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Abstract—The theory of deformation twinning is developed and applied to superlattice structures. With
the exception of some hypothetical structures at rather improbable stoichiometric compositions, the
normal b.c.c. or f.c.c. twinning shears always lead to “pseudo modes™ when applied without “shuffles™
to a cubic superlattice. In non-cubic superlattices, however, some variants of the usual disordered mode
correspond to true twins whereas others give pseudo twins. True twins in non-cubic superlattices may have
type . type 11 or “combined™ orientation relations, even though all twinning elements are rational, so
that all twins are “compound™ in the conventional definition. True twins in cubic superlattices may form
{geometrically) by non-shuffle modes of higher shear or by modes requiring some “non-interchange™
shuffling; there is recent experimental evidence for the operation of such a shuffic mode in a B2 superlattice
structure. The paper includes a full discussion of the various true and pseudo twinning modes in all the
cubic and non-cubic superlattices which appear in the Richards and Cahn ground state diagrams. Recent
experimental work has shown that twinning is often an important deformation mode in superlattices; these
experimental results are discussed and shown 1o be in general agreement with the theory.

Résumé—Nous développons la théorie du maclage de déformation et nous I'appliquons aux surstructures.
A l'exception de quelques structures hypothétiques de composition stoechiométrique plutdt improbable,
- les cisaillements de maclage dans les structures cfc ou cc normales conduisent a des “pseudomodes™ quand
on les applique a une surstructure cubique sans introduire de déplacements latéraux. Dans les surstructures
non cubiques, cependant, quelques variantes du mode désordonné usuel correspondent 4 des macles
véritables, alors que d'autres donnent des pseudomacles. Pour les macles véritables dans les surstructures
non cubiques. les relations d’orientation peuvent étre de type . de type II. ou unc combinaison des deux.
meéme si lous les éléments de macle sont rationnels; toutes ces macles sont alors “composées™ suivant la
deéfinition classique. Des macles véritables peuvent étre formées (géométriquement) dans les surstructures
cubiques par des modes sans déplacement a cisaillement plus important, ou par des modes nécessitant
un déplacement sans échange. Des expériences récentes ont montré que ce mode avec déplacement était
actif dans une surstructure B2. Nous présentons dans cet article une discussion compléte des différents
modes de maclage vérilable et de pseudomaclage dans toutes les surstructures cubiques et non cubiques
présentes duns les diagrammes d'états fondamentaux de Richards et Cahn. L'expérience a montré
réccemment que le maclage est souvent un mode de déformation important dans les surstructures; nous
discutons ces résultats expérimentaux et nous montrons qu'ils sont en bon accord avec la théorie.

Zusammenfassung—Es wird die Theorie der Bildung von Verformungszwillingen entwickelt und auf
Ubergitterstrukturen angewendet. Die normale Zwillingsscherung im krz und k{z Gitter [ihrt immer zu
“Pseudomoden™, wenn sic aul kubische Obergitter ohne “Stufung™ angewendet werden; ausgenommen
sind einige hypothetische Strukturen mit ziemlich unwahrscheinlicher stochiometrischer Zusammenset-
zung. Einige Varanten der gewdhnlichen entordneten Mode entsprechen in nichtkubischen Ubergittern
jedoch wahren Zwillingen, wohingegen andere Varianten Pseudozwillinge ergeben. Wahre Zwillinge
kénnen in nichtkubischen Obergittern Orentierungbeziehungen vom Typ I, vom Typ Il oder “kom-
binierte™ aufweisen, auch wenn alle Zwillingselemente rational sind, so daB alle Zwillinge im her-
kommlichen Sinne “zusammengesetzt™ sind. Wahre Zwillinge konnen sich in kubischen Ubergittern
(geometrisch) bilden iiber nicht-gestulte Moden mit hdherer Scherung oder iiber Moden, die eine gewisse
“nicht-wechselwirkende™ Stufung erfordern. Es gibt neuere experimentelle Hinweise darauf, daB einc
solche Stufungsmode in einer B2-Ubergitterstruktur auftritt. Die vorliegende Arbeit enthilt eine voll-
stindige Diskussion der verschiedenen wahren und Pseudo-Zwillingsmoden i allen kubischen und
nichtkubischen Cbergittern, die im den Grundzustandsdiagrammen von Richards und Cahn auftreten.
Neuere Experimente haben gezeigt. duB die Zillingsbildung hiufig eine wichtige Verformungsart in
Ubergittern ist: die Diskussion zeigt. daD diese expenimentellen Ergebnisse mit der Theorie im allgemeinen
ubereinstimmen
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1. INTRODUCTION

Our aim in this paper is to develop and apply the
general theory of the crystallography of deformation
twinning to superlattice structures of both cubic and
non-cubic symmetry, and thereby to remove some
confusion in the existing literature. Most papers have
dealt only with cubic superlattices, and although it
has often been stated or implied that such a super-
lattice cannot be mechanically twinned by utilising
the twinning mode of the disordered b.c.c. or fc.c.
structure on which the superlattice is based, a formal
prool does not appear to have been given. The
original and much cited discussion of Laves [l] is
brief and incomplete, and (R.W.) Cahn and Coll {2]
" and Bolling and Richman [3) considered only partic-
ular examples. The result is implicit in the discussions
of Arunchalam and Sargent [4] and (J.W.) Cahn [5]
but is not explicitly stated. We show in Section 3 that
the statement is valid for all cubic superlattices except
for a very limited class in which the new structure has
the same Bravais lattice and point group symmetry as
the disordered structure.

Most recent papers on deformation twinning in
superlattices distinguish between “true” twinning and
“pseudo” twinning (or between twinning and “twin-
ning™’), both terminologies having been suggested by
Laves [6]. Cahn [5] argues that true twinning is
impossible; he concludes that since there are no truly
purc metals. random solid solutions or stoichiometric
compounds with perfect long range order, “what we
call deformation twinning always entails some struc-
tural and symmetry changes™. Whilst recognising the
purist validity of this statement. we think it self
evident that it is uselul to distinguish the minor
changes due o incomplete order in a superlattice
from the major change caused by a shear which does
not reproduce the structure even in the ideal. per-
fectly ordered superlattice of exact stoichiometric
composition. Thus we distinguish between true twin-
ning and pseudo twinning for ideal superlattice struc-
tures in the belief that this distinction may also be
important in real materials. Pseudo twinning. as has
often been emphasised. is essentially a stress-induced
martensitic transformation; however, it produces (at
least before atomic relaxation is allowed) a structure
which is fully coherent with the parent phase and
which has the same specific volume. We think this
merits a special designation and so we shall continue
to use the term psecudo twin. Although. n principle.
pscudo twinning might arise from various shear
systems, we shall generally be concerned only with
that particular shear mode which corresponds to the
normally observed truc mode of the ideal disordered
lattice. Thus we shall be interested in four main
questions, namely (a) does a particular variant of the
disordered mode give a true twin or a pseudo twin in
the superlattice structure: (b) what are the structures
of any pscudo twins which may be formed: (¢} in the
event that no true twins may be formed by uttlising
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the normal mode of the disordered structure, what
other geometrically possible shears (without shuffles)
arc available to give true twins in the superlattice, and
(d) are there any alternative possible true modes
involving some shuffling? We shall consider all
those superlattices which appear in the ground state
diagrams derived by Richards and (J.W.) Cahn (7]
for the binary b.c.c. and f.c.c. solid solutions. Their
ground states are based on pairwise first and second
near neighbour interactions; de Fontaine [8] has
shown how other assumptions such as those made
by Khachaturyan [9] can lead to exclusion of some
superlattice structures and inclusion of others, but
those in the Richards and Cahn paper include all the
important structures observed in practice.

One further point should be clarified. In a non-
cubic superlattice, it is, in principle, possible to
generate a special type of twinned structure from an
originally disordered single crystal simply by varying
the occupancy of the atom sites. For example, an
originally disordered f.c.c. structure of equiatomic
composition may form a L1, (CuAu I type) super-
lattice by a rearrangement in which alternate atomic
planes of any one of the three sets of {100} fc.c.
planes are occupied entirely by atoms of one species.
If the ordering produces no relaxation in the inter-
atomic distances, different choices of the {100} planes
will produce differently orientated superlattices with
the ¢ axes of the tetragonal L1, structure at 90° to
each other in any two regions. These two superlattices
are then related by any of the four reflection or
rotation relations of the classical theory of twinning.
Clearly, as with all forms of twinning, such a con-
figuration could arise from the growing together of
independently nucleated regions, but Hannson and
Barnes [10] pointed out that deformation twins of
this type are also possible. In the L1, structure, a
deformation twin could be produced by glide of a
dislocation with a f.c.c. Burgers vector of {107}
through each plane of the original f.ce. {101} set
These displacements correspond to homogeneous slip
in the disordered structure and producc a macro-
scopic simple shear of magnitude g = 2. The same
displacements in the (unrelaxed) ordered structure
give the same simplc shear, but now produce a twin
of the superlattice. In practice. the lattice parameters
change slightly on ordering so that the ¢ axis is no
longer equal in length to the original a axes (i.e. the
simple tetragonal L1, cell no longer has its ideal axial
ratio of 2'7); this slightly changes the magnitude of
the twinning shear and the ¢ axes of two twinned
regions are no longer exactly perpendicular to cach
other.

