Study of CoCrPt/NiAl thin films on (001) MgO single crystals
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The microstructure and in-plane magnetic properties of,CgPt;g/NiAl thin films sputter
deposited on(001) single crystal MgO substrates have been investigated. The orientation
relationship between the NiAl underlayer and the MgO substrate is determined to be
[001](100NIiAI//[001](110MgO. The CoCrPt films grow in a fibrous manner on {081) NiAl
underlayer and the orientation relationship between the two layers is determined to be
[1011]CoCrPt/[O01]NIAl, and (1210)CoCrPt/(100NiAl (variant 1), or (1210)CoCrPt/(010NiAl

(variant 3. The CoCrPt film has two sets of in-plane magnetization easy axes. The major easy axes
are along the Mg{100Q] (i.e., NiAl[110]) and the Mg@010] (i.e., NiAI[110]) directions and the
secondary easy axes are along the MO (i.e., NiAl[100]) and the[110] (i.e., NiAI[010])
directions. ©1996 American Institute of PhysidsS0003-695(96)02134-1

Co-based alloy thin films for longitudinal magnetic re- correlation between the anisotropic in-plane magnetic prop-
cording are usually sputter deposited on nhonmagnetic undeerties of the CoCrPt and the determined CoCrPt/NiAl orien-
layers. The role of the underlayers is to control the grain sizetation relationship is also discussed.
grain shape, grain separation, as well as to control the orien- An 80 A thick MgO layer, a 1000 A thick NiAl under-
tation of the magnetic layers. All of these features in turnlayer, and a 400 A GgCr,oPtg film were sequentially de-
strongly affect the magnetic and recording properties of theyosited on a polishe®01) MgO single crystal substrate by
films. Of the many underlayers which have been developed{ diode sputtering using a Leybold—Heraeus Z-400 system.
bce Cr and CrX binary alloy$X=V, Ti) have received the The base vacuum was aboutx30 ’ Torr. The Ar gas
most intensive investigatioh® Various grain to grain epi- pressure was 10 mTorr and the sputtering power was 100 W
taxial relationships between the bcc Cr underlayer and theor all the three layers. The substrate bias for the NiAl/MgO
hcp Co-based alloy thin films have been observediayers and for the CoCrPt layer were 0 and00 V, respec-

such as tively. The microstructure of the film was investigated using
a 6-20 x-ray diffractometer with a CK « radiation and by a
(1120)Co//(001)Cr, [0001]Co//[110]Cr;5~1° Philips 420T transmission electron microscope. The in-plane
magnetic properties of the magnetic film were measured us-
(1011)Co//(110)Cr, [12_10]C0//[ 111]Cr ;81112 ing a vibrating sample magnetometer.

The 6-20 x-ray diffraction spectrum of the CoCrPt/
NiAI/MgO/MgO(00)) film is shown in Fig. 1. Except the
strong (002 and (004) peaks no other MgO peaks are ob-
served, indicating that the sputter deposited 80 A thick MgO
layer grows epitaxially on thé01) MgO single crystal sub-
strate. Consequently, th@01) NiAl layer also seems to

(1010)Co//(211)Cr, [0001]Co//[011]Cr.%*3

Recently, Lee, Laughlin, and Lambétireported that NiAl
with a B2 structure(which is a crystallographic derivative

structure of bcca=2.89 A) and an almost identical lattice o )
- grow epitaxially on the001) MgO layer, as inferred from
constant of the bcc Qia=2.88 A) could also be used as an the strong(001) and (002 NiAl peaks in Fig. 1. Epitaxial

underlayer for Co-based hcp magnetic thin film media. In
contrast to Cr underlayers, for which tf@01) texture can be

achieved on preheate@-260 °Q NiP or glass substrates,
4000

attempts to grow(001) textured NiAl underlayers by means R | R T

of substrate heating have so far been unsuccessful. On the - z
other hand, similar to the Cr underlay&rs,(001) textured 3000[. g S
NiAl underlayers grown orf001) textured MgO seed layers g % & |
have been reporteld.However, unlike th&001) Cr on (001) & F < ]
MgO which induces the(1120) texture in the CoCrPt é 2000 = o

layer!® the texture of CoCrPt layer of®01) textured NiAl N s ]
underlayer could not be determined in that study because 100l E

x-ray peaks of the CoCrPt layer were not visible in the26 1
x-ray diffraction spectra. In this letter, we report the results - L J& J L 1
of transmission electron microscogf¥EM) studies of the 0 ‘ I A

25 45 65 85 105

orientation relationship between CoCrPt and NiAl films sput- 20
( degrees )

ter deposited o{001) MgO single crystal substrates. The

FIG. 1. The x-ray diffraction spectrum of the gGrPtg
3E|ectronic mail: diop@andrew.cmu.edu /NiAI/MgO/(00D)MgO film.
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FIG. 2. [001]zone axis electron diffraction pattern of the NiAl/MgO/

(00)MgO layers.

