K. This motivates our definition of
conic minimal inequalities:

Definition 1 A valid inequality 〈µ, x〉 ≥ µ0 for S(A,K,B) is called K-minimal if for all inequalities
〈ρ, x〉 ≥ ρ0 valid for S(A,K,B) with µ− ρ ∈ K∗ \ {0}, we have ρ0 < µ0.

Conic minimality definition specifically restricts our attention to the class of valid inequalities that cannot be
written as the sum of another valid inequality and a cone-implied inequality. Thus, none of the cone-implied
inequalities is K-minimal. However, some K-minimal inequalities can be expressed as the sum of two other
non-cone-implied valid inequalities. Hence, not all K-minimal inequalities are extreme.
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In finite and infinite relaxations associated with MILPs, minimality of a valid inequality is traditionally
defined with respect to the nonnegative orthant, i.e.,K = Rn+. That is, a valid inequality 〈µ, x〉 ≥ µ0 is
Rn+-minimal if reducing any coefficient µi for i ∈ [n] leads to a strict reduction in the right hand side value
µ0 (see [14]). Therefore, our conic minimality concept for disjunctive conic sets is a natural generalization
of Rn+-minimality.

Extending earlier results from [11, 14] given in the case of K = Rn+ to general regular cones K, we can
easily see that K-minimal inequalities exist only if the following assumption holds (see [15, Prop 1]):

Assumption 1 For each δ ∈ K∗ \ {0}, there exists some xδ ∈ S(A,K,B) such that 〈δ, xδ〉 > 0.

When, for example, conv(S(A,K,B)) is full dimensional, Assumption 1 is satisfied and hence K-minimal
inequalities exist. Also, under Assumption 1, all non-cone-implied, extreme inequalities are K-minimal.

Proposition 1 ([15, Prop 2 and Cor 2]) Under Assumption 1, K-minimal inequalities together with the
conic constraint x ∈ K are sufficient to describe conv(S(A,K,B)).

This prompts an interest in K-minimal inequalities and suggests that in an efficient cutting plane proce-
dure we should at the least aim at separating inequalities from this class.

On the selection of cone K in disjunctive conic representations

In all of the previous literature, minimality of an inequality is defined with respect to the nonnegative orthant.
We next expose a shortcoming of this and illustrate how encoding structural information in the cone K is
rather pivotal in providing a more refined characterization of extreme inequalities. This point is important
even in the case of a disjunctive set associated with an MILP; yet it has been completely overlooked in the
literature.

First note that we are essentially interested in the closed convex hull characterizations of disjunctive
conic sets and because of our flexibility in selecting B and K, we may have a choice among several different
representations S(A1,K1,B1), S(A2,K2,B2), etc. Moreover, whether a valid inequality is necessary for
the convex hull description, i.e., extreme, depends on only the closed convex hull and is independent of the
choice of A,B, and K used in the representation. Besides, as long as the closed convex hull remains the
same, K-minimality definition is independent of A and B used in the representation but depends on only K.
That said, when K1 6= K2, K1-minimal inequalities might differ significantly from K2-minimal inequalities
even when conv(S(A1,K1,B1)) = conv(S(A2,K2,B2)). For example, suppose K1 ⊂ K2 as well as
conv(S(A1,K1,B1)) = conv(S(A2,K2,B2)); then all K1-minimal inequalities are also K2-minimal but
not vice versa. This, in the light of Proposition 1, demonstrates how the selection of cone K in disjunctive
conic representations is critical in identifying more refined dominance relations among valid inequalities.
We consequently deduce that minimality should be defined with respect to the smallest coneK as it encodes
the largest amount of structural information. See [15, Rem 1, 5, and 7 and Sec 2.2] as well.

Usually, additional structural information of a problem is available in the form of a convex or polyhedral
relaxation; and such information can be encoded in a cone K in a lifted space by a single additional variable
through homogenization as described in [15, Ex 4].