Hannson and Barnes introduced the term “order
twins™ for twins of this special type. and they have
also been called “transformation twins™ [I1], al-
though many authors reserve this latier term for
twins formed dunng martensitic  transformation,
From our exampie of the CuAu [ structure, it is clear
that the displacement 1¢10T) applied across a single
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{101} planc will produce an antiphase domain, so
that an order twin may be regarded as an array of
antiphase domain boundarics, whereas an ordinary
twin is similarly modelled as an array of stacking
faults. Order twinning by deformation may not
appear physically very probable since the slip plane
is not a usual slip planc of the disordered structure,
and the shear is large. However, il interfaces between
order twins exist in any structure, their migration
requires cither toleration of this large shear or re-
ordering by intcratomic interchange (“interchange
shuffling™; scc below). In this paper, we shall not
discuss order twinning further. Deformation twin-
ning, as defined here, thus means modes which give
true twins in the disordered structure, In other words,
there is a change in the spatial arrangement of the
atoms and not just, as in idcal order twins, in the
occupancy of a common set of atom sites.

Many published papers on deformation twinning
in superlattice structures contain statements which
we believe to be erroneous or contradictory. Some
examples are (i) cubic superlattices are unable to form
true twins by deformation, (ii) true twinning is geo-
metrically possible in some cubic superlattices, but
not in others, (iii) twinning (or martensitic trans-
formation) always leads to a lowering of symmetry,
and (iv) atomic shuffles are not permissible in the
deformation twinning of superlattices. In Section 2,
we develop the general theory of deformation twin-
ning in a form suitable for application to super-
lattices, and in Section 3 we apply this theory to cubic
superlattices, deriving the possible true modes of
minimum shear without shuffles and also considering
modes which require some shuffles. For non-cubic
supérlattices, the situation is morc complex; some
vanants of the usual disordered mode will give true
twins when applied (0 the superlattice, whilst others
will not. We discuss in Section 4 the various true
and pseudo modes for all the non-cubic superlattices
in the Richards and Cahn ground state diagram.
The available experimental evidence is discussed in
Section 5.

2. GENERAL THEORY

We specify a deformation twinning mode by the
usual crystallographic elements K,. K,. n,. m,, to-
gether with the plane of shear, S. the shear mag-
nitude, g. and the shuffie parameters ¢ and §. As
defined by Bilby and Crocker [12]. ¢ is the number of
K, lattice planes crossed by a primitive lattice vector
parallel to #,, and ¢ is the number of K, lattice planes
crossed by a primitive lattice vector parallel to n,.
When discussing a particular variant of any mode, we
shall use the Bilby—Crocker sign convention (shown
in Fig. 1 of their paper) in which the angle between
the positive directions of n, and #, 1s obtuse in the
parent crystal. the angles between g, and the positive
normal to A, and between #, and the positive normal
to K| are both acute. and the directions of »,. 1, and
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the positive normal to S form a right handed set. A
mode is usually considered to be of type I, type Il or
compound according to whether (a) K, and n,, (b) K,
and n, or (c) all four clements are rational, and the
value of ¢ or § is then relevant to any further shufiling
of lattice points which may be necessary to complete
the twinning operation. (We do not need, within the
ranges of shear and shuffle magnitude discussed here,
to consider the possibility of “non-classical” modes
(13-15] which may have either three or four irrational
clements.) If g =1 or 2, all lattice points are sheared
into their correct positions for type I or type IV
orientation relations which may be described respect-
ively as a reflection in K, and a rotation of = about
the normal to K|, these two operations being equiv-
alent, for all centrosymmetric structures, and in par-
ticular for lattices. Similarly, all lattice points are
sheared into correct positions for a type Il or type III
orientation relation (a rotation of = about n, and a
reflection in the plane normal to n, respectively) if
G =1 or 2. More generally, a fraction ¢~' (¢ odd) or
2g =" (g even) of the lattice points are sheared into the
correct positions for a type I orientation, and simi-
larly for general values of § and a type II orientation.
The normal twinning modes of the disordered b.c.c.
and fcc. structures are both compound with
¢ = § = 2, and the relative orientations of parent and
twin may be described by any of the four classical
relations which are all equivalent since S is a mirror
plane,

If the direction indices of any vector and the Miller
indices of any plane with respect to the original cubic
axes are written as column and row matrices [« and
(h)° respectively, the corresponding indices referred
to axes defined by a unit cell of the superlattice are
given by

[ul' =J[u)f and (h)=(h)J"'

where J, J™! are 3 x 3 matrices expressing the re-
lation between the two bases, so that the columns of
J=! are the cubic components of the base vectors of
the chosen superlattice cell. The effect of applying to
the superlattice structure the shear corresponding to
any particular variant pair (i.e. a particular variant
and its conjugate) of any deformation twinning mode
of the disordered structure may be examined by
referring the planes and direction of the variant pair
to the superlattice basis and then calculating the
values of ¢ and § from the equations

q = (I"{I{K)n,] g ="K
where the column matrices [#,). [,) and the row
matrices (K,), (K;) are formed from relatively prime
indices in the superlattice basis, and /* and [ are the
so-called “cell factors™ [15]. The value of /" is ] for
body-centred lattices i the direction indices are all
odd, for face-centred lattices if the sum of the direc-
tion indices is even, and for base-centred (or side-
centred) lattices if both direction indices for the axes
defining the centred face are odd and the third index

and
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is even; in all other cases /"= L. Similarly, / =1 for
body-centred lattices if the Miller indices have an odd
sum, for face-centred lattices if the indices are mixed
odd and even, and for base-centred lattices if the two
appropriate indices have an odd sum; otherwise / =1,

For most superlattice structures, the condition that
the lattice points arc sheared dircctly to twin posi-
tions is sufficient to ensure that a true twin is formed.
In such cases, we thus have a pseudo twin if both ¢
and § exceed 2, and a true twin otherwise. (We use
the definition suggested by Laves [6] and Goo et al.
[t6] that a pseudo twin has the atomic sites in
twin positions, but that these sites are incorrectly
occupied.) The true twins may be further classified as
types [/Il (or TI/I} or “combined”. Here I/Il means
the direct variant gives a twin with a type I (or
cquivalently IV) orientation relation, and the con-
jugate gives a type II (or equivalently III) relation,
whilst the combined twin is one for which all four
classical orientations are equivalent. The classi-
fication is similar to the conventional division into
type I, type II and compound twins, but we have
introduced the new term “‘combined™ for the orien-
tation relations since all the twinning modes have
rational crystallographic elements and so are “‘com-
pound” in the strict sense of the usual definition. This
distinction between the orientations and the con-
ventional rules for classification of deformation twins
has been made previously by Rowlands er al. [ 7] who
refer to a “type II, compound mode™,

The Bilby—Crocker rules give the condition for the
absence of atomic shuffiing in the twinning of “'single
lattice™ structures, but when the primitive unit cell
contains more than one atom, consideration has to be
given to “multiple lattice™ [12] or *“structure™ [15]
shuffles. Previous treatments of both lattice and
structure shuffles have analysed the additional dis-
placements necded to carry some of the atoms from
{putatively) wrongly occupied sites in the sheared
crystal to correct sites which in the sheared crystal
are (putatively) unoccupied. Such displacements are
generally through distances appreciably smaller than
an interatomic distance. and shuffling of this kind is
known to take place during the deformation twinning
of many real matenials. It is presumed that the atomic
displacements occur spontaneously at the moving

tIn [15]. the condition for no structure shuffles in type II
twinning is stated to be a motif unit in the plane
perpendicular to n, rather than in K,. This is because
in the conventional analysis of such shears given by
Bilby and Crocker. the lattice points are displaced by
the shear. but the motif units are carried rigidly with the
lattice points. This analysis simplifies the discussion if
the shuffles involve displacements of less than half of an
interatomic distance, but the alternative assumption
that cach atom undergoes an individual shear displace-
ment is more appropriate in the superlattice case. It is
this alternative assumption which leads to the condition
that the motit’ unit must lie in K,. The example
illustrates that the factorisation into shear plus shuffle
15 10 some extent arbitrary.
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interface, so that the scparation into shear and shuffle
components is only a mathematical convenicnce and
docs not imply kinctically separate processes.

Suppose that cach atom is first given the displace-
ment appropriate to the homogeneous simple shear,
i.e. treat the atoms as cmbedded in a sheared con-
tinuum. The structure may be defined by a motifl unit
repeated at each lattice point, and, in general, further
relative displacements of the various atoms within a
motif unit will be required to complete the twinning
operation and restorc the original structure. These
structure shuffles may be avoided, however, if the
motil unit satisfies a restrictive condition which, for
a non-centrosymmetric structure in which S is not a
mirror plane, is different for each of the four possible
orientations of the twin. Thus a type [ or a type III
orientation may be produced by shear without
accompanying shuffling if the motif unit may be
chosen as a planar set of atoms within K, or K,
respectively,f whereas for a type 1 or IV orientation,
itis required that a possible choice of motif is a linear
unit parallel to n, and n, respectively. For centro-
symmetric structures, as already noted, 1V =1 and
Il = II, and either choice of motif will eliminate the
need for shuffles in both cases. If S is a mirror plane,
II=1 and IV =IIl, and shuffles will then be absent
for motif units in X, or K, respectively. The overall
condition for absence of atomic. shuffling may be
obtained by combining the rules for absence of lattice
and structure shuffies. or equivalently by considering
the unit cell defined by #,. 5. and the normal to §
(which is sheared into an equivalent cell) as either
primitive or base-centred (for ¢ odd and even), and
treating all the atoms within this cell as part of
a motif unit which must conform to the above
(structure shuffle) rules.

