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Abstract—Charging different prices for Internet access at
different times induces users to spread out their bandwidth
consumption across times of the day. The questions are: is it
feasible and how much benefit can it bring? We develop an
efficient way to compute the cost-minimizing time-dependent
prices for an Internet service provider (ISP), using both a static
session-level model and a dynamic session model with stochastic
arrivals. A key step is choosing the representation of the
optimization problem so that the resulting formulations remain
computationally tractable for large-scale problems. We next show
simulations illustrating the use and limitations of time-dependent
pricing. These results demonstrate that optimal prices, which
“reward” users for deferring their sessions, roughly correlate
with demand in each period, and that changing prices based
on real-time traffic estimates may significantly reduce ISP cost.
The degree to which traffic is evened out over times of the day
depends on the time-sensitivity of sessions, cost structure of the
ISP, and amount of traffic not subject to time-dependent prices.
Finally, we present our system integration and implementation,
called TUBE, and the proof-of-concept experimentation.

I. I NTRODUCTION

A. Motivation

Internet service providers (ISPs) practicing flat rate pricing
face a dilemma: unlike its cost, an ISP’s revenue does not scale
with users’ ever increasing desire for more bandwidth. Usage-
based pricing has been adopted by ISPs outside the United
States and, with AT&T and Verizon’s pricing plan changes,
entered the U.S. wireless market this year (e.g. [1], [2]). Much
of this is driven by the tremendous growth of both wireline and
wireless network traffic, which is out-pacing the increase of
capacity and turning ISPs’ attention to pricing as the ultimate
congestion management tool to regulate bandwidth demand.
Yet pricing based just on monthly bandwidth usage still leaves
a timescale mismatch: ISP revenue is based on monthly usage,
but peak-hour congestion dominates its cost structure. Ideally,
ISPs would like bandwidth consumption to be spread evenly
over all the hours of the day.

Time-dependent usage pricing(TDP) charges a user based
on not just “how much” bandwidth is consumed but also
“when” it is consumed, as opposed totime-independent
usage pricing (TIP), which only considers monthly con-
sumption amounts. TDP has the potential to even out time-
of-the-day fluctuations in bandwidth consumption [3]. As a
pricing practice that does not differentiate based on traffic
type, protocol, or user class, TDP also sits lower on the radar

screen of network neutrality scrutiny. In fact, the day-time
(counted as part of minutes used) and evening-time (free)
pricing long practiced by wireless operators is a simple, 2
period TDP scheme. Small ISPs in New York and Alaska
have begun experimenting with TDP, although in their current
implementation, users have no interface to react to the time-
dependent prices, and the prices are not optimized accordingly.

Given the “time inelasticity” of bandwidth demand in dif-
ferent demographics and applications, it is not clearhow much
TDP can reduce ISPs’ costs, due to either impatient users or
time-sensitive applications, such as web browsing, real-time
streaming, or online gaming. Yet at the same time, the volume
of time-elastic applications is also on the rise. Multimedia
downloads, file sharing, Facebook updates, data backup, and
non-critical software downloads all have various degrees of
time elasticity. Can we efficiently parametrize time-elasticity
and then leverage them in setting the right prices?

Even TDP’s feasibility needs examination. Research on inte-
grating traffic measurement, optimal price determination,and
user interface design is necessary for TDP to become feasible.
Furthermore, it is unclear if time-dependent prices could be
optimized in a computationally efficient way for near real-
time control. This paper investigates how an ISP can use TDP
to manage network congestion by addressing these questions.
We introduce a set of algorithms to efficiently determine
optimal prices, taking into account anticipated user reaction,
and then present an integrated system design called TUBE
(time-dependent usage-based broadband-price engineering), an
end-to-end TDP system for ISPs. Figure 1 summarizes the
TDP prototype as a control loop. This paper first discusses
the center module of computing optimal prices and quantifies
its efficacy in simulation, then explores the modules of user
profiling, measurement, user interface, and finally presents
system integration and proof-of-concept experiment.

