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Abstract

We consider a principal-expert problem in which a
principal contracts one or more experts to acquire
and report decision-relevant information. The prin-
cipal never finds out what information is available
to which expert, at what costs that information is
available, or what costs the experts actually end up
paying. This makes it challenging for the principal
to compensate the experts in a way that incentivizes
acquisition of relevant information without over-
paying. We determine the payment scheme that
minimizes the principal’s worst-case regret relative
to the first-best solution. In particular, we show that
under two different assumptions about the experts’
available information, the optimal payment scheme
is a set of linear contracts.

1 Introduction
Optimally acquiring information is a well-recognized prob-
lem in AI and beyond. An agent that sets out to always ac-
quire all relevant information before taking any decision will
quickly deplete its resources, or find that the opportunity has
passed by the time it has completed its analysis. A good agent
trades off the value of the information against the cost of ac-
quiring it. However, in many circumstances, it is not possible
for the agent to acquire the information on its own; rather, it
needs to rely on another agent to do so. For example, the for-
mer agent may have the relevant actuators, but the latter the
relevant sensors. If the agents are self-interested, the former
agent will need to provide an incentive to the latter to acquire
the information.

Consider the following illustrative example. A company
has to choose one of a number of different projects, where
a project might be to develop a particular product. While
the company’s personnel is suited to successfully execute any
of these projects, the company lacks expertise in market re-
search to decide which of the projects will yield the high-
est expected profit. To make an informed choice, the com-
pany (henceforth, the principal) would like to contract fac-
ulty members from a nearby business school to give advice
on which project to pursue and to make a prediction about
the outcome of that project.

While the business school’s faculty members (henceforth,
the experts) have relevant expertise, they need to invest some
effort into conducting one relevant research project or another
before they can give useful advice. The so-called first-best so-
lution is to acquire the information that maximizes expected
profit net of the costs of that information. The principal would
have to reimburse the experts for those costs, but could keep
the rest of the project’s profits. However, in general, the prin-
cipal is unaware of what information can be acquired at what
costs and cannot verify the experts’ effort or report. The prin-
cipal can use a payment scheme or contract that compensates
the experts based on both their final collective report and the
outcome of pursuing the recommended project (but not on
what would have happened for different choices). What con-
tract should the principal use?

One way to arrive at a solution would be for the principal
to assign some prior probability distribution over configura-
tions of available evidence and select the contract that maxi-
mizes expected profit net of payment to the experts [cf. Bar-
ron and Waddell, 2003; Core and Qian, 2002; Lambert, 1986;
Stoughton, 1993]. However, determining such a prior is often
impractical. For many priors, it may also be computationally
infeasible to identify the optimal contract. We therefore ask
what contract ensures the minimum worst-case regret relative
to the first-best solution.

Outline. After describing our setup and goals in more de-
tail (Sections 2 and 3), we show (in Sections 4 and 5) how
linear contracts – which use the reports only for making the
decision and then simply pay each expert some fixed fraction
of the company’s profits regardless of their reports – ensure
regret bounds. In Section 6, we go on to show that the optimal
regret bound is achieved only by a particular linear contract:
the one that pays each of the n experts 1/(n+ 1) of the profit
obtained. This ensures a regret bound of v(E∗)n/(n + 1),
where v(E∗) is the expected profit (prior to subtracting costs)
of the first-best solution. Under stronger assumptions, the
approach of this paper can be used to derive different lin-
ear contracts to achieve better optimal bounds. In Section
7, we give an example of this. Section 8 puts our work in
the context of the literature. Briefly: the most closely re-
lated strand is work on principal-expert and -agent problems.
In particular, the single-expert version of our Proposition 3
has been given in earlier work by Chassang [2013, Theo-
rem 1.i] and Carroll [2015, Section 2.3]. One may also view



our paper as contributing to the literature on decision scor-
ing rules [Othman and Sandholm, 2010; Chen et al., 2014;
Oesterheld and Conitzer, 2019]. Relative to that line of work,
the distinguishing feature of our setup is that it explicitly asks
which decision scoring rules strike the optimal balance be-
tween incentivizing experts to acquire costly information and
minimizing the overall payment to the experts. Finally, Sec-
tion 9 concludes by pointing out implications of the present
work for a common topic of debate in the literature: simple
(linear) versus optimal (potentially complex) contracts.

2 Setup
Principal and experts. We consider a principal (“she”) who
has to choose one of a finite set of projects or actions A, each
of which probabilistically gives rise to outcomes from some
finite set Ω. The principal would like to maximize the ex-
pected value of some utility function u : Ω → R. To figure
out which action is best, she may interact (in ways specified
below) with n experts. An important special case is n = 1.
This case has received the most attention in the literature.
Many of the assumptions that we will make later (e.g., about
how the experts coordinate) are very weak or even vacuous in
the case of n = 1, while for n ≥ 2 they are realistic in some
but not all applications.

Each expert i = 1, ..., n can choose to observe the value
of a random variable in some set of random variables Hi.
We will refer to these variables as evidence variables. We
also require that these sets of values are finite. To observe
Ei ∈ Hi, expert i must pay a cost (or effort) of ci(Ei), where
ci : Hi → R≥0 is some cost function. We assume that each
Hi contains the constant (trivial) random variableE0 and that
ci(E

0) = 0 for all i. That is, each expert has the option to ac-
quire no information and expend no cost. The principal does
not know what the Hi or ci are. The experts, on the other
hand, all know what evidence variables the other experts have
access to and at what costs. Furthermore, the experts have a
common prior P which, for any vector of random variables
E ∈ H :=×ni=1 Hi and any vector e of values of E, assigns
a probability P (e) := P (E = e), as well as for any out-
come ω ∈ Ω and action a ∈ A, the probability P (ω | a, e)
of obtaining outcome ω after taking action a if E = e was
observed. For simplicity, we also assume that every observa-
tion of E = e is consistent, i.e., that for all E ∈ H and e
in the Cartesian product of the sets of values of E1, ..., En,
we have P (e) > 0. Some common-knowledge assumptions
such as these are necessary to determine the experts’ strate-
gies within standard game-theoretic paradigms. Of course, as
is usually the case in such models, the common-knowledge
assumptions – in particular, exact knowledge of each other’s
cost of acquisition – are only approximately realistic in prac-
tice. Alternatively, one might imagine that they have proba-
bilistic beliefs about each other’s costs or perhaps that they
can communicate about each other’s cost. However, this adds
an additional layer of complications in expert coordination,
which is beyond the scope of the present paper.