Use of the above rules enables a decision to be
made about any particular shear which is under
investigation as a potential true twinning mode of a
superlattice. As noted above, however, most of the
shears which we shall consider will produce, without
shuffling, a set of atomic sites corresponding to a true
twin in the disordered structure (or in a pure com-
ponent), and it is only the occupancy of these sites
which determines whether or not a true twin has been
produced in the superlattice. If the occupancy is
incorrect, the necessary shuffles take the form of
atomic interchanges and thus might be compared
with the unit processes in ordering or in atomic
diffusion. It is improbable that such shuffles could
occur sufficiently rapidly to accompany the shear
during deformation twinning, and it is usually tacitly
assumed that they must be excluded: this is indeed the
basis for the proposal that pseudo twins may form in
superlattices subjecied to the twinning shear of the
disordered structure. In order to make this distinction
clearer, we suggest that the term ‘“‘interchange
shuffling™ or “order shuffling”™ might be used for this
particular type of shutfling. Figures 1-3 show how for
the hypothetical case of cubic twinning on a {120}
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Fig. 1. Formation of twin by hypothetical shear on (130)

plane of simple cubic structure. (a) Parent. {b) Twin. (c)

Orientation of parent cell. The perspective view along the

negative normal to S shows the parent unit cell defined by

primitive lattice vectors parallel to 1, #, and the positive

normal to S. This cell is sheared into an equivalent cell, and
no shuffles are required to produce a twin.

plane ‘no shuffics are required for a simple cubic
structure, lattice shuffles are required for a disordered
b.c.c. structure or (equivalent) structure shuffles for a
B2 superlattice, and a combination of lattice, struc-
ture and interchange shuffles are needed to produce
a true twin in the DO, and B32 superlattices. We
shall assume that interchange shuffling is always
forbidden, but in view of recent experimental results
{16] we shall consider the possibility of twinning
modes which require some non-interchange shuffling
in cubic superlattices.

All of the superlattices which appear in the
Richards and Cahn diagrams arc centrosymmetric
and have stoichiometric compositions of type A B.
Moreover, with two exceptions, which will be dis-
cussed individually when they arise, there is only one
formula unit per primitive unit cell so that the lattice
points of the fully ordered structure may be defined
by the complete set of B atoms. Thus in almost all
cascs any shear which gives a true twin in the
disordered structure will also give a true twin in the
superlattice with a tvpe 1 { =1V) orientation provided
the minimum separation of the B atoms along the i,
direction does not cross more than two lattice planes
ol type K, (i.e. atomic A, plines contaning B atoms).
A similar statement applies 1o twins with a type 11
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(=111) orientation if n, and K, arc substituted for n,
and K,, and if both conditions are satisfied all
oricntation relations arc equivalent. The plane of
shear is then a mirror planc of both the disordered
and superlattice structures. In terms of the general
theory, these results arise because the A atoms are at
special points rather than general points of the idcal
superlattice cell, and any relaxation in the atomic
positions on formation of the superlattice is assumed
not to move the atoms off these special positions. In
some cases, this condition is imposed by symmetry;
in others, it may be only approximately true, so that,
in principle, very small shuffle displacements could
also be required.

In summary, the following rules may be applied 1o
any potential twinning mode, as given, for example,
by the various correspondence matrices listed by
Bevis and Crocker [13, 14]. Provided there is only one
B atom per primitive unit cell, the condition that both
disordered and ordered lattices can twin in a given
mode without shuffles automatically incorporates the
absence of structure and interchange shuffles in the
superlattice structure. A possible mode without lat-

Fig. 2. Formation of (I30) twin in b.c.c. or B2 structure, The
successive figures show an analysis of the overall change
from parent to twin into a shear followed by shuflles. The
open and shaded symbols indicate atoms on two successive
planes of shear. and also, in the case of the B2 structure, A
and B atoms respectivels. For both structures. the for-
mation of a twin requires additional refative translations of
the open and shaded atoms. The shuffles shown represent
only one of several possitilities. but in each case there are
no “interchange™ shuffes.
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Table 1. Pseudo twins in cubic superlattices

Dnsordered Twin mode Superlattice Space

structure (Table 2)  Composition structure group 9.4
becc. 22" AB B2 (CsCl type) Pmim | 4.4
be.c. 227 AB B32(NaTl type) Fd3m 2 88
bcc. 2.2" AB D0, (BiF, type) Fmm 2 8,8
fcc. 2.2 A,B LI,(Cu,Au type) PmIm 1 4.4

tice shuffles in the superlattice will require structure
shuffles (but not interchange shuffles) in order to
produce a true twin if the underlying disordered
lattice requires lattice shuffles in that mode. Con-
versely, a true twin cannot be obtained without
interchange shuffies if the superlattice requires a
higher fraction of lattice shuffles than does the dis-
ordered structure. Finally, if both structures require
the same fraction of lattice shuffles, further investi-
gation is required to discover whether any of the
superlattice shuffles are interchange shuffles. The
motif unit must also be examined in cases where there
is more than onc B atom per primitive unit cell.

3. FORMATION OF TRUE AND PSEUDO
TWINS IN CUBIC SUPERLATTICES

Superlattices with cubic symmetry must have the
cube axes parallel to the axes of the disordered cubic
structure from which they are formed, so that the
matrices J and J ~' are necessarily of the form I/t and
¢I respectively where ¢ is an integer and I is the unit
matrix. There are three cubic superlattices of the
b.c.c. structure predicted by Richards and Cahn, and
one of the f.c.c. structure; these are listed in Table |
together with the values of ¢ and § for a shear system
derived from the ordinary twinning mode of the
disordered structure. It will be seen that in each case,
the values of ¢ and § exceed 2 in the superlattice
because of the change in symmetry to simple cubic or
f.c.c. for the b.c.c. superlattices and to simple cubic
for the fc.c. superlattice. Thus it follows that if
interchange shuffles are forbidden, this mode cannot
give a true twin in any cubic superlattice unless it has
the same Bravais lattice and point group symmetry
as the disordered structure. For both b.c.c. and
f.c.c. structures. a superlattice of similar symmetry
could form only at stoichiometric compositions A, B,
AxB. AuB....A,B.. where n =p* — 1. Although
theoretically possible. only very long range and
unusual forms of atomic interaction could stabilise
such superlattices and none of them are predicted
by the Richards and Cahn model which considers
only first and second neighbour interactions. A face-
centred superlattice of this type (Pt,Cu) is discussed
by Khachaturyvan [9].

The result just derived 15 also implicit in the Bevis
and Crocker treatment of twinning [13. 14] which is
a development of the Bilby Crocker approach. In
particular. Table 1 of their second paper shows that

mode 2.2 which represents an their notation  the

observed twinning mode for both the f.c.c. and b.c.c.
disordered structures would correctly shear only one-
half of the lattice points in a simple cubic superlattice
of either structure and only one-quarter of the lattice
points in a f.c.c. superlattice of the b.c.c. structure,
or vice versa. Thus only by preservation of the dis-
ordered lattice symmetry can the ordinary twinning
mode of the disordered structure remain a true mode
of the superlattice.

The results of Bevis and Crocker may also readily
be used to deduce the possible true twinning modes
for the various cubic superlattices. Since the observed
mode for both b.c.c. and f.c.c. structures is that of
minimum shear without shuffles, it follows that a true
mode of the superlattice structure must involve either
a higher shear or some shuffling. We shall consider
the possibility that one-half of the atoms shuffle, but
exclude higher fractions as improbable. The modes of
interest are listed in Table 2 and have ecither been
taken directly from Table | of [14] and Tables 1 and
2 of [18] or have been calculated from Table 2 of [13].
In Table 2, the mode number, denoted m.n, is the
Bevis—Crocker designation, except that, for ease of
description, we have introduced the additional
notation m.n' to mean the “transposed” mode ob-
tained by interchanging K, and n, and K, and #, and
changing the signs of the new K, and #n,. Thus m.n
now designates a mode pair (i.c. a mode and its
conjugate, or reciprocal, mode in which K| is inter-
changed with K, and 5, with », and the sign of S is
changed) and m.nT represents the related mode pair
specified as above. The shuffle parameters m, m, and
my: specify the minimum reciprocal fractions of lattice
sites which are carried directly to twin positions
without shuffles in simple cubic, b.c.c. and fc.c.
lattices respectively.

