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Abstract

The dominant theories of rational decision mak-
ing assume what we will call logical omniscience.
That is, they assume that when facing a decision
problem, an agent can perform all relevant com-
putations and determine the truth value of all rel-
evant logical/mathematical claims. This assump-
tion is unrealistic when, for example, we offer
bets on remote digits of π or Goldbach’s conjec-
ture; or when an agent faces a computationally
intractable planning problem. Furthermore, the
assumption of logical omniscience creates con-
tradictions in cases where the environment can
contain descriptions of the agent itself. Impor-
tantly, strategic interactions as studied in game
theory are decision problems in which a rational
agent is predicted by its environment (the other
players). In this paper, we develop a theory of
rational decision making that does not assume
logical omniscience. We consider agents who re-
peatedly face decision problems (including ones
like betting on Goldbach’s conjecture or games
against other agents). The main contribution of
this paper is to provide a sensible theory of ra-
tionality for such agents. Roughly, we require
that a boundedly rational inductive agent tests
each efficiently computable hypothesis infinitely
often and follows those hypotheses that keep their
promises of high rewards. We then prove that
agents that are rational in this sense have other
desirable properties. For example, they learn to
value random and pseudo-random lotteries at their
expected reward. Finally, we consider strategic in-
teractions between different agents and show that
under suitable independence assumptions, bound-
edly rational inductive agents can converge only
to playing a Nash equilibrium against each other.
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1. Introduction
The dominant theories of rational decision making – in
particular Bayesian theories – assume logical omniscience,
i.e., that rational agents can determine the truth value of
any relevant logical statement. In some types of decision
problems, this prevents one from deriving any recommenda-
tion from these theories, which is unsatisfactory. For one,
there are problems in which computing an optimal choice is
simply computationally intractable (Section 3.1). For exam-
ple, many planning problems are intractable. Second, the
assumption of logical omniscience creates contradictions
(resembling classic paradoxes of self reference, such as the
liar’s paradox) if the environment is allowed to contain ref-
erences to the agent itself (Section 3.2). These issues arise
most naturally when multiple rational agents interact and
reason about one another.

Drawing on ideas by Garrabrant et al. (2016), this paper
develops a novel theory of boundedly rational inductive
agents (BRIAs) that does not assume logical omniscience
and yields sensible recommendations in problems such as
the ones described above. Rather than describing how an
agent should deal with an individual decision, the theory
considers how an agent learns to choose on a sequence of
different decision problems. We describe the setting in more
detail in Section 2.

The core of our theory is a normative rationality criterion
for such learning agents. Roughly, the criterion requires that
a boundedly rational inductive agent test each efficiently
computable hypothesis (or more generally each hypothesis
in some class) infinitely often and follows those hypotheses
that keep their promises of high rewards. We describe the
criterion in detail in Section 4. Importantly, the criterion
can be satisfied by computationally bounded agents, as we
show in Section 5.

We demonstrate the appeal of our criterion by showing that
it implies various desirable and general behavioral patterns.
In Section 6.1, we show that on sequences of decision prob-
lems in which one available option guarantees a payoff of
at least l, BRIAs learn to obtain a reward of at least l. Thus,
in particular, they avoid Dutch books (in the limit). In Sec-
tions 6.2 and 6.3, we show that similarly on sequences of
decision problems in which one available option pays off
truly or algorithmically randomly with mean µ, BRIAs learn
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to obtain a reward of at least µ. Finally, we consider deci-
sion problems in which one BRIA plays a strategic game
against another BRIA. We show that under suitable inde-
pendence assumptions, if BRIAs converge to some strategy
profile, that strategy profile must be a Nash equilibrium.
Related work is discussed in Section 8. Throughout this
paper, we describe the key ideas for our proofs in the main
text. Detailed proofs are given in Appendix A.

2. Setting
We study a very general form of what has been called a
contextual multi-armed bandit problem (see Section 8 for
a discussion of that literature). Let T be some language
describing available options. A decision problem DP ∈
Fin(T ) is a finite set of options. In this paper, we will often
consider specific and somewhat unusual types of decision
problems as examples, in particular ones where options are
terms in some mathematical logic. However, our theory
applies at least as well to more traditional, partly empirical
decision problems. For example, one could imagine that
each option describes a particular medical treatment and that
the agent has to select one of the treatments for a particular
patient.

A decision problem sequence consists of a sequence of de-
cision problems DP1,DP2, ... along with a sequence D̄ of
functions Dt : DPt ⇝ [0, 1] that at each time t resolve the
decision problem DPt by (potentially non-deterministically)
assigning a reward to each of the options in DPt. We also
allow the DPt and Dt to depend on the history in arbitrary
(including adversarial) ways. They need not be drawn from
some fixed distribution or the like.

At each time t, an agent chooses from DPt. The agent
receives feedback about its choice. We assume that at the
very least the agent is informed of Dt(ct), its reward for
its choice in this round, though other information may also
be revealed at time t. We focus on learning myopically
optimal behavior. That is, we want our agent to learn to
choose whatever gives the highest reward for the present
decision problem, regardless of what consequences that has
for future decision problems.

3. Computational constraints and paradoxes
of self-reference

In this paper, our goal is to develop a theory that describes
how a rational agent for this problem should learn to choose.
The standard theory for rational decision making under
uncertainty is Bayesian decision theory (BDT) (Savage,
1954; Jeffrey, 1965; for overviews, see, e.g., Peterson, 2009;
Steele & Stefánsson, 2016). The main ideas of this paper are
motivated by a specific shortcoming of BDT: the assumption
that the agent who is subject to BDT’s recommendations

is logically omniscient and in particular not limited by any
computational constraints. We aim to develop a theory that
can give recommendations for computationally bounded
agents. In the following, we give two different kinds of
examples to illustrate the role of logical omniscience in
Bayesian decision theory and motivate our search for an
alternative theory.

3.1. Mere intractability

The first problem with BDT is that in most realistic choice
problems, it is hopelessly intractable to follow BDT. Full
Bayesian updating or Bayes-optimal decision making are
themselves only feasible if the environment is small or
highly structured (Savage, 1954, Sections 2.5, 5.5; Cooper,
1990; Chatterjee et al., 2016). Note that even if the agent
automatically had a perfectly accurate world model, then de-
termining the optimal choice may require an agent to solve
a variety of computationally hard problems, such as the
travelling salesman problem, planning in 2-player competi-
tive games (e.g., Even & Tarjan, 1976; Schaefer, 1978), etc.
Optimal choice may also rely on whether particular mathe-
matical claims are true, e.g., when assessing the safety of
particular cryptographic codes. In all these problems, BDT
simply requires the agent to perfectly solve the problem at
hand. However, we would like a theory of rational choice
that is able to make recommendations for realistic, bounded
agents who can only solve such problems approximately.

For illustration, we now give an example of a decision prob-
lem in which BDT has little to say to a computationally
bounded agent but in which it is especially clear what rec-
ommendation we would expect from such a theory. Con-
sider a decision problem DP = {a1, a2}, where the agent
knows that option a1 pays off the value of the 10100-th digit
of the binary representation of π. Option a2 pays off 0.6
with certainty. All that Bayesian decision theory has to say
about this problem is that one should calculate the 10100-
th digit of π – if it is 1, choose a1; otherwise choose a2.
Unfortunately, calculating the 10100-th digit of π is likely
too difficult for any real-world agent.1 Hence, Bayesian
decision theory does not have any recommendations for this
problem for realistic reasoners. At the same time, we have
the strong normative intuition that – if digits of π indeed
cannot be predicted better than random under computational
limitations – it is rational to take a2. We would like our
theory to make sense of that intuition.

We close this section with a note on what we can expect

1Remote digits of π are a canonical example in the literature on
bounded rationality and logical uncertainty (see Savage, 1967, for
an early usage). To the knowledge of the authors it is not known
whether the n-th digit of π can be guessed better than random in
less than O(n) time. For a general, statistical discussion of the
randomness of digits of π, see Marsaglia (2005).
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from a theory about rational decision making under compu-
tational bounds. A naı̈ve hope might be that such a theory
could tell us how to optimally use some amount of com-
pute (say, 10 hours on a particular computer system) to
approximately solve any given problem (cf. our discussion
in Section 8 of Russell et al.’s (1991; 1993; 1995) work on
bounded optimality); or it might tell us at what odds to bet
on Goldbach’s conjecture with our colleagues. In this paper,
we do not provide such a theory and such a theory cannot
exist.2 We must settle for a more modest goal. Since our
agents face decision problems repeatedly, our rationality
requirement will be that the agent learns to approximately
solve these problems optimally in the limit. For example,
if digits of π are pseudo-random in the relevant sense, then
a rational agent must converge to betting 50-50 on remote
binary digits of π. But it need not bet 50-50 out-of-the-box.

3.2. Paradoxes of self-reference, strategic interactions,
and counterfactuals

A second problem with BDT and logical omniscience more
generally is that the approach of choosing based on a log-
ically omniscient belief system breaks if the values of dif-
ferent options depend on what the agent chooses. As an
example, consider the following decision problem, which
we will call the Simplified Adversarial Offer (after a deci-
sion problem introduced by Oesterheld & Conitzer, 2021).
Formally, for any agent c (which, for concreteness, one
may imagine is implemented by some computer program),
let SAOc = {a0, a1} be the decision problem where a0 is
known to pay off 1/2 with certainty, and a1 is known to pay
off 1 if (the program implementing) c chooses a0 in this
problem, and 0 otherwise. That is, the reward for a1 is 1 if
and only if c does not choose a1. Now assume for contra-
diction that c (deterministically) makes the optimal choice
given a logically omniscient belief system. Then the agent
knows the value of each of the options. This also means
that it knows whether it will select a0 or a1. But given this
knowledge, c selects a different option than what the belief
system predicts. This is a contradiction. Hence, there exists
no policy (that can be described in T and resolved by D̄)
that complies with standard BDT in this problem. Compare
the examples of Oesterheld & Conitzer (2021) and Spencer
(2021); also see Demski & Garrabrant (2020, Sect. 2.1) for
a discussion of another, subtler issue that arises from logical
omniscience and introspection.

2For example, Blum’s (1967) speedup theorem states, roughly,
that there is a decision problem such that for every algorithm
solving that decision problem, there exists another, much faster
algorithm solving that decision problem. Also, by, e.g., Rice’s the-
orem, it is not even decidable, for a given computational problem,
whether it can be solved within some given computational con-
straints. Also see Hutter (2005, Section 7.1) for some discussion,
including a positive result, i.e., an algorithm that is in some sense
optimal for all well-defined computational problems.

We are particularly interested in problems in which such
failure modes apply. SAO is an extreme and unrealistic
example, selected to be simple and illustrative. However,
strategic interactions between different rational agents share
the ingredients of this problem: Agent 1 is thinking about
what agent 2 is choosing, thereby creating a kind of refer-
ence to agent 2 in agent 2’s environment. We might even
imagine that two AI players know each others’ exact source
code (cf. Rubinstein, 1998, Sect. 10.4; Tennenholtz, 2004;
van der Hoek et al., 2013; Barasz et al., 2014; Critch, 2016;
Oesterheld, 2019). Further, it may be in agent 2’s interest to
prove wrong whatever agent 1 believes about agent 2. For a
closely related discussion of issues of bounded rationality
and the foundations of game theory, see Binmore (1987) and
references therein (cf. Rubinstein, 1998, Ch. 10; Demski &
Garrabrant, 2020, Sect. 3.2).

