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Abstract

The assessment of the low temperature phase stability of alloy phases—substantially below

0 �C—is not only of acedemic interest but also of considerable practical importance. How-
ever, attempts are rarely made to assess phase boundaries as they continue down towards the
absolute zero temperature. The purpose of this work is to consider some specific aspects of

phase stability, phase boundaries, and the related phase diagrams at low temperatures, in the
light of the restrictions imposed by the Third Law we give a brief overview of its place within
Thermodynamics. We point out that for ordinary materials the equilibrium state of 0 K

simultaneously satisfies the two conditions that its energy and entropy are at their lowest
possible values as permitted by the evolutionary constraints imposed on their state variables.
Also, free internal state variables (such as the equilibrium compositions of coexisting phases)
must be such that the rates of change of their equilibrium values as a function of temperature

are zero at 0 K. The phase stability at low temperatures of several binary alloy systems are
discussed within the above scheme (Cu–Ni, Cu–Zn, Pu–Ga, In–Sn, Metal–Hydrogen), with
the general conclusion that while the Third Law rules out certain configurations of the phase

diagram it cannot uniquely determine what the low temperature equilibrium—under the given
conditions—must be. For example, the equilibrium state of 0 K of an ordinary crystalline
material for which the configurational atomic arrangement is unconstrained, is always per-

fectly ordered, and the energy of any other configurational state, including the fully dis-
ordered state, must always be higher. This analysis is particularly important in connection
with the long-term aging properties observed in some Pu–Ga alloys.
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1. Introduction

Recent compilations of assessed phase diagrams, particularly the binary phase
diagrams where Professor Massalski has made special contributions as author and
editor [1], have placed specific and increasing emphasis on the fact that all phase
diagrams are a consequence of thermodynamics and hence that the experimen-
tally determined, or thermodynamically assessed, phase boundaries must not
violate thermodynamic laws, specifically the First and Second Law. This means
that the three typical, but different, approaches toward the determinations of a most
likely assessed diagram in any system, i.e. through experimental determination of
the actual phase boundaries, or by using measured thermodynamic quantities and
computations, or via thermodynamic modeling, using carefully assessed para-
meters, should be all in reasonable agreement. Okamoto and Massalski discussed
in detail many reported systems and pointed out that when this is not the case,
the proposed boundaries are either thermodynamically impossible, or highly
improbable [2].
Another feature of interest is the realization in recent years that the majority

of the phase diagrams that have been reported in assessed form are depicted
only down to room temperature, or perhaps to 0 �C. This is because below 0 �C
the approach to equilibrium may be considered to be effectively frozen (i.e. a
state of constrained equilibrium) in most systems for practical engineering pur-
poses, and true equilibrium (i.e. unconstrained equilibrium) may be unattainable.
Hence, only rarely is an attempt made to assess boundaries as they continue
towards absolute zero of temperature (hereafter 0 K). Rather, the temperature
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range between 0 K and 0 �C is left unexplored, even though in numerous cases
the extrapolated trends of many phase boundaries established above 0 �C indicate
ranges of solubility at 0 K that appear to be in disagreement with the Third Law of
thermodynamics which postulates (as we shall elaborate below) that the entropies of
all aspects of a given system reduce to the same value at 0 K, often taken to be zero.
From this it follows that random solid solubility is excluded. At the same time, it has
been argued [3] that even metastable solid solutions are subject to the Third Law as
0 K is approached.
Another incentive for increased interest in phase diagrams near 0 K is the growing

use of computational methods, involving the assessment of phase stability through
first principles calculations, which typically yield the ground state energies and phase
stability at 0 K. The transition from 0 K to 0 �C must therefore incorporate an
understanding of what is happening to the changes in entropy, in particular the
entropy related to the transition between the dictated perfect configurational order
at 0 K, and the possibility of more relaxed order above.
The interest in the phase boundaries and phase stability between 0 �C and 0 K is

not only theoretical. There are several phase diagrams where phase stability con-
siderations substantially below 0 �C are of considerable interest and of practical
engineering importance (see for example [4], and Hecker et al. this symposium).
The purpose of the present contribution is to consider some specific aspects of

phase stability, phase boundaries, and the related phase diagrams in the light of
postulated restrictions imposed by the Third Law of Thermodynamics. Before we
discuss specific applications of the Third Law to low temperature phase equilibria
we give a brief overview of its place within thermodynamics.
2. Laws of Thermodynamics