The modes listed in [13] extended up to shear
magnitudes of 3, (3.5)' * and 1.5 in cases where none,
one-half or three-quarters respectively of the lattice
points in a simple cubic lattice must shuffie to give a
twin; within these limits, we have included in Table
2 all the modes which could occur without shuffles in
either b.c.c. or f.c.c. lattices up to shear magnitude
g = 8'* and the modes in which onc-half of the atoms
must shuffle up to shear magnitude g = 1. Our limits
are chosen to allow us to list at least one non-shuffie
and one 50% shufflc mode for cach superlattice
structure. Bevis er al. [18] have previously listed
modes for b.c.c. lattices with shear limits of 2 and |
for non-shutfle and 30% shutfle conditions respect-
ively. and since they use a ditferent #en designation
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Table 2. Twinning modes in cubic lattices

Mode no. b.c.c. mode no. Shuffle paramecters Onentation
[13, 14] (18] g’ m m, mg relation
42 — i 4 8 2 comb.
427 21 : 4 2 8 comb.
45 22 H 4 2 8 i
4.57 — H 4 8 2 I

22 — ; 2 4 1 comb.
227 L1 3 2 | 4 comb.
23 — H 2 4 2 comb.
237 23 ; 2 2 4 comb.
410 - i 4 B 2 I
4.107 24 ; 4 2 8 n

1.2 — 1 | 2 2 comb.
25 5 1 2 2 2 comb.
2.8 1.2 3 b 1 4 1

287 — : 2 4 1 n

1.3 —_ 2 1 2 1 comb.
1.37 1.3 2 1 1 2 comb.
2.18 - ! 2 4 1 -
2.187 1.4 i 2 1 4 -1
1.9 — 8 1 1 1 comb,
197 - 8 1 | | comb.

(with m = m, of the Bevis and Crocker list), their
notation where relevant is given in the second column
of Table 2. Table | of [14] has previously been used
[4] to predict true twinning modes in cubic super-
lattices but it covers only a selection of modes and
excludes 1.9, 4.2, 4.5 and 4.10 and their conjugates
which appear in our table. Mode 1.5, although
included in [14] as a zero shuffle mode for all three
cubic lattices, is omitted from our Table 2 since it
represents a shear 1o the identity in all cubic lattices
and hence need not be considered further as a twin.
"Such a homogeneous shear could, of course, con-
ceivably occur as a physical deformation and in a
non-cubic superlattice could give an order twin. In
fact, 1.5 is the mode already discussed as an example
of order twinning for the L1, superlattice.

For most of the modes listed in Table 2, the values
of ¢ and g are equal, and the values of m, m, and m;
are then simply g or !¢ for odd and even values of ¢
respectively. For those modes in which ¢ and § are
not equal, the smaller value is used to obtain m. m,
and m, and if shuffles are involved, as in modes 4.5,
4.10, 2.8, 2.18 and their transposes, these minimum
shuffles are obtained with either a type I or a type Il
orientation relation. In principle, the conjugate mode
then has the other type of orientation relation with
the minimum shuffling indicated in the table, but in
the first three of the cases just cited the conjugate
modes do not actually represent twins since either K
is then a mirror plane or 5, is a two-fold axis of the
parent structure. Thus such modes are marked either
as [ or I in the orientation column, whereas modes
such as 2.18 where both the direct mode and its
conjugate represent twins are noted as [-11 or [1-1.
Although there is only one [-I1 mode in Table 2.
we shall find many examples of such modes in the
non-cubic superlituces.

As is clear from the table, if a mode m.n gives only
a type I orientation with minimum shuffles, it follows
that m.nT gives a type Il relation with the same
fraction of shuffles. For example, mode 4.5 gives a
type Il orientation if only half of the atoms shuffle,
and five-sixths of the atoms would have to shuffle to
give a type I relation; the opposite is true of 4.57.
Obviously also it is arbitrary which set of elements
define m.n and m.n" respectively; the labelling in our
Table 2 is based on the correspondence matrices of
Table 2 of [13].

For the B2, DO, and LI, superlattices, a true
twinning mode without shuffles is now predicted if a
| appears in the shuffle columns for both the dis-
ordered and the superlattice symmetries; this is also
a necessary condition for a no-shuffle mode for B32
but further examination is then required since the
primitive unit cell of this structure contains two B
atoms. This gives for the superlattices of the b.c.c.
structure the possible modes 1.37, 1.9 and 1.97 for B2,
and 1.9 and 1.9" for both DO, and B32. In the case
of B32, the two B atoms which share a lattice point
are displaced from each other in a {111} direction,
and, since this is in K, for 1.9 and K, for 1.9, no
additional shuffling is required. The 1.9 modes were
not considered by Arunchalam and Sargent [4] be-
cause they used Table 1 of [4] which cuts off at
g = 5"*; presumably this is why they concluded that
true twinning in DO, is impossible. Similarly, for
the L1, superlattice of the f.c.c. structure, possible
true twinning modes arc 1.3. 1.9 and 1.97; 1.3 is the
mode predicted by Arunchalam and Sargent. Note
that 1.3, 1.37. 1.9 and 1.9" cach represent only one
possible mode since the conjugate mode in each case
has a mirror planc as A, and a two-fold axis as »,.

In view of the large shear magnitudes of these
predicted modes. we now consider the possibility of
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Table 3. Possible true twinning modes in cubic superlattices

(a) Modes without shuffles

Mode no. s K, K, m 's True twin in
1.3 1oy Ty oty [M12) plog 2 L,

1.37 algy (May Moy [T oo} 2 B2

L9 (I10) (T2 (©on [Ty ([Two] 8 B2, B32, DO,, LI,
197 (I1T0) (T (To)y (172} ([oo1] 8 B2, B32, DO,, LI,
(b) Maodes with 50% (non-interchange) shuffles

237 @10y (113 loy 221) fool] B2

1.2 ©o1y (120) (to0) (2101 [oTo] 1 B2, LI,

2.5 ©o1) (T30) (110) [310] (T10] 1 B2, B32, DO,

1.3 (o) Ty ooy (T2} (ifo) 2 B2, B32, DO,

1.37 moy (i) Ty T foo1] 2 L,

true twinning modes in which one-half of the atoms
must undergo (non-interchange) shuffles. Such a
shuffle mode exists if a 2" appears in the “shuffle”
column of Table 2 appropriate to the disordered
structure and a “1™ in that for the superlattice
structure. This indicates that no lattice points (i.e. B
atoms, except for the B32 superlattice) need shuffle,
and hence that the only shuffles are the non-
interchange shuffies of the A atoms. This rule gives
the additional modes 1.2 and 1.3 for the B2 structure,
1.3 for the DO, and B32 structures and 1.2 and 1.37
for the L1, structure; examination of the motif unit
of B32 confirms that no interchange shuffles are
involved in mode 1.3. Figures 2 and 3 illustrate how
mode 1.2 can lead to twinning without interchange
shuffles for B2 but not for D0, and B32. Further
possible modes can occur if there is a 2 in the shuffle
columns of Table 2 for both disordered and ordered
symmetries. This means, however, that some B atoms
must shuffle and it is necessary 10 examine each case
to determine whether or not interchange shuffling is
implied. This can be done by determining the plane
of the motif unit, or (equivalently) whether or not
the minimum lattice vectors in the », and n, directions
are increased in magnitude when the superlattice is
formed. The modes of this type which produce true
twins without interchange shuffles are 2.3T and 2.5
for B2 and 2.5 for DO, and B32, but modes 1.2 for
DO, and B32 and 2.3 and 2.5 for L1, all involve
interchange shuffles.

The predicted true twinning modes are gathered
together in Table 3. Modes without shuffles have
minimum shears of 2'? for B2 and L1, and 8'* for
DO, and B32: modes with 50% shuffles have mini-
mum shears of 2-'° for B2, and unity for the other
three superlattices.

We shall illustrate the true and pseudo twinning
modes mainly by perspective drawings of the
occupancy of the sites in a unit cell defined by lattice
vectors parallel 10 5, and n, and normal to §. As
already illustrated in Figs 1-3, such a cell is sheared
into a new cell of equivalent size and shape. and it is
obvious from the figure whether or not shuffles will
be required to produce a true twin. Figures 4-7 show
the unit cell for cach of the four cubic superlattices
in the pseudo-modes derived from the basic modes of
the b.c.c. and lc.c. structures (2.2' and 2.2 respect-

ively) and in each mode of Table 4 which gives a true
twin without shuffles. Consideration of the shuffie
modes is deferred to the discussion. It is also useful
when considering the non-cubic superlattices derived
from f.c.c. to consider the occupancy of the various
{111y planes which could serve as K, or K; of the 2.2
mode; the {111} planes of the L1, structure have the
configuration shown in Fig. 8(f).

4. FORMATION OF TRUE AND PSEUDO TWINS
IN NON-CUBIC SUPERLATTICES

There are six equivalent conjugate pairs of variants
of the usual b.c.c. and [.c.c. modes, each pair having
a different {110} plane of shear, 5. When the sym-
metry is lowered, these six pairs break up into
non-equivalent smaller groups, some of which are
transformed into true twinning modes of the super-
lattice whilst others are not. Any true superlattice
twinning modes derived in this way are necessarily
no-shuffle modes of minimum shear, and may thus
be expected to be preferred over other possible modes
of higher shear, or of smaller shear but requiring
shuffies. For non-cubic superlattice structures we
shall, therefore, discuss only modes derived from the
basic disordered mode.

There are, in fact no non-cubic superlattices in the
ground state diagram for binary b.c.c. alloys derived
by Richards and Cahn, but there are several non-
cubic superlattices in that for f.c.c. alloys. Exam-
ination of these structures shows that in those of
lowest symmetry (monoclinic) there are four different
types of true or pseudo mode derived from the cubic
modes, so that in order to discuss every case we neced
to list at least four variant pairs of the original cubic
mode. We have chosen the following:

Vanant S K, K, " s
A Loy (M (TN 113 (T2
B (Twoy (11T) 111y [112] (113]
C (ITy iy (Tiny [211) [211)
D (Ton (i (aTn (121 121)

The remaining two variant pairs. E and F with planes
of shear (§) of (011) and (101) respectively will be
cquivalent in all cases 1o one of the modes derived
from A-D.
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(a) (b)
Fap\
Ol
A
n = (111) n, = [001)
111 = [111] nl_n-ﬂ']
S =(110)
S = (110)
{c) (d)

le =[001]}

\
n =[1T1] _/I\1=[Iﬁ]

=(110)

Fig 4 Perspective views of appropriate unit cells defined as above for various shear modes of the B2
structure. (a) Pseudo twins (mode 2.27) (b) True twins (1.37). (¢) True twins (1.9). (d) True twins (1.97).
Svmbols as in Fig. 3.