We require that u is normalized s.t.
maxa∈A E [u(O) | a] = 0, where O is the random variable
distributed according to the (prior) probability distribution

P (· | a) that arises from conditioning only on null evidence
E0. This normalization requires the principal to know what
utility she can achieve without any additional information.
For instance, in the scenario of the introduction, the baseline
may be to develop no new project or to sell the entire firm for
some known price. For the positive results of the paper it is
only necessary that maxa∈A E [u(O) | a] ≥ 0.

Contracts for information elicitation. The principal
wants the experts to acquire and honestly report useful infor-
mation. Since acquiring information is costly, the principal
has to set some kind of incentive. If she could observe ex-
pended costs, then this problem would be easy: simply reim-
burse costs and pay some small bonus that is positive affine in
the utility obtained by the principal after taking into account
the overall reimbursements for the experts’ acquisition costs.
However, we assume that effort is unobservable to the princi-
pal. We furthermore assume that the information obtained is
unverifiable.

We will consider a simple class of mechanisms in which
the experts only submit (potentially dishonest) reports ê on
what information they obtained. The principal then takes the
best action given Ê = ê, i.e., takes

aê := arg max
a∈A

E
[
u(O) | Ê = ê, a

]
, (1)

where ties are broken in some arbitrary way and O is the
random variable distributed according to P (· | ê, a). Some
authors have allowed the principal to randomize between
projects – giving the most probability to the best ones – to
have some chance of testing the predictions made for subop-
timal actions [Zermeño, 2011; Zermeño, 2012; Chen et al.,
2014]. Of course, randomization comes at the cost of some-
times taking suboptimal actions. Indeed, our negative results
(see Section 6 and Theorem 7) can be extended to show that
to minimize worst-case regret, the principal must always se-
lect the best action given the report.

Finally, each expert i is rewarded only based on the prob-
ability distribution resulting from the overall report and the
observed outcome, i.e., based on si(P (· | ê, aê), ω), where
si is some scoring rule or contract. Note that the payoff de-
pends only on the prediction about the recommended action
aê. Other predictions are not tested and it is therefore futile to
ask for predictions about them, as pointed out by Othman and
Sandholm [2010, Theorem 1 and 4] and Chen et al. [2014,
Theorem 4.1]. It is easy to show that the results of this paper
generalize to a setting in which the principal’s scoring rule
can depend on all of P (· | ê, ·).

More importantly, we assume that the principal scores only
according to the aggregated expert report. That is, we assume
that the principal does not know the experts’ information
structure and therefore cannot determine the relative value of
individual experts’ contributions. Similarly, we assume that
the principal does not ask the experts for the cost of their in-
formation. In principle, in the case of multiple experts (i.e.,
n ≥ 2), different kinds of mechanisms could also be consid-
ered. In particular, the principal could ask the experts to re-
port on the value and cost of each other’s information. How-
ever, this will generally not be realistic. For instance, consider
the members of a team in a firm. The members of the team



may have a good understanding of each other’s abilities and
contributions as well as of how costly these contributions are
to the different members, but the firm will generally not ask
the team members to report on these things and instead deter-
mine salaries based on relatively little information. (Note that
none of these considerations are relevant to the single-expert
case.)

The principal’s and experts’ goals. We assume that the
principal accounts for her payments to the experts quasilin-
early, so that her overall utility after payments is given by

u(ω)−
n∑
i=1

si(P (· | ê, aê), ω). (2)

As for the experts, a configuration of available evidence
H with prior P and costs (ci)i=1,...,n, and a (multi-expert)
scoring rule s induce an n-player game played by the experts.
Each player’s strategy σi consists of two parts, one determin-
ing which evidence he obtains and one determining how ob-
served evidence is mapped onto reports. Throughout this pa-
per, we use E ∈ H to denote the strategy profile in which
each player i obtains and honestly reports Ei. A strategy pro-
file σ gives rise to an expected payoff EUi

s(σ) for expert (or
player) i and an expected utility net of payments EUs(σ) for
the principal.

Since the experts play a strategic game, we use Nash equi-
librium to describe their behavior. We say that σ is a Nash
equilibrium iff for each i and each alternative strategy σ′i for
i, we have:

EUi
s(σ) ≥ EUi

s(σ−i, σ
′
i). (3)

In general, the game resulting from a configuration and scor-
ing rule will have many equilibria. For n ≥ 2, it is fu-
tile to ask for regret bounds that hold for all Nash equi-
libria, for the following reason. Imagine that the available
evidence is very “complementary” (in the terminology of
Chen and Waggoner [2017]). That is, imagine that v(E)
is high iff E = E∗ and low otherwise. Imagine further
that c(E∗i ) is small but positive for all i. Then in the first-
best solution, E∗ is acquired. But, if there are multiple
experts, everyone obtaining E0 (no information) is also a
Nash equilibrium with (arbitrarily close to) maximum re-
gret. Throughout the rest of this paper, we therefore ask:
what is the regret in the Nash equilibrium that is best for
the principal? (Cf. the notion of price of stability [An-
shelevich et al., 2008; Roughgarden and Tardos, 2007, Sec-
tion 1.3], rather than price of anarchy [Papadimitriou, 2001;
Koutsoupiasa and Papadimitriou, 2009].) Our negative re-
sults, of course, are made stronger by the fact that they say
that no Nash equilibrium can exceed a certain bound. Our
positive results, on the other hand, are mostly about a par-
ticular kind of Nash equilibria (Lemma 1) which arise from
maximizing the experts’ profit.1

1In the mechanism design literature, it is common to consider the
best equilibrium for the principal (or, more generally, for the stud-
ied objective). The reason is that, by the revelation principle, any
equilibrium can be turned into the truthful equilibrium of a (truth-
ful) mechanism, and presumably the truthful equilibrium is focal,
i.e., natural to coordinate on. In our setting, experts do not only re-

In what follows, we do not require our scoring rules to be
proper, i.e., we do not require that they incentivize the ex-
perts to report honestly. However, our results will show that
the optimal contract is indeed proper. We do require that our
scoring rules satisfy an individual rationality constraint. In
particular, we require that each expert i receives an expected
payoff of at least 0 in the strategy profile E0 = (E0, ..., E0)
where everyone honestly reports the null information, i.e., we
require that for all i, EUi

s(E
0) ≥ 0. Note that this is a fairly

weak notion of individual rationality. For instance, it does
not say that the expected payoff for the expert is nonnegative
if others truthfully report non-null information. This makes
our negative results stronger. The linear contracts of our pos-
itive results will in fact satisfy stronger versions of individual
rationality. For instance, they do ensure nonnegative ex-ante
expected scores whenever all experts submit information hon-
estly.