K-minimality and tightness

A first and foremost desirable feature of a strong valid inequality 〈µ, x〉 ≥ µ0 is its tightness, i.e., µ0 = ϑ(µ).
The concepts of tightness and K-minimality are intrinsically different. Still, for certain vectors µ ∈ E, K-
minimality not only immediately implies tightness of the inequality but also determines the sign of ϑ(µ).
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Proposition 2 ([15, Prop 3]) Let 〈µ, x〉 ≥ µ0 with µ ∈ ±K∗ be a K-minimal inequality. Then µ0 = ϑ(µ);
and furthermore, µ ∈ K∗ (resp. µ ∈ −K∗) implies ϑ(µ) > 0 (resp. ϑ(µ) < 0).

However, there are K-minimal inequalities with µ 6∈ ±K∗ that are not tight. In fact, a pathology occurs
when Ker(A) ∩ int (K) 6= ∅ and µ ∈ Im(A∗).

Proposition 3 ([15, Prop 4]) Suppose Ker(A) ∩ int (K) 6= ∅. Then, for any µ ∈ Im(A∗), the inequality
〈µ, x〉 ≥ µ0 with any µ0 ∈ (−∞, ϑ(µ)] is K-minimal; yet only one of these is tight.

Because tightness has a direct characterization through ϑ(µ), we keep it as a separate consideration.

Algebraic necessary conditions

K-minimality concept has a number of algebraic implications.
Any nontrivial valid inequality 〈µ, x〉 ≥ µ0 with µ0 ∈ R has to satisfy µ ∈ K∗+ Im(A∗) (see [15, Prop

6]). Based on this, we can then associate with such an inequality the following nonempty set

Dµ := {λ ∈ Rm : µ−A∗λ ∈ K∗}.

Because of their structure and relation to cut-generating functions, we refer to these setsDµ as cut-generating
sets. Given a nontrivial valid inequality, there is a unique set Dµ associated with it. Yet, it is possible to
have two distinct vectors µ′ and µ yielding the same set Dµ = Dµ′ (see [15, Ex 8]).

The support function σDµ plays an important role in our analysis. First of all, given µ ∈ K∗ + Im(A∗),
σDµ is helpful in determining a lower bound on ϑ(µ), i.e., ϑ(µ) ≥ infb∈B σDµ(b) and thus ensuring the
validity of 〈µ, x〉 ≥ µ0 for S(A,K,B). For K = Rn+, this result was first proven in [14, Thm 9]. Below, we
provide its refinement and generalization for arbitrary regular cones K.

Proposition 4 ([15, Prop 7 and 8]) For any µ ∈ K∗ + Im(A∗), ϑ(µ) ≥ infb∈B σDµ(b). Moreover, when
at least one of the following conditions holds: (i) K is polyhedral, (ii) Ker(A) ∩ int (K) 6= ∅, (iii) µ ∈
int (K∗) + Im(A∗), we have ϑ(µ) = infb∈B σDµ(b).

For any nontrivial valid inequality 〈µ, x〉 ≥ µ0, there exists at least one z ∈ Ext(K) such that σDµ(Az) =
〈µ, z〉 (see [15, Lem 2, Cor 3, and Prop 9]). Further, there is a much more elegant connection between Rn+-
sublinear inequalities and the support functions of cut-generating sets Dµ. This has striking consequences
that we will comment more on later.

A key necessary condition for K-minimality is based on a certain non-expansiveness property. For this,
we introduce the cone ofK∗−K∗ positive linear maps given byFK := {(Z : E→ E) : Z is a linear map, and Z∗v ∈
K ∀v ∈ K}, where Z∗ denotes the conjugate linear map of Z.

Proposition 5 ([15, Prop 5]) A valid inequality 〈µ, x〉 ≥ µ0 is K-minimal only if µ − Zµ 6∈ K∗ \ {0} for
all Z ∈ FK such that AZ∗ = A.