B. Related Work

The electricity industry has explored TDP over the years,
as shown in Table I’s summary of existing TDP literature.
Extending these economic analyses to broadband pricing is
non-trivial for several reasons:

• Our model forms part of Fig. 1’s control loop, so that
ISPs can adapt prices in real time to user behavior while



Fig. 1. Overall schematic of time-dependent pricing systems. We first
discuss price determination and later explore user profiling, measurement,
user interface and system integration.

users react to ISPs’ prices.1

• We model TDP as users deferring part of their Internet
usage, rather than the electricity market’s model of users
choosing the period in which to demand a resource.

• In prior work for the electricity industry, the bottleneck
is resource generation, not transit as for ISPs. This differ-
ence requires tracking arrival and departure of application
sessions as in our dynamic model.

• Previous models for brodband TDP use simplified “repre-
sentative demand functions” to estimate resource demand
at peak and off-peak times, while we develop detailed
models directly incorporating sessions’ time-sensitivity.

• We usen (e.g.n = 48 for half hour granularity) periods
instead of 2; the multiple peaks and valleys in bandwidth
usage over one day make 2 period TDP inadequate.
Without a binary pre-classification of hours into peak and
off-peak periods, the design is more challenging.

This paper’s formulation and methodology apply to both
wireline and wireless pricing. In the U.S., wireless TDP will
likely take off first, given its $10/GB usage price today, which
is about 10 times wireline usage pricing. In the last section,
we point to a particularly interesting extension of this paper,
which we call the “$5 a month” wireless data plan.2

C. Overview of Models and Summary of Results

When determining optimal prices, an ISP tries to balance the
cost of demand exceeding capacity–e.g. the capital expenditure
of capacity expansion–with the cost of offering reduced prices
to users willing to move some of their sessions to later times.
A user is a set of application sessions, each with a waiting
function giving the willingness to defer that session for some
amount of time and some pricing incentive for doing so.
Pictorially, an ISP uses TDP to even out the “peaks” and
“valleys” in bandwidth consumption over the day. The ISP’s
problem is then to set its prices to balance these two types of

1Many prior works on TDP for electricity do not model real-time user
reaction due to the lack of a convenient graphic user interface (GUI) and
the relatively low elasticity of electricity usage. In contrast, broadband TDP
can readily position GUIs on Internet access devices, and the elasticity of
bandwidth consumption tends to be high for a good range of applications.

2There is also a variety of other commonly studied network economics
topics, including inter-ISP pricing and its relationship to BGP, two-sided
pricing where ISP charges both consumers and content providers [4], and
QoS differentiation via price differentiation as in Paris Metro Pricing [5].

TABLE I
SUMMARY OF PREVIOUS PAPERS ON TIME-DEPENDENT PRICING.

Work Industry Periods Model Type Description

[6] Electricity 2 DF SW analysis of sim-
ulation based on real
data

[7] Electricity 2 DFRD Analysis of Califor-
nia pilot study

[8] Electricity 2 or 3 DF Various articles

[9] Electricity 2, 24 DFRD Pilot study proposal;
previous studies re-
viewed

[10] Electricity 2 DFRD Quantitative user be-
havior prediction

[11] Electricity 2 DF Application of theo-
retical model to real
data

[12] Electricity 2 DFRD Analysis of Califor-
nia pilot study

[13] Electricity n/a Spot price
pass-through

Cost-benefit analysis
using previous trials

[14] Electricity 2 DFRD Analysis of Japanese
results

[15] Electricity 3 DFRD Ontario pilot study
analysis

[16] Electricity 24 DF Cost-benefit analysis
of case studies

[17] Electricity 2 DFRD Anaheim pricing ex-
periment analysis

[18] ISP n Game Theo-
retic

Theoretical analysis
of SW

[19] General 2 Price capped
DF

Theoretical analysis
of SW

[20] General n DF with un-
certainty

Theoretical model

[21] General n/a Qualitative
description

Argument for time-
dependent pricing

DF: Demand function DFRD: DF from real data SW: Social welfare

costs, given its estimates of user behavior and willingnessto
defer sessions at different prices.