4. The rationality criterion
In this section, we describe our novel rationality require-
ment, which is the main contribution of this paper.

4.1. Preliminary definitions

An agent α chooses at each time t based on past experience
one of the available options αc

t ∈ DPt and moreover pro-
vides an estimate αe

t ∈ [0, 1]. It is helpful to imagine an
agent to be a function that maps any record of past experi-
ence – which always must contain at least the rewards obtain
from past choices – onto a decision and any given decision
problem onto a choice and estimate. However, throughout
this paper we will generally only consider the behavior of
an agent in a single (though often generic) decision prob-
lem sequence. Hence (in line with the multi-armed bandit
literature) we leave function application implicit in writing
αc
t and αe

t . Moreover, we will often identify the agent with
the sequence ᾱ = (αc

t , α
e
t )t∈N. For example, let SAOα,t be

the Simplified Adversarial Offer for the agent at time t as
described in Section 3.2. Then we might like an agent who
learns to choose αc

t = a0 (which pays 1/2 with certainty)
and estimate αe

t = 1/2.

A hypothesis h has the same type signature as an agent.
When talking about hypotheses, we will often refer to the
values of he

t as promises and to the values of hc
t as recom-

mendations.

Our rationality criterion will be relative to a particular set of
hypotheses H. In principle, H could be any set of hypothe-
ses, e.g., all computable ones, all three-layer neural nets, all
8MB computer programs, etc. Generally, H should contain
any hypothesis (i.e., any hypothesis about how the agent
should act) that the agent is willing to consider, similar to
the support of the prior in Bayesian theories of learning.
Following Garrabrant et al. (2016), we will often let H be
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the set of functions computable in O(g(t)) time, where g is
a non-decreasing function. We will call these hypotheses
efficiently computable (e.c.). Note that not all time complex-
ity classes can be written as O(g(t)). For example, P (the
set of functions computable in polynomial time) cannot be
written in such a way. This simplified set is used to keep
notation simple. Our results generalize to more general
computational complexity classes.

4.2. No overestimation

We now describe the first part of our rationality requirement,
which is that the estimates should not be systematically
above what the agent actually obtains. The criterion itself is
straightforward, but its significance will only become clear
in the context of the hypothesis coverage criterion of the
next section.
Definition 4.1. For T ∈ N, we call LT (ᾱ, D̄) :=∑T

t=1 α
e
t − Dt(α

c
t) the cumulative overestimation of an

agent ᾱ on D̄.
Definition 4.2. We say ᾱ for D̄ does not overestimate (on
average in the limit) if LT (ᾱ, D̄)/T ≤ 0 as T →∞.

In other words, for all ϵ > 0, there should be a time t such
that for all T > t, LT (ᾱ, D̄)/T ≤ ϵ. Note that the per-
round overestimation of boundedly rational inductive agents
as defined below will usually but need not always converge
to 0; it can be negative in the limit.

4.3. Covering hypotheses

We now come to our second requirement, which specifies
how the agent ᾱ relates to the hypotheses in H.
Definition 4.3. We say that h̄ outpromises ᾱ or that ᾱ rejects
h̄ at time t if he

t > αe
t .

We distinguish two kinds of hypotheses: First, there are
hypotheses that promise higher rewards than ᾱe in only
finitely many rounds. For example, this will be the case for
hypotheses that ᾱ trusts and takes into account when choos-
ing and estimating. Also, this could include hypotheses
who recommend an inferior option with an accurate esti-
mate, e.g., hypotheses that recommend “1/3” and promise
1/3 in {“1/3”, “2/3”}. For all of these hypotheses, we do not
require anything of ᾱ. In particular, ᾱ need not test these
hypotheses.

Second, some hypotheses do infinitely often outpromise
ᾱe. For these cases, we will require our boundedly ratio-
nal inductive agents to have some reason to reject these
hypotheses. To be able to provide such a reason, ᾱ needs to
test these hypotheses infinitely often. Testing a hypothesis
requires choosing the hypothesis’ recommended action.
Definition 4.4. We call a set M ⊆ N a test set of ᾱ for h̄ if
for all t ∈M , αc

t = hc
t .

For ᾱ to infinitely often reject h̄, these tests must then show
that h̄ is not to be trusted (in those rounds in which they
promise a reward that exceeds ᾱe). That is, on these tests,
the rewards must be significantly lower than what the hy-
pothesis promises. We thus introduce another key concept.

Definition 4.5. Let h̄ be a hypothesis and M ⊆ N
be a test set of ᾱ for h̄. We call lT (ᾱ, D̄,M, h̄) :=∑

t∈M≤T
Dt(h

c
t)− he

t the (empirical) record of h (on M ).

Here, M≤T := {t ∈M | t ≤ T} is defined to be the set of
elements of M that are at most T .

We now have all the pieces together to state the coverage
criterion, which specifies how we want our agents to relate
to the hypotheses under consideration.

Definition 4.6. Let ᾱ be an agent, h̄ be a hypothesis, and let
B be the set of times t at which ᾱ rejects h̄. We say that ᾱ
covers h̄ with test set M if either B is finite or the sequence(
lT (ᾱ, D̄,M, h̄)

)
T∈B

goes to negative infinity.

4.4. The boundedly rational inductive agent criterion

We now state the BRIA criterion, the main contribution of
this paper.

Definition 4.7. Let D̄ be a decision problem sequence and
ᾱ be an agent for D̄. Let H = {h1, h2, ...} be a set of
hypotheses. We say ᾱ is a boundedly rational inductive
agent (BRIA) for D̄ covering H with test sets M1,M2, ... if
ᾱ does not overestimate and for all i, ᾱ covers hi with test
set Mi.

In the following, whenever ᾱ is a BRIA, we will imagine
that the test sets are given as a part of ᾱ. For example, if we
say that ᾱ is computable in, say, time polynomial in t, then
we will take this to mean that ᾱ together with a list at time t
of tested hypotheses can be computed in polynomial time.

4.5. Examples

Betting on digits of π Ce consider the decision problem
sequence with DPt = {aπt , xt} for all t, where aπt pays off
the 2t-th binary digit of π and xt ∈ [0, 1] with Dt(xt) = xt.
As usual we assume that the 2t-th binary digits of π are pseu-
dorandom (in a way we will make precise in Section 6.3)
uniformly distributed (as they seem to be, cf. footnote 1).
We would then expect boundedly rational agents to (learn
to) choose aπt when xt < 1/2 and choose xt when xt > 1/2.

We now consider an agent ᾱ for this decision problem se-
quence. We will step-by-step impose the components of
the BRIA criterion on ᾱ to demonstrate their meaning and
(joint) function in this example. We start by imposing the
no overestimation criterion on ᾱ without any assumptions
about hypothesis coverage – what can we say about ᾱ if we
assume that does not overestimate? As noted earlier, the no
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overestimation criterion alone is weak and in particular does
not constrain choice at all. For instance, ᾱ might always
choose αc

t = aπt and alternate estimates of 0 and 1; or it
might always choose xt and estimate xt−1.

We now impose instances of the hypothesis coverage cri-
terion. We start with the hypothesis hx which always rec-
ommends choosing xt and promises a reward of xt. Note
that for all we know about the decision problem sequence
this hypothesis does not give particularly good recommen-
dations. However, in the context of our theory, hx is useful
because it always holds its promises. In particular, hx’s em-
pirical record on any test set is 0. Hence, if α is to cover hx,
then α can only reject hx finitely many times. By definition,
this means that αe

t ≥ xt for all but finitely many t ∈ N.
With the no overestimation criterion, it follows that α on
average obtains utilities at least equal to xt. But α’s choices
may still not match our bounded ideal. For example, α may
always choose xt.

Next, consider for ϵ > 0, the hypothesis hϵ
π that always

recommends aπt and estimates 1/2− ϵ. Whether hϵ
π holds its

promises is a more complicated question. But let us assume
that ᾱ covers hϵ

π with some test set M , and let us further
assume that whether t ∈ M is uncorrelated with the 2t-th
binary digit of π, for instance, because predicting the 2t-th
binary digit of π better than random cannot be done using
the agent’s computational capabilities. Then hϵ

π’s empirical
record on M will go to ∞, assuming that M is infinite –
after all, following hϵ

π’s recommendations yields a reward
of 1/2 on average, exceeding its promises of 1/2− ϵ. (Note
that if the 2t-th binary digits of π act like random variables,
then this would presumably not be true for ϵ = 0, due to
the well-known recurrence (a.k.a. Gambler’s ruin) result
about the simple symmetric random walk on the line (Pólya,
1921).) With the assumption that ᾱ covers hϵ

π, it follows
that for all but finitely many t, αe

t ≥ 1/2− ϵ. Now imagine
that α not only covers one particular hϵ

π , but that there exist
arbitrarily small positive ϵ such that α covers the hypothesis
hϵ
π . Then it follows that in the limit as t→∞, αe

t ≥ 1/2.

The above three conditions – no overestimation, coverage
of hx and coverage of hϵ

π for arbitrarily small ϵ – jointly
imply that ᾱ exhibits the desired behavior. Specifically, we
have shown that ᾱ must estimate at least max{1/2, xt} in
the limit. By the no overestimation criterion, ᾱ also has
to actually obtain at least max{1/2, xt} on average. And
if ᾱ cannot guess the 2t-th digits of π better than random,
then the only way to achieve max{1/2, xt} on average is
to follow with limit frequency 1 the policy of choosing aπt
when xt < 1/2 and xt when xt > 1/2.

Adversarial offers Let α be an agent who faces a se-
quence of instances of the Simplified Adversarial Offers.
In particular at time t, the agent faces SAOα,t = {a0, a1},

where a0 pays off 1/2 with certainty, and a1 is evaluated to 1
if on the present problem α chooses a0 and to 0 otherwise.

Assume that α does not overestimate and that it covers the
hypothesis h which estimates 1/2 and recommends a0 in
every round. Hypothesis h will always have an empirical
record of 0 on any test set M since it holds its promises
exactly. Hence, if α is to cover h, it can reject h only finitely
many times. Thus, αe

t ≥ 1/2 in all but finitely many rounds.
To satisfy the no overestimation criterion, α must therefore
obtain rewards of at least 1/2 on average in the limit. Since
a1 pays off 0 whenever it is taken by α, it must be αc

t = a0
with limit frequency 1.

5. Computing boundedly rational inductive
agents

As described in Section 3, the goal of this paper is to formu-
late a rationality requirement that is not self-contradictory
and that can be satisfied by computationally bounded agents.
Therefore, we must show that one can actually construct
BRIAs for given H and that under some assumptions about
H, such BRIAs are computable (within some asymptotic
bounds).

Theorem 5.1. Let H be a computably enumerable set
conisting of (O(g(t))-)computable hypotheses. (Let g ∈
Ω(log).) Then there exists a BRIA for D̄ covering H that is
computable (in O(g(t)q(t)), for arbitrarily slow-growing,
O(g(t))-computable q with q(t)→∞).