3 Competitive analysis
In this paper, we analyze scoring rules in the style of com-
petitive analysis, a technique for analyzing algorithms that
combines two ideas. The first is worst-case analysis. To
avoid dependence on some prior probability distribution over,
in our case, configurations of costs and available evidence,
we consider how a scoring rule performs in the worst case.
This raises a problem: there is not much we can do to
maximize worst-case expected utility. After all, it may be
that no decision-relevant information is available to the ex-
perts. The second idea of competitive analysis is there-
fore to not consider worst-case expected utility period, but
worst-case expected utility relative to some benchmark for
the problem. Similar approaches have been used in the liter-
ature on principal-expert and -agent problems before [Hur-
wicz and Shapiro, 1977; Chassang, 2013; Carroll, 2015;
Carroll, 2019].

As is common in principal-agent problems, we use the
first-best solution as a benchmark, i.e., the utility net of infor-
mation acquisition costs that the principal could obtain if she
had full control over the experts and knew everything about
the information structure that the experts know. Formally, let

v(E) := EE [EO [u(O) | aE,E]] (4)

be the expected utility obtained from acquiring E and then
taking the best action according to it. Also, let c(E) :=∑n
i=1 ci(Ei) be the overall cost of acquiring E. Then the

expected utility (net of costs) of the first-best solution is
EUOPT := maxE∈H v(E)− c(E). We will use E∗ to denote
a first-best solution itself, i.e., a maximizer of v(E)− c(E).

There are two ways in which the performance of an algo-
rithm is commonly compared against the benchmark: com-

port but also take information acquisition actions. To apply similar
reasoning in such a setting, one may imagine that before each of
their actions, the experts submit their beliefs to a mediator who rec-
ommends actions to each of the experts [cf. Myerson, 1986]. It then
seems plausible that if reporting honestly to the mediator and fol-
lowing her recommendations is an equilibrium, the experts are most
likely to play that focal equilibrium. In our setting, the mediator may
be an additional manager who coordinates the experts.



petitive ratios and regret. Unfortunately, we cannot derive any
nontrivial competitive ratio. Consider the case where there is
just one expert and only one available piece of evidence E
with v(E) = 1. Then to be competitive (i.e., to get positive
utility at all), if the cost of E is c(E) = 1 − ε, the princi-
pal has to reward the expert with almost 1. To be reasonably
competitive at c(E) = ε, on the other hand, she cannot give
away anything close to 1. Because the rewards cannot depend
on the cost function (which the principal does not know), ob-
taining a non-trivial competitive ratio is generally impossible,
even in the single-expert case. That said, we will give two
competitive-ratio-like results (Proposition 3 and Theorem 5)
in which EUOPT is replaced with a weaker benchmark.

Our primary focus will be on regret, which is the differ-
ence between the first-best solution’s utility (net of costs) and
the utility (net of payments to the experts) achieved by using
the scoring rule. So, for any strategy profile σ we define the
regret for that strategy profile as

REGRETs(σ) := EUOPT − EUs(σ). (5)

We will also use REGRETs to denote the lowest regret
achieved in any Nash equilibrium σ for s, i.e.,

REGRETs = min
σ∈NE(s)

REGRETs(σ). (6)

Roughly, the regret is what is sometimes called the agency
cost in the literature on principal-agent and -expert problems,
or the price of stability in mechanism design [Anshelevich et
al., 2008; Roughgarden and Tardos, 2007, Section 1.3].

4 Linear contracts
In this paper, we study and justify the use of a particular type
of scoring rule: linear contracts. For any α ∈ (0, 1]

n with∑n
i=1 αi ≤ 1, define the linear scoring rule qα as follows:

qαj (P̂ , ω) = αju(ω). (7)

That is, each expert receives a fixed fraction of the total payoff
generated. Requiring αi > 0 for all i is done for simplicity.
All the positive results about linear scoring rules can easily
be generalized to linear contracts in which αi = 0 for some i.

Before proceeding with our detailed analysis of linear con-
tracts, it is worth pointing out some immediately obvious and
appealing properties. Most importantly, by rewarding accord-
ing to a positive affine transformation of the principal’s utility,
they align the experts’ interests with the principal’s. In con-
trast, if one were to, say, reward one expert in proportion to
exp(u(ω)), then that expert would sometimes want the prin-
cipal to take a risky (high variance) rather than a safe action,
even if the risky action has lower expected utility. When us-
ing linear scoring rules, the only misalignment between ex-
perts and principal is that the experts only receive a fraction
of the utility obtained and therefore do not value informa-
tion as highly as the principal would in the first-best solution.
Many other desirable properties have been pointed out in the
literature; see the discussion of related work in Section 8.

From the definition of linear contracts, it is immediately
clear that, while they reward the choice of a good action, be-
yond that they do not reward accurate probabilistic forecasts.

Because the principal may additionally like to know what to
expect for the chosen action, this is an undesirable aspect
of linear scoring rules. Note, however, that Oesterheld and
Conitzer [2019, Section 2.5.1] show that linear scoring rules
are the only ones which incentivize honest reporting of the
best action without incentivizing the expert to sometimes pre-
fer acquiring decision-irrelevant over decision-relevant evi-
dence variables.

A more substantial issue with linear contracts is that (in
some configurations of available evidence) they violate ex-
interim individual rationality constraints. After acquiring
some piece of evidence Ei, an expert i may come to believe
that the expected utility of the principal is negative. Expert
i may then wish to withdraw from the mechanism. Also,
because utilities can end up being negative, linear contracts
cannot be used if the experts are protected by limited liabil-
ity. However, these concerns do not apply in cases where the
principal always has an option to walk away with utility 0,
regardless of the evidence.

5 General regret and ratio bounds for linear
scoring rules

In this section, we give positive results about what regret (and
ratio-like) bounds linear scoring rules achieve. Because linear
contracts do not score experts on their reported beliefs, all of
these results carry over to generic principal-agent problems.
We start with a lemma on which the subsequent results of this
section are based.
Lemma 1. Let qα be a linear contract. Then for all configu-
rations of available evidence, any

Ê ∈ arg max
E∈H

v(E)−
n∑
i=1

1

αi
c(Ei) (8)

is a Nash equilibrium of the game induced by qα.

Proof. As noted earlier, qα incentivizes honest reporting if
everyone else reports honestly. So we only need to show that
no expert j can profit by deviating from acquiring Êj to ac-
quiring E′j . From the definition of Ê it follows that

v(Ê)−
n∑
i=1

1

αi
c(Êi) ≥ v(Ê−j , E

′
j)−

1

αj
c(E′j)−

∑
i 6=j

1

αi
c(Êi).