The First and Second Laws of Thermodynamics are well established. The First
Law is essentially a conservation of energy law, positing that the internal energy (U)
of a system can be increased (or decreased) by either performing work on the system
(by the system) or by having heat ‘‘flow’’ into (out of) the system. The First Law
shows that both work and heat are forms of energy. It does not say anything about
the relationship between ‘‘heat’’ and ‘‘work’’ other than that they both can change
the internal energy of a system. The Second Law states that there is a dissymmetry
between heat and work. Although all work can be converted to heat, not all heat can
be converted to work. The Second Law restricts the possibility of certain processes.
In its simplest form it states that the entropy (a thermodynamic parameter that is
best defined by the Second Law) of an isolated system always increases until equili-
brium is attained. This can be utilized to predict the direction of potential reactions
within a system. The Second Law also can be utilized to show that no engine can be
built that can convert all the energy due to the input of heat into an equivalent
amount of work. There is always a loss or a dissipation of useful energy in the pro-
cess. These two laws of thermodynamics constitute a solid foundation of physical
science as demonstrated by their robustness and longevity.
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On the other hand, the Third Law, which was first addressed by Nernst in 1906
[5,6], has been subjected to controversies and disputes [7]. Its usefulness, however, is
well established. For example, one of the applications of the Third Law makes pos-
sible the calculation of high temperature entropies of reaction from calorimetric
measurements. Most significant, the calculated values are in agreement with the
calculations based on direct experimental measurements [8–10].
The mentioned agreement between calculation and experiment fails when meta-

stable or low temperature frozen-in configurations (constrained states1) intervene in
the calorimetric measurements [10,11]. Therefore, the application of the Third Law
might provide a useful tool to decide on the eventual presence of states that are out
of equilibrium. In fact, equilibrium and non equilibrium states are important con-
cepts in connection with the Third Law, as we shall emphasize below. Specifically,
our interest in this paper refers to the Third Law and its implications for low
temperature phase stability.
3. Some basic thermodynamic concepts

The application of thermodynamics to the description of the evolution of states
(or processes) of a particular piece of matter implies a description of its thermo-
dynamic state space. This precedes the specification of its energy and entropy func-
tions in this space, and the particular constraints to which such evolutions may be
subjected. All these conditions determine the nature of the possible processes for the
system, and completely define the thermodynamic behavior of the particular piece of
material under consideration [12–14].
1 The concept of constrained equilibrium is important when discussing the application of the Third

Law to phase equilibria. The reason for this is that many systems which apparently do not obey the Third

Law are in a state of constrained equilibrium. What do we mean by this concept? Consider a system whose

internal energy (U) and entropy (S) can be written as:
U ¼ U V;S;Ni; �ið Þ

S ¼ S V;U;Ni; �ið Þ
where Ni are the composition variables and �i are any other thermodynamic state variables that play a

role in determining the equilibrium state of the system (e.g. magnetization, atomic order parameter, etc.).

For a ‘‘full’’ or true equilibrium the system must attain equilibrium with respect to all of its state variables.

If one of the variables (say �3) is constrained to have a fixed value other than its equilibrium one, the

equilibrium that is attained by the system is called a constrained equilibrium.

Suppose for example that the phases present in a system are not able to change their composition below

a certain temperature. Thus, the final state of the system will in principle not be the true equilibrium state

of the system. The (partial) equilibrium that is attained however is a constrained one and if diffusion is

allowed (perhaps by an influx of vacancies) we expect that the system will finally obtain its true equili-

brium with respect to the values of the composition of the phases.

Chemical composition is an important variable in connection with phase diagrams. Its conjugate force

for each component is the corresponding chemical potential �, and composition changes can be thought

to be imposed on the material by a reversible matter reservoir of variable � [12,13].
370 J.P. Abriata, D.E. Laughlin / Progress in Materials Science 49 (2004) 367–387



We presume that for the materials considered here all reasonable continuity
requirements and good mathematical behavior are met by the corresponding ther-
modynamic functions in the state space. For the materials of interest, it is always the
case that their absolute temperature T can be equal to or greater than 0 K and the
temperature can take any positive value up to infinity (T 50). Intrinsic stability
inequalities are all always assumed to be valid; constraints represent well the parti-
cular conditions of the evolution of the material system; and, loosely speaking,
‘‘maximum entropy’’ and ‘‘minimum energy’’ are equivalent criteria able to deter-
mine any of the equilibrium states for positive T [14].
We note that thermodynamics does not depend upon nor does it compel, the

acceptance of any specific model of matter. However, the fact that the mechanical
conserved quantities of internal energy (U), momentum (P), and angular momentum
(L) can be defined for any state of any material system is in accordance with the
successful description of matter which has been done by means of models based on
(statistical) mechanics [15].
Mechanical systems are those systems which can be completely described by the

Laws of Mechanics (classical or quantum) [16]. Processes in these mechanical sys-
tems are always reversible and conditioned only by the conserved mechanical
quantities and the acting constraints. Since entropy is essentially related to irrever-
sibility, it does not participate in the analysis of the time evolution of mechanical
states. For this reason it is possible to establish that the entropy of any mechanical
state is equal to zero.2

Let us now take a closer look at the specification of material states, that is, at the
corresponding thermodynamic state space. It appears that, for those materials
involved in everyday life as well as in all kind of engineering applications, states are
in fact quite complex. To specify these states properly a large number of state vari-
ables would generally be needed.
Dynamically, and in connection with the modeling of a particular process, state

variables may be classified in frozen and free variables. This classification depends
on the process of interest and the type of modeling required. Frozen variables are
taken to be strictly constant during the process and free variables are assumed to
evolve fast enough to be able to reach the equilibrium value compatible with all
imposed constraints.
2 This assignment of zero entropy to any mechanical state is the usual practice in the applications of