We here give a sketch of our construction. The idea is
that for each decision problem, we run a first-price sealed
bid auction among the hypotheses. The highest-bidding
hypothesis determines the agent’s choice and estimate and
is tested in this round. For each hypothesis, we maintain a
wealth variable that tracks the hypothesis’ empirical record.
A hypothesis’ bid is bound by its wealth variable. Thus,
when a hypothesis outpromises the agent, this implies that
the hypothesis’ wealth is low. Upon winning an auction, the
hypothesis pays its promise and gains the reward obtained
after following the hypothesis’ recommendation. We further
distribute at each time t allowance to the hypotheses. The
overall allowance per round is finite and goes to zero. The
cumulative allowance for each hypothesis goes to∞ over
time. Thus, if a hypothesis is rejected infinitely often, then
this requires the hypothesis to have spent all allowance
and thus for its record among those rejection rounds to
go to −∞. Moreover, the cumulative overestimation is
bound by overall allowance distributed and thus per-round
overestimation goes to 0.

It can similarly be shown that, for example, a BRIA relative
to the class P of hypotheses computable in polynomial time
can be computed in arbitrarily close to polynomial time, i.e.
in O(tq(t)) for arbitrarily slow-growing q with q(t) → ∞.
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The next result shows that the BRIAs given by Theorem 5.1
are asymptotically optimal in terms of runtime.

Theorem 5.2. Let α be a BRIA for D̄,H. Assume that there
are infinitely many t such that |DPt| ≥ 2 and αe

t < 1. If H
is the set of (O(g(t))-)computable hypotheses, then α is not
computable (in O(g(t))).

6. Lower bounds on average rewards
6.1. Options with payoff guarantees

Throughout this section, we will show that BRIAs satisfy
many desiderata that one might have for rational decision
makers. In this section, we start with a simple result which
shows that if at each time t one of the options can be effi-
ciently shown to have a value of at least Lt, then a BRIA
will come to obtain at least Lt on average.

Theorem 6.1. Let D̄ be a decision problem sequence and
ᾱ be a BRIA for D̄ and the set of e.c. hypotheses. Let ā
be a sequence of terms in T s.t. for all t ∈ N, it holds that
at ∈ DPt and αc

t = at =⇒ Dt(at) ≥ Lt for some
e.c. sequence L̄. We require also that the at are efficiently
identifiable from the sets DPt. Then in the limit as T →∞
it holds that

∑T
t=1 Dt(α

c
t)/T ≥

∑T
t=1 Lt/T .

The proof idea is simple. Consider the hypothesis that
estimates Lt and recommends at if t ∈ S and promises
0 otherwise. This hypothesis always keeps its promises.
Hence, to cover this hypothesis, α can be outpromised by
this hypothesis only finitely many times.

We can also interpret Theorem 6.1 as providing an immunity
to money extraction schemes, which is one of the most
widely discussed rationality conditions. If a BRIA can leave
with a certain payoff of Lt, it will on average leave with at
least Lt. For example, in the Simplified Adversarial Offer
of Section 3.2, a BRIA must walk away with at least 1/2,
which in turn means that it must choose option a0 = “1/2”
with frequency 1.

6.2. Options with random payoffs

The following result shows, roughly, that in the limit BRIAs
are von Neumann–Morgenstern rational if von Neumann–
Morgenstern rational choice is e.c. That is, when choos-
ing between different lotteries whose expected utilities can
be computed efficiently, BRIAs converge to choosing the
lottery with the highest expected utility. When other, non-
lottery options are available, BRIAs must converge to per-
forming at least as well as the best lottery option.

Theorem 6.2. Let D̄ be a decision problem sequence and
α be a BRIA for D̄. Let ā be a sequence of terms in T s.t.
at ∈ DPt for all t ∈ N and the values Dt(at) are drawn
independently from distributions with e.c. means µ̄. Let the
at be efficiently identifiable from DPt. Then almost surely

in the limit as T → ∞, it holds that
∑T

t=1 Dt(α
c
t)/T ≥∑T

t=1 µt/T .

The proof idea similar to the proof idea for Theorem 6.1. It
works by considering hypotheses that recommend at and
promise µt − ϵ and noting that the empirical record of such
hypotheses goes to −∞ with probability 0.

6.3. Options with algorithmically random payoffs

Theorem 6.2 only tells us something about true random
variables. But a key goal of our theory is to also be able
to assign expected rewards to pseudo- or algorithmically
random sequences, i.e., sequences that are deterministic and
potentially even computable, but relevantly unpredictable
under computational constraints. We first offer a formal
notion of algorithmic randomness.
Definition 6.3. We say a sequence (Dt(at)))t∈N is
(O(h(t)) boundedly) van Mises–Wald–Church (vMWC) ran-
dom with means µ̄ if for every infinite set S ⊆ N that is
decidable (in O(h(t)) time) given everything revealed by D̄
up until time t, we have limT→∞

∑
t∈S≤T

Dt(at)−µt = 0.

Thus, we call a sequence random if there is no (O(g(t))-
)computable way of selecting in advance members of the
sequence whose average differs from the means µ̄.

Definition 6.3 straightforwardly generalizes the standard def-
inition of (unbounded) vMWC randomness (e.g. Downey
& Hirschfeldt, 2010, Definition 7.4.1) to non-binary values
with means µ̄ other than 1/2 and computational constraints
with outside input (from D̄, which could contain an option
of the type, “this option pays 0; by the way, the trillionth
digit of π is 2”). The notion of vMWC randomness is gen-
erally considered quite weak (e.g. Downey & Hirschfeldt,
2010, Sect. 6.2). The most widely studied notion of bounded
algorithmic randomness is Schnorr bounded randomness
(Schnorr, 1971; Ambos-Spies et al., 1997; Wang, 2000;
Stull, 2020). An analogous result can be shown w.r.t. this
notion.
Theorem 6.4. Let µ̄ be an e.c. sequence on [0, 1]. Let
D̄ be a decision problem sequence and α be an O(h(t))-
computable BRIA for D̄ covering all e.c. hypotheses. Let ā
be a sequence of terms in T s.t. at ∈ DPt for all t ∈ N and
the values Dt(at) are O(h(t))-boundedly vMWC random
with means µ̄. Then in the limit as T → ∞, it holds that∑T

t=1 Dt(α
c
t)/T ≥

∑T
t=1 µt/T .

7. Boundedly rational inductive agents as a
foundation for game theory

We start by briefly giving definitions of the relevant game-
theoretic concepts. For a thorough introduction to game the-
ory, see Osborne (2004) or any other textbook on the topic.
A (two-player) game consists of two finite sets of (pure)
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strategies A1, A2, one set for each player, and two payoff
functions u1, u2 : A1×A2→[0, 1]. A (pure) strategy profile
is a pair (a1, a2) ∈ A1×A2. We call (a1, a2) a (pure) Nash
equilibrium if for i = 1, 2, ai ∈ argmaxa′

i∈Ai
ui(a

′
i, a−i),

where −i refers to the player other than i. We call the Nash
equilibrium strict if both argmaxes are singletons.

Now we imagine that we have two BRIAs ᾱ1, ᾱ2 repeatedly
play a particular game against each other. That is, for each
a1 ∈ A1, DPα1

t contains an option that pays u1(a1, a2),
where a2 is the action corresponding to the option selected
by α2 in DPα2

t . The other agent’s decision problem DPα2
t

is defined analogously. Abusing notation a little, we use
ai ∈ Ai to represent the available options in DPαi

t . For
instance, we write αc

i,t = a1 to denote that αi chooses the
option from DPαi

t that corresponds to ai ∈ Ai.

How two BRIAs α1, α2 play against each other depends
on what exactly these BRIAs look like. In particular, if
α1, α2 always choose the same, then by Theorem 6.1 they
will converge to cooperate in the Prisoner’s Dilemma, thus
deviating from Nash equilibrium play. However, we believe
that when two BRIAs do not happen to be correlated in such
an extreme way, they will generally only be able to converge
to playing a Nash equilibrium (if they converge at all).

We will here prove this under an assumption about non-
correlation between ᾱ1 and ᾱ2. We start by defining what
it means for one player’s test set to be uncorrelated in the
relevant sense with the other player’s choices. We say that
a set M ⊆ N is weakly uncorrelated with ᾱ2 if whenever
αc
2,t = a2 with frequency 1 on t ∈ N for some a2 ∈ A2,

αc
2,t = a2 is also true with frequency 1 on t ∈M .

Next, we define the kind of hypothesis that pre-
vents convergence to non-equilibria, if tested in an
uncorrelated way. Let a2 ∈ A2 and a∗1 ∈
argmaxa1

u1(a1, a2) be a best response to a2. Also let
µ = max ({u1(a1, a2) | a1 ∈ A1} − {u1(a

∗
1, a2)}) be the

utility for Player 1 of playing a second-best response to a2.
Then we call h a safe a2 → a∗1 hypothesis if there is an
ϵ > 0 s.t. if αc

2,t = a2 with frequency 1, then hc
t = a∗1

and he ∈ [µ+ ϵ, u1(a
∗
1, a2)− ϵ] with frequency 1 and oth-

erwise he
t = 0.

If we assume that there are safe best response hypotheses,
convergence is only possible to Nash equilibria.

Theorem 7.1. Let ᾱ1, ᾱ2 be BRIAs for the decision problem
sequences D̄α1 , D̄α2 , respectively. Assume that for each
player i, and each pair of a−i ∈ A−i and a best response
a∗i to a−i, there is a safe a−i → a∗i hypothesis that either
outpromises ᾱi only finitely many times or whose test set
in ᾱ1 is weakly uncorrelated with ᾱ2. If αc

1,t, α
c
2,t converge

to choosing, with frequency 1, the options corresponding to
a1 ∈ A1, a2 ∈ A2, then (a1, a2) is a Nash equilibrium of
the underlying game.

It is not immediately obvious whether safe best response
hypotheses will naturally exist (e.g., when the two BRIAs
are designed independently without attempts to coordinate).
However, we conjecture that convergence to non-equilibria
requires deliberately fine tuning the BRIAs to each other.

Finally, we show that for every strict Nash equilibrium, there
is a pair of BRIAs that converge to that Nash equilibrium.

Theorem 7.2. For each game (A1, A2, u1, u2) and strict
Nash equilibrium (a1, a2) ∈ A1×A2, there is a pair of ran-
domizing agents ᾱ1 and ᾱ2 that are BRIAs with probability
1 relative to any (countable) set of hypotheses H and that
converge to playing (a1, a2) with probability 1.

8. Related work
Contextual stochastic multi-armed bandits As noted in
Section 2, our problem is a contextual multi-armed bandit
problem as considered in statistical learning theory. How-
ever, papers in this literature generally avoid the possibility
of an environment that can refer to the agent (as in the Ad-
versarial Offer or strategic interactions). For example, Yang
& Zhu (2002, Assumption A in Section 5) and Agarwal et al.
(2012, Assumption 1 in Section 2) assume that the agent’s
models can converge to being accurate. These assumptions
allow a much simpler rationality requirement, namely some
kind of convergence to optimal behavior (cf. Section 6.1).