CHRISTIAN and LAUGHLIN: OVERVIEW NO. 67

(a)
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Fig. 5. Perspective views of appropriate unit cells for shear modes of the B32 structure. (a) Pseudo twins
(2.27). (b) True twins (1.9). (c) True twins (1.9). Symbols as in Fig. 3.

In the disordered structure, primitive vectors
parallel to #, and #n, arc of type 1{(112)° with ¢. § =2
and in most cases, the restriction on ¢ and ¢ in the
superlattice amounts to considering whether or not
these vectors remain as lattice repeat vectors. How-
ever, if some planes of a particular {111} set are
entirely composed of A atoms in the superlatuce
structure, it is possible for the primitive lattice vector
in a (112> dircction which crosses this set o be
increased in magnitude without increasing ¢ Thus,

for example, in the monoclinic structure with com-
position A, B and space-group B2/m discussed below,
alternate (T11) planes are entirely A-atomic plancs,
and are crossed by primitve vectors of the superlattice
which are derived from {{311]. §{T21F and [T12F
respectively. The first two lead to ¢ = 1 modes of the
superlattice whilst the third leads to a ¢ = 2 mode,
but since the corresponding values of ¢ are 4. 4 and
2 only the third mode is “combined™.

An alternative procedure 1s 1o cxamine the
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(b)

(c)

Fig. 6. Perspective views of appropriate unit cells for shear modes of the DO, structure. (a) Pseudo twins
(2.27). (b) True twins (1.9). (¢) True twins (1.97). Symbols as in Fig. 3.

occupancy of the atomic sites in the vanious possible
{110}* planes of shear or in the various {111} planes
which correspond to K, and K,. In the following
discussion, the systematic approach is used for
classification but the occupancy of the relevant planes
1s also shown. The base vectors specified by Richards
and Cahn [7] in their Table 2 are gencrally used to
define the ideal cells of a particular variant of the
superlatuce. but in some cases we have had 1o make

changes in these vectors in order to correct errors or
to conform with crystallographic conventions. For
each superlattice structure, the crystallographic par-
ameters are listed in terms of the superlattice cell for
those of the cubic mode vanant-pairs A-D which
need to be distinguished, and it is indicated whether
the corresponding shear-pair in the superlattice pro-
duces true twins which are combined (cb) or of type
I-type II (1-11 or II-I) or produces pseudo twins (ps).
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N, =[112]

\ - S =(110)

(c) (d)

—
1, ={110]

Fig. 7. Perspective views of appropriate unit cells for shear modes of the L1, structure. (a) Pseudo twins
(2.2). (b) True twins (1.3). (c) True twins (1.97). (d) True twins (1.9). Symbols as in Fig. 3.
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The parameters listed include the values of ¢ and §
which establish these distinctions and the shear mag-
nitude, g, in terms of the superlattice cell parameters.

The shear magnitude calls for some comment. If on
the formation of the superlattice, the atom positions
remain unchanged then g always equals 272 as in the
disordered structure and in the pseudo modes of the
cubic superlattice structures. In practice, however,
the ideal base vectors of a unit cell, defined by Cahn
and Richards in terms of the disordered cell parame-
ter a,, are likely to relax to slightly different, new
values consistent with the symmetry of the new
structure.

Thus for completeness, we list the new value of g
which will depend upon the axial ratio p = c/a for
tetragonal and hexagonal cells, upon ¢ =cos« for
rhombohedral cells, upon p and r =b/a for ortho-
rhombic cells, and upon p, r and ¢ = cos y for mono-
clinic unit cells; in the latter case, we also use s =siny
to simplify the algebraic expressions. The “ideal”
values of these parameters are given in each case, and
the various expressions for g all reduce to 2-'2 when
these ideal values are used.

The various superlattices are all of the form A, B
at stoichiometric compositions and will be considered
in order of increasing n.

(i) Composition AB LI, (CuAdu I type) P4/mmm

The superlattice is simple tetragonal with two
atoms in the primitive cell which has ideal axial ratio
p =2'"?. However, the base vectors given by Richards
and Cahn form a left-handed set if the cubic axes
are right-handed, and to avoid any possible mis-
understanding, the sign of their second vector has
been reversed so that a, is derived from [T10]. The
relevant matrices are then

|
J=|1

10
I
0 0

0 J'=
|

All of the {111}* planes become {101}* planes. Two
{110}° planes of shear become {100} planes and the
associated modes are true, combined modes of the
superlattice; the remaining four {110}° planes become
{112} planes and the associated modes are not true
twinning modes of the superlattice. Details are as
follows:

Cubic var.

) K, K.
A (=B) (100) (011) (0Ll
C(=D.E.Fy (1) o1 (01D

In the combined mode. the atomic planes of shear arc
alternately composed entirely of A atoms and entirely
of B atoms. Each {111}° planc has the configuration
shown in Fig. 8(b). the combined modes are those in

Superlattice mode pair
™

[01T)

[T31]
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which the close-packed rows consisting entirely of B
or A atoms respectively are normal to the plane of
shear and the pseudo modes are those in which the
other (110}° directions are normal to the plane of
shear. Plane of shear projections are shown in Figs
9(a) and 11(a) respectively.

(if) Composition AB L1, (CuPt type) RIm

The structure is rhombohedral but the hexagonal
axes given by Richards and Cahn are incorrect since
their ¢ and a axes are not perpendicular. We retain
[111] as the direction of the ¢ axis, but choose the a
axes of the ideal hexagonal cell as 1[10T] and 1({T10}.
The positive directions of the two a axes are thus at
120°, in accordance with usual crystallographic con-
vention, rather than at 60° as in the axes given by
Richards and Cahn. [Equivalent {A, k, !} planes in the
hexagonal system are, of course, obtained by per-
mutation of the first three axes of the Miller—Bravais
indices {h, k, h + k, I}.] The hexagonal cell contains
six atoms and has ideal axial ratio p = (24)'. It gives
the transformation matrices

4 4
41 8 4
I 11 T

J=

=AY ]

The (111 planes which are entirely occupied by
either A atoms or B atoms become (001)° planes and
the remaining {111}° planes become {102}* planes.
Three of the {110} planes become {110}* planes and
give rise to true (combined) twin modes: the other
three are transformed into {108} planes and do not
generate true modes.

The symmetry of this structure is alternatively
displayed by choosing a rhombohedral unit cell
defined by three equal axes i[211F, }[121F and
Y{L12F. This is a primitive cell containing two atoms
which is characterised by the rhombohedral angle x
where ¢ = cos 2 has the ideal value of {. With this
choice of cell)

13TT l2||
3=5{1 3 1) =5 2 ),
TT 3 1 1 2

The (111) plane now becomes (111)* and the other

4.4 4 Type
for1] 2.2 p—p! cb.

(3T 4.4 YWpP+10p7 =5 ps.

plancs of this type become | 110}*. The true twinning
modes have planes of shear of type {T10}®. und the
pseudo modes of type {332)% The following table
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gives full details of the derived modes in both axis
systems:
Cubic var. Axes Superlattice mode pair
S K, K, " m 9.9 g Type
A(=E,F) H @08 (T12y (012) (8,10,T] ([B21] 4,4 3-'2(3-'2p 4+ 84p *—T)'?
(19 —18c)(1 —¢) "”
_——— 4 .
R (332) (o11) (ToD) [T33) A313] 4,4 [2“ 3120 ] ps
B(=C,D) H (1200 (102) (001) [2T1) [210] 2,1 (12)'2p-!
31 =¢?) n
R Ti0 110 111 001 —_— - .
T10) (110) (1) oo1] (117 2,1 2{1_3c2+2c, l cb

The (111)° planes are alternately pure A and pure
B [Fig. 8(a)] whilst the remaining {111} planes are
of the type shown in Fig. 8(b). The combined modes
are again those in which the close-packed rows are
normal to the plane of shear, which then has the
equiatomic configuration of Fig. 9(b) whilst the
pseudo-modes have the remaining three {110)° direc-
tions normal to the plane of shear which appears as
in Fig. 11(b).

(iii) Composition AB (NbP type) I4,/amd

The structure has eight atoms in the body-centred
tetragonal unit cell which has an ideal axial ratio
p=2. This cell is identical with that of the
DO,;-14/mmm structure considered below in (v), but
the motif unit at each lattice point is here A,B,
instead of AyB. Thus this is one of the two super-
lattice structures on our list with more than one B
atom in the primitive unit cell (the other is the cubic
B32 structure). In the Richards and Cahn ground
state, both this structure and the DOy, structure are
stable for positive ratios in the range 0-0.5 of the
second:first neighbour interaction potentials. There
is then a continuous change with composition, the
structure varying from A;B (I4/mmm) via A,B,
(I4,/amd) to AB, (I4/mmm) as B atoms are
substituted for A atoms; at intermediate (non-
stoichiometric) compositions, the symmetry is side-
centred monoclinic (B2). The cell change is specified
by the matrices given below for DO,;, and the same
four pseudo mode pairs and two true mode pairs are
obtained.