Description of FK, unfortunately, can be rather nontrivial. For example, deciding whether a given linear
map takes Sn+ to itself is an NP-Hard optimization problem [4]. Because of the general difficulty of working
with FK and thereby verifying the necessary condition for K-minimality stated above, we next consider an
appropriate relaxation of this condition and introduce the class of K-sublinear inequalities.

Definition 2 Given S(A,K,B), a valid inequality 〈µ, x〉 ≥ µ0 is K-sublinear if for all α ∈ Ext(K∗) it
satisfies 0 ≤ 〈µ, u〉 for all u such that Au = 0 and 〈α, v〉u+ v ∈ K ∀v ∈ Ext(K).

Every K-minimal inequality is also K-sublinear [15, Thm 1]. Without any technical assumptions such
as Assumption 1, the existence, sufficiency, properties ofK-sublinear inequalities, and their connection with
CGFs are pursued further in [16].
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Sufficient conditions

The following sufficient conditions complement our necessary conditions and also suggest practical ways
of verifying K-sublinearity and/or K-minimality of inequalities.

Proposition 6 ([15, Prop 10]) Let 〈µ, x〉 ≥ µ0 be a nontrivial valid inequality. If there exists a collection I
of vectors xi ∈ Ext(K) such that σDµ(Ax

i) = 〈µ, xi〉 for all i ∈ I and
∑

i∈I x
i ∈ int (K), then 〈µ, x〉 ≥ µ0

is K-sublinear.

Proposition 7 ([15, Prop 11]) Suppose Assumption 1 holds. Consider a valid inequality 〈µ, x〉 ≥ µ0. If
there exists a collection I of vectors xi ∈ K such that

∑
i∈I x

i ∈ int (K), Axi ∈ B and 〈µ, xi〉 = µ0, then
〈µ, x〉 ≥ µ0 is K-minimal.

Proposition 7 in particular states that a valid inequality is K-minimal whenever the inequality is satis-
fied as equality at a point at the intersection of int (K) and conv(S(A,K,B)). For MILP problems, this
resembles a sufficient condition for an inequality to be facet defining. Nonetheless, conic minimality notion
is much weaker than extremality.

Cut generating functions

Given a nonconvex set B ⊂ Rm, an important class of problems is defined by the infinite family of sets of
form S(A,Rn+,B) given by any realization of n ∈ N and A ∈ Rm×n. This family of sets is characterized
by solely B which, in its most general form, is assumed to be a closed set satisfying 0 /∈ B. Then 0 6∈
conv(S(A,Rn+,B)) follows easily [7, Lem 2.1]. This motivates the definition of cut-generating functions
(CGFs)—a priori formulas to generate cuts that separate the origin from the convex hull of any instance of
S(A,Rn+,B) determined by n and A:

Definition 3 Given a nonempty and closed set B ⊂ Rm satisfying 0 6∈ B, a cut-generating function for B
is a function ψ : Rm → R such that the inequality given by

∑n
i=1 ψ(Ai)xi ≥ 1 is valid for S(A,Rn+,B)

where Ai is the i-th column of the matrix A, for any natural number n ∈ N and any matrix A ∈ Rm×n.

This framework has its roots in Gomory functions [9] and Gomory and Johnson’s infinite group re-
laxations studied in the MILP context [10, 13, 1]. Recent work has focused on a variety of structural
assumptions on B such as B is a general lattice [6], B is composed of lattice points contained in a rational
polyhedron [8, 3], and B is a closed set [7], and demonstrated strong connections between Rn+-minimal
inequalities and CGFs obtained from the gauge functions of maximal lattice-free sets.

This framework and CGFs are intimately connected to our results on Rn+-sublinear inequalities and their
relation with support functions of cut-generating sets. We discuss this next; see [15, Sec 4.3] for a detailed
account.