Adversarial multi-armed bandits with expert advice
Another closely related literature is that on multi-armed ban-
dit problems with expert advice (Auer et al., 2001, Section 7;
Lattimore & Szepesvari, 2017, Chapter 18). This literature
generally allows adversarial problems. Like this paper, it ad-
dresses this problem by making the optimality goal relative
to some set of hypotheses. However, its optimality criterion
is quite different from ours: they require regret minimiza-
tion and in particular that cumulative regret is sublinear, a
condition sometimes called Hannan-consistency. As the
Simplified Adversarial Offer shows, Hannan-consistency
is not achievable in our setting. However, it does become
achievable if we assume that the agent has access to a source
of random noise that is independent from D̄ (see, e.g, the
Exp4 algorithm of Auer et al., 2001, Section 7).

We find it implausible to require rational agents to ran-
domize to minimize regret; most importantly, regret mini-
mization can require minimizing the rewards one actually
obtains – see Appendix B. At the same time, we conjecture
that learners with low regret relative to a set of hypotheses
H satisfy a version of the BRIA criterion; see Appendix C
for a preliminary result.

Decision theory of Newcomb-like problems Problems
in which the environment explicitly predicts the agent have
been discussed as Newcomb-like problems by (philosophi-
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cal) decision theorists (Nozick, 1969; Ahmed, 2014).

Most of this literature has focused on discussing relatively
simple cases (similar to the Simplified Adversarial Offer).
In these cases, BRIAs generally side with what has been
called evidential decision theory. For example, by Theo-
rem 6.1, BRIAs learn to one-box in Newcomb’s problem.
Of course, BRIAs differ structurally from how a decision
theorist would usually conceive of an evidential decision
theory-based agent. E.g., BRIAs are not based on expected
utility maximization (though they implement it when feasi-
ble; see Section 6.2). We also note that the decision theory
literature has, to our knowledge, not produced any formal ac-
count of how to assign the required conditional probabilities
in Newcomb-like problems.

Bounded rationality The motivations of the present work
as per Section 3, especially Section 3.1, coincide with some
of the motivations for the study of bounded rationality.
However, other motivations have been given for the study
of bounded rationality as well (see, e.g., Selten, 1990, Sect.
2). More importantly, since much of bounded rationality
is geared towards explaining or prescribing human (as op-
posed to AI) behavior, the characterization and analysis of
“computational capacities” often differ from ours (e.g. Con-
lisk, 1996). For instance, for most humans even dividing 1
by 17 is a challenge, while such calculation are trivial for
computers. A few authors have also explicitly connected
the general motivations of bounded rationality with para-
doxes of self reference and game theory as discussed in
Section 3.2 (Binmore, 1987; Rubinstein, 1998, Ch. 10).

The literature on bounded rationality is vast and diverse.
Much of it is so different from the present work that a
comparison hardly makes sense. Below we will discuss
a few approaches associated with the bounded rationality
literature that take a similar approach as ours. In particular,
like the present paper (and Hannan consistency) they specify
rationality relative to a given set of hypotheses (that in turn
is defined by computational constraints).

Russell et al.’s bounded optimality Like our approach
and the other approaches discussed in this related work
section, Russell et al. define bounded optimality as a crite-
rion relative to a set of (computationally bounded) hypothe-
ses called agent programs (Russell & Wefald, 1991, Sect.
1.4; Russell et al., 1993; Russell & Subramanian, 1995).
Roughly, an agent program is boundedly optimal if it is the
optimal program from some set of bounded programs.

The main difference between our and Russell et al.’s ap-
proach is that we address the problems of Section 3 by de-
veloping a theory of learning to make such decisions, while
Russell et al. address them by moving the decision problem
one level up, from the agent to the design of the agent (cf.

Demski & Garrabrant, 2020, Sect. 2.2 for a discussion of
this move). As one consequence, we can design general
BRIAs, while it is in general hard to design boundedly opti-
mal agents. Of course, the feasibility of designing BRIAs
comes at the cost of our agents only behaving reasonably
in the limit. Moreover, the designer of boundedly optimal
agents as per Russell et al. may become a subject of the
paradoxes of Section 3.2 in problematic ways.

Garrabrant inductors As noted earlier, the present ap-
proach to dealing with computational constraints is inspired
by the work of Garrabrant et al. (2016), who address the
problem of assigning probabilities under computational con-
straints. In particular, their approach allows assigning prob-
abilities to logical statements (such as: “the 1010-th digit of
π is 0”). As an alternative to the present theory of BRIAs,
one could also try to develop a theory of boundedly rational
choice by maximizing expected utility using the Garrabrant
inductor’s probability distributions. Unfortunately, this ap-
proach fails for reasons related to the challenge of making
counterfactual claims, as pointed out by Garrabrant (2017).
As in the case of Hannan consistency, we can address this
problem using randomization over actions. However, like
Garrabrant (ibid.), we do not find it satisfactory to require
randomization (cf. again Appendix B). We conjecture that,
like regret minimizers, Garrabrant inductors with (pseudo-
)randomization could be used to construct BRIAs.

9. Conclusion
We developed BRIA theory as a theory of bounded inductive
rationality. We gave results that show the normative appeal
of BRIAs. Furthermore, we demonstrated the theory’s utility
by using it to justify Nash equilibrium play. At the same
time, the ideas presented lead to various further research
questions, some of which we have noted above. We here
give three more that we find particularly interesting. Can we
modify the BRIA requirement so that it implies coherence
properties à la Garrabrant et al. (2016)? Do the frequencies
with which BRIAs play the given pure strategies of a game
converge to mixed Nash and correlated equilibria? Can
BRIA theory be used to build better real-world systems?
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A. Proofs
A.1. An easy lemma about test sets

We start with a simple lemma which we will use to simplify a few of our proofs.
Lemma A.1. Let h̄ be a hypothesis and N ⊆ N s.t. t ∈ N implies he

t = 0. Then if ᾱ covers h̄ with test set M , ᾱ covers h̄
with test set M −N .

Proof. For all T , it is

lT (ᾱ, D̄,M, h̄) =
∑

t∈M≤T

Dt(h
c
t)− he

t

=
∑

t∈M≤T−N

Dt(h
c
t)− he

t +
∑

t∈M≤T∩N

Dt(h
c
t)− he

t

=
∑

t∈M≤T−N

Dt(h
c
t)− he

t +
∑

t∈M≤T∩N

Dt(h
c
t)

≥
∑

t∈M≤T−N

Dt(h
c
t)− he

t

= lt(ᾱ, D̄,M −N, h̄).

Thus, if lT (ᾱ, D̄,M, h̄)→ −∞ as T → −∞, it must also be lT (ᾱ, D̄,M −N, h̄)→ −∞ as T → −∞.

A.2. Proof of Theorem 5.1

Theorem 5.1. Let H be a computably enumerable set conisting of (O(g(t))-)computable hypotheses. (Let g ∈ Ω(log).) Then
there exists a BRIA for D̄ covering H that is computable (in O(g(t)q(t)), for arbitrarily slow-growing, O(g(t))-computable
q with q(t)→∞).

Proof. Our proof is divided into four parts. First, we give the generic construction for a BRIA (1). Then we show that this is
indeed a BRIA by proving that it satisfies the no overestimation criterion (2), as well as the coverage criterion (3). Finally,
we show that under the assumptions stated in the theorem, this BRIA is computable in the claimed time complexity (4).

1. The construction

First, we need an allowance function A : N× N→ R≥0, which for each time n, specifies a positive amount A(n, i) given
to hypothesis hi’s wealth at time n. The allowance function must satisfy the following requirements:

• Each hypothesis must get infinite overall allowance, i.e.,
∑∞

n=1 A(n, i) =∞ for all hypotheses hi.

• The overall average allowance distributed per round n must go to zero, i.e.,
N∑

n=1

1

N

∞∑
i=1

A(n, i) →
N→∞

0. (1)

In particular, the allowance distributed in any particular round must be finite.

An example of such a function is A(n, i) = n−1i−2.

We can finally give the algorithm itself. Initialize the wealth variables as (for example) w0(i) ← 0 for each hypothesis
hi ∈ H.

At time t, we run a (first-price sealed-bid3) auction for the present decision problem among all hypotheses. That is, we
determine a winning hypothesis

i∗t ∈ argmax
i∈N

min(he
i,t, wt(i)) (2)

3This format is mainly chosen for its simplicity. We could just as well use a second-price (or third-price, etc.) auction. We could use
even different formats to get somewhat different BRIA-like properties. For instance, with combinatorial auctions, one could achieve
cross-decision optimization.
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with arbitrary tie breaking. Intuitively, each hypothesis hi bids he
i,t, except that it is constrained by its wealth wt(i). The

idea is that if hi has performed poorly relative to its promises, then α should not trust hi’s promise for the present problem.
Let e∗t ∈ [0, 1] be the maximum (wealth-bounded) bid itself. We then define our agent at time t as αt := (hc

i∗t ,t
, e∗t ).

We update the wealth variables as follows. For all hypotheses i ̸= i∗t , we merely give allowance, i.e., wt+1(i) ←
wt(i)+A(t, i). For the winning hypothesis i∗t , we update wealth according to wt+1(i

∗
t )← wt(i

∗
t )+A(t, i∗t )+Dt(h

c
i∗t ,t

)−e∗t .
That is, the highest-bidding hypothesis receives the allowance and the reward obtained after following its recommendation
(Dt(h

c
i∗t ,t

)), but pays its (wealth-bounded) bid (e∗t ).

2. No overestimation We will show that the cumulative overestimation is bounded by the sum of the allowance.

For each T , let B+
T be the set of hypotheses whose wealth wt(i) is positive for at least one time t ∈ {0, ..., T}. Note that all

highest-bidding hypotheses in rounds 1...., T are in B+
T for all j. We can then write the overall wealth of the hypotheses in

B+
T at time T as ∑

i∈B+
T

wT (i) =
∑
i∈B+

T

T∑
n=1

A(n, i) +

T∑
t=1

Dt(α
c
t)− αe

t .

That is, the overall wealth at time T is the allowance distributed at times 1, ..., T plus the money earned/lost by the
highest-bidding hypotheses.

Now notice that by the construction above, if a wealth variable wt(i) is non-negative once, it remains non-negative for all
future t. Thus, for all i ∈ B+

T , wT (i) ≥ 0. Second, the last term is the negated cumulative overestimation of ᾱ. Thus,
re-arranging these terms and dividing by T gives us the following upper bound on the per-round overestimation:

1

T
LT (α, D̄) =

1

T

 ∑
i∈B+

T

T∑
n=1

A(n, i)−
∑
i∈B+

T

wT (i)

 ≤ 1

T

∑
i∈B+

T

T∑
n=1

A(n, i) ≤
∞∑
i=1

1

T

T∑
n=1

A(n, i),

which goes to zero as T →∞ by our requirement on the function A (line 1).

3. Hypothesis coverage Given a hypothesis hi that strictly outpromises ᾱ infinitely often, we use as a test Mi, the set of
times t at which hi is the winning hypothesis (i.e., the set of times t s.t. i = i∗t ). We have to show that Mi is infinite, is
a valid test set (as per Definition 4.4), and that it satisfies the justified rejection requirement in the hypothesis coverage
criterion.

A) We show that Mi is infinite. That is, we need to show that infinitely often hi is the highest-bidding hypothesis in the
auction that computes ᾱ. Assume for contradiction that Mi is finite. We will show that at some point hi’s bidding in the
construction of ᾱ will not be constrained anymore by h’s wealth. We will then find a contradiction with the assumption that
hi strictly outpromises α infinitely often.