(9)
Adding

∑
i6=j c(Êi)/αi and then multiplying by αj yields

αjv(Ê)− c(Êj) ≥ αjv(Ê−j , E
′
j)− c(E′j), (10)

which means deviating is not profitable for j.

Based on Lemma 1 we now give a bound on the regret of
using any linear scoring rule. Let αmin := mini αi.
Theorem 2. For all configurations of available evidence, the
Nash equilibria Ê of Lemma 1 satisfy

REGRETqα(Ê) ≤ max

(
n∑
i=1

αi, 1− αmin

)
v(E∗). (11)

In particular, setting αj = 1/(n + 1) for all j achieves a
regret bound of REGRETqα(Ê) ≤ nv(E∗)/(n+ 1).



Proof. First, if v(Ê) > v(E∗), then the regret bound is triv-
ially satisfied.2 From now on, we assume v(Ê) ≤ v(E∗). By
definition of Ê we have:

v(Ê)−
n∑
i=1

1

αi
c(Êi) ≥ v(E∗)−

n∑
i=1

1

αi
c(E∗i ). (12)

Hence,

αminv(Ê) ≥ αminv(Ê)−
n∑
i=1

αmin

αi
c(Êi)

≥
Ineq. 12

αminv(E∗)−
n∑
i=1

αmin

αi︸ ︷︷ ︸
≤1

c(E∗i )

≥ αminv(E∗)− c(E∗),

or
αminv(Ê) + c(E∗) ≥ αminv(E∗). (13)

With this, we can prove the desired bound:

REGRETqα(Ê)

= v(E∗)− c(E∗)−

(
1−

n∑
i=1

αi

)
v(Ê)

= v(E∗)−
(
αminv(Ê) + c(E∗)

)
−

(
1− αmin −

n∑
i=1

αi

)
v(Ê)

≤
Ineq. 13

(1− αmin)v(E∗)−

(
1− αmin −

n∑
i=1

αi

)
v(Ê).

If 1 − αmin −
∑n
i=1 αi ≥ 0 and therefore max(1 −

αmin,
∑n
i=1 αi) = 1 − αmin, then the subtrahend is pos-

itive. Hence, we can drop it to obtain the desired up-
per bound. If 1 − αmin −

∑n
i=1 αi ≤ 0 and therefore

max(1− αmin,
∑n
i=1 αi) =

∑n
i=1 αi, we continue by using

our assumption that v(Ê) ≤ v(E∗):

≤ (1− αmin)v(E∗)−

(
1− αmin −

n∑
i=1

αi

)
v(E∗)

=

(
n∑
i=1

αi

)
v(E∗),

which allows us to conclude the bound in the theorem.

It is worth noting that any equilibrium of the game induced
by qα that is not strongly Pareto-dominated by E∗ will also

2Configurations with v(Ê) > v(E∗) are a possibility if (and
only if) the αi are not all the same. For example, imagine α1 =
0.01, α2 = 0.5 and that expert 1 has exclusive access to E1 with
v(E1) = 0.5 and c1(E1) = 0.1 and expert 2 has exclusive access to
E2 with v(E2) = 0.51 and c2(E2) = 0.15. Assume v(E1, E2) =

v(E2) = 0.51. Then E∗ = (E1, E
0) and Ê = (E0, E2) and hence

v(E∗) = 0.5 < 0.51 = v(Ê).

satisfy the regret bound of ineq. 11. In particular, if Ê is not
strongly Pareto-dominated by E∗, this means there must be
some expert j such that

αjv(Ê)− c(Êj) ≥ αjv(E∗)− c(E∗j ). (14)
From this we can derive ineq. 13 from the above proof:

αminv(Ê) + c(E∗)

= αjv(Ê)− c(Êj) + c(Êj)

− (αj − αmin)v(Ê) + c(E∗)

≥
v(E∗)≥v(Ê)

αjv(Ê)− c(Êj) + c(Êj)

− (αj − αmin)v(E∗) + c(E∗)

≥
Ineq. 14

αjv(E∗)− c(E∗j ) + c(Êj)

− (αj − αmin)v(E∗) + c(E∗)

= αminv(E∗) + c(E∗−j) + c(Êj)

≥ αminv(E∗)

After that we can prove the bound in the same way as in the
proof. Unfortunately, it may be that all Nash equilibria of the
game induced by qα are strictly Pareto-dominated by E∗.

The regret bound REGRETqα(Ê) ≤ nv(E∗)/(n + 1) is
the best bound that a linear contract can achieve without any
assumptions about the configuration of available evidence.
One might have hoped for a better bound, at least for larger n.
Also, it requires the principal to give each expert a share of the
proceeds equal to her own, which means that unless a large
fraction of the experts pay an amount close to v(E∗)/(n+1),
regret is generally high. However, we will see (in Section 6)
that the regret bound is tight not only for linear scoring rules
but that no scoring rule can achieve a better bound. We will
also consider two ways of making assumptions about the con-
figuration of available evidence to achieve better bounds. One
is based on a competitive-ratio-type bound from the literature
and is discussed in the rest of this section. The other targets
regret and will be the subject of Section 7.

Lemma 1 also gives us the following result, which is a gen-
eralization to the multi-expert case of a result shown by Chas-
sang [2013, Theorem 1.i] and Carroll [2015, Section 2.3].
Proposition 3. For all configurations of available evidence,
the Nash equilibria Ê of Lemma 1 for the linear scoring rule
qα satisfy

EUqα(Ê) ≥

(
1−

n∑
i=1

αi

)
max
E

(
v(E)−

n∑
i=1

1

αi
c(Ei)

)
.

(15)

Proof.

EUqα(Ê) =

(
1−

n∑
i=1

αi

)
v(Ê)

≥

(
1−

n∑
i=1

αi

)(
v(Ê)−

n∑
i=1

1

αi
c(Êi)

)

=
def. Ê

(
1−

n∑
i=1

αi

)
max
E

(
v(E)−

n∑
i=1

1

αi
c(Ei)

)



Proposition 3 is essentially a competitive-ratio-type result,
except that the benchmark is a little weaker than the first-
best solution. The term maxE (v(E)−

∑n
i=1 c(Ei)/αi) is

the utility obtained in a first-best solution where the cost of
i’s information is scaled up by α−1

i . And of that, using qα

guarantees a fraction of 1−
∑n
i=1 αi.