Decades ago, Johnson [14] considered S(A,Rn+,B) with K = Rn+ and introduced subadditive inequal-
ities. These inequalities are equivalent to the Rn+-sublinear inequalities (see e.g., [15, Rem 9]). We restate
their definition below:

Definition 4 Given S(A,Rn+,B), a valid inequality 〈µ, x〉 ≥ µ0 is Rn+-sublinear if for all i ∈ [n], 〈µ, u〉 ≥ 0
holds for all u such that Au = 0 and u+ ei ∈ Rn+ where ei denotes the ith unit vector in Rn.
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A fundamental result of Johnson [14, Thm 10] asserts that the cut coefficient vector of any Rn+-sublinear
inequality is generated by its support function σDµ , which is also piecewise linear. Our Proposition 6
complements this result and proves that the conditions of Proposition 6 are necessary and sufficient for
Rn+-sublinearity. That is, a valid inequality 〈µ, x〉 ≥ µ0 is Rn+-sublinear and tight if and only if its support
function σDµ generates its coefficient vector µ and its right hand side value µ0. The following theorem
summarizes these results [14, Thm 10] and [15, Props 6, 8, and 10, and Thm 4] for K = Rn+; see also [15,
Rem 10 and 11].

Theorem 1 Consider S(A,Rn+,B). Then any nontrivial valid inequality 〈µ, x〉 ≥ µ0 satisfies µ ∈ Rn+ +
Im(A>) and ϑ(µ) = infb∈B σDµ(b) ≥ µ0 > −∞. Moreover, 〈µ, x〉 ≥ µ0 is Rn+-sublinear if and only if it
is valid (ϑ(µ) ≥ µ0) and µi = σDµ(Ai) for all i ∈ [n] where Ai denotes the i-th column of the matrix A.

More recently, Kılınç-Karzan and Steffy [16] noted that support function σDµ associated with any non-
trivial valid inequality 〈µ, x〉 ≥ µ0 can be utilized in obtaining a stronger and Rn+-sublinear inequality.

Proposition 8 ([16, Prop 3]) Any nontrivial valid inequality 〈µ, x〉 ≥ µ0 for S(A,Rn+,B) is equivalent to
or dominated by an Rn+-sublinear inequality given by

∑n
i=1 σDµ(Ai)xi ≥ infb∈B σDµ(b) ≥ µ0 where the

domination is with respect to the cone K = Rn+.

Thus, Rn+-sublinear inequalities are always sufficient to describe conv(S(A,Rn+,B)). Proposition 8 also
inspired the following definition of relaxed CGFs as the support functions of nonempty sets D in [16]:

Definition 5 Given S(A,Rn+,B) and a set ∅ 6= D ⊂ Rm, we say that the support function σD : Rm →
R ∪ {+∞} of D is a relaxed cut-generating function for S(A,Rn+,B).

Clearly, the support functions associated with Rn+-sublinear inequalities are relaxed CGFs. Although the
relaxed CGFs such as σDµ are seemingly tied to a particular set S(A,Rn+,B) defined by fixed n,A, and B,
the subadditivity of these support functions permits us at once to generate valid inequalities for any instance
S(A′,Rn′

+ ,B) with data A′ ∈ Rm×n′
, i.e., varying n and A, as long as the set B is kept the same.

Proposition 9 ([16, Prop 4]) Suppose B ⊂ Rm is given. Let σD(·) be a relaxed CGF for S(A,Rn+,B)
associated with a nonempty set D ⊂ Rm. Then, the inequality

∑n′

i=1 σD(A
′
i)xi ≥ infb∈B σD(b) is valid for

any S(A′,Rn′
+ ,B) where the dimension n′ and the matrixA′ ∈ Rm×n′

are arbitrary, andA′i denotes the i-th
column of the matrix A′ for all i ∈ [n].