Consider that for T ′ > T , it is wT ′(i) = wT (i) +
∑T ′

t=T+1 A(t, i). That is, from time T to any time T ′, hypothesis i’s
wealth only changes by hi receiving allowance, because i is (by assumption) not the winning hypothesis i∗t in any round
t ≥ T . Because we required

∑∞
n=1 A(n, i) =∞, we can select a time T∗ ≥ T such that wT∗(i) ≥ 1. Note that again it is

also for all t > T∗ the case that wt(i) ≥ 1.

We now see that if t ≥ T∗ the wealth constraints is not restrictive. That is, for all such t it is min(he
i,t, wt(i)) = he

i,t. But
it is infinitely often he

i,t > αe
t . This contradicts the fact that by construction, αt is equal to the highest wealth-restricted

hypothesis.

B) The fact that Mi is a valid test set follows immediately from the construction – α always chooses the recommendation of
the highest-bidding hypothesis.

C) We come to the justification part of the coverage criterion. Let Bi be the set of rounds in which h̄i strictly outpromises ᾱ.

At each time t ∈ Bi, by construction wT (i, j) < he
i,t(DPT ). We have that he

i,t(DPT ) ≤ 1 and

wT (i) =

T∑
n=1

A(n, i) +
∑

t∈Mi:t<T

Dt(h
c
i,t)− he

i,t.
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Hence, from the fact that wT (i) < he
i,t(DPT ) for all T ∈ Bi, it follows that for all T ∈ Bi, it is

∑
t∈Mi:t<T

he
i,t −Dt(h

c
i,t) >

T∑
n=1

A(n, i),

which goes to infinity as T →∞, as required.

4. Computability and computational complexity It is left to show that if H can be computably enumerated and consist only
of (O(g(t))-)computable hypotheses, then we can implement the above-described BRIA for H, D̄ in an algorithm (that runs
in O(g(t)q(t)), for arbitrarily slow-growing, O(g(t))-computable q with q(t)→∞).

The main challenge is that the construction as described above performs at any time t, operations for all (potentially infinitely
many) hypotheses. The crucial idea is that for an appropriate choice of A, we only need to keep track of a finite set of
hypotheses, when calculating ᾱ in the first T time steps. Each hypothesis starts with an initial wealth of 0. Then a hypothesis
i can only become relevant at the first time t at which A(t, i) > 0. At any time t, we call such hypotheses active. Before that
time, we do not need to compute h̄i and do not need to update its wealth. By choosing a function A s.t. (in addition to the
above conditions) A(t, ·) has finite, e.c. support at each time t, we can keep the set of active hypotheses finite at any given
time. (An example of such a function is A(n, i) = n−1i−2 for i < n and A(n, i) = 0 otherwise.) We have thus shown that
it is enough to keep track at any given time of only a finite number of hypotheses.

At any time, we therefore only need to keep track of a finite number of wealth variables, only need to compute the
recommendations and promises of a finite set of hypotheses, and only need to compute a minimum of a finite set in line 2.

Computability is therefore proven. We proceed to show the claim about computational complexity. At any time t, let
Cmax(t) be the largest constant by which the computational complexity of hypotheses at time t are bounded relative to
g(t). Further, let hb(t) be the set of active hypotheses. Then the computational cost from simulating all active hypotheses
at time t is at most hb(t)Cmax(t)g(t). All of Cmax(t) and hb(t) must go to ∞ as t → ∞. However, this can happen
arbitrarily slowly, up to the limits of fast (O(g(t))) computation. Hence, if we let q(t) = hb(t)Cmax(t)g(t), we can let q
grow arbitrarily slowly (again, up to the limits of fast computation).

Finally, we have to verify that all other calculations can be done in O(q(t)g(t)): To determine the winning hypothesis given
everyone’s promises, we have to calculate the maximum of hb(t) ∈ O(q(t)) numbers, which can be done in O(q(t)) time.
We also need to conduct the wealth variable updates themselves, which accounts for O(hb(t)) additions. Again, this is in
O(g(t)q(t)). And so on.

A.3. Proof of Theorem 5.2

Theorem 5.2. Let α be a BRIA for D̄,H. Assume that there are infinitely many t such that |DPt| ≥ 2 and αe
t < 1. If H is

the set of (O(g(t))-)computable hypotheses, then α is not computable (in O(g(t))).

This is shown by a simple diagonalization argument. If a BRIA α were computable (in O(g(t))), then consider the hypothesis
who in rounds in which |DPt| ≥ 2 and αe

t < 1, promises 1 and recommends an option other than αc
t ; and promises 0

otherwise. This hypothesis strictly outpromises α infinitely often, is computable (in O(g(t))) but is never tested .

A.4. Proof of Theorem 6.1

Theorem 6.1. Let D̄ be a decision problem sequence and ᾱ be a BRIA for D̄ and the set of e.c. hypotheses. Let ā be a
sequence of terms in T s.t. for all t ∈ N, it holds that at ∈ DPt and αc

t = at =⇒ Dt(at) ≥ Lt for some e.c. sequence
L̄. We require also that the at are efficiently identifiable from the sets DPt. Then in the limit as T → ∞ it holds that∑T

t=1 Dt(α
c
t)/T ≥

∑T
t=1 Lt/T .

Proof. We will show that if the assumptions are satisfied, then for all but finitely many t, we have that αe
t ≥ Lt. From this

and the fact that ᾱ doesn’t overestimate, it then follows that
∑T

t=1 Dt(α
c
t)/T ≥

∑T
t=1 Lt/T .

We prove this new claim by proving a contrapositive. In particular, we assume that αe
t < Lt for infinitely many t and will

then show that ᾱ is not a BRIA (using the other assumptions of the theorem).
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Consider hypothesis h̄i such that hi,t = (at, Lt). Because L̄ is e.c. and the ā are efficiently identifiable, h̄ is e.c. We now
show that h̄i is not covered by ᾱ, which shows that ᾱ is not a BRIA. By assumption, h̄i strictly outpromises ᾱ infinitely often.
It is left to show that there is no Mi as specified in the hypothesis coverage criterion, i.e. no Mi on which h̄i consistently
underperforms its promises.

If t ∈Mi, then αc
t = hc

i,t = at and therefore Dt(at) ≥ Lt. It follows that for all T ,

lT (ᾱ, D̄,Mi, h̄i) =
∑

t∈Mi:t<T

Dt(h
c
i,t)︸ ︷︷ ︸

≥Lt

− he
i,t︸︷︷︸

=Lt

≥ 0.

Thus, ᾱ violates the coverage criterion for h̄i.

A.5. Proof of Theorem 6.2

Theorem 6.2. Let D̄ be a decision problem sequence and α be a BRIA for D̄. Let ā be a sequence of terms in T s.t.
at ∈ DPt for all t ∈ N and the values Dt(at) are drawn independently from distributions with e.c. means µ̄. Let the at be
efficiently identifiable from DPt. Then almost surely in the limit as T →∞, it holds that

∑T
t=1 Dt(α

c
t)/T ≥

∑T
t=1 µt/T .

Proof. We need only show that with probability 1 for all ϵ > 0 it holds that for all but finitely many times t that αe
t ≥ µt− ϵ.

From this and the no overestimation property of ᾱ, the conclusion of the theorem follow.

Again we prove the following contrapositive: If there is some ϵ > 0 s.t. with some positive probability p > 0 we infinitely
often have that αe

t < µt − ϵ, then ᾱ is with positive probability not a BRIA.

Consider the hypothesis h̄a,ϵ that at each time t promises max(µt− ϵ, 0) and recommends at. Since with probability p, h̄a,ϵ

infinitely often outpromises ᾱ, it must in these cases (and therefore with probability (at least) p) be tested infinitely often. (If
not, we ᾱ would in these cases not be a BRIA and we would be done.) In these cases (i.e., when h̄a,ϵ is tested infinitely
often), let the test set be some infinite set M ⊆ N. (Note that M may depend on D̄ and inherit its stochasticity. This will not
matter for the following, though.) For simplicity, let M be the empty set if h̄a,ϵ does not outpromise α infinitely often. By
Lemma A.1, we can assume WLOG that for all t ∈M , he

a,ϵ = µt − ϵ. Now notice that

1

|Mi,≤T |
lT (α, D̄,Mi, h̄i) =

1

|Mi,≤T |
∑

t∈Mi,≤T

Dt(h
c
a,ϵ,t)− he

a,ϵ,t =
1

|Mi,≤T |
∑

t∈Mi,≤T

Dt(at)− (µt − ϵ).

Conditioning on the (probability p) event that h infinitely often outbids and therefore that M is infinite, it must then with
probability 1 be the case that

∑
t∈Mi,≤T

Dt(at)− (µt − ϵ) →
w.p. 1

ϵ as T →∞ by the law of large numbers. We have thus

shown that with positive probability (p) h̄a,ϵ outpromises ᾱ infinitely often while h̄a,ϵ’s record lT (α, D̄,Mi, h̄i) is positive
in all but finitely many rounds. Thus, in this positive-probability event ᾱ’s infinitely many rejections of h̄a,ϵ violates the
coverage criterion.

A.6. Proof of Theorem 6.4

Definition A.2. We say a sequence (Dt(at)))t∈N is (O(h(t)) boundedly) van Mises–Wald–Church (vMWC) random with
means µ̄ if for every infinite set S ⊆ N that is decidable (in O(h(t)) time) given everything revealed by D̄ up until time t,
we have limT→∞

∑
t∈S≤T

Dt(at)− µt = 0.

Theorem 6.4. Let µ̄ be an e.c. sequence on [0, 1]. Let D̄ be a decision problem sequence and α be an O(h(t))-computable
BRIA for D̄ covering all e.c. hypotheses. Let ā be a sequence of terms in T s.t. at ∈ DPt for all t ∈ N and the values
Dt(at) are O(h(t))-boundedly vMWC random with means µ̄. Then in the limit as T →∞, it holds that

∑T
t=1 Dt(α

c
t)/T ≥∑T

t=1 µt/T .

Proof. We prove the theorem by proving that for all ϵ > 0, αe
t ≥ µt − ϵ for all but finitely many t. As usual, we prove this

by proving the following contrapositive: assuming this is not the case, ᾱ is not a BRIA. To prove this, consider hypothesis
h̄a,ϵ that at each time t promises max(µt − ϵ, 0) and recommends at. Since h̄a,ϵ infinitely often outpromises ᾱ, it must
tested infinitely often. Let the test set be some infinite set M ⊆ N. By Lemma A.1, we can assume WLOG that for all
t ∈M , he

a,ϵ = µt − ϵ.
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Now notice that M is by assumption computable in O(h(t)) given the information available at time t. Now

1

|Mi,≤T |
lT (α, D̄,Mi, h̄i) =

1

|Mi,≤T |
∑

t∈Mi,≤T

Dt(at)− (µt − ϵ) →
w.p. 1

ϵ as T →∞,

where the final step is by the fact that (Dt(at))t is vMWC random with means µ̄. Hence, with probability 1, h̄a,ϵ’s record
lT (α, D̄,Mi, h̄i) is positive in all but finitely many rounds. Thus, ᾱ’s infinitely many rejections of h̄a,ϵ violates the coverage
criterion.

