Ru_xCr_{1-x}/Ta underlayer for Co-alloy perpendicular magnetic recording

K. W. Wierman,^{a)} T. J. Klemmer, B. Lu, G. Ju, and K. J. Howard Seagate Research, 2403 Sidney Street, Pittsburgh, Pennsylvania 15203-2116

A. G. Roy and D. E. Laughlin

Data Storage Systems Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

The effects of the Ru_xCr_{1-x}/Ta underlayer on the microstructural and magnetic properties of CoCrPtB perpendicular films were investigated. The hcp Ru_xCr_{1-x} (0002) texture was observed to grow perpendicular to the film plane with narrow rocking curves of $2^{\circ}-3^{\circ}$. High-resolution transmission electron microscopy indicated epitaxial growth of the CoCrPtB on top of the Ru_xCr_{1-x}/Ta underlayer. In-plane x-ray diffraction scans indicate that as the Cr atomic composition increases in the Ru_xCr_{1-x} underlayer, the *a*-lattice parameter was found to contract more closely matching the CoCrPtB *a*-lattice parameter [measured with (1120)]. In addition, the rocking curves for the CoCrPtB (0002)-texture induced by the (0002) texture Ru_xCr_{1-x} buffer showed narrowing peaks (4.5° – 3.5°) as the Cr concentration increased from 0% to 40%. © 2002 American Institute of Physics. [DOI: 10.1063/1.1447498]

I. INTRODUCTION

Perpendicular magnetic recording has the potential to achieve recording densities well beyond 100 Gb/in² areal density.¹ Underlayers to enhance the Co (0002) texture growth perpendicular to the film plane are required to achieve thin Co-alloy layers with good perpendicular anisotropy.² Underlayers with hcp structures, principally Ti, have been demonstrated as a means to enhance the growth of hcp Co (0002) texture.^{3,4} Often an amorphous-like transition region forms due to a high elastic strain energy in the initial growth of the Co alloy induced by a large *a*-lattice mismatch between the underlayer and Co alloy.⁵ Ru underlayers grown on freshly cleaved mica substrates by electron-beam evaporation is shown to grow epitaxially CoCr (0002) with narrow rocking curves.⁶ Transmission electron microscopy (TEM) image of CoCr₁₉Pt₁₀ grown on a CoCr₂₅Ru₂₅/TiCr₁₀ underlayer was shown to provide a good epitaxially match.⁷ In this study $Ru_x Cr_{1-x}/Ta$ underlayers grown on amorphous Si/SiO₂ substrates and the effects on the microstructural and magnetic properties of CoCrPtB perpendicular films were investigated. Cr is added to Ru to further reduce the *a*-lattice parameter to provide a better lattice match with the CoCrPtB and enhance the (0002) texture.

II. EXPERIMENT

The CoCrPtB and Ru_xCr_{1-x} films were deposited by a dc magnetron sputtering system with base pressure of 5 $\times 10^{-9}$ Torr. The Ru_xCr_{1-x} underlayers were cosputtered from pure Ru and Cr targets. The CoCrPtB films were deposited directly from an alloy target. The substrates were 3 in. Si wafer coated with 100 nm thermally grown amorphous SiO₂ layer. The sputter power density of the CoCrPtB, Ta, Ru, and Cr targets was between 14 and 2 W/cm². The sputtering Ar pressure was 3 mTorr for the Ru_xCr_{1-x}/Ta and 5 mTorr for the CoCrPtB. Substrate temperature for the film growth was kept at 280 °C by a resistive heater. Crystallographic orientations of the thin films were studied by a Philips X'Pert x-ray diffractometer (XRD) with Cu $K\alpha$ radiation. The microstructures of the thin films were investigated by a Philips EM 420T transmission electron microscope (TEM). The magnetic properties were measured by a vibrating sample magnetometer (VSM).

III. RESULTS AND DISCUSSION

The symmetric $2\theta/\theta$ XRD spectra of the Ru_xCr_{1-x}/Ta films are shown in Fig. 1. For all Cr compositions a dominant (0002) and (0004) peaks are observed. As the Cr concentration increases there is a steady shift of both peaks to higher 2θ values. The broad peak occurring at 34° is due to the Ta underlayer. The angular dispersion of the Ru_xCr_{1-x} and the CoCrPtB (0002) orientations were investigated by

FIG. 1. $2\theta/\theta$ XRD scans of Ru_xCr_{1-x} 50 nm/Ta 5 nm with X = 100%, 70%, and 50%.

0021-8979/2002/91(10)/8031/3/\$19.00

8031

Downloaded 17 May 2002 to 128.2.132.216. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp

^{a)}Electronic mail: kurt.w.wierman@seagate.com

FIG. 2. Angular dispersion of (0002) Ru and Co peaks for Ru_xCr_{1-x} (50 nm)/Ta (5 nm) and CoCrPtB (50 nm)/Ru_xCr_{1-x} (10 nm)/Ta (5 nm).

rocking curves. The full width at half maximum (FWHM) results from these rocking curve scans are graphed in Fig. 2. It can be seen that both Ru_xCr_{1-x} and CoCrPtB FWHMs steadily decrease with the addition of Cr. The CoCrPtB films have rocking curves FWHM that match the Ru_xCr_{1-x} underlayer FWHM indicated that heteroepitaxial growth of the CoCrPtB is occurring.