Thermodynamics. This convention is also applied when Thermodynamics is modeled by means of Statis-

tical Mechanics [16]. If the assignment of zero entropy to any mechanical state were not the case, (which is

possible) then the entropy of mechanical states should be explicitly included when considering the total

entropy change of an evolving system containing a mechanical subsystem. In addition, mechanical states

can then have their own absolute temperature Tmech. In the usual practice of adopting S(any mechanical

state)=0, Tmech=1. Whatever value of Tmech may result, all mechanical states should have the same

absolute temperature Tmech. Besides, if Tmech were positive, then the absolute temperature of any given

piece of material would not be able to become higher than Tmech because normal friction processes must

be irreversible. The modification of the condition S(any mechanical state)=0, however trivial it might

look, would have consequences that can not be dismissed.
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It is also common to classify state variables as either external or internal in the
sense that they are either externally-controllable or uncontrollable [17,18]. Internal
variables can be measured but they are not under external control in the system
under consideration. Both external and internal variables can be either frozen or
free, depending on the way in which the evolution of the system takes place, or is
being modeled. Order parameters [15] are, in general sense, free internal variables.3

3.1. General thermodynamic behavior of materials at low temperatures

The following discussion is based on the entropy representation [14,19,20]. The
states of a given material are assumed to be correctly specified by a necessary and
sufficient set of scalar state variables: U, N, V, and �. In this set, U is the internal
energy, N denotes the compositional variables (Nj with j=1, 2, 3, . . .), V is the
volume and � denotes collectively the remaining state variables, appropriately
defined for the purposes at hand; � � �1, �2, �3 . . .. Thus, the full description of the
thermodynamic behavior of a given material is established through an entropic
fundamental relation of the form:
S ¼ S U;N;V; �ð Þ:
In what follows, for brevity, a particular state U, N, V, � will be denoted gener-
ically by Z ; that is Z � U, N, V, �, and S=S(Z).
We assume that S=S (Z) is analytic in each of the variables and therefore differ-

entiable and continuous to all orders within the range of the values of Z admissible
for the given system.4

One of the important conclusions of the mechanical microscopic model of the
thermodynamic properties of matter, as provided by statistical mechanics, is that for
any state Z there exists a mechanical state M such that M can evolve spontaneously
and in isolation to Z [9,12,16,21,22].
Since, as remarked above, the entropy of any mechanical state must be taken to be

zero, such a basic conclusion implies that a positively defined entropy function S=S
(Z) exists. That is:
S ¼ S Zð Þ5 0 for any Z:
This ‘‘absolute entropy’’ function is uniquely defined over all states Z up to a
positive multiplying constant, a gauge which maintains invariable the condition
S(any mechanical state)=0.
3 Examples of internal state variables are: configurational atomic order, microstructure, pair distribu-

tions, isotope distributions, defects of all kinds and their distributions, inhomogeneities and gradients.

Examples of external or internal state variables, depending on the system arrangement, are: crystal

structure, volume, electrical and magnetic polarizations, local strains and chemical composition.
4 This means that the physical situation at 0 K coincides with the result of taking the limit as T ! 0 K.
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We will now explore some of the properties of the absolute entropy of a system in
the state Z, at and near T=0 K. For convenience we will consider all thermo-
dynamic extensive state variables such as S, U, V as divided by (	 Nj).
We start our analysis with all the thermodynamic state variables fixed except for

the internal energy u ¼ U= 	 Nj

� �
and the volume v ¼ V= 	 Nj

� �
.

We may then plot the equilibrium surface of the entropy (s) as a function of
internal energy (u) and volume (v). In this case, s=s (u, v). The equilibrium state
obtained from an iso-energy section is the same as that obtained from an isoentropic
section. The minimum in energy at constant entropy corresponds to a maximum in
entropy at constant energy for the same equilibrium value of the volume. This is an
illustration of the equivalence of the maximum entropy and minimum energy prin-
ciples [14,23]. The slope of the constant energy curve becomes infinite when the
temperature is zero since:
@s

@v

� �
u

¼
P

T
:

Fig. 1 shows a plot of s versus u, in which v together with all the other thermo-
dynamic parameters such as � are held constant. There are several important features
to be pointed out.
First, the slope of the plot at any point has a value of 1=T > 0 and the curvature

of the plot is:
@2s

@u2

� �
�

¼ �
1

T2

@T

@u

� �
�

¼ �
1

T2C�
:

Fig. 1. An entropy versus internal energy plot of a material, holding the volume and all other �i constant.