A.7. Proof of Theorem 7.1

Theorem 7.1. Let ᾱ1, ᾱ2 be BRIAs for the decision problem sequences D̄α1 , D̄α2 , respectively. Assume that for each player
i, and each pair of a−i ∈ A−i and a best response a∗i to a−i, there is a safe a−i → a∗i hypothesis that either outpromises
ᾱi only finitely many times or whose test set in ᾱ1 is weakly uncorrelated with ᾱ2. If αc

1,t, α
c
2,t converge to choosing, with

frequency 1, the options corresponding to a1 ∈ A1, a2 ∈ A2, then (a1, a2) is a Nash equilibrium of the underlying game.

Proof. We prove this by contradiction. That is, we assume that ᾱ1, ᾱ2 converge to choosing some non-NE (a1, a2) with
frequency 1, and then show a contradiction to the assumption that ᾱ1, ᾱ2 are BRIAs.

WLOG let there be a best response a∗1 ∈ A1 s.t. u1(a
∗
1, a2) > u1(a1, a2). Then consider a safe, weakly uncorrelated

a2 → a∗1 hypothesis h̄i.

First we show that ᾱ1 infinitely often rejects hi. The no overestimation criterion applied to ᾱ1 states that
∑T

t=1(α
e
1,t −

Dt(α
c
1,t))/T ≤ 0 as T → 0. Now by the assumption that (a1, a2) is played with limit frequency 1,

∑T
t=1 Dt(α

c
1,t)/T →

u1(a1, a2) as T → 0. Hence,
∑T

t=1 α
e
1,t/T ≤ u1(a1, a2) as T → 0. It follows in particular that for all ϵ > 0 with positive

limit frequency among t ∈ N, we have that αe
1,t < u1(a1, a2) + ϵ. Because α2 plays a2 with limit frequency 1, hi (by

definition of a safe a2 → a∗1 hypothesis) therefore promises above u1(a1, a2) + ϵ for some ϵ with limit frequency 1 and
therefore infinitely often outpromises ᾱ.

Hence there must be an infinite test set M for hi. As usual, we will assume WLOG (by Lemma A.1) that M includes only
rounds in which h̄i submits non-zero promises. Now consider the average empirical record

1

|M≤T |
lT (ᾱ1, D̄

α1 ,M, h̄) =
1

|M≤T |
∑

t∈M≤T

Dt(h
c
i,t)−

1

|M≤T |
∑

t∈M≤T

he
i,t. (3)

By assumption, α2 chooses a2 with limit frequency 1. From this it follows that h̄i recommends a∗1 with limit frequency 1.
By the assumption about weakly uncorrelated testing of h̄i, it also follows that α2 chooses a2 with limit frequency 1 on
M . From this, it is easy to show that first average converges to u1(a

∗
1, a2). Since he

i,t ≤ u1(a
∗
1, a2)− ϵ for some (constant)

ϵ > 0, the second is always less then u1(a
∗
1, a2)− ϵ. It follows that lT (ᾱ1, D̄

α1 ,M, h̄)/|M≤T | ≥ ϵ in the limit and therefore
also lT (ᾱ1, D̄

α1 ,M, h̄)→ +∞, violating the coverage criterion.

A.8. Proof of Theorem 7.2

Theorem 7.2. For each game (A1, A2, u1, u2) and strict Nash equilibrium (a1, a2) ∈ A1 × A2, there is a pair of
randomizing agents ᾱ1 and ᾱ2 that are BRIAs with probability 1 relative to any (countable) set of hypotheses H and that
converge to playing (a1, a2) with probability 1.

Proof. We construct the BRIAs as follows. Basically we use the same construction as that in Appendix A.2 for the special
case of S = {N}. However, we add onto this that in every round with some fixed probability p ∈ (0, 1), the market chooses
the equilibrium action ai regardless of the highest-bidding hypothesis’ recommendation. The estimate in these rounds is
nonetheless that of the highest-bidding hypothesis. In these replacement rounds, no hypothesis is tested and therefore no
hypothesis spends allowance money. The constant p is picked in such a way that it is ensured that the unique best response
to this market is always the other player’s equilibrium action a−i.

We have to show that agents constructed in this way are indeed BRIAs with probability 1 and that they almost surely
converge to playing the given equilibrium (a1, a2) with frequency 1.
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No overestimation: We have to show that per-round overestimation goes to 0 with probability 1. Let R be the (i.i.d. randomly
selected) set of rounds in which ai is played by “replacement” without any testing. It is

1

T
LT (ᾱ1, D̄,N) =

1

T

T∑
T=1

αe
1,t −Dt(α

c
1,t) (4)

=
1

T

∑
t∈R≤T

he
i∗t ,t
−Dt(ai) +

1

T

∑
t∈{1,...,T}−R

he
i∗t ,t
−Dt(h

c
i∗t ,t

) (5)

≤ 1

T

∑
t∈R≤T

he
i∗t ,t
−Dt(h

c
i∗t ,t

) +
1

T

∑
t∈{1,...,T}−R

he
i∗t ,t
−Dt(h

c
i∗t ,t

) w.p. 1 as T →∞. (6)

The last step is due to the fact that by construction, ai is always optimal in expectation. Now, the first of the two summands
in the last line can be shown to approach 0 by the same argument that we used in the proof of non overestimation of our
BRIA algorithm in Appendix A.2: the cumulative loss is bound by allowance distributed (plus the negligible initial wealth)
and per-round-allowance goes to 0. But now notice that the second and first sums are the same, except that they are over
complementary sets. However, since R is randomly sampled, the terms must approach each other on average, as follows:

1

Tp

∑
t∈R≤T

he
i∗t ,t
−Dt(h

c
i∗t ,t

)− 1

T (1− p)

∑
t∈{1,...,T}−R

he
i∗t ,t
−Dt(h

c
i∗t ,t

)→ 0 w.p. 1 as T →∞.

Hence, because the latter sum is bound by allowance, the former sum is in the limit almost surely bounded by allowance
times 1/p. We conclude that both summands in line 6 approach 0 and therefore that the no overestimation criterion is
satisfied.

Hypothesis coverage: The low relative loss property can be shown in the same way as in the proof of Theorem 5.1 in
Appendix A.2: whenever a hypothesis strictly outpromises α1, it must by construction of ᾱ1 have insufficient wealth. This
in turn implies by how wealth in the construction works that the hypothesis must have empirically underperformed its
estimates.

Convergence to (a1, a2): Finally, we need to prove that these BRIAs indeed almost surely converge to playing (a1, a2)
with frequency 1, i.e., that each player plays ai with frequency 1 rather than just with frequency p. This can be shown by
essentially the same argument as the proof of Theorem 6.2 in Appendix A.5. By choice of p, recommending ai guarantees
an expected value that is greater than that of any other action.

B. More on randomization and regret
In the literature on multi-armed bandit problems, authors usually consider the goal of regret minimization. A natural
rationality requirement is for per-round average regret to go to 0. This is sometimes called Hannan consistency. For any
given agent c, the Simplified Adversarial Offer SAOc of Section 3.2 is a problem on which regret is necessarily high.
However, if we assume that the agent at time t can randomize in a way that is independent of how the rewards are assigned
by Dt, it can actually be ensured that per-round regret (relative to any particular hypothesis) goes to 0 (see Section 8). In
the literature on such Newcomb-like problems (see Section 8), an idea closely related to regret minimization has been
discussed under the name ratificationism (see Weirich, 2016, for an introduction and overview). Ratificationism similarly
uses distributions over actions (see, e.g., the formal description by Bell et al., 2021), though often these are not meant to
arise from randomization (e.g. Arntzenius, 2008).

Arguably the assumption that the agent can independently randomize is almost always satisfied for artificial agents in
practice. For instance, if an agent wanted to randomize independently, then for an adversary to predict the program’s choices,
it would not only need to know the program’s source code. It would also require (exact) knowledge of the machine state
(as used by pseudo-random number generators); as well as the exact content of any stochastic input such as video streams
and hardware/true random number generators. Independent randomization might not be realistic for humans (to whom
randomization requires some effort), but none of these theories under discussion (the present one, regret minimization, full
Bayesian updating, etc.) are directly applicable to humans, anyway.

Nevertheless, we are conceptually bothered by the assumption of independent randomization. It seems desirable for a theory
of choice to make as few assumptions as possible about the given decision problems. Moreover, we can imagine situations
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in which independent randomization is unavailable to a given agent. It seems odd for a theory of learning to be contingent
on the fact that such situations are (currently) rare or practically insignificant. A detailed discussion of this philosophical
concern is beyond the scope of this paper.4

In the rest of this section, we discuss the goal of regret minimization under the assumption that algorithms can randomize
independently of D̄. The problems discussed in this section all involve references to the agent’s choice.

We consider a version of Newcomb’s problem (introduced by (Nozick, 1969); see Section 8 for further discussion and
references). In particular, we consider for any chooser c the decision problem NPc = {a1, a2} which is resolved as follows.
First, we let D(a1) = 1/4 + P (c = a1)/2. So the value of a1 is proportional to the probability that c chooses a1. And
second, we let D(a2) = D(a1) + P (c = a1)/4.

If we let p = P (c = a1), then the expected reward of c in this decision problem is 1/4 + p/2 + (1− p)p/4. It is easy to see
that this is strictly increasing in p and therefore maximized if c = a1 deterministically. The regret, on the other hand, of c
is p2/4, which is also strictly increasing in p on [0, 1] and therefore minimized if c = a2 deterministically. Similarly, the
competitive ratio is given by

1/4 + 3p/4

1/4 + p/2 + (1− p)p/4
,

which is also strictly increasing in p on [0, 1] and therefore also minimized if c = a2 deterministically. Regret and
competitive ratio minimization as rationality criteria would therefore require choosing the policy that minimizes the actual
reward obtained in this scenario, only to minimize the value of actions not taken.

As noted in Section 8, it is a controversial among decision theorists what the rational choice in Newcomb’s problem is.
However, from the perspective of this paper in this particular version of the problem, it seems undesirable to require reward
minimization. Also, it is easy to construct other (perhaps more convincing) cases. For example, if a high reward can be
obtained by taking some action with a small probability, then regret minimizers take that action with high probability in
a positive-frequency fraction of the rounds. Or consider a version of Newcomb’s problem in which D(a1) is defined as
before, but D(a2) = D(a1). On such problems, Hannan-consistency is trivially satisfied by any learner, even though taking
a1 with probability 1 is clearly optimal.

C. Some regret minimizers satisfy a generalized BRIA criterion
We here show that some regret minimizers satisfy a slightly generalized version of the BRIA criterion. We first have to give
a formal definition of regret. Since the literature on adversarial bandit problems with expert advice does not consider experts
who submit estimates in the way that our hypotheses do, we cannot use an existing definition and will instead make up our
own. For simplicity, we will only consider the case S = N.

Let D̄ be a decision process, ᾱ be an agent and H = {h1, h2, ...} be a set of hypotheses. For simplicity, let H be finite.
For each hi ∈ H, let Bi := {t ∈ N | he

i,t > αe
t} be the set of rounds in which hi outpromises α. We define the average

per-round regret of the learner to hypothesis hi up to time T as

REGRETm,T = E

 1

|Bm,≤T |
∑

t∈Bm,≤T

Dt(h
c
i,t)− αe

t

 .