Each {111}° plane has the configuration shown in
Fig. 8(c), and as in Fig. 8(b) there is a single {112)*

vector in the plane which remains a lattice vector on
formation of the superlattice structure. The true

(combined orientation) modes are those in which two
such directions form n, and n,. The planes of shear
in these modes then all contain equal numbers of A
and B atoms, as in Fig. 9(b), but are now stacked in
a four plane sequence [Fig. 9(c)]. The absence of
shuffles is confirmed by the choice of a linear motif
unit along a {021) direction which is contained
within ecither K, or K,. The planes of shear in the
pseudo modes have an eight plane repeat and are
shown in Fig. 11(c).

(iv) Composition A;B. (Pt,Mo type) Immm

The structure is body-centred orthorhombic with
six atoms in the body-centred cell which has ideal
axial ratios of p =3 and r =2'?. The base vectors
given by Richards and Cahn form a left-handed set
if the cubic axes are right-handed, and the sign of
their first vector has thus been reversed so that a* is
derived from {[T10F.

This gives
I330 lT03
J=§003 Jt=5(1 0 3
110 “\0 2 0

Two of the {I11}° planes become {110}* planes and
the other two become {013}% planes. One of the
{110}° planes becomes (001)* and this leads to a true
(combined) twinning mode, another plane becomes
(100)® and the derived mode does not give a true twin.
The remaining four {110}° planes all become planes
of type {123}% and lead to type I-type II true twinning
mode pairs in the superlattice. The characteristics of
these three types are:

Cubic var. Superlattice mode pair

A K, K, m 4.9 g Type
A ooty @10y (Toy [1To] [110] 2,2 r—r ' cb.
B (100) (0T3) (013) [031] ([031] 6,6 GNpir 2+ 81p i — 182 ps.
C(=D.E.F) (173) (013) (110) (931} (Tu] 2.6 {9p *+r +p’r +9p ri-6)7 I-11

Figures 8(d) and (e) show the 1wo types of {111}*
plane in the ordered structure, 1n which the _%a(l 12%¢
vectors become respectively repeat vectors and
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Fig. 8. Atomic configuration of close-packed {111} planes for superlattice structures formed from f.c.c.
B and A atoms are shown by shaded and open symbols respectively. (a) Pure A planes. Such planes are
alternate (111)° of L1,, (TL1)° of monoclinic A,B and (T11)* of A(B. Pure B planes (not shown) are
alternate (111)° of L1,. (b) Equiatomic planes. Al {111}< planes of L1, are of this form, as are also all
planes except (111) of L1, and alternate (T11) plancs of monoclinic A,B. (c¢) Equiatomic planes. All
planes of the NbP (14, famd) superlattice structure have this form. (d) Planes of composition A;B in which
<1125 vectors are also lattice vectors of the superlattice. The (T11)° and (TIT) planes of Pt,Mo are of
this form, as are also alternate (T11)° planes of A,B. () Planes of composition A,B in which there are
no < 112)° vectors which remain lattice vectors of the superlattice. The (111)° and (11T)* planes of Pti,Mo
are of this form. (F) Planes of composition A;B. All {111}* planes of the cubic superlattice L1, are of this
form. (g) Planes of composition A,B. All {I[1}¢ planes of D0., are of this form., as are also (111)° and
(11TY of monoclinic A,B. (h) Planes of composition A,B. The (T!T)‘ planes of monoclinic A; B have this
form. (j) Planes of composition A,B. All planes of Dla are like this. (k) Planes of composition AB
corresponding to the (T1T)° planes of the monoclinic A B superlattice. (I) Plancs of composition A B. The
(111) and (11T planes of the A B superlattice have this form.

1 x repeat vectors of the superlattice. In the combined
twinning mode of the superlattice, both the K, and K,
planes are of the first type, and the (001)° atomic
planes consist entirely of A atoms or B atoms in a
repeating sequence of six planes... BAABAA . ..
[Fig. 9(d)]. If both K, and K, planes are of the second
type. the derived mode is not a superlattice twinning

mode, and the plane of shear projection is shown in
Fig. 11(d). The remaining four mode pairs each have
the first type of {111} planc as the K. plane which
gives a true twin in a type | orientation relation [see
Fig. 10(a)]. or (in the conjugate 10 cach mode listed)
the first type of {111} plane 1s the K| plane, leading
to a tvpe Il orientation relation.
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Fig. 9. Perspective views of true (combined) modes. Symbols as in Fig. 3. (a) L1, structure. (b) LI,
structure. (¢) NbP structure. (d) Pt;Mo structure, (¢} DOy, structure. (f) Monoclinic A,B structure.
(g) Monoclinic AB structure,

Fig. 10. Perspective views of true (I I1) modes. Symbols as in Fig. 3. (a) Pt,Mo structure. (b) Morl_oclinic
A, B structure (shown as type Il mode 1o conform with text). (¢) Dla structure. (d) Monoclinic A,B
structure,
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Fig. Vla d. Caprion on p. 1637
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Fig. 11. Perspective views of pscudo modes. Symbols as in Fig. 3. (a) LI, structure. (b) LI, structure. (c)

NbP structure. (d) Pt;Mo structure. () DO, structure. (f) Monoclinic A, B structure (variant B). (g)

Monoclinic AyB structure (variant D). (h) Dia structure. (j) Monoclinic A¢B structure (variant B). (k)
Monoclinic A;B structure (variant D).

(v) Composition A;B. D0y, (TiAl, type) I4/mmm
The structure is body-centred tetragonal with eight

atoms in the unit cell which has an ideal axial ratio
p = 2. The change is specified by

0 0 2
J-'={1 0 0}
010

All of the {111}* planes become {112}* planes. Two
{110}¢ planes of shear become {110}° planes and the
associated twinning modes change into true (com-
bined) modes of the superlattice; the remaining four
{110} planes become {102}° planes and the associ-
ated superlattice modes are not true twinning modes.
Details are as follows:

Cubic var. Superlattice mode pair

S K, K, " n. 4.4 g . Type
A (=B,D.F) (102) (113) (1T3) [23T} [24T] 8,8 L2p* +80p 1 —20)"2 ps.
C(=E) (a1ey 112y (dH I o[y 2.2 L2p*+8p 18" cb.

In the combined mode, the superlattice planes of
shear are alternately of the equiatomic type [Fig. 9(b)}
and pure A. Each {I11}° plane has the structure
shown in Fig 8(g). The combined modes are those in
which two of the four %{l 12)° vectors (one to each
{111} plane) which remain as repeat vectors of the
superlattice form the n, and n, directions, and the
planes of shear then have a repeating four-plane
sequence (A,.B,.)A(B,,A,,)A [Fig. %e)]. The

Cubic var.

s K K, m 4.4
A (0o (TToy (320 (Ti0] [230] 2.2
B (330) (T01y (101) [434] [454] 8.8
C(=F)y (73 oy (TToy [13T) (113 4.1
D(=E) (330) (10 (3200 [213] [236] &8

planes of shear in the pseudo modes are shown in _
Fig. 11(e).

(vi) Composition A;B. B2{m

The structure is side-centred monoclinic with eight
atoms in the unit cell which has ideal axial ratios
of p=Q27)'2, r =4/(27)'? and an ideal value of
¢ =cosy = 5/(27)'?. The transformation matrices are

00 4 54
J=—f1 T 3} J'=={3 7 1.
3 2

4 40 2 00

Two of the {111} planes become equivalent {101}%
planes and the other two become (110)® and (320)°
respectively. One {110} plane changes into (001)°

and gives rise to a true combined twinning mode,
whilst another changes into (540)° and the derived
mode pair does not then produce true twins in the
superlattice. The remaining four (110)° planes consist
of two equivalent pairs, leading to {341}% and (741)°
planes of shear. The derived modes with {341}%
planes of shear do not correspond to true superlattice
twinning modes. whilst those with {741}* planes of
shear correspond to type Il-type 1 mode pairs.
Details are as follows:

Superlattice mode pair

g Tepe
A+9r7 = 12rc) (L 47 1=2r o) 1P cb.
(16 + 16p° +25r" —d0rc)(p *+ s ) —64]'*  ps.
AN +pi+ari—dre)(l+r T=2r ‘o) T= 1] II-1
A+ 3697+ 97— 12re)(p 45 =641 ps.
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The (T11)° atomic planes consist alternately of the
configurations of Fig. 8(b) and (a) (the latter being
entirely A planes) and become the K| plancs of the
compound mode. The (T1T)* planes are shown in
Fig. 8(h); although they do not contain any {112}
vectors which remain lattice vectors, the (T11)* and
(T1T) planes are nevertheless able to yield a single
combined mode in the superlattice as mentioned
earlier. The other {111}° type planes are equivalent
to those in the D0, superlattice shown in Fig. 8(g);
combinations of these planes with each other or with
the (T1T) planes lead to shear modes which are not
true twins but combinations with the (T11)* planes
give true type [I-type I twins. The plane of shear of
the combined twins is shown in Fig. 9(f), of the type
II-I mode pair in Fig. 10(b) and of the two types of
pseudo mode in Fig. 11(f) and (g).