The slope of the curve equals the reciprocal of the absolute temperature.
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ce heat capacities must be positive for intrinsic stability [14], the curvature
Sin
must be negative everywhere.
Another thing to note about Fig. 1 is that the intersection of a tangent to the curve

(at B for example) is the value of the free energy at the temperature represented by
the slope of the tangent. When the tangent approaches a vertical (at Z0) the tem-
perature approaches 0 and the free energy becomes identical to the internal energy
u0. The point represented by Z0 shows that there must be a minimum value of
energy (the ground state energy u0 for constant � ) at T=0, as well as a minimum
value of the entropy (s0).
A final thing to notice in Fig. 1 is that a system can evolve from a zero entropy

mechanical state M1 to its final equilibrium state Z1 of positive entropy. As men-
tioned above, all possible thermodynamic states have absolute entropies greater
than or equal to zero.
Fig. 2 is a plot similar to that of Fig. 1 but in this plot the s versus u curves are

shown for several values of the internal thermodynamic parameter �. The solid
curve is the upper envelope of the curves and represents the equilibrium states of the
system with respect to �. This corresponds really to a projection of the surface s(u, �)
onto the s/u plane. For each of the values of � it can be seen that there are endpoints
of the curve for T=0, with different values of s0(�i) and u0(�i). Of course the equili-
brium state at T=0 K is the one with the minimum energy u0(�i). Whether or not
Fig. 2. An entropy versus internal energy plot of a material holding the volume constant but allowing the

internal thermodynamic parameter �i to vary. The upper envelope of the curves defines the equilibrium

states of the material.
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the T=0 states for different values of � really have different values of entropy is a
matter to be discussed later. For now we allow in principle for different values.
In 1906 Nernst noticed that the differences in several of the auxiliary thermo-

dynamic functions approached zero as the temperature approached zero
[5,6,14,24,25]. From this he based his initial statement of the Third Law, namely
that at T=0 K all substances in equilibrium have the same value of entropy. In this
paper we call this the Nernst statement of the Third Law. Some time later Planck
noted that this value of entropy could be set equal to zero with no loss in generality
[26].5

Later, in 1917, Nernst also stated a related law which following Callen [14] is
expressed as ‘‘. . ..no reversible adiabatic process starting at (a positive) non-zero
temperature can possibly bring a system to zero temperature’’. This is known as the
unattainability statement of the Third Law [3,9].
There has been much discussion in the literature of whether one of these state-

ments implies the other and vice versa. In what follows we will discuss further
aspects of the Third Law, including the relationship between the two statements.
As we mentioned above, the entropy at 0 K can in principle have different values

as a function of the free parameter � (see Fig. 2). However, experimental informa-
tion available on the behavior of most materials (called ordinary materials in this
paper) shows that the dependence of s0 on � is restricted. This can be seen by con-
sidering the rate of change of the equilibrium value of � as a function of temperature
at 0 K. The general thermodynamic expression:
@�eq
@T

¼

@s

@�

� �
T

@2f

@�2

� �
T

ð1Þ
(derived from the equilibrium condition @f
@�

� �
T
¼ 0) establishes the direct proportionality

between
@�eq
@T and @s

@�

� �
T
. Since experimentally ordinary materials show

@�eq
@T

� �
T¼0

¼ 0,

it is natural to conclude that @s
@�

� �
T¼0

¼ 0 as well. This is an important conclusion.

For thermodynamic state variables � that have conjugate forces (that is, they are
variables that can be reversibly controlled by an external force, which includes
volume, magnetization, electric polarization and chemical composition) this implies
that at 0 K the entropy of the materials system is independent of the value of �.
5 This can be seen as follows: suppose at 0 K a crystalline phase of one component (i.e. an element) is

in equilibrium with another crystalline phase which is made up of two components, i.e. an alloy. The one

component crystalline phase has no configurational entropy at 0 K and since it is in equilibrium with the

two component phase that phase must also have zero configurational entropy, which means it must be a

stoichiometric perfectly ordered phase Other possible contributions to entropy coming from ignored or

even unknown internal degrees of freedom are irrelevant to the obtained equilibrium state. Hence the

entropies of both phases can be set equal to zero with no loss of generality.
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Consequently for this case the T=0 isotherm coincides with an isentropic curve on
the entropy surface which confirms the Nernst statement of the Third Law (see
Fig. 3). Fig. 3 shows the surface of the entropy function that is consistent with the
discussion just made.
This explanation gives a solid experimental basis to both the Nernst and the

unattainability statements of the Third Law as stated above. It is clear from Fig. 3
that if a system starts at a positive temperature (e.g. point A) and energy is removed
from it at constant entropy, equilibrium is attained at point B where a minimum in
energy and then a maximum in entropy obtains. This isentropic curve which passes
through points A and B will never cross the T=0 isotherm. Hence, the unattain-
ability statement according to Callen [14] holds for this general behavior of the
entropy. Thus, Fig. 3 represents both statements of the Third Law as given above.
For some systems it is well known that the entropy at 0 K has a residual positive

value with respect to the true equilibrium state at 0 K [3,25]. This arises because the
system is constrained to be in a state that at T=0 K is out of equilibrium. This is the
case for glasses, quenched disordered alloys, solid CO, etc. This is a consequence of
the constraints acting on the system and not allowing the internal state variables to
relax to their equilibrium values. This situation can be rationalized by considering
Fig. 4. The T=0 isotherm is seen to rise in entropy at all points away from the
equilibrium state where the entropy is in fact at a minimum together with the mini-
mum in energy. While the condition shown in Fig. 4 may be consistent with the
unattainability statement (the system can not decrease its energy at constant entropy
Fig. 3. An entropy, internal energy and �i surface of a material consistent with both the unattainability

statement of the Third Law and the Nernst Statement of the Third Law. Note that the isotherm T=0 is

also isentropic.
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and reach the equilibrium state at 0 K) it is not consistent with the Nernst statement
of the Third Law.6