The ISP’s decision can equivalently be formulated in terms
of rewards, as in our formulation. The ISP rewards users for
deferring by the difference between TIP and optimal TDP
prices. Without loss of generality, rewards are positive; their
values reflect movement of the baseline usage price.

Section II develops the static model, which does not include
stochastic arrival of new sessions. We prove that waiting
functions concave in rewards and a piecewise linear cost of
exceeding capacity imply that price determination is a convex
optimization, ensuring computational tractability.

Section III extends to dynamic models with stochastic
arrivals. For a single bottleneck network, this model reduces to
the static model with demand under TIP equal to the amount
of traffic arriving in each period. The fixed-size version is then
extended to sessions with fixed duration and online adjustment
that tracks user behavior. This online algorithm is later used
in the TUBE Optimizer, as in Fig. 9’s schematic.

Traditional economic models explicitly specify users’ rep-



TABLE II
A SUMMARY OF THE MAIN NOTATION .

Symbol
Meaning

Static Model Dynamic Model

pi Reward for deferring to
period i

Same

xi Usage in periodi Same

A (Ai) Maximum capacity (in
period i)

n/a

f(x) max {x, 0} Same

Xi Periodi usage with TIP Same

w(p, t) Waiting function Same

vj Volume of sessionj n/a

j ∈ i Sessionsj originally in
period i

n/a

i − k i − k mod n Same

Πi(t) n/a Sessions arriving in pe-
riod i up to timet

Mi,k(t) n/a Sessions deferring fork
periods from periodi
up to timet

N(t) n/a Active sessions, timet

g n/a PDF forw parameters

µ n/a Allocated capacity

wβ(p, t) The function p

(t+1)β n/a

PDF: probability density function

resentative demand in each period, an approximate approach
not easily scalable to multiple periods. Instead, our waiting
functions use only a general time-sensitivity to model users’
deferral behavior. We also consider uncertainty in user be-
havior: these functions give the probability that a sessionwill
defer for a given amount of time and reward. Waiting functions
may be distinct for each application session or may represent
an aggregate of users’ willingnesses to wait, averaged over
concurrent sessions.

While the waiting functions depend on the amount of time
deferred, the ISP does not need to track users’ behavior in
our design–it uses waiting function estimation to statistically
model users’ deferral behavior. Thus, all sessions in a given
period are charged the same price, no matter how long they
are deferred. In Section IV we give sample waiting functions,
illustrating the variation in time-sensitivities and presenting
a waiting function estimation algorithm. The estimation uses
only aggregate, not individual, TIP and TDP usage data. The
ISP only needs to record a user’s TDP usage per period in
order to charge the correct amount on that user’s monthly bill.

Throughout this paper, we assume the following:
• ISPs are monopolies, facing an estimated distribution of

users’ waiting functions.
• Each session consumes a fixed amount of ISP capacity,

e.g., the average over its short time-scale fluctuations.
• TDP does not cause application sessions to disappear.
Section V shows numerical simulations of the models in

Sections II and III, based on empirical data from AT&T.
Section VI discusses practical aspects of implementing TDPin

our system integration, called TUBE. We also show a proof-
of-concept experimentation with TUBE. These results confirm
the basic feasibility of TDP in advance of a planned field trials.

II. STATIC SESSIONMODEL AND FORMULATION

Different representations of the same underlying optimiza-
tion problem may require different computational loads. In
fact, naı̈ve representations of several of our problem formula-
tions would lead to non-convex, high-dimensional optimiza-
tion. In contrast, our representation ensures computational
tractability of ISPs’ near real-time TDP price optimization.

The ISP’s objective is to minimize the weighted sum of the
cost of exceeding capacity and of offering reduced prices (i.e.,
rewards). The optimization variables are these rewards, which
give users incentives to defer bandwidth consumption. LetXi

denote periodi demand under TIP. The phrase “originally in
periodi” means that with TIP, this session occurs in periodi.

Suppose that the ISP divides the day inton periods, and that
its network has a single bottleneck link of capacityA. This link
is often the aggregation link out of the access network, which
has limited bandwidth compared to aggregate demand and is
often oversubscribed by a factor of five or more. The cost of
exceeding capacity in each periodi, capturing both customer
complaints and expenses for capacity expansion, is denotedby
f(xi −A), wherexi is usage in periodi. Capital expenditure
cost is incurred over a large timescale; thef cost function
represents the fraction due to daily capacity exhaustion.