Chassang [2013, Theorem 1.ii] shows how a single-expert
version of this result can be used to figure out which value of
α to use when the principal knows something about the cost-
to-value ratio of information. If information is known to be
cheap, then α can be low. Chassang’s proof only operates on
(the n = 1 special case of) Ineq. 15. A similar line of reason-
ing applies to our multi-expert setting. Such a result is useful
for practical purposes. It also shows how the existing results
can be used to give better bounds and recommendations that
are to some extent tailored to specific settings. Unfortunately,
it seems that if the cost-to-value bounds vary between experts,
no succinct expression for the optimal contracts can be given.

6 Unique optimality of linear scoring rules
Having proven bounds on the regret of linear contracts, the
natural next question is: can we do any better by using a dif-
ferent scoring rule? In particular, can we do better by eliciting
predictions of what outcome will materialize, in addition to
recommendations of what action to take? It is easy to come
up with examples of particular prior probability distributions
over configurations of available evidence under which the an-
swer is yes. For instance, the prediction accuracy for some
part of the environment could give the principal strong evi-
dence about the costs paid by the experts. But it turns out that
in the worst case and without further assumptions, we can-
not get any better regret bounds; moreover, linear contracts
are in fact the only ones that achieve the optimal regret bound
in general. This is true even if the principal knows the pre-
cost expected utility v(E∗) of the information acquired in the
first-best solution.

Theorem 4. Let 0 < H < maxω∈Ω u(ω) and let s be a
scoring rule. Then if for all configurations with v(E∗) = H ,
REGRETs ≤ nH/(n + 1), then it must be that for all j =

1, ...,m, sj(P̂ , ω) = u(ω)/(n+ 1), whenever ω ∈ supp(P̂ ).

We briefly give a sketch of the proof, which consists of
two parts. In the first part, we identify “critical cases” for
any s, i.e. a small set of classes of configurations on which
the bound is tight and which together determine sj to be the
hypothesized linear scoring rule. One critical case is that in
which v(E∗) = H and E∗ is in fact free to acquire. To keep
regret low in this case, the principal has to make sure that
she does not give away too much. Overall, she can only
give away nH/(n + 1) in expectation. The other critical
case is that in which v(E∗) = H and in E∗ exactly one ex-
pert j acquires information at a price of H/(n + 1) − ε. To
achieve low regret in these cases, the principal must make
sure that whenever an expectation of H is achieved, any ex-
pert j receives an expected payoff of at least H/(n + 1) (or,
gets at least H/(n + 1) more than it gets for reporting the
prior). The critical cases together imply that if information

E∗ with value v(E∗) = H is acquired, each expert receives
an expected payoff of H/(n + 1) (and that if the prior is re-
ported, each expert receives an expected payoff of 0). The
second part of the proof shows that this (across all possible
E∗ with v(E∗) = H) implies that sj is as claimed in the the-
orem. Roughly, in this part we show that the scoring rule must
be linear, using the fact that the expected payoff is constant
across different distributions with the same mean.

Proof. Define for each i ∈ {1, ..., n} and each distribution
Qa over Ω, φi(Qa) := EO∼Qa [si(Qa, O)] to be the expected
payoff that expert i obtains after an action is recommended
with an honestly reported distribution Qa. In abuse of nota-
tion, define φi(e) := φi(P (· | ae, E = e)) for some value e
of some random variable E, where ae is again the best action
for the principal according to e.

We consider the class of cases in which only one of the ex-
perts j ∈ {1, ..., n} has access to some piece of (non-trivial)
information E with v(E) = H and where for each action
a ∈ A there is at most one value e of E that identifies a as
optimal. This last restriction ensures that honest reporting is
the only way for the expert to get the principal to take the
optimal action.

Now consider two types of cases for the cost of E to j:
• Imagine that cj(E) = 0. Then to achieve REGRET ≤
nH/(n+ 1), expert j must weakly prefer acquiring and
honestly reporting E and the overall expected payment
to the experts for acquiring E must be at most nH/(n+
1), i.e.

n∑
i=1

EE [φi(E)] ≤ n

n+ 1
H. (16)

• Imagine that cj(E) = H/(n + 1) − ε for any ε > 0.
Then for REGRET ≤ nH/(n + 1), expert j still has
to prefer acquiring and honestly reporting E. That is, it
has to be the case that

EE [φj(E)]− φj(P ) ≥ cj(E) = H/(n+ 1)− ε. (17)

Since this is true for all ε > 0, it must be the case that

EE [φj(E)]− φj(P ) ≥ H/(n+ 1). (18)

From Inequalities 16, 18 (for all j) and ex ante individual
rationality it follows that for all j

EE [φj(E))] = H/(n+ 1) (19)

and
φj(P ) = 0. (20)

Next we show that φj(Qa) = EO∼Qa [u(O)] /(n + 1)
for all j and Qa. The main challenge is to show that φj
is affine in the expected utility of Qa, i.e., that φj(Qa) =
λEO∼Qa [u(O)] +C for some λ,C ∈ R. Having shown that,
it will follow immediately (from Equations 19 and 20) that
λ = 1/(n+ 1) and C = 0.

Remember that [see, e.g, Schneider and Eberly, 2003, Sect.
3.4] φj(Qa) being affine in the expected value can be char-
acterized by stating that for any two random variables Ra, Rb
with the same (expected) expected utility, it is the case that
ERa [φj(Ra)] = ERb [φj(Rb)]. Note that because in our case



φj is a function of probability distributions over Ω, Ra, Rb
are random variables whose values are such probability dis-
tributions. Now notice that Eq. 19 already implies the desired
equation, except it does so only for Ra, Rb that both have an
expected utility of H . We now show how we can extend this
to random variables with arbitrary expected utilities.

Consider any two random variables Ra, Rb over distribu-
tions over ∆(Ω) with equal expected utility

ERa [EO∼Ra [u(O)]] = ERb [EO∼Rb [u(O)]] (21)

less than maxω∈Ω u(ω). Then consider new random variables
R̃a = p ∗ Ra + (1− p) ∗ R̃ and R̃b = p ∗ Rb + (1− p) ∗ R̃
s.t.