Fig. 5 shows a case which is inconsistent with both statements of the Third Law,
that is, the entropy is not a minimum at equilibrium nor is the unattainability prin-
ciple valid. However, the entropy surface is not incompatible with the unrestricted
application of the first and second laws of thermodynamics, and so it is possible that
it may represent rather unusual materials which have not as yet been found or
investigated [27].
4. Applications to low temperature equilibria

In this section we provide several examples of the application of our under-
standing of the Third Law of Thermodynamics to specific binary alloy systems.
When applying this Law to low temperature phase equilibria, we will see that the
Law may rule out certain configurations of the phase diagram but that it cannot
uniquely determine what the low temperature equilibrium must be. This is because
the Law merely states that at 0 K the equilibrium state should have its lowest
entropy: it does not state unequivocally in what way the system must configure itself
to obtain this entropy. Thus, an alloy of composition 50%B in an AB system at 0 K,
where the atomic spatial configuration is unconstrained, may either atomically order
or decompose into the two elements of which it is composed in order to obtain
minimum entropy, depending on the corresponding enthalpy value of the alloy [28].
6 Let us consider an ordinary material system whose thermodynamic behavior is described by
S ¼ S U;V; �ð Þ
where all other possible state variables of the system are not explicitly stated and are taken to be frozen—

kept fixed—or fully relaxed. Thus, at 0 K, the entropy is
S0 ¼ S0 V; �ð Þ ¼ S T ¼ 0;V; �ð Þ:
Now, from the stated properties of S0 for ordinary materials, if S0 is considered as a function of the

volume V for any given value of �, results
@S0=@vð Þ�¼ 0; for every �:
Therefore, S0 reduces to be only a function of � : S0 (V, �) � S0 (�).
Accordingly, for ordinary materials we have that either

	 S0 (�) has only one or more isolated minima at certain specific values of �

or

	 S0 (�)=constant, for all values of �.

The former is the case when, for example, � represents a configurational parameter, such that a mini-

mum occurs at well defined and different types of perfectly ordered spatial (crystalline) arrangements. A

maximum in So(�) necessarily represents an unstable state at 0 K, as will be the case of an ideal disordered

solid solution.

In the second case, S0 remains strictly constant as a function of both state variables, � and V; that is S0

(V, �)=constant, in coincidence with the Nernst statement of the Third Law.
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Fig. 4. An entropy, internal energy and �i surface of a material, which is consistent with the unattain-

ability statement of the Third Law but not with the Nernst Statement of the Third Law.
Fig. 5. An entropy, internal energy and �i surface of a material, which is inconsistent with both the

unattainability statement of the Third Law and the Nernst Statement of the Third Law.
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Also, the specific ordered phase to which it may transform cannot be determined by
entropy considerations but rather by enthalpy considerations on the alloy system.

4.1. Copper–nickel system

The continuous fcc solid solution between Cu and Ni is often cited as an example
of a nearly ideal solid solution. No intermediate or ordered phases were reported in
this system in the early phase diagram compilations [29]. However, the ideal solid
solution behavior does not conform to the Third Law requirements when extra-
polated to equilibrium states down to 0 K. This has been experimentally confirmed
by the clustering tendencies observed in Cu–Ni alloys at temperatures below 100 �C,
including evidence of cluster growth at room temperature in alloys close to 50 at.% [30].
Much indirect experimental evidence based on changes of the physical properties such
as the electrical resistivity, the Hall coefficient, magnetic clustering, neutron small-angle
scattering, and electron microscopy [30] have demonstrated that there exist tendencies
in Cu–Ni alloys to decompose into the Cu enriched and Ni enriched fcc regions.
These experimental observations support the hypothesis that a miscibility gap

between pure Cu and pure Ni develops in the Cu–Ni fcc solid solution at low tem-
peratures, in agreement with the entropy requirements of the Third Law. However,
direct confirmation of this miscibility gap (that is the actual observation of the two
phase equilibrium) has not been possible due to the extremely slow kinetics of the
decomposition process.
The currently accepted phase diagram for the Cu–Ni system, which satisfies the

Third Law, is shown in Fig. 6. Included in the diagram is the magnetic transition
in Ni. Thus the two phases in equilibrium at 0 K are predicted to be Cu and
ferromagnetic Ni.