When B is a closed set satisfying 0 /∈ B, Proposition 9 essentially binds together relaxed CGFs and
regular CGFs. For a relaxed CGF σD to be a regular CGF, we need to ensure: (i) infb∈B σD(b) ≥ 1 and (ii)
σD is finite valued. All Rn+-sublinear inequalities of form 〈µ, x〉 ≥ 1 immediately have infb∈B σDµ(b) ≥ 1.
Then we infer from Theorem 1 and Propositions 8 and 9 that without any structural or technical assump-
tions, the relaxed CGFs, specifically the ones associated with the sets Dµ of Rn+-sublinear inequalities, are
sufficient to generate all necessary inequalities for the description of conv(S(A,Rn+,B)) for all choices of
n and A. When the set B is composed of lattice points, a classical result [6, Thm 1.2] states that all Rn+-
minimal inequalities are generated by sublinear functions which are also piecewise linear. Johnson’s [14]
analysis along with ours easily recovers this. Sufficiency of regular CGFs for generating all cuts separating
the origin in the case of general B relies on additional structural assumptions [7, Ex 6.1 and Thm 6.3]. This
is in contrast to the sufficiency of relaxed CGFs for any B. In this respect, the main challenge in transform-
ing a relaxed CGF σD into a regular CGF resides in ensuring finite valuedness of σD while maintaining
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infb∈B σD(b) ≥ 1. Whenever σD is not finite valued, i.e., D is unbounded, under certain assumptions, the
relaxed CGFs obtained from bounded sets D̂ ⊂ D offer a solution for this challenge.

The sufficiency of CGFs for describing the convex hulls of disjunctive conic sets is intrinsically related
to the strong duality theory for integer programs. Morán et al. [19, Thm 2.4] has extended the strong duality
theory for MILPs to MICPs of a specific form. Under technical assumptions, these theorems assert that
for every integer programming instance, there is a dual problem achieving zero duality gap where the ‘dual
variables’ are finite-valued subadditive functions that are nondecreasing with respect to the underlying cone.
These functions indeed act locally on each variable xi and produce cut coefficient µi by considering only the
data Ai associated with xi; therefore, they are simply CGFs. Then the sufficiency of CGFs for generating
all cuts of the form 〈µ, x〉 ≥ 1 follows from strong MICP duality theorem. Nevertheless, not only the strong
duality results for MILPs and MICPs rely on some technical assumptions but also the sets S(A,Rn+,B)
representing MILPs and the specific form of MICPs from [19] impose a specific structure on B (see [15, Ex
3]). Additional discussion relating [19] to CGFs is given in [15, Rem 12] and [16, Rem 2].

Our results naturally capture some of the earlier results from the MILP setup and generalize them to
the cases with arbitrary nonconvex sets B. That said, our study also reveals some problems associated with
such a CGF based view that treats the data associated with each individual variable independently in the
case of general regular cones other than the nonnegative orthant. Namely, [15, Ex 8 and Rem 12] features
an extreme inequality for a set S(A,K,B) with K = L3 that cannot be generated by any CGF or relaxed
CGF.

Final remarks

In the context of disjunctive conic sets, characterization of K-minimal and tight inequalities has underlied
the development of structured convex (or conic representable) cuts for two-term linear disjunctions applied
to a second-order cone (see [18]). The flexible representation structure offered by disjunctive conic sets can
easily allow us to pursue a similar principled study of other simple, yet fundamental, nonconvex sets de-
fined by multi-term disjunctions or quadratics on regular cones. In this regard, characterizations of extreme
inequalities beyond K-minimality are very appealing as well.

We also hope that the understanding and connections we built on CGFs and relaxed CGFs will be in-
strumental in understanding when minimal or extreme CGFs will produce strong linear inequalities such as
facets for given problem instances. On a related note, the sufficiency of CGFs to generate all valid inequal-
ities for the convex hull description of disjunctive sets or all cuts that separate the origin from the convex
hull of disjunctive sets is an indispensable question for the justification of this research focus on CGFs.
Along these lines, our results have recently contributed to the foundation of the most general conditions
guaranteeing the sufficiency of CGFs for general B [17].
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