ER̃a
[
EO∼R̃a [u(O)]

]
= H = ER̃b

[
EO∼R̃b [u(O)]

]
, (22)

0 < p ≤ 1 and R̃ is some random variable over distributions
over Ω. (Note that if we had allowed H = maxω u(ω), then
such R̃a, R̃b, R̃, p might not exist.) We have already shown
that it must be the case that ER̃a

[
φj(R̃a)

]
= ER̃b

[
φj(R̃b)

]
(Eq. 19) since R̃a, R̃b might be the distributions arising from
some evidence E with v(E) = H . By the definition of ex-
pected value this implies ERa [φj(Ra)] = ERb [φj(Rb)]. We
have now shown that for any Ra, Rb, if

ERa [EO∼Ra [u(O)]] = ERb [EO∼Rb [u(O)]] , (23)

then ERa [φj(Ra)] = ERb [φj(Rb)]. This is exactly the char-
acterization of φj(Q) being affine in EO∼Q [u(O)]. As noted
earlier, this shows (with eq.s 19 and 20) that φj(Qa) =
EO∼Qa [u(O)] /(n+ 1). By definition of φj , this means that
for all true distributions Qa

EO∼Qa [s(Qa, O)] = EO∼Qa [u(O)] /(n+ 1). (24)

All that is left now is to get rid of the expectation EO∼Qa .
Before we can do that, we show that for all distributions
Qa, Q

′
a over Ω

φi(Qa) ≥ EO∼Qa [si(Q
′
a, O)] , (25)

i.e., that si is proper and thus experts cannot increase their
expected payoff by misreporting the distribution of the rec-
ommended action. We prove this by contradiction. Imagine
there were Q′a, Qa, i violating inequality 25. Now consider
for each expert k 6= i the evidence structure where at price
H/(n+ 1)− ε (for some ε > 0), expert k can acquire a piece
of evidence Ek with v(Ek) = H that reveals the optimal ac-
tion. Expert i can acquire evidence for free which reveals the
distribution that the optimal action gives rise to, with the two
possibilities being Q′a and Qa. Then it must be an equilib-
rium for k to acquire Ek. Considering ε → 0, this implies
expert k receives at least H/(n+ 1). Since this is true for all
k 6= i, the principal pays (at least) (n−1)H/(n+1) overall in
expectation to the experts other than i. But by assumption, if
i acquires Ei and reports accurately except for misreporting
Qa (when it is observed) asQ′a, he gets in expectation strictly
more than E [φi(Ei, Ek)] = H/(n+ 1). Hence, the principal
pays more than nH/(n + 1) overall in expectation – which
means that the regret does not satisfy the bound.

Finally, we show that as long as ω ∈ supp(Q′a), si(Q′a, ω)
only depends on (the utility of) the outcome [in a way that
resembles the proof of Lemma 2 of Oesterheld and Conitzer,
2019]. From that it will follow that s(Q′a, ω) = u(ω)/(n+1)
whenever ω ∈ supp(Qa), as claimed. So take any distribu-
tions Qa, Q′a over Ω with supp(Qa) ⊆ supp(Q′a). Then we
haveQ′a = pQa+(1−p)Q̃a for some p ∈ (0, 1], Q̃a ∈ ∆(Ω).
Now consider the following:

EO∼Q′a [si(Q
′
a, O)]

= pEO∼Qa [si(Q
′
a, O)] + (1− p)EO∼Q̃a [si(Q

′
a, O)]

≤
Ineq. 25

pEO∼Qa [si(Qa, O)] + (1− p)EO∼Q̃a [si(Q
′
a, O)]

≤
Ineq. 25

pEO∼Qa [si(Qa, O)] + (1− p)EO∼Q̃a
[
si(Q̃a, O)

]
=

Eq. 24
p
EO∼Qa [u(O)]

n+ 1
+ (1− p)

EO∼Q̃a [u(O)]

n+ 1

=
EO∼Q′a [u(O)]

n+ 1
=

Eq. 24
EO∼Q′a [si(Q

′
a, O)]

Since the first and the last term are the same, the weak in-
equalities in the middle must be equalities. Since p > 0, we
have EO∼Qa [si(Qa, O)] = EO∼Qa [si(Q

′
a, O)] whenever

supp(Qa) ⊆ supp(Q′a). In particular, for any ω ∈ supp(Q′a)
if we let Qa be the distribution which puts all probability on
ω we obtain

si(Q
′
a, ω) = EO∼Qa [si(Q

′
a, O)] = EO∼Qa [si(Qa, O)]

= u(ω)/(n+ 1),
(26)

as claimed.

The different aspects of this result depend on the details
of our setup to different extents. In particular, the result that
worst-case regret is nH/(n + 1) generalizes far beyond our
setting. In particular, even if the principal knows the experts’
information structure, there will still be cases with regret
nH/(n+1) if the principal cannot obtain reliable information
about the different experts’ costs of acquisition. For instance,
imagine a case (similar to the one in the above proof) where
everyone needs to acquire information for the principal to ob-
tain a utility of H . One expert has to pay H/(n + 1) − ε for
his piece of information and the others can obtain their infor-
mation for free. Because the principal does not know which
expert pays a cost, she must still pay everyone H/(n + 1) in
expectation.

The uniqueness of linear scoring rules in minimizing
worst-case regret, on the other hand, does hinge on our as-
sumption that the principal does not know the information
structure. With knowledge of the specific information struc-
ture, the principal can use very different contracts. As a
straightforward example, if it is known that one expert cannot
obtain sufficiently useful information, the scoring rule need
not pay that expert at all.

A result analogous to Theorem 4 holds true for the com-
petitive ratio-based bound. We omit the proof for brevity, as
we can use the same ideas as in the proof of Theorem 4.



Theorem 5. Let α ∈ (0, 1)n with
∑n
j=1 αj < 1 and s be

a scoring rule. Then if for all configurations there is Nash
equilibrium Ê

EUs(Ê) ≥

(
1−

n∑
i=1

αi

)
max
E

(
v(E)−

n∑
i=1

1

αi
c(Ei)

)
,

(27)
then it must be the case that for all j = 1, ...,m, sj(P̂ , ω) =

αiu(ω), whenever ω ∈ supp(P̂ ).

7 Restrictions the configurations of available
evidence

In this section we consider a setting in which the principal is
assumed to have a particular type of knowledge about the con-
figuration of available evidence (similar to Chassang’s [2013,
Theorem 1.ii] result, mentioned at the end of Section 5). With
this we would like to show that (as one would expect) under
stronger assumptions, substantially better bounds can be de-
rived. Perhaps more importantly, it shows that the strategy in
the proof of Theorem 4 of using critical cases to derive lin-
ear contracts and their optimality generalizes to settings with
additional assumptions.

Arguably, much of the reason why our general bound is
not better than it is is that we do not know who has access
to decision-relevant information. While we use the term “ex-
perts”, we allow for configurations in which almost all of the
“experts” cannot acquire decision-relevant information at a
reasonable cost. Indeed, these cases drive the proof of The-
orem 4. In many real-world settings, the principal is able to
select a set of experts who all can acquire relevant informa-
tion. We will model this by introducing the assumption that
all experts have access to the same set of evidence variables
– though note that of this set each expert can still only obtain
one element.

Assumption 1. H1 = H2 = ... = Hn.