4.2. Copper–zinc system

The phase boundaries of the Cu–Zn phase diagram are accurately known experi-
mentally to 200 �C [31]. It is remarkable that the solubility limit of Zn in the fcc
phase of Cu, represented by the �= �þ 	ð Þ boundary shown in Fig. 7, extrapolates at
room temperature to a composition close to 30 at.% Zn. This is a rather large pri-
mary solid solubility at room temperature, and in principle can be considered as
incompatible with the entropy demand imposed by the Third Law on the equili-
brium states of the alloy at 0 K. However, a potential configurational ordering of
the a phase in the 25 atomic percent region has been detected experimentally at
temperatures as low as 100 �C, where neutron diffraction, electrical resistance and
thermoelectric power measurements, together with calorimetric results [31] show
anomalies which suggest that atomic rearrangements are taking place in the fcc
structure of the a phase. Such low temperature rearrangements are manifestations
that the alloy is attempting to change its state in order to conform with the Third
Law requirement of minimum entropy at 0 K. That is, either the a phase will order
atomically, or it will decompose into two coexisting ordered phases (or an ordered
phase and pure Cu), upon reaching equilibrium at 0 K.
J.P. Abriata, D.E. Laughlin / Progress in Materials Science 49 (2004) 367–387 379



Fig. 7. The Cu–Zn phase diagram from Ref. [31].
Fig. 6. The Cu–Ni phase diagram from Ref. [30].
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In view of the foregoing discussion and of the little dispute existing about the high
temperature phase boundaries of the Cu–Zn system, the elucidation of the true
equilibrium phase diagram close to 0 K remains an interesting question. In this
connection, a simple guess would be a monotectoid decomposition of the a phase,
namely, a$ab0, at or below about room temperature.
The b0 phase boundaries could come together at 50 a/o Zn at 0 K to satisfy the

third law. Also the disordered phases g and E could either atomically order or
decompose into phases which are capable of obtaining zero entropy at 0 K.

4.3. Plutonium–gallium system

The Pu–Ga system has been extensively studied in the composition range near 5
at.% Ga, where the high temperature fcc-d phase of Pu becomes the stable phase at
temperatures close to room temperature and below. However, two qualitatively
different experimental phase diagrams at low temperatures have been reported for
the Pu–Ga system These diagrams are shown in Fig. 8.
The first diagram (Fig. 8a) shows the existence at low temperatures of an extended

range of solubility of Ga in d-Pu, from 2 to 8 at.% Ga, essentially in the form of a
substitutional disordered solid solution (Fig. 8a) [32,33]. This disordered state can
only be obtained under the constraint of frozen configurational parameters for the
alloy. Such a case may arise if, for example, diffusion by the vacancy mechanism is
the only possible way for the evolution of the alloy to proceed, and if the vacancies
are not able to move. However, if other mechanisms of change are possible, being
triggered for example by alpha decay, the fcc-d phase may be subjected to change
and the unconstrained configurational equilibrium state may be approached. Of
course, considering Pu–Ga to be an ordinary material, the Third Law prescribes that
the configurational parameters will evolve with time finally to reach a state of equi-
librium at 0 K at the lowest possible energy and entropy. Thus, by reason of the
Third Law, at 0 K the fcc-d phase probably phase separates into a coexisting pure
Pu and an ordered phase, constituting the final equilibrium state.
Other authors (Fig. 8b) [34] do show experimental results that indicate a two

phase field (aPu3Ga) at low temperatures as the stable equilibrium state. Dis-
regarding isotope effects, these results are consistent with the Third Law. However,
since these experimental results were obtained by initially seeding the sample with
one of the precipitating phases [34,35] this in fact may define a constraint on the
system, and therefore a doubt still remains regarding the true character of the final
equilibrium that might be detected experimentally. This last comment is not merely
of an academic nature, but is indeed important from the materials engineering point
of view in terms of the aging properties of Pu–Ga alloys. Further experimental
research to clarify this point is certainly of interest.

4.4. Indium–tin system

The In–Sn phase diagram is shown in Fig. 9 [1]. Here again the phase field of the
disordered g phase (hP1) appears to be stable to 0 K with a solubility range of
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Fig. 8. Two different proposed phase diagrams of Pu–Ga given in [4].
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73 to 81 a/o Sn. Clearly, this is unlikely and we are currently investigating the low
temperature stability of this phase [36]. We believe that the g phase is likely
to decompose into In (tI2) and Sn (diamond structure, cF8) at low temperatures.
The fact that the In-rich (tI2) b phase has been observed to decompose at 140 K
gives us some expectation that such a transformation is kinetically possible also on
the Sn rich side of the diagram. Of course there are other scenarios possible for the
phase diagram of InSn that would be consistent with our presentation of the Third
Law. For example, the g phase could order at low temperatures and the solubility
range would be close to zero at 0 K. In any case, the large configurational entropy of
the g phase dictated by the diagram shown in Fig. 9 makes this diagram unlikely.