Each periodi runs from timei − 1 to i. A typical period
lasts a half hour. Sessions begin at the start of the period, an
assumption readily modified to a distribution of starting times.
The time between periodsi andk is given byi− k, which is
the numberb ∈ [1, n], b ≡ i−k (modn). If k > i, i−k is the
time between periodk on one day and periodi on the next.

For each sessionj originally in periodi, define thewaiting
function wj(p, t) : R

2 → R, which measures the user’s
willingness to waitt amount of time, given rewardp. Each
sessionj has bandwidth requirementvj , so vjwj(p, t) is the
amount of sessionj deferred by timet with reward p. To
ensure thatwj ∈ [0, 1] and that the calculated usage deferred
out of a period is not greater than demand under TIP, we
normalize thewj , dividing by the sum over possible times
deferredt of wj(P, t). HereP is the maximum possible reward
offered, or maximum marginal cost of exceeding capacity.

Proposition 1: The ISP’s optimization problem for time-
varying rewards can be formulated as

min

n
∑

i=1

pi





n
∑

k=1,k 6=i

∑

j∈k

vjwj(pi, i − k)



+ f(xi − Ai)

(1)

s. t. xi = Xi −
∑

j∈i

vj

n
∑

k=1,k 6=i

wj(pk, k − i) +

n
∑

k=1,k 6=i

∑

j∈k

vjwj(pi, i − k), (2)



var. pi; i = 1, . . . , n.

Proof: See Appendix A. The key step uses the waiting
function normalization to track aggregate usage deferred from
and into each period.

We have the following equivalence of problem formulations:

Proposition 2: Minimizing cost in (1-2) and maximizing
profit are equivalent.

Proof: See Appendix B. The key step is writing profit
with TIP as revenue minus operational cost and dividing cost
into before and after exceeding capacity. Revenue with TDP
is then revenue with TIP minus the cost of offering rewards.

In usage-based pricing, whether time-dependent or not, the
ISP may charge a flat rate until users reach a certain cap, and
after that charge a usage-based rate. Explicitly modeling this
cap in TDP considerably complicates tractability of the prob-
lem, so we instead vary available capacity with time. In each
period, the ISP subtracts from the network capacityA usage
from those users not reaching the cap and thus not affected
by TDP. This time-dependence also allows for a cushion of
excess capacity against irrational users, a typical precaution for
ISPs. The optimization problem then only involves sessions
above the cap. SinceAi, the available capacity in periodi, is
independent of price, the model is essentially unchanged.

For efficient price determination in TDP, the optimization
problem must have a scalable solution algorithm. The most
useful criterion for this property is convexity: minimizing a
convex function over a convex constraint set. We find mild
conditions on thewj(p, t) that make the problem (1-2) convex
and accommodate different price- and time-sensitivities.

Proposition 3: If the w(p, t) are increasing and concave in
p, and f is piecewise-linear with bounded slope, the ISP’s
optimization problem is convex.

Proof: See Appendix C. The key step is finding the cost
function’s Hessian matrix and observing that ISPs will not
offer rewards greater than the marginal benefit of reduced
capacity cost.

The conditions in Prop. 3 are readily satisfied: following
the principle of diminishing marginal utility,wj should be
increasing and concave inp and decrease int. Users prefer to
defer for shorter times. ISP cost can also be readily represented
with piecewise-linear functions of bounded slope.3

III. D YNAMIC SESSIONMODELS AND FORMULATIONS

A. Offline Model

The dynamic model has offline and online versions. The
offline model uses historical demand statistics, and for a single

3Users may not always rationally follow estimated waiting functions. Prob-
abilistic waiting functions partially account for this uncertainty by assuming
that users decide to defer a session with a certain probability, instead of always
deferring to the period maximizing their waiting function.Alternatively, in
Appendix D, we present a “definite choice model” in which users defer to the
period maximizing their waiting function. This model’s optimization problem
is likely non-convex.