Furthermore, we assume that there is some known bound
on how much acquisition costs differ.

Assumption 2. There is some known Λ ∈ (0, 1] such that for
any two experts i, j and non-trivial evidence variablesEi, Ej
we have cj(Ej) > 0 and Λ ≤ ci(Ei)/cj(Ej).

If Λ = 1, then all experts pay the exact same price for all
pieces of information. If Λ is small, then some experts may
be able to acquire information much cheaper than others.3

We add another assumption:

Assumption 3. For all vectors of information E ∈ H and
any expert i, we have v(E−i) ∈ {0, v(E)}.

Roughly, this means that any set of evidence variables is
either fully complementary (in which case v(E−i) = 0 for

3A natural loosening of this assumption is to require that the
same piece of information must cost two different experts roughly
the same, but two different evidence variables can vary arbitrarily in
their costs. The bound under this assumption is only slightly worse,
but the analysis and bounds appear to become much more compli-
cated.

all i that acquire non-trivial information) or has some redun-
dant piece of information (in which case v(E−i) = v(E) for
some i). There are some settings in which such an assump-
tion is (at least approximately) natural. For instance, we may
imagine that the principal and experts are morally or legally
obliged to pay due diligence and cannot pursue projects un-
less they are fully researched. In the context of this paper,
another reason we consider this assumption is that it allows
for an equilibrium analysis that is more powerful than that of
Lemma 1.

As before (Sections 5 and 6), we first provide the posi-
tive result. That is, we show that a particular linear scoring
rule achieves a particular regret bound. We then show (Theo-
rem 7) that this scoring rule is optimal and the only one that
achieves the given regret bound. It turns out that in this case
the optimal scoring rule is much harder to guess. We hope
that the proof of Theorem 7 makes clear where its parameters
come from. Note that the proof of the positive result is some-
what different from the proofs of Theorem 2 and Proposition
3, because – as noted earlier – it does not use the Lemma 1
equilibria (which in general do not satisfy the regret bound of
this theorem).

Theorem 6. Let n ∈ N be the number of experts. Given
Assumptions 1, 2 and 3, define

BΛ,n := 1− 1

1 +
∑n
i=1

1
1+(i−1)Λ

. (28)

and for j = 1, ..., n

αj =
1

(1 + (j − 1)Λ)
(

1 +
∑n
i=1

1
1+(i−1)Λ

) . (29)

Then, REGRETqα ≤ BΛ,nv(E∗).

Proof. We distinguish two cases. (1) If there is some equilib-
rium E′ of the game induced by (αj)j=1,...,n with v(E′) =
v(E∗), then the regret in that equilibrium satisfies the bound:

REGRET(E′) ≤

 n∑
j=1

αj

 v(E∗) = BΛ,nv(E∗)

(2) Now consider the case where there is no equilibrium
in which the equivalent of the information in E∗ is acquired.
Assume that in E∗, k ≥ 1 experts acquire non-trivial infor-
mation (i.e., evidence variables other than E0). WLOG as-
sume that E∗ is minimal in the sense that v(E∗−i) = 0 for
all i who obtain non-trivial information. Now consider the
E′ which arises from moving all acquisition to the first k ex-
perts (the ones with the highest αi). If E′ is not an equilib-
rium, this means that there is some expert j ∈ {1, ..., k} s.t.
αjv(E′) < c(E′j). This is because by Assumption 3, none of
the currently not acquiring experts k+ 1, ..., n can increase v
by acquiring. Therefore,

c(E∗) = c(E′) ≥ (k − 1)Λc(E′j) + c(E′j)

> (1 + (k − 1)Λ)αjv(E′)

= (1 + (k − 1)Λ)αjv(E∗).

(30)



Hence, even if the experts acquire no relevant information at
all, the regret is low:

REGRETqα(E0) = v(E∗)− c(E∗)
<

Ineq. 30
(1− (1 + (k − 1)Λ)αj)v(E∗)

≤ (1− (1 + (k − 1)Λ)αk)v(E∗)

= BΛ,nv(E∗)

We now prove that the scoring rule of Theorem 6 is the only
one that achieves its regret bound. Our strategy is the same
as the strategy behind the proof of Theorem 4 and the omit-
ted proof of Theorem 5. Very roughly, the idea is as follows.
For any given linear contract qα, we guess the cases where
the regret is highest. The first such case is – as in the proof
of Theorem 4 – the one in which information is free to the
experts and regret is entirely a result of the principal having
to give away some fraction of her profits that she can keep in
the first-best solution. Second, there is a critical case for each
k = 1, ..., n, in which k pieces of information are needed and
the expert iwith the k-th highest αi cannot quite afford a rele-
vant piece of information. One can then find the given bound
and parameters of the linear contract by minimizing worst-
case regret across these cases. Using these cases, one can
prove as in the proof of Theorem 4 that to obtain the bound,
one has to use this linear rule.

Theorem 7. Let 0 < H < maxω∈Ω u(ω), and s be a scoring
rule. Then, if for all configurations with v(E∗) = H that sat-
isfy Assumptions 1, 2 and 3, we have REGRETs ≤ BΛ,nH ,
then it is the case that – up to permutation of the experts
– for all j = 1, ...,m: sj(P̂ , ω) = αju(ω) whenever
ω ∈ supp(P̂ ), where the αj are as defined in Eq. 29.

Proof. We consider two kinds of cases.

• Imagine that k different pieces of information must be
acquired to achieve an expected utility ofH . To n−k+1
experts all evidence variables cost αkH − ε for some
small ε > 0, where the αk are defined as in the theorem.
To the other k−1 experts, the evidence variables all cost
ΛαkH . The regret of not acquiring information, i.e., of
acquiring E0, would be too high:

REGRETs(E
0) = H − c(E∗)

= (1− (1 + (k − 1)Λ)αk)H + ε

= BΛ,nH + ε

Hence, acquiring k evidence variables must be an equi-
librium. Note that this is true for all partitions of the
experts into k − 1 experts who pay the lower price of
ΛαkH and n − k + 1 experts who pay the higher price
of αkH − ε. To ensure that in all of these cases k ex-
perts acquire information, the scoring rule needs to en-
sure that at least k experts overall are willing to pay the
higher price; if there were only k − 1 who are willing
to pay the higher price, then in the partition where those
k − 1 are exactly the ones who can pay the lower price,
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Figure 1: Plots of the the regret bound BΛ,n for different values of
Λ.

no other expert would acquire information. That is, for
k experts j it must be the case that

E [φj(E
∗)]− E

[
φj(E

0)
]
≥ αkH − ε. (31)