4.5. Palladium–hydrogen and some other metal–hydrogen systems

Metal–hydrogen systems are particularly interesting for the purposes of the pre-
sent discussion because their diffusion and structural kinetics are still significant at
temperatures well below room temperature [37]. Thus, low temperature features of
the corresponding equilibrium phase diagrams are in principle more readily acces-
sible experimentally than in the case of other solid solutions.
Metal–hydrogen systems would be specially appropriate for investigating experi-

mentally the temperature dependence of the equilibrium composition values x� and
Fig. 9. Phase diagram of the In–Sn system [1].
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xb of two coexisting phases, a and b, as T approaches 0 K. According to our dis-
cussion above, the internal state variables (the compositions x� and x�) must cer-
tainly satisfy an expression of the form given in Eq. (1). This expression is related to
the well known Gibbs–Konovalov formula [7,16, 38] which, evaluated at T=0 K,
yields
@x	
@T

� �
equil;T¼0

¼
DS0 for the precipitation of � in 	ð Þ

@2h	

@x2	

 !
equilibrium

x� � x	
� � : ð2Þ
This last equation is of course a particular case of the general expression given in

Eq. (1) which led to the conclusion that @s
@�

� �
T¼0

¼ 0. The Third Law requires that
DS0 precipitation of � in 	ð Þ ¼ 0� �

Thus we obtain, as expected,

@x	
@T equil;T¼0

¼ 0.

Similarly, for xa this is
@x�
@T

� �
equil;T¼0

¼ 0.

Therefore, as a result of the Third Law, the equilibrium boundary lines at 0 K
should be vertical in the usual temperature–composition phase diagrams of ordinary
materials. This is a completely general conclusion.
There is indeed a considerable amount of experimental evidence available that

indicates that phase boundaries in metal–hydrogen systems are vertical in temperature–
composition diagrams as T tends to 0 K, confirming the prescription dictated by the
Third Law. This statement can be compared with the several examples given by
Manchester in [37]. These examples include the low temperature miscibility gap in
the fcc phase of the Pd–H alloy, the �þ 	=	 boundaries in the V–H and D–V phase
diagrams, and the �þ "=" phase boundary in Nb–H.
A further observation on the experimental phase diagrams data given byManchester

[37] for several metal–hydrogen systems, is the definitive existence of a tendency of
alloys to atomically order at low temperatures, close to 0 K. This is in full agreement
with the requirements of configurational ordering in terms of the Third Law, as
already discussed for example in the case of the Pu–Ga system.
5. Concluding comments

For an ordinary material the equilibrium state at 0 K simultaneously satisfies the
two conditions:

1. The energy of the material is at its lowest possible value; and

2. The entropy of the material is at its lowest possible value.
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Therefore the following holds:

1. The structure of the equilibrium state of an ordinary material at 0 K, when

the atomic spatial positions are unconstrained, will always be crystalline. This
agrees with the observed exothermal crystallization of noncrystalline amor-
phous materials and with the nonzero positive entropy associated with the
noncrystalline amorphous state.

2. The equilibrium state at 0 K of an ordinary crystalline material for which

the configurational atomic arrangement on a lattice is unconstrained, is
always perfectly ordered, and the energy of any other configurational state,
including the fully disordered state, must always be higher. Thus, the
equilibrium state at 0 K of an ordinary material in its crystalline state
which is under no constraints with respect to atomic rearrangement, will
always involve phases which are either pure, or which are fully atomically
ordered. The equilibrium state at 0 K of an ordinary crystalline material for
which the configurational atomic arrangement is unconstrained, cannot be
correctly represented by the ideal solution model because, in such a case, its
configurational entropy would be a maximum and not a minimum as
required by the Third law.

3. No reversible adiabatic process starting at nonzero temperature can possibly

bring an ordinary material system into its equilibrium state at 0 K. This is so
because the equilibrium state has the lowest possible entropy.

4. Since the volume of the equilibrium state at 0 K of an ordinary material

system can attain any of its allowed values, depending on the applied
external pressure, the entropy at 0 K for this material will be indepen-
dent of volume (or pressure). This is because the purely mechanical,
external forces, producing the pressure, do not contribute to the total
entropy.

5. More generally, since the (volume, strain, electric and magnetic polar-

izations and chemical composition) of the equilibrium state of an
ordinary material at 0 K can attain any of its allowed values, depending
on the externally applied fields (pressure, tension, electric, magnetic and
chemical potentials), the entropy at 0 K will be independent of (volume,
strains, polarizations, composition) (or pressure, tensions, fields, chemical
potentials).
Acknowledgements

DEL thanks the Department of Energy for financial support during the writing of
this paper through a grant from the Lawrence Livermore National Laboratory.
Both the authors thank Professor Massalski for many stimulating discussions over
the years, including the present work, and look forward to many more years of
intellectual interaction.
J.P. Abriata, D.E. Laughlin / Progress in Materials Science 49 (2004) 367–387 385



References

[1] Massalski TB. Binary alloy phase diagrams. 2nd ed., Okamoto H, Kacprzak L, editors. American

Society for Metals, 1990.

[2] Okamoto H, Massalski TB. Thermodynamically improbable phase diagrams. Journal of Phase

Equilibria 1991;12(1):148–68.

[3] Wilks J. The Third Law of Thermodynamics. Oxford: Oxford University Press; 1961.