The *a*-axis lattice parameter can be calculated using inplane scans of the $(11\overline{2}0)$, see Fig. 3. The CoCrPtB maintained a constant *a*-axis length of 2.552 Å while the Ru_xCr_{1-x} show a shift to smaller *a*-axis lattice parameter with increasing Cr. The lattice misfit between CoCrPtB and Ru_xCr_{1-x} improves from 7.3% to 5.2% as the Ru composition goes from 100% to 60%. The *c*-axis length of the unit

Wierman et al.

TABLE I. The lattice parameters of *a* and *c* axes as well as c/a ratio for $\operatorname{Ru}_x\operatorname{Cr}_{1-x}$.

X = %	a (Å)	<i>c</i> (Å)	c/a
100	2.704	4.286	1.585
90	2.704	4.277	1.582
80	2.698	4.271	1.583
70	2.694	4.263	1.583
60	2.689	4.263	1.586
50	2.684	4.263	1.588

cell was calculated from the (0004) peak position in the $2\theta/\theta$ scan. The values of the *a* and *c*-axis lattice parameters as well as c/a ratio of the Ru_xCr_{1-x} films are listed in Table I. The decrease of the *a* and *c* lattice is nearly linear and maintains a c/a ratio near 1.58.

VSM measurements on the x = 100%, 80%, and 60% were done on the same samples sent for TEM analysis. The normalized perpendicular hysteresis loops show a decrease in coericivity (H_c) with increasing Cr, see Fig. 4. However, measurements with the field applied in the plane of the sample showed all three samples saturating (H_k eff) near 8.5 kOe. The magnetic moment was measured at 509, 501, and 476 emu/cm³ for x = 100%, 80%, and 60% respectively. The Cr diffusion from the underlayer into the Co alloy has been reported for longitudinal media⁸ and is expected to be the cause of the decrease in H_c in these materials.

High-resolution cross-sectional transmission electron micrograph (TEM) images show distinct $\text{Ru}_x \text{Cr}_x/\text{CoCrPtB}$ (x=100%, 80%, and 60%) interface with continuity of the (0002) plane stacking over extensive region. Figure 5 shows a representative image for x=60%. No initial amorphous like transition regions are seen in any of the images. The Ta layer contains small ($\sim 1-2$ nm) randomly oriented body-centered-tetragonal crystallites. Columnar $\text{Ru}_x \text{Cr}_{1-x}$ grains are visible originating at the Ta interface. Columnar grain diameters are 12–15 nm. Continuity of the (1010) lattice planes across the CoCrPtB/Ru_xCr_{1-x} interface are seen in

FIG. 3. In-plane XRD scans of CoCrPtB (50 nm)/Ru_xCr_{1-x} (10 nm)/Ta (5 nm) for X=100%, 80%, and 60%.

FIG. 4. Cross-sectional TEM image of Ta CoCrPtB (50 nm)/Ru_{0.6}Cr_{0.4} (10 nm)/Ta (5 nm) sample.

Downloaded 17 May 2002 to 128.2.132.216. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp

FIG. 5. Perpendicular VSM hysteresis loops of CoCrPtB (50 nm)/Ru_xCr_{1-x} (10 nm)/Ta (5 nm) for X = 100%, 80%, and 60%.

individual growth columns. The grains extend up through the CoCrPt layer, although interruptions in the desired hcp stacking are visible.

IV. CONCLUSION

Adding up to 40% of Cr to the Ru_xCr_{1-x}/Ta underlayers has been shown to reduce the angular dispersion in the (0002) texture. Heteroepitaxial growth of CoCrPtB layers as then successfully achieved on the Ta/Ru_xCr_{1-x} seed layer The heteroepitaxial relationships have been confirmed by XRD and TEM. Improved *c*-axis anglar dispersion of (0002) CoCrPtB magnetic layers was observed as the Cr concentration was increased from 0% to 40%. Stacking faults were observed in the hcp CoCrPtB thin films deposited onto all Ru_xCr_{1-x} underlayers.

- ¹H. N. Bertram and M. Williams, IEEE Trans. Magn. 36, 4 (2000).
- ²S. Iwasaki, K. Ouchi, and N. Honda, IEEE Trans. Magn. 16, 1111 (1980).
- ³M. Futamoto, Y. Honda, and H. Kakibayashi, IEEE Trans. Magn. **21**, 1426 (1985).
- ⁴Q. Kitakami, Y. Ogawa, H. Fujiwara, F. Kugiya, and M. Suzuki, IEEE Trans. Magn. 25, 2607 (1989).
- ⁵I. S. Lee, H. Ryu, J. J. Lee, and T. D. Lee, J. Appl. Phys. 85, 6133 (1999).
 ⁶K. Krishnan, T. Takeuchi, Y. Hirayama, and M. Futamoto, IEEE Trans. Magn. 30, 5115 (1994).
- ⁷Y. Hirayama, A. Kikukawa, Y. Honda, N. Shimizu, and M. Futamoto, IEEE Trans. Magn. **36**, 2397 (2000).
- ⁸M. Sato, Y. Onishi, and A. Nakaue, IEEE Trans. Magn. 29, 3685 (1993).