FIG. 3. (a) NiAI[001] zone axis electron diffraction pattern of the CoCrPt/
NiAl bilayer, and (b) simulated [1011]CoCrPt/[001]NiAl, and (1210)
CoCrPt/(100NiAl, or (1210)CoCrPt/(010NiAl, electron diffraction pat-

tern.
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FIG. 4. Directional relationships between those of the CoCrPt/NiAl layers
and those of th€001) MgO substrate.

growth is confirmed by th€001] zone axis electron diffrac-
tion pattern of the NiAI/MgO bilaye(Fig. 2 film. The ori-
entation relationship between the NiAl layer and the MgO
layer is determined to bgé001](001)NiAl//[001](110MgO.
This orientation relationship is the same as that for Cr on
(001) MgO single crystals.It is worth pointing out that no
x-ray peaks of the CoCrPt layer are observed in Fig. 1. Nev-
ertheless, epitaxy between the CoCrPt layer and(@itd)
NiAl layer obviously exists as can be seen from the NiAl
[001] zone axis electron diffraction pattefRig. 3(a)] of the
CoCrPt/NiAl bilayer. The CoCrPt spots in Fig(e® can be
indexed as diffraction spots from th&011] zone axis of two
variants. Figure @) is the simulated1011] CoCrPt (vari-
ants 1 and Z/[001]NiAl electron diffraction pattern. From
Figs. 3a) and 3b), the orientation relationship between the
CoCrPt layer and NiAl layer__can be written as:
[1011]CoCrPt/[O0I]NIAI, and (1210)CoCrPt/(100NiAl
(variant 1, or (1210)CoCrPt/(010NiIAl (variant 2. Using
the NiAl lattice constan=2.89 A as a standard and the
(1210) and (1011) spots in Fig. 8a) the lattice constants of
the hcp CoCrPt film are determined to bhe=2.58 A and
c=4.20 A. Thed-spacing mismatch between the CoCrPt
(1210) plane and the NiAROO plane is 12% and that be-
tween the CoCrP{1012) plane and the NiAROO plane is
6%. In addition, thed spacing and orientation mismatch be-
tween the CoCrPt1101) and (0111) planes and the NiAl
(110 plane is 3.5% and 4.5° respectively. These mis-
matches are comparable with the misma&¥) between the
CoCrPt(1100) plane and the NiA[110) plane and that3%)
between the CoCrR0002 plane and the NiA(110) plane if
the CoCrPt would have grown with ti{&120) plane parallel

to the NiAl (001) plane. The reason why the CoCrPt film
grows with the[1011] direction parallel to the NiA[001]
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2900 S — directions are parallel to Mg®110] and [110] directions,

(a) respectively. It is therefore expected that the in-plane effec-
tive magnetization easy axes of the CoCrPt film are along the
MgO [100] and[010] directions'®'® The measurements of
the in-plane coercivityH., and coercivity squarenesS?,

of the CoCrPt film as a function of the angle between the
MgO [100] direction and the in-plane applied magnetic field
direction are shown in Figs.(& and 5b). It is noted that
besides the major easy axes along the M@Q0] and[010]
directions, as expected, there is a set of secondary easy axes
along the MgQ[110] and[110] directions. This set of sec-
ondary easy axes may arise from the exchange interaction

28004,

2700

Hc (Oe)

26001

2500T

#0020 40 e 0 100 120 140 160 180 within each of the variants or may be due to the imbalance in
Angle from MgO [100] ( degrees ) the fraction of the two crystallographic variants but further

study is needed to elucidate the mechanism.
0.95 (b') o In summary, the orientation relationship between the

CoCrPt film and NiAl underlayer grown 01001) MgO
single-crystal substrates is determined to[ b@11]CoCrPt//
[OOT]NiAl, (1210)CoCrPt/(100NiAl  (variant D, or
(1210)CoCrPt/(010NiIAl (variant 2. The CoCrPt film has
two sets of in-plane magnetization easy axes. The major axes
are along the MgQ100Q] (i.e., NiAl [110]) and[010Q] (i.e.,

NiAl [110] directions and the secondary easy axes are along
the MgO[110] (i.e., NiAl [100]) and[110] (i.e., NiAl [010])

directions.
070 R This work is supported by the DSSC of Carnegie Mellon
0 20 40 60 80 100 120 140 160 180 University under a NSF Grant, No. ECD-8907068. The gov-
Angle from MgO [100] ( degrees ) ernment has certain rights to this material.
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