[4] Hecker SS. MRS Bulletin :672 2001 and Hecker et al. this volume.

[5] Nernst W. Nach Ges Wiss Gott: Heft 1 1906.

[6] Nernst W. The new heat theorem. London: Methuen and Co.; 1917.

[7] Kyle BG. Chemical and process thermodynamics. New Jersey: Prentice Hall; 1999.

[8] Prigogine I, Defay R. Chemical Thermodynamics. London: Longmans; 1954.

[9] Mayer JE, Mayer MG. Statistical mechanics. New York: John Wiley and Sons; 1963.

[10] Ott JB, Boerio-Goates J. Chemical thermodynamics. London: Academic Press; 2000.

[11] Berry RS, Rice SA, Ross J. Matter in equilibrium: statistical mechanics and thermodynamics.

Oxford: Oxford University Press; 2002.

[12] Waldram JR. The theory of thermodynamics. Cambridge: Cambridge University Press; 1985.

[13] Tschoegl NW. Fundamentals of equilibrium and steady-state thermodynamics. Amsterdam:

Elsevier; 2000.

[14] Callen HB. Thermodynamics and an introduction to thermostatics. New York: John Wiley and

Sons; 1985.

[15] Landau LD, Lifshitz EM. Statistical physics. London: Pergamon Press; 1959.

[16] Tolman RC. The principles of statistical mechanics. Oxford: Oxford University Press; 1938.

[17] Bridgman PW. The nature of thermodynamics. Cambridge MA: Harvard University Press; 1941.

[18] Hillert M. Phase equilibria, phase diagrams and phase transformations. Cambridge: Cambridge

University Press; 1998.

[19] Modell M, Reid RC. Thermodynamics and its applications. New Jersey: Prentice Hall; 1974.

[20] Tester JW, Modell M. Thermodynamics and its applications. New Jersey: Prentice Hall; 1997.

[21] Gallavotti G. Statistical mechanics. Berlin: Springer-Verlag; 1999.

[22] Gibbs JW. Elementary principles in statistical mechanics. New Hampshire: Yale University Press;

1902.

[23] Richet P. The physical basis of thermodynamics with applications. New York: Kluwer Academic/

Plenum Publishers; 2001.

[24] Hatsopoulos GN, Keenan JH. Principles of general thermodynamics. New York: John Wiley and

Sons; 1965.

[25] Lewis GN, Randall M, Pitzer KS, Brewer L. Thermodynamics and the free energy of chemical

substances. New York: McGraw Hill Book Company; 1961.

[26] Planck M. Treatise on thermodynamics. London: Longmans, Green and Co.; 1927.

[27] Watson G, Canright G, Somer FL. Phys Rev E 1997;56:6459.

[28] Khachaturyan AG. Progress in Materials Science 1978;22:1–150.

[29] Hansen M. Constitution of binary alloys. New York: McGraw Hill; 1958.

[30] Chakrabarti DJ, Laughlin DE, Chen SW, Chang YA. In: Subramanian PR, Chakrabarti DJ,

Laughlin DE, editors. Phase diagrams of binary copper alloys. Materials Park, Ohio: ASM

International; 1994.

[31] Miodownik AP. In: Subramanian PR, Chakrabarti DJ, Laughlin DE, editors. Phase diagrams of

binary copper alloys. Materials Park, Ohio: ASM International; 1994.

[32] Ellinger FH, Land CC, Struebing VO. J Nucl Mater 1964;12:226.

[33] Peterson DE, Kassner ME. Bull Alloy Phase Diagr 1988;9(3):261–7.

[34] Chebotarev NT, Smotriskaya ES, Andrianov MA, Kostyuk OE. Some results of a study of the

Pu–Al–Ga phase diagram. In: Blank H, Lindner R, editors. Proceedings of the 5 th International

Conference on Plutonium and Other Actinides. New York: North Holland Publishing Co.; 1975.

[35] Hecker SS, Timofeeva LF. Los Alamos Science 2000;26:244.

[36] Yanar C, Massalski TB, Laughlin DE, in preparation.
386 J.P. Abriata, D.E. Laughlin / Progress in Materials Science 49 (2004) 367–387



[37] Manchester FD, editor. Phase diagrams of binary hydrogen alloys. Materials Park, Ohio: ASM

International; 2000.

[38] Goodman DA, Cahn JW, Bennett LH. The centennial of the Gibbs–Konovalov rule for congruent

points. Bull of Alloy Phase Diagrams 1981;2(1):29–34.
J.P. Abriata, D.E. Laughlin / Progress in Materials Science 49 (2004) 367–387 387


	The Third Law of Thermodynamics and low temperature phase stability
	Introduction
	Laws of Thermodynamics
	Some basic thermodynamic concepts
	General thermodynamic behavior of materials at low temperatures

	Applications to low temperature equilibria
	Copper-nickel system
	Copper-zinc system
	Plutonium-gallium system
	Indium-tin system
	Palladium-hydrogen and some other metal-hydrogen systems

	Concluding comments
	Acknowledgements
	References