bottleneck network is proven equivalent to the static model.
We assume that sessions arrive according to a Poisson

random process, and leave as a function of the amount of
bandwidth allocated to each session. This stochastic modelis
similar to that in the literature on congestion control (e.g.,
see the extensive bibliography in [22]). Each session has
a fixed size, e.g. file downloads, and stays in the network
until completely processed. We adopt the commonly used
Poisson/exponential arrival model in the analysis, thoughthe
implementation will likely also encounter other types of arrival
patterns. As with the static models, we assume a single bottle-
neck link. We usex to denote the number of sessions arriving
on this link andΛ(x) to denote the bandwidth allocated to the
link by the ISP.4

We assume that users defer only once. Consider one time
period i, with start time i − 1 and end timei, and define
N(t) as the number of active sessions at timet ∈ [0, n]. Since
sessions may be partially processed,N(t) can be non-integral.
We assume Poisson session arrival within the period with
parameterλi. Let Πi(t) denote the number of sessions arriving
between timei − 1 and timet. Session sizes are assumed to
be exponentially distributed with meanb. Session arrival times
are assumed to be uniformly distributed. Letµ(N(t)) denote
the bandwidth allocation in sessions per second.

Proposition 4: The ISP’s optimization problem in the of-
fline dynamic model can be formulated as

min

n
∑

i=1



pi

n
∑

k=1,k 6=i

Mk,i−k(k) + f(bN(i))



 (3)

s. t. N(t) = N(i − 1) −

n−1
∑

k=1

Mi,k(t) +

n
∑

k=1,k 6=i

Mk,i−k(k) +

Πi(t) −

∫ t

i−1

µ(N(s)) ds, t ∈ [i − 1, i] (4)

Mi,k(t) =

∫

B

∫ t

i−1

Πi(t)gi(β) ×

wβ(pi+k, i − 1 + k − s)

t − (i − 1)
ds dβ (5)

var. pi(k), i = 1, 2, . . . , n and k = 1, 2, . . . , n − 1,

whereMi,k(t) denotes the number of sessions deferring from
period i to periodi + k between timei − 1 and timet, gi is
the probability density function of the waiting functionswβ

parametrized by~β, andB is the range of possibleβ.
Proof: See Appendix E. It is similar to that for Prop. 1,

but we must keep track of the number of sessions that have
arrived and the number still in the network at timet.

For a single bottleneck network,µ(N) is just the access
link’s fixed capacity. This allows for a closed-form solution
for N(t), giving the following proposition:

4It is possible to adapt this formulation to sessions with fixed duration, e.g.
streaming video (see Appendix G). These sessions stay in thenetwork for a
fixed amount of time and then leave; low bandwidth availability is reflected
in sound and image quality and not session completion.



Proposition 5: For a single bottleneck network, the dy-
namic model is equivalent to the static model with uniformly
distributed arrival times and leftover sessions from one period
carrying over into the next period.

Proof: See Appendix F. The key step compares Props.
1 and 4 using a closed-form solution forN(t). The dynamic
model thus retains the static model’s computational tractability.

B. Online Model

Dynamic programming provides a way to solve the general
problem in (3-5) with an online algorithm.

This system’s state variables~s consist of the rewards and the
number of sessions remaining at the end of each period.5 The
ISP chooses these rewards to minimize the functionCn(~s),
whereCi is the incurred cost up to periodi. The rewardpn

in periodn is determined first, thenpn−1, etc.
We develop a low-complexity dynamic programming so-

lution to the ISP’s optimization problem and provide an
online algorithm for determining rewards. While sub-optimal,
this algorithm is easy to implement and avoids the high
dimensionality of a full dynamic programming solution.

ONLINE PRICE DETERMINATION ALGORITHM.

1: Start with a set of rewards for the nextn periods, deter-
mined with the static model or offline dynamic model.

2: After the first period, use the static or offline dynamic
model to compute the optimal reward for thenth period
after this first period, given the othern − 1 rewards.

3: After each subsequent period, compute the optimal reward
for the nth period after the current one.