(vii) Composition A,B Dla (Ni,Mo type) I4/m
The structure is body-centred tetragonal with ten

D (=E) (123) (103) (110) (33T} [1T1] 4,12

atoms in the unit cell at ideal axial ratio p = (2/5)"?
and

I 3T 0 | 3 1 0
J=§ 1 3 0 J71=§ T 30
0 0 5 0 0 2

All of the {111} planes become {211}® planes. Two
of the {110}* planes become {210}5 planes and do not
lead to true twins of the superlattice; the remaining
four {110} planes become {312}® planes and cach
such mode pair becomes a type I-type II mode pair
of the superlattice. Details are

Cubic var.

S K, K, M (s
A (=B) (20 i1y &0 {213 [219)
C(=D.E.F) (131 200 &y [isp [y

All of the {111} planes are of the type shown in
Fig. 8(j) and contain a single lattice vector derived
from ${112)°, whilst the other two vectors of this
type are ! x lattice vectors of the superlattice. The
true type I-type Il twins have n. and 5, respectively
paraliel to the direction in which B atoms are ncarest
to each other, whilst in the pseudo modes both 5, and
n, have lattice repeat distances which are appreciably
larger than in the disordered structure. Projections of
the superlattice structure in the plane of shear are
shown in Figs 10(c) and 11(h).
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(viii) Composition A;8 B2/m

This structure is side-centred monoclinic with
12 atoms in the unit cell which has ideal axial
ratios p=23"?, r=2/3"?, and an ideal value of
¢ =cosy = 1/3'2. The transformation matrices are

0 0 0 6 I I 23
J=E 3 3 3 J_l="2' T 2 3 -
2 20 2 00

Two of the {111} planes become equivalent {103}%
planes and the other two become (110)% and (010)°
respectively. One of the {110}° planes changes into
(001)%, giving a true twinning mode of the super-
lattice, and another becomes (120)°, which does not
give a true twinning mode. The remaining four {110}°
planes consist of two equivalent pairs leading to
{323} and {123}° planes of shear; the former corre-
sponds to a type [-type II mode pair and the latter
gives a pscudo mode. Details are as follows:

Cubic var. Superlattice mode pair

M K, K, m n 4.4 g Type
A 001) (0To) (TTo) (Too] [1To] 1,2 Aqr2=2r"e+ s~ I-1" b
B (T20) (T03) (103) (632] (832) 12,12 ({9p  +s5 {1 + (r¥4) —rc + (p*/9)} —4]'"*  ps.
C(=F) (323) (103) (0T0) [38T) [101] 2,3 H(L+pY)s 24 9p~2—T)'2 1-11

HO +p2 47 = 2rc)Op 2 4+ 57— 162 ps.

In the superlattice structure, the (T11) planes are
alternately pure A and the type shown in Fig. 8(d)
whilst the (T17) planes have the configuration shown
in Fig. 8(k). All of the ${112)* lattice vectors in the
(T11) plane are lattice vectors of the superlattice,
and since one lattice vector of this type in the (TIT)*
plane is also a superlattice vector, the variant pair
utilising these two planes remains as a combined
superlattice mode; the projection of the structure
on the (110)° plane of shear is shown in Fig. 9(g)
and consists of a 6-plane repeat of type...

Superlatiice mode pair

q.4 g Type
10,10 [(25p* + p~* = 10)5]'? ps.
2.10 Wpi+2p =57 I-11

(A,:B,;)AA(B,;A;)AA .... The remaining two
{111} planes both have the configuration shown in
Fig. 8(1) in which there are no lattice vectors derived
from {{112)° vectors. Combinations of these planes
with each other thus give only pseudo modes of the
superlattice; the plane of shear projection is given in
Fig. 11(j). Combination of either of these plancs with
the (T1T) plane also gives a pseudo mode, as shown
in Fig. 11(k). but combination with (TL1)" gives a true
tvpe | tvpe 1 twin, see Fig. 10(d).
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5. DISCUSSION

Slip in a superlattice is usually more difficult than
in the random solid solution since the motion of
lattice dislocations of the disordered structure gener-
ally creates antiphase boundaries in the superlattice,
and perfect dislocations of the superlattice must have
increased Burgers vectors. Twinning is similarly in-
hibited since the normal mode of the disordered
structure frequently leads to the production of a
region of incorrect order when applied to the super-
lattice, and a true twinning mode requires a higher
shear. As we have seen, this applies to all variants of
the normal twinning mode in almost all cubic super-
lattices, but only to some of the variants in a non-
cubic superlattice. In the same way, some variants of
the normal slip system may operate without produc-
ing antiphase boundaries in non-cubic superlattices.

For the B2 and LI, cubic superlattices, the true
twinning modes without shuffles predicted in Table 3
require shears in the opposite sense to the normal
shear of the disordered structure and of twice the
normal magnitude. True twinning of the D0, and B32
structure requires shears in the same sense as the
normal mode but of four times the normal mag-
nitude. The available experimental evidence on
deformation twinning in general indicates a strong
preference for modes of low shear combined with
simple (where possible, zero) shuffles, and it might be
expected that the atomic displacements required to
produce the twins of Table 3 will not readily take
place. In fact, the only mode in part {(a) of Table 3
for which there is any experimental evidence is the 1.3
mode for the LI, structure.

Deformation twinning has been observed in both
copper-gold alloys and nickel-based superalloys
containing phases with the L1, structure. Mikkola
and (J.B.) Cohen [19] found twins in shock-loaded
specimens of both disordered and ordered Cu;Au,
and neither electron diffraction photographs nor
measurements of diffuse X-ray scattering revealed the
additional peaks expected if the twins in the ordered
structure were in fact pseudo twins. Rather similar

indirect cvidence of the operation of a true twinning .

mode (presumably 1.3) has been reported for nickel
superalloys by Guimier and Strudel [20] and by
Kear er al. [21, 22]. The superalloys contain coherent
precipitates of the y’ Ni,(Al, Ti) phase in a solid
solution (7) matrix and the microtwins appear to be
continuous across the y—* boundaries. Chakraborty
and Starke [23] found that for imperfectly ordered
Cu;Au crystals deformed in compression the twin-
ning stress first falls slightly with increasing order and
then rises steeply as the order approaches 100%.
These twins were believed to form in the normal f.c.c.
mode. the initial decrease in stress being ascribed to
a decrease in stacking fault energy with order. and the
sharp increasc to the higher energy of the product of
the pseudo mode in specimens with relatively high
degrees of order. In these compression specimens,
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twinning was only observed after some plastic defor-
mation by slip, so that even initially fully ordered
crystals were somewhat disordered when twinning
began. However, some tensile specimens twinned in
the ecarly stages of deformation at relatively low
stresses, and the authors interpret this as evidence
that the 1.3 mode was operating in the fully ordered
crystals, the decrease in stress again being attributed
to the effect of the order on stacking fault energy.

All of these results thus indicate some probability
that fully ordered L1, structures may form true
deformation twins, but the evidence is not complete
and in particular there is no experimental con-
firmation of the shear magnitude. Measurements of
the tilt produced on pre-polished surfaces or of
the deviation of marker lines are required but are
obviously very difficult since the twins observed are
usually very narrow. The twin habit planc does
appear always to be {111} in cases where it has been
determined, and this would be expected since the only
alternative in Table 3 is a shuffle mode with quite a
high shear.

Many authors have discussed the possibility of
twinning of the B2 structure by the mode 1.3 but, to
our knowledge, no experimental evidence for this
mode has been obtained. Pseudo twinning, however,
is well established in iron—beryllium alloys [3, 24].
The alloys with up to 25 at.% beryllium were origi-
nally thought to have ordered structures based on
DO, but were later shown to have modulated struc-
tures consisting of the primary solid solution and an
ordered B2 phase. The pseudo twinning produces a
well-studied superelastic effect, and the structure of a
pseudo twin was confirmed as side-centred ortho-
rhombic {24]. As may be seen from Fig. 4(a), this
structure is obtained if alternate planes of a single
{110} set are occupied solely by A atoms and B atoms
respectively. (It is occasionally wrongly reported
[2, 16] that this structure is tetragonal because the a
and b axes are of equal length in the ideal (unrelaxed)
unit cell.) Rather similar but less complete results
have been obtained with iron-aluminium alloys var-
iously reported to have either the B2 or D0, structure.
Cahn and Coll (2] found that alloys with imperfect
long range order (less than 50%) form pseudo twins,
but that twinning is suppressed at higher degrees of
order. Guedo and Rieu [25] obtained visual evidence
of twinning and, on unloading, of subsequent de-
twinning for some alloys with B2 structures, but
superelasticity was only observed in alloys with DO,
structures and there was then no visible twinning.
The superelasticity was provisionally ascribed to the
formation and removal of very small pseudo twins,
but in a later paper [26] from the same laboratory,
superelastic effects in iron-aluminium alloys were
attributed largely to dislocation interactions.