As before, the bidding mechanisms means that hypotheses can specialize on specific types of decisions.5 As is common in
the adversarial bandit problem literature, we will be interested in learning algorithms that guarantee average regret to go to
zero as |Bm,≤T | → ∞.

Regret is somewhat analogous to the cumulative empirical record on the test set. As with the coverage condition, low regret
can be achieved trivially by setting αe = 1. Thus, if we replace the coverage criterion with a sublinear-regret requirement,
we have to keep the no overestimation criterion.

4For brief discussions of this and closely related concerns in the literature on Newcomb-like problems, see Richter (1984), Harper
(1986), Skyrms (1986), Arntzenius (2008, Section 9), Levinstein & Soares (2020), and Oesterheld & Conitzer (2021, Section IV.1).

5Note that we subtract the agent’s estimates, not the utility that ᾱ in fact achieves. This is important. Otherwise, the learner can set
αe = 0 even in rounds in which Dt(α

c
t) is (expected to be) high, thus circumventing the expert’s bidding mechanism.

Still, there are alternative definitions that also work. For example, one might count regret only in rounds in which α and hi differ in
their recommendations.
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Conjecture C.1. Let D̄ be a decision process where |DPt| is bounded for all t ∈ N. With access to an independent source of
randomization, and given access to the outputs of all hypotheses in H, we can compute ᾱ that does not overestimate on N s.t.
for all hypotheses hi, REGRETi,T → 0 with probability 1 if |Bi,≤T | → ∞.

As noted elsewhere, without independent randomization it is clear that such an ᾱ cannot be designed. Even with independent
randomization, it is not obvious whether the conjecture holds. However, similar results in the literature on adversarial bandit
problems with expert advice lead us to believe that it does. That said, we have not been able to prove the conjecture by using
simply the results from that literature.

Theorem C.2. Let ᾱ be an independently randomized agent that does not overestimate on N and ensures sublinear regret
with probability 1 relative to all hypotheses in some finite set H = {hi}i. Further assume that for all hypotheses hi,
P (αc

t=hc
i,t) ∈ ω(1/t) among t ∈ Bi. Then we can compute based on α a new agent α̃ that does not overestimate and that

satisfies for each hypothesis hi that is infinitely often rejected,

∑
t∈Bi,≤T

1[αc
t=hc

i,t]

P (αc
t=hc

i,t)
(Dt(h

c
i,t)− he

i,t)→ −∞ (7)

among T at which α̃ rejects hi.

Notice that the left-hand side of line 7 is a weighted version of the cumulative empirical record on the set {t ∈ Bi,≤T |
αc
t=hc

i,t}.

The proof combines one key idea from the literature on adversarial multi-armed bandits – importance-weighted estimation –
and one from this paper – the decision auction construction (Appendix A.2).

Proof. For t ∈ Bi, define

R̂i,t =
1[αc

t=hc
i,t]

P (αc
t=hc

i,t)
(Dt(h

c
i,t)− αe

t ),

where we assume P (αc
t=hc

i,t) > 0. As usual we then have that E
[
R̂i,t

]
= Dt(h

c
i,t) − αe

t . For t /∈ Bi, define R̂i,t = 0.

Hence, R̂i,t can be used as an unbiased estimator of the regret in a single round. Further, Var(R̂m,t) ∈ o(t), and thus∑T
t=1 Var(R̂m,t) ∈ o(T 2). By Kolmogorov’s strong law of large numbers,

1

T

∑
t∈Bm,≤T

R̂m,t −
1

T

∑
t∈Bm,≤T

Dt(h
c
i,t)− αe

t

1

T

T∑
t=1

R̂m,t −
1

T

T∑
t=1

Dt(h
c
i,t)− αe

t0 as T →∞

In other terms, ∑
t∈Bm,≤T

R̂m,t −
∑

t∈Bm,≤T

Dt(h
c
i,t)− αe

t

is sublinear.

We now construct new estimates. Fix a non-decreasing, sublinear function CA: N → R with CA(T ) → ∞. (These are
cumulative versions of the allowance functions from the construction in Appendix A.2.) Next, we define

Li,T :=
∑

t∈Mi,≤T

1[αc
t=hc

i,t]

P (αc
t=hc

i,t)
(Dt(h

c
i,t)− he

i,t)
∑

t∈Bi,≤T−Mi

1[αc
t=hc

i,t]

P (αc
t=hc

i,t)
(Dt(h

c
i,t)− αe

t ),

where Mi ⊆ Bi will be defined in a second. Define wT (i) = CA(T ) + Li,T . Now at each time t, we define our new
estimate as

α̃e
t = max(αe

t , max
i:wt−1(i)≥0

he
i,t). (8)

Finally, let Mi be the set of rounds in which i is the maximizer in Eq. 8 through the outer max.

We now need to show two things: That cumulative overestimation is still sublinear even for the new increased α̃e
t and that

the claimed variant of the hypothesis coverage criterion is satisfied.



A theory of bounded inductive rationality

We start with hypothesis coverage. First notice that because Mi ⊆ Bi and for t ∈ Bi, he
i,t > αe

t , we get that

wT (i) ≥ CA(T ) +
∑

t∈Bm,≤T

1
[
αc
t = hc

i,t

]
Pt(αc

t = hc
i,t)

(Dt(h
c
i,t)− he

i,t).

Thus, whenever he
i,T > α̃e

T , then by construction wt(i) < 0, and therefore

∑
t∈Bi,≤T

1
[
αc
t = hc

i,t

]
P (αc

t = hc
i,t)

(Dt(h
c
i,t)− he

i,t) ≤ −CA(T ).

Thus, we get that among T ∈ B̃i (the times where t strictly outpromises the new estimates), the empirical record on the test
set goes to −∞.

It is left to show that overestimation remains low if we increase the estimates from αe to α̃e. We have

T∑
t=1

α̃e
t −Dt(h

c
i,t) =

T∑
t=1

αe
t −Dt(h

c
i,t) +

T∑
t=1

α̃e
t − αe

t .

The first sum is sublinear by assumption. So we only have to show that
∑T

t=1 α̃
e
t − αe

t is sublinear in T . We have

T∑
t=1

α̃e
t − αe

t =
∑
i

∑
t∈Mi,≤T

he
i,t − αe

t . (9)

So, it is left to show that the increase on behalf of each expert i is sublinear.

Now, we use IWE again. That is, we consider

∑
t∈Mi,≤T

1
[
αc
t = hc

i,t

]
P (αc

t = hc
i,t)

(he
i,t − αe

t ).

By the same argument as above, we can show that the difference between this term and
∑

t∈Mi,≤T
he
i,t − αe

t is sublinear. So
it is enough to show that this term is sublinear.

Now notice that

wT (i) = CA(T ) +
∑

t∈Mi,≤T

1
[
αc
t = hc

i,t

]
P (αc

t = hc
i,t)

(Dt(h
c
i,t)− he

i,t)︸ ︷︷ ︸
=(Dt(hc

i,t)−αe
t )−(he

i,t−αe
t )

+
∑

t∈Bi,≤T−Mi

1
[
αc
t = hc

i,t

]
αc
t = hc

i,t

(
Dt(h

c
i,t)− αe

t

)

= CA(T )−
∑

t∈Mi,≤T

1
[
αc
t = hc

i,t

]
Pt(αc

t = hc
i,t)

(he
i,t − αe

t ) +
∑

t∈Bi,≤T

1
[
αc
t = hc

i,t

]
Pt(αc

t = hc
i,t)

(Dt(h
c
i,t)− αe

t ).

Now, for T ∈Mi, it must be wT (i) ≥ 0. Still, wT (i) can fall under 0, but only by R̂m
t for some t ∈ {1, ..., T}, which is in

o(T ). Thus,

∑
t∈Mi,≤T

1
[
αc
t = hc

i,t

]
Pt(αc

t = hc
i,t)

(he
i,t − αe

t )CA(T ) +
∑

t∈Bi,≤T

1
[
αc
t = hc

i,t

]
Pt(αc

t = hc
i,t)

(Dt(h
c
i,t)− αe

t ) + o(T )

CA is sublinear by construction and the second summand has been shown to be sublinear above.

D. Why an even simpler theory fails and estimates are necessary
A simple mechanism of learning to choose is the law of effect (LoE) (Thorndike, 1911, p. 244):
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Of several responses made to the same situation, those which are accompanied or closely followed by satisfaction
to the animal will, other things being equal, be more firmly connected with the situation, so that, when it recurs,
they will be more likely to recur; those which are accompanied or closely followed by discomfort to the animal
will, other things being equal, have their connections with that situation weakened, so that, when it recurs, they
will be less likely to occur. The greater the satisfaction or discomfort, the greater the strengthening or weakening
of the bond.

This notion is implicit in many reinforcement learning algorithms (cf. Sutton & Barto, 1998, Section 1.6). In (human)
psychology it is also known as operant conditioning.

In situations like ours, where situations generally do not repeat exactly, for the law of effect to be meaningful, we have
to applied on a meta level to general hypotheses or policies for making choices. So let a policy be a function that maps
observations to actions. Then we could phrase this meta LoE as: if following a particular policy is accompanied with high
rewards, then an agent will follow this policy more often in the future.

The BRIA criterion can be seen as abiding by this meta LoE, as the BRIA criterion requires testing different hypotheses
and following the ones that have experimentally proven themselves. Its main conceptual innovation relative to the meta
LoE is the bidding system, i.e., having the agent as well as hypotheses give estimates for how much utility will be achieved
by making a particular choice, and using these estimates for testing and evaluation. A natural question then is: Are these
conceptual additions to meta LoE necessary to obtain the kind of results we obtain? We here show why the answer is yes.

The biggest problem is quite simple to understand: if we don’t restrict the testing regimen for policies, then biased testing
can justify clearly suboptimal behavior. As an illustrative example, imagine that for all t, DPt ∈ Fin([0, 1]) with Dt = id.
That is, at each time the agent is offered to choose from some set of numbers between 0 and 1 and then obtains as a reward
the chosen number. The agent tests two policies: The first simply chooses the maximum number. The second chooses, e.g.,
the worst option that is greater than 1/2 if there is one, and the best option otherwise.

Of course, in this situation one would like the agent to learn at some point to follow the max policy. BRIAs indeed learn this
policy (when accompanying the two tested policies with appropriate estimates) (cf. Theorem 6.1). But now imagine that the
agent tests the max hypothesis primarily in rounds where all values are at most 1/2 and the other hypothesis primarily in
rounds in which there are options greater than 1/2. Then the max hypothesis could empirically be associated with lower
rewards than the max hypothesis, simply because it is tested in rounds in which the maximum achievable reward is lower.

To avoid this issue we would have to require that the set of decision problems on which hypothesis A is tested is in all relevant
aspects the same as the set of decision problems on which hypothesis B is tested. Unfortunately, we do not know what the
“relevant aspects” are. For instance, in the above problem it may be sufficient to test the max hypothesis on even time steps
and the other hypothesis on odd time steps. However, there may also be problems where rewards depend on whether the
problem is faced in an even or in an odd time step. More generally, it is easy to show that for each deterministic procedure of
deciding which hypothesis to test, there is a decision process D̄ in which which this testing procedure introduces a relevant
bias. In particular, the positive results we have proven in Theorems 6.1, 6.2 and 6.4 seem out of reach. We conclude that a
direct deterministic implementation of meta LoE (without the use of estimates) is insufficient for constructing a criterion of
rational choice.