This algorithm’s calculated rewards may not minimize the
aggregate cost over several future periods; however, Section
V’s simulations show that it indeed improves the ISP’s cost
from that with TIP. Section VI shows that it can also be
integrated into the TUBE implementation.

IV. WAITING FUNCTION ESTIMATION

In addition to price optimization as in Sections II and III,
a TDP system requires a module estimating waiting functions
and the size of their corresponding sessions. Given its use in
optimizing over prices, this section briefly describes an ap-
proach to estimating thewj . Our proposed algorithm requires
only aggregate usage data under TIP and TDP, which can
be obtained in control experiments during initial market trials
before rolling out TDP. The ISP need not measure the traffic
of individual users or separate traffic into different classes.

The ISP chooses a parametrized family of waiting functions
and then estimates each period’s parameter distribution. From
Prop. 3, these functions should be concave and increasing inp

and decreasing int. One reasonable choice isw = C p
(t+1)β ,

where the normalization constantC depends on the cost of

5The initial state comes from using some set of initial rewards, for instance
determined by optimization of the static model.

exceeding capacity, number of periods, andβ. The parameter
β ≥ 0 is a “patience index,” with larger β indicating lower
patience. Graphs of thesew for different β, evaluated at the
samep, are illustrated in Fig. 3 for a 12 period model and
unit marginal cost of exceeding capacity. In practice, each
application session may have a differentβ, depending on
factors such as the mood of the user at that time. Since the ISP
sees an aggregated mix of sessions at any given time, there
will be oneβ per type of application in each access network.

The ISP estimates waiting functions by observing the dif-
ference between demand under TIP and demand under TDP.
Let Ti denote this difference in periodi. Suppose there are
m types of sessions–for instance, the ten types in Section V.
The variablesβji

then parametrize waiting functions for typej

sessions in periodi. In our case, these are patience indices. The
proportion of traffic taken up by each session type in period
i is denoted byαji

. The patience indices and proportions can
vary in different periods; in each period, there arem of theβji

andm of theαji
, for a total of2mn parameters. The amount

of traffic deferred from periodi to periodk 6= i is then

Qik = Xi





m
∑

j=1

αji
C

pk

(k − i + 1)βji



 , (6)

whereC is the appropriate normalization constant. EachTi is
thus a linear function of theQik, yieldingn linear equations in
the n(n−1)

2 variablesQik. One equation is redundant, since we
assume the sum of theTi is zero (sessions never disappear).
The ISP can estimate the parametersαji

andβji
as follows:

WAITING FUNCTION ESTIMATION ALGORITHM .

1: Compute the differencesTi between traffic under TIP and
TDP, to obtainn linear equations for theQik.

2: Solve for n − 2 of the Qik, making sure that for each
periodj, at least one of theQik is not solved for.

3: Plug these expressions back into the original equations for
Ti, so that only one equation, linear in theQik, remains.

4: This remaining equation then becomes a function of the
offered rewards and the parametersαji

andβji
.

5: Use the TIP and TDP data for this function to estimate
(e.g. with nonlinear least-squares) all theαji

and βji

parameters involved in this one equation.
6: The parameter estimates give us the waiting functions.

To illustrate this algorithm, we consider a simple example,
with 2 types of sessions and 3 periods. Actual traffic propor-
tions and patience indices given in Table III.

We first solve for theTi in terms of theQik. Then

Ti =
3
∑

k=1

Qik −
3
∑

k=1

Qki, (7)

where for ease of notation we defineQii = 0. Taking i = 1
in (7), we solve forQ12 = T1 + Q21 + Q31 −Q13 and obtain

T2 = Q23 − Q32 − (T1 + Q31 − Q13) . (8)



TABLE III
ACTUAL AND ESTIMATED PARAMETER VALUES IN SIMULATION OF

WAITING FUNCTION ESTIMATION.

Period
Actual Values Estimated Values Maximum

β1i
β2i

α1i
β1i

β2i
α1i

Percent Error

1 1 2 0.17 1.03 2.48 0.46 11.8

2 1 2.33 0.5 1.02 2.49 0.45 9.0

3 1 2.67 0.83 0.90 2.15 0.71 0.5

(a) Estimated waiting function. (b) Actual waiting function.