Very recently, some experimental evidence for de-
formation twinning of the B2 structure using the
shufflc mode 2.3" of Table 3 has been obtained for
titanium-nickel and titanium-iron-nickel alloys [16).
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A possible complication is that the specimens
twinned most readily when cycled through the mar-
tensitic transformation under stress, so that some
form of transformation twinning may have been
involved. Nevertheless, both pseudo twins and true
twins with the {114} habit of mode 2.37 were also
observed in stressed single phase specimens. Figure
12 shows possible shuffle mechanisms in which one-
half of the atoms move relatively to the others
through a distance a/2 in a {100)° direction; compare
with the hypothetical mode 1.2 twinning of Fig. 2.
The atoms which must shuffle are alternately A and
B on successive planes of shear and are contained in
alternate K, ({110} type) planes normal to the plane
. of shear. Goo et al. [16] suggest that these atoms are
all displaced in the same direction [Fig. 12(c) iJ;
alternative possibilities in which the atoms move in
opposite directions in successive K, shuffle planes or
in successive rows of one shuffie plane are shown in
(ii) and (iii). Goo et al. also link their suggestion to
an interface model by assuming that the net dis-
placement will be away from the interface, giving
effectively rows of vacancies on the twin side of the
interface, and they further assume that this applies at
both interfaces of a thin enclosed twin, thus requiring
a very small increase of volume, However, the struc-
ture of the twin interface cannot be settled by consid-
ering only possible shuffle and shear displacements
since a lower energy might correspond to an atomic
configuration in which the two crystals are given an
additional relative translation.

Examination of the results for non-cubic super-
lattices shows that only one of the six variant pairs

.is a pseudo mode for the orthorhombic (Pt,Mo)
superlattice, whereas there are three pseudo modes in
the two monoclinic structures and in the rhom-
bohedral (L1,) structure. The remaining four super-
lattices are tetragonal; three of them have four
pscudo modes, but the Ni, Mo structure has only two.
Thus we might expect twinning to be most inhibited
in tetragonal structures and least in orthorhombic
structures.

Experimental results appear to have been reported
for the Llg, P;Mo, DO, and Dla structures.
Krasevec er al. [27] found that the NiMn phase with
the L1, structure deforms by twinning on {I11}¢
planes, and that the structure is unchanged by this
twinning, which was presumably confined to the
true. combined modes. The many results on the
deformation behaviour of the CuAu | superlattice
are complicated by the fact that the microstructure
usually contains a large number of {101} type order
twins [10. 28-30] and the propagation of dislocations
or dcformation twins across these boundaries has
to be considered. Contrary to the conclusions of
Svutkina and Yakovleva [29]. Pashley er al. [30)
found that {111} wwinning is very important in the
deformation of this superlattice, and they speculate
thiat the structure may be changed in some of the
twins. Some electron diffraction evidence was ob-

CHRISTIAN and LAUGHLIN: OVERVIEW NO., 67

tained in support of the hypothesis that pseudo twins
are formed, although the authors are properly
cautious about claiming that this has been estab-
lished. Their conclusion “‘should this be confirmed, it
represents an unusual (and novel) observation of a
structure created solely by mechanical deformation™
is interesting in showing that the concept of stress-
induced phase transformation has not been widely
recognised until recently (and indeed may still
be unfamiliar) except to specialists in martensitic
transformations.

The most complete investigation of twinning in a
L1, structure to date was made by Schectman er al,
[31] for an equiatomic titanium-aluminium alloy.
They identified the specific variants of the {111}
{112)* twins which were formed during deformation,
and showed that these were the variants which lead
to true (combined) twins. [The variants they list
correspond to the two true mode pairs in 4(i) above.]
Finally, and very importantly, they were able to
measure the shear magnitude in the deformation
twins and this was found to be 2'2 as expected from
the 2.2 mode. Thus it appears that in TiAl under
the conditions investigated, only true twinning is
observed.

Hansson and Barnes [10] first pointed out that the
structure produced by pseudo twinning of L1, has a
single set of {111} planes alternately occupied by A
and B atoms and hence is effectively that of L1, (CuPt
type), and this was also recognised by Pashley e al.
It follows that the reverse is also true; the pseudo
mode of L1, gives the L1, structure and these re-
lations can be seen by comparing Fig. 11(a) and (b).
The number of predicted variants which correspond
to these transitions is interesting. According to the
table in Section 4(i), there are four variant pairs
which give pseudo modes of L1, and these corre-
spond 1o the four possible orientations of the unique
axis of L1,. On the other hand, there are only three
variant pairs which give pseudo modes for a given L1,
orientation [see 4(ii)], and these correspond to the
three possible orientations of the ¢ axis in the re-
sulting L1, structure. This example also shows why
statement (iii) at the end of Section 1 is misleading.
Although a general shear always leads to a lowering
of symmetry corresponding to a sub-group of the
original structure and the shear, Cahn [5] points
out that super-groups may form at special values of
the shear magnitude, thus effectively increasing the
symmetry.

Deformation twinning has also been reported for
three other of the non-cubic superlattice structures
considered in Section 4, namely Pt,Mo type, DO,
and Dla. An orthorhombic Pt;Mo type superlattice
forms in certain nickel-molybdenum-chromium
alloys (known commercially as Hastelloy alloys S.
C-4 and C-276) and Tawancy [32] found deformation
10 be largely by twinning. The twinning shear was not
measured and it 15 also not clear whether there was
any preference for combined, type I or type I twins.
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Fig. 12. To illustrate {114} (2.37) shuffile mode in B2 structure. Symbols as in Fig. 3. (a) Parent structure.
(b) Sheared structure. (c) (i), (ii) and (iii) show alternative possible shuffles. (d) (Combined orientation)
twin,

The author notes, in agreement with the table in 4(iv),
that only two of the 12 normal twinning systems are
unfavourable in the superlattice, and he speculates
that this is why twinning is preferred to slip.
Vanderschaere and Sarrazin [33] studied defor-
mation twinning in a Ni;V alloy with the DO,
structure. By careful dark field microscopy, they
demonstrated that the twinned regions of the de-
formed alloy had the same crystal structure as the
untwinned regions. In an interesting discussion, they
consider the possibility of twinning produced by
partial dislocations of type }{112) or {112} of the
disordered structure, corresponding to modes derived
from the usual cubic mode 2.2 and the “anti-mode™
1.3. The majority of the twins were stopped at
antiphase boundaries and examination of the Burgers
vectors of the twinning dislocations confirmed that
these were of the types required to produce true twins
either according to our table in 4(iv), or by twice
the opposite shear (i.e. the true twin derived from
mode 1.3). The stacking relations discussed by
Vanderschaere and Sarrazin can be inferred from our
figures; Fig. 1 of their paper corresponds to Fig. 8(g}
and the six plane stacking of the {111} planes (K, and
K.) can be scen in Fig. 1l{c). In the normal mode
pscudo twin, this becomes a 12 plane stacking of K,
and in the alternative pseudo twin with the opposite

shear of 2'2, it becomes a three plane stacking, as also
can be seen from Fig. 11(e). Some of the twins were
observed to be continuous across antiphase bound-
aries, and the authors speculate that these involve still
larger twinning dislocations of type #(112), in order
that no faults are produced. This formally implies a
twin derived from mode 1.9 with a shear of 8" which
seems very improbable.

Finally, Nesbit and Laughlin [34] have investigated
slip and deformation twinning in the Dla structure of
a fully ordered Ni,Mo alloy. Superdislocations were
not observed, but wide intrinsic stacking faults and
deformation twins were a pronounced feature of the
deformation. The results were interpreted as indi-
cating that the faults were of low energy produced by
the passage of Shockley partials which do not change
the number of each kind of first neighbour atom
pairs, and that the twins were true twins which may
be regarded as an assembly of such faults, but no
direct evidence for this or for the shear magnitude
was obtained. In discussing the twinning mechanism,
n, is chosen in the ¢T2T) direction in which the Mo
atoms are closest together [Fig. 8(j)] and the orien-
tation relation is described as a reflection in the
twinning plane and the (127) plane. In fact, as our
table in 4(vii) shows, this choice of n, leads to a type
11 orientation relation, but it is equally possible by a
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different choice of n, to obtain true twins with a lype
I relation.

There is no work of which we are aware on
twinning in the remaining non-cubic structures con-
sidered above, and indeed there do not appear to be
any known examples of the two monoclinic super-
lattices. However, the copper-platinum system dis-
plays a wide range of ordering reactions, and it would
be interesting to investigate further the early sug-
gestion [35] that at the composition Pt,Cu, a cubic
superlattice with symmetry FmIm forms, as pre-
dicted and illustrated by Khachaturyan [9, 36]. This
structure which is also reported for Ca,Ge [37]
should be able, in principle, to form true twins
without shuffles in all variants of the usual f.c.c.
mode.

We note, in conclusion, that there are many inter-
metallic compounds with structures which are not
obtained by ordering and some of these are known to
undergo deformation twinning. In general, true twin-
ning in these structures will require atomic shuffling
so that the tendency to avoid shuffling of the lattice
points is no longer so important in the choice of
twinning mode. An interesting example is the tetra-
gonal compound Cu,Sb recently studied by Paxton
and Entwisle [38].

6. CONCLUSIONS

. With rarc exceptions, cubic superlattice struc-
tures cannot form true twins in modes derived from
those of the disordered b.c.c. or f.c.c. structures.

2. True twins without shuffles can always be
formed (geometrically) by choosing a mode of
higher shear magnitude, but many such modes are
implausible. There is some indirect evidence for the
formation of true twins in LI, in this way. but
the B2 structure either forms pseudo twins or true
twins in a new mode which requires atomic (but not
displacement) shuffies.

3. Non-cubic superlattices may. in principle, form
pscudo twins in some variants of the usual disordered
mode and true twins in others. There is good experi-
mental evidence for the formation of true twins in
several of these structures.
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