Besides the estimates-based approach to this problem that we have developed in this paper, a different (perhaps more
obvious) approach to this problem is to test randomly. For this, we assume that we have a randomization device available
to us that is independent of D̄. If we then, for example, randomize uniformly between testing two hypotheses, testing is
unbiased in the sense that for any potentially property of decision problems, as the number of tests goes to infinity, both
hypotheses will be tested on the same fraction of problems with and without that property. This is essentially the idea behind
randomized controlled trials. We have discussed this idea in Appendix B.

E. Factoring team decisions
Theorem E.1. Let n ∈ N be a positive natural number. Let D̄ be a a decision problem sequence where every t ∈ N,
DPt = DPt,1 × ... × DPt,n, for some sets DPt,1, ...,DPt,n. Let ᾱ be a BRIA for D̄ covering the set of e.c. hypotheses.
Now for any t let ((at,1 ∈ DPt,1, ..., at,n ∈ DPt,n), vt) = αt in order to define αi,t = (at,i, vt) and

Di,t : DPt,i → [0, 1] : a′t,i 7→ Dt(at,1, ..., at,i−1, a
′
t,i, at,i+1, ..., at,n).
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for i = 1, ..., n. Then for i = 1, .., n, αi is a BRIA for D̄i covering the e.c. hypotheses.

Instead of considering sets DPt that are already the Cartesian products of a bunch of sets, one could also factorize any given
set (unless its number of elements is 1 or a prime number) (Garrabrant, 2021, Section 2). For example, a decision from
{1, 2, 3, 4} can be factorized into a decision of {1, 2} versus {3, 4}, and a decision of {1, 3} versus {2, 4}.

Proof. Low overestimation: Clearly,

L(ᾱi, D̄i) =

T∑
t=1

αe
i,t −Di,t(α

c
i,t) =

T∑
t=1

αe
t −Dt(α

c
t) ≤ 0,

where the last step is by the assumption that ᾱ is a BRIA and therefore does not overestimate in the limit.

Coverage: Let h̄i be an e.c. hypothesis for D̄i. Let h̄ be a hypothesis for D̄ s.t. the i-th entry of hc
t is equal to hc

t , and
he
t = he

i,t. Clearly, such an e.c. hypothesis exists. Let M be ᾱ’s test set for h̄. We will also use M as ᾱi s test set for h̄i.
Also, let B be the set of times at which hi outpromises ᾱi. Note that B is thereby also equal to the set of times at which h̄
outbids ᾱ.

We now need to show that if B is infinite, then (lT (ᾱi, D̄i,M, h̄i))T∈B → −∞. To prove this, notice that for all T ,

lT (ᾱi, D̄i,M, h̄i) =
∑

t∈M≤T

Di,t(h
c
i,t)− he

i,t

=
∑

t∈M≤T

Di,t(α
c
i,t)− he

i,t

=
∑

t∈M≤T

Dt(α
c
t)− he

t

=
∑

t∈M≤T

Dt(h
c
t)− he

t

= lT (ᾱ, D̄,M, h̄).

By assumption that ᾱ is a BRIA, the final term goes to −∞ within T ∈ B if B is infinite.

So if α is a BRIA, α1, ..., αn are BRIAs. Note that the converse of this does not hold.

F. Dominance
Proposition F.1. There is a decision process D̄, a BRIA ᾱ for the set of e.c. hypotheses and a positive number ∆ > 0 s.t.
for all t ∈ N, at, bt ∈ DPt Dt(at) > Dt(bt) + ∆ but with limit frequency 1 we have that αc

t = bt.

This is shown by Newcomb’s problem (Appendix B). In fact, Newcomb’s problem shows that for any algorithm that
constructs BRIAs, there is a D̄ s.t. the algorithm’s BRIA converges to at.

Of course, various dominance-like results follow from the results of Section 6. However, more interesting applications
of dominance are arguably ones where the conditions of these results aren’t satisfied, e.g., where it is very unclear how
one would assign expected utilities to different options. We will now give some reasons for why it’s difficult to give any
dominance result for BRIAs that does not follow from the results of Section 6.

The first thing to notice is that relationships such as Dt(at) > Dt(bt) + ∆ (for all t) are irrelevant for our theory, as shown
by Newcomb’s problem, SAO, etc. Instead, our dominance relation needs to be statistical and relative to the test set. Roughly,
we must make an assumption that when testing at, the rewards are (on average) higher (by ∆) than the reward of taking bt
in rounds in which bt is taken. Of course, this already means that the result will be quite different from traditional notions of
dominance.

A second, subtler issue relates to the use of estimates in our theory.6 To ensure that bt is not taken with limit frequency,

6As noted in Appendix D, an alternative theory could simply require that an agent tests various choice policies and in the limit follows
the ones that are empirically most successful. For such a theory, a condition like the one in the previous paragraph probably suffices.
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we would need to ensure not only that the at-recommending hypothesis doesn’t underperform on its test set (as described
above). We also need to ensure that this hypothesis is tested on a set on which it doesn’t overestimate. We therefore need
a further assumption that gives us some way to safely and efficiently estimate at, e.g., based on past values of at, bt or
estimates αe

t . While this assumption can be made in relatively sneaky ways, we have not found any particularly interesting
version of this claim.

We now discuss a subtler issue that relates to the use of estimates in our theory to show why a particularly simple approach
doesn’t work. A first attempt might be to assume that for every test set M , avgt∈M≤T

Dt(at) > ∆+ avgt≤T : αc
t=bt α

c
t

as T →∞, where avgt∈N f(t) := 1/|N |
∑

t∈N f(t) for any finite set N and function f on N . That is, we assume that at
performs better on any test set than bt performs when taken by α. [TODO: finish this paragraph.] The trouble is that to
obtain a conclusion we need to transform such an assumption into a hypothesis that not only recommends at (and thus
receives relatively high rewards on average) but also makes appropriate estimates.

G. Schnorr bounded algorithmic randomness
Definition G.1. A martingale is a function d : B∗ → [0,∞) s.t. for all w ∈, d(w) = 1/2d(w0) + 1/2d(w1). Let w ∈ B∞ be
an infinite sequence. We say that d succeeds on w if lim supn→∞ d(w1...wn) =∞.

Definition G.2. We call w ∈ Bω (O(g(t))-boundedly) Schnorr random if there is no martingale d such that d succeeds on
w and d can be computed (in O(g(t))) given everything revealed by time t.

Theorem G.3. Let D̄ be a decision problem sequence and α be an (O(h(t))-computable) BRIA for D̄ covering all
e.c. hypotheses. Let ā be a sequence of terms in T s.t. at ∈ DPt for all t ∈ N and the values Dt(at) ∈ {0, 1} are
(O(h(t))-boundedly) Schnorr random. Then in the limit as T →∞, it holds that

∑T
t=1 Dt(α

c
t)/T ≥ 1/2.

Proof. We conduct a proof by contradiction. Assume that there is ϵ > 0 s.t.
∑T

t=1 Dt(α
c
t)/T < 1/2 − ϵ infinitely often.

Then by the no overestimation criterion, there must also be an ϵ > 0 s.t.
∑T

t=1 α
e
t )/T < 1/2− ϵ. Consider the hypothesis

ha,ϵ that always estimates 1/2− ϵ and recommends at. Now let Mϵ be ᾱ’s test for ha,ϵ. From the fact that ᾱ rejects ha,ϵ

infinitely often, it follows that there are infinitely many T ∈ N such that
∑

t∈M≤T
Dt(a)− (1/2− ϵ) < 0.

From this fact, we will now define an (O(h(t))-computable) martingale d that succeeds on the sequence (Dt(at))t∈N.
To readers familiar with this literature, this will probably be familiar. First, define d() = 0. Whenever T is not in M ,
define d((Dt(at))t<T 0) = d((Dt(at))t<T ) = d((Dt(at))t<T 1). That is, when T /∈M , don’t bet on DT (aT ). If T ∈M ,
then bet some small, constant fraction δ of the current money that the next bit will be 0. That is, d((Dt(at))t<T 0) =
(1 + δ)d((Dt(at))t<T ) and d((Dt(at))t<T 1) = (1− δ)d((Dt(at))t<T ). Clearly, d thus defined is a martingale.

Overall, we now know that there are infinitely many N s.t. for some T the wealth is d((Dt(at))t≤T ) ≥ (1+δ)N+ϵN (1−δ)N .
It is left to show that for small enough δ, (1 + δ)N+ϵN (1− δ)N →∞ as N →∞.

First notice that

(1 + δ)N+ϵN (1− δ)N = ((1 + δ)(1− δ))N (1 + δ)Nϵ = (1− δ2)N (1 + δ)Nϵ =
(
(1− δ2)(1 + δ)ϵ

)N
.

So we need only show that for small enough but positive δ, (1− δ2)(1 + δ)ϵ > 1. The most mechanic way to do this is
to take the derivative at δ = 0 (where the left-hand side is equal to 1) and showing that it is positive. The derivative is
d
dδ (1− δ2)(1 + δ)ϵ = (1 + δ)ϵ(ϵ− δ(ϵ+ 2)). Inserting δ = 0 yields ϵ, which is positive.

H. A few minor results
In this section, we give a few minor results about the BRIA criterion. We don’t use them anywhere, but they are helpful to
understand what the BRIA criterion is about.

First, we simply note that the BRIA criterion becomes (weakly) stronger if we expand the set of hypotheses under
consideration, which is immediate from the definitions in Section 4.

Proposition H.1. Let H,H′ be sets of hypotheses such that H′ ⊆ H. Then any BRIA for H is also a BRIA for H′.

The following result shows that if we change a BRIA’s decisions and estimates for a finite number of decisions in D̄, it
remains a BRIA.
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Proposition H.2. Let ᾱ be a BRIA for D̄ covering H. If for all but finitely many t ∈ N it is ζt = αt, then ζ̄ is also BRIA for
H, D̄.

Proposition H.3. Let ᾱ be a BRIA covering h. Let h′ be s.t. ht = h′
t for all but finitely many t. Then ᾱ covers h′.

Proposition H.4. Let ᾱ be a BRIA for D̄ covering h. Let f : N→ N be a bijection s.t. f(n)− n is bounded (from above
and below) (i.e., there is a number x s.t. |f(n)− n| < x for all n ∈ N). Then αf(1), αf(2), ... is a BRIA for Df(1), Df(2), ...
covering hf(1), hf(2), ...

Proposition H.5. Let ᾱ be a BRIA for D̄ covering H. Let ϵ̄ be a sequence of non-negative numbers such that
∑T

t=1 ϵt/T → 0
as T →∞. Let ζt = (αc

t , α
e
t + ϵt) for all t. Then ζ̄ is a BRIA for D̄ covering H.

Note that decreasing estimates by a similar sequence ϵ̄ in general does not maintain the BRIA property. For example, if the
estimates in rounds in which an option “0.5” is chosen is decreased below 0.5, the resulting agent would be exploitable by a
hypothesis that recommends “0.5” and promises 0.5.