Here, φj is defined as in the proof of Theorem 4. Since
this is for all ε > 0, it must be the case that

E [φj(E
∗)]− E

[
φj(E

0)
]
≥ αkH. (32)

• Imagine that the same k different pieces of information
must be acquired to achieve an expected utility of H but
that all information costs ε. Then for regret to be at most
BΛ,nH as ε→ 0 it must be the case that

n∑
i=1

E [φi(E
∗)] ≤ BΛ,nH. (33)

Since
∑n
i=1 αi = BΛ,n, inequalities 32 and 33, together with

individual rationality, imply that for all j, E
[
φj(E

0)
]

= 0
and whenever v(E∗) = H there is for each k = 1, ..., n an
expert i s.t. E [φi(E

∗)] = αkH . By a simple continuity ar-
gument, this mapping (i.e., which expert gets which αk) must
be the same for all E∗. So, up to permutation of the experts,
it must be the case that for all k = 1, ..., n and all E with
v(E) = H , E [φk(E)] = αkH . The rest of this proof pro-
ceeds just like the proof of Theorem 4.

If Λ = 0, then BΛ,n = n/(n + 1) and αj = 1/(n + 1)
for j = 1, ..., n. That is, as the restriction on the cost ra-
tios becomes vacuous, the optimal bound and scoring rule
approach the optimal general bound and scoring rule of The-
orems 2 and 4. If Λ = 1 (i.e., all costs are the same), then
BΛ,n = Hn/(Hn + 1) and αj = 1/((Hn + 1)j), where
Hn =

∑n
i=1 1/i is the n-th harmonic number. Plots of BΛ,n

for different values of Λ can be found in Figure 1.
Note that even though – for all the principal knows – the

experts are all identical, the minimum-regret contract varies
the numbers of shares in the project given to different experts.
Theorem 7 therefore provides another (and quite different)
demonstration of a point made by Winter [2004], who shows
that the optimal reward structure for a principal-(multi-)agent
problem sometimes has to treat identical agents differently.
To understand why in our setting optimal rewards are asym-
metric despite symmetry between agents, consider only the
cases where Λ = 1, i.e., where all experts pay exactly the



same price for all pieces of information. Consider the ques-
tion of how many experts we should give enough shares to
overcome some given acquisition cost of c. If that number
is k, then our worst-case regret at cost c from no informa-
tion being acquired is H − (k + 1)c and occurs in the case
where k + 1 pieces of information (all at cost c) are needed.
Since this number decreases with k, giving k experts suffi-
ciently many shares to outweigh a cost of a sufficiently large
c at some point becomes non-critical for minimizing regret.
Given regret considerations in other cases (in particular the
one where all information is essentially free), the minimum-
regret value of k will therefore be smaller than n but bigger
than 0 for many values of c.

8 Related work
The most closely related strand of literature is that on
principal–expert (and more generally principal–agent) prob-
lems. Our results merely concern one of many possible vari-
ants of and approaches to such problems. For example, much
of the literature on principal-expert problems differs from the
present work in that they do not let the expert submit (or re-
veal by selection of a contract from a contract menu) any
information apart from a recommendation. We are not the
first to approach the problem from a worst-case perspective
[Hurwicz and Shapiro, 1977; Chassang, 2013; Carroll, 2015;
Carroll, 2019]; but many others have derived very different
kinds of results without the worst-case assumption, for in-
stance by considering specific (types of) distributions or other
restrictions [Lambert, 1986; Stoughton, 1993; Core and Qian,
2002; Barron and Waddell, 2003; Feess and Walzl, 2004;
Zermeño, 2011; Häfner and Taylor, 2019]. Also, many pa-
pers have richer problem representations and specialized foci
on issues that do not arise in the present framework. For in-
stance, most authors take into account that the expert is pro-
tected by limited liability. With a few exceptions [Barron
and Waddell, 2003; Gromb and Martimort, 2007], existing
work only considers settings with a single expert. While, as
we have noted, some of our results can be seen as general-
izations of corresponding single-expert results (one of which
– Proposition 3 – was already given in the literature for the
single-expert case), Section 7 discusses issues that are very
specific to the multi-expert case. To our knowledge, our main
optimality arguments (the proofs of Theorems 4, 5 and 7)
and most of our results are also unique. At the same time,
our results support other work which has aimed to discuss
and explain the use of linear contracts [Hurwicz and Shapiro,
1977; Stoughton, 1993; Diamond, 1998, Carroll, 2015; Chas-
sang, 2013; Carroll, 2019; Dütting et al., 2019; Oesterheld
and Conitzer, 2019, Section 2.5.1].

In mechanism design, a few authors have worked to charac-
terize scoring rules that incentivize experts to honestly report
existing (or free) decision-relevant information [Othman and
Sandholm, 2010; Chen et al., 2014; Oesterheld and Conitzer,
2019]. The setups of these papers do not give any objective
that allows one to identify particular scoring rules as optimal;
they allow for rewards of tiny scale (say, giving the experts
a trillionth of the principal’s profit). The introduction of in-
formation acquisition costs into the model forces the use of

nontrivial rewards, and allows us to ask meaningful questions
about what scoring rule is optimal. Overcoming acquisition
costs is one way to introduce a target for optimization among
scoring rules that gives a reason to give larger-scale scores.
The same can be achieved by introducing conflicts of interest
that arise if the expert has (contrary to the setup of this paper)
an intrinsic interest in the principal’s decision. The expert
may have an incentive to misreport (or not report anything if
information is verifiable) to make the principal take the ex-
pert’s (rather than the principal’s) favorite decision [Holm-
ström, 1980; Crawford and Sobel, 1982; Boutilier, 2012;
Milgrom and Roberts, 1986]; cf. the literature on Bayesian
persuasion [Kamenica and Gentzkow, 2011].

9 Conclusion
We have shown how competitive analysis can be used to de-
rive the optimality of particular linear contracts in principal-
expert problems. We demonstrated that when adding specific
assumptions about the structure and cost of available infor-
mation, the analysis can also provide optimal scoring rules for
specific settings. The optimal scoring rules in all of these set-
tings give away a substantial fraction of the principal’s profit.
The present work therefore motivates the use of more com-
plicated mechanisms when dealing with multiple experts. For
instance, the principal may look to save money by asking the
experts to reveal each other’s costs of acquisition. Further,
it is worth asking what the cost of the worst-case simplifi-
cation is: how much better can we do if the principal for-
mulates a prior over configurations of available evidence and
optimizes the expected utility over the set of contracts [cf.
Barron and Waddell, 2003; Core and Qian, 2002; Lambert,
1986; Stoughton, 1993]?
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