Fig. 2. Estimated and actual waiting functions for waiting function estima-
tion.

We now take (8) as our function of the rewardspi, with
parametersαji

and βji
. We generate data for the estimation

by evaluating (8) at sets of offered rewardspi ∈ [0, 1]. Table
III shows the parameter values estimated by nonlinear least
squares. The percent difference between actual and estimated
waiting functions for each period remains small at under 12
percent. Estimated and actual waiting functions for period1
are graphed in Fig. 2; other periods yield similar comparisons.

This estimation algorithm uses a baseline measure of ag-
gregate demand under TIP for each period. To account for
changes in the baseline over time, we iterate our algorithm.
The ISP uses TDP data from a relatively long period of time,
e.g. one week, to estimate the waiting functions. It can then
take these estimated parameters as given and solve for the
demand under TIP,Xi, in each periodi. Then equations (7)
are linear equations inXi, and all other variables are known.
Due to noise in the data, different sets of rewards may give
different Xi; the ISP can take an average to determine the
baselineXi. For instance, in our 3 period example, defineωik

to be the (known) value of the waiting function in periodi for
deferring to periodk, at a given rewardpk. Then (7) becomes

X1 − x1 = X1 (ω12 + ω13) − X2ω21 − X3ω31 (9)

at i = 1, with similar expressions forX2 andX3.
Since demand under TIP statistics are also used in the

price determination, updated TIP estimates directly impact the
optimal rewards. Estimation of waiting functions is not perfect
no matter what statistical techniques are used, so the next
section will also present simulations with incorrect waiting
functions used by the ISP in their price optimization.

V. SIMULATION AND PERFORMANCEEVALUATION

In this section, aggregate traffic data over times of the day
(the blue dotted line in Fig. 5) comes from one week of
empirical traces by AT&T. User patience data is much harder

TABLE IV
SAMPLE SESSIONS FOR EACH PATIENCE INDEX.

Patience Index Example of an application session.

0.5 File backup.

1 Non-critical software update.

1.5 Non-critical file download (e.g. peer-to-peer).

2 Website browsing.

2.5 Online purchases.

3 Movie download for immediate viewing.

3.5 Critical file download or software update.

4 Checking email.

4.5 Television program streaming.

5 Live sporting event.

Fig. 3. Comparison of waiting functions for patient (β = 0.5) and impatient
(β = 5) users and reward = $0.049.

to obtain, so we sweep the waiting function distribution over
a range of typical values (see Table IV) to quantify TDP’s
impact. Our convex formulation of the static session model
(Section II) and low-complexity dynamic programming algo-
rithm (Section III) result in computationally-efficient solutions.

A. Static Session Model

We first set the number of periods, each period’s demand
under TIP, sessions’ waiting functions, and the ISP’s cost func-
tion for exceeding capacity, and then set up the optimization
problem (1-2) in a standard convex optimization solver.

We parametrize session waiting functions as in Section IV:

wβ(p, t) = Cβ

p

(t + 1)β
, (10)

whereβ = 0.5, 1, 1.5, . . . , 5. Table IV gives sample types of
sessions with these waiting functions. For simplicity, thesew

have a linear price- or reward-sensitivity. Figure 3 illustrates
time sensitivities for normalized waiting functions in a 12
period model. Using Table II’s notation, we define the cost
function of exceeding capacity as follows:

f(xi − Ai) = 3 max [xi − Ai, 0].

For illustrative purposes, we use monetary units of $0.10.
We use 48 half hour periods, starting at 12am. Table V

shows the resulting demand under TIP in each period; this
is typical of a system with ten users. Sessions are divided



TABLE V
TOTAL DEMAND UNDER TIP PER PERIOD FOR48 PERIODS.

Period Amount (MBps) Period Amount (MBps)

1, 2 230 25, 26 200

3, 4 200 27, 28 200

5, 6 160 29, 30 200

7, 8 130 31, 32 220

9, 10 90 33, 34 220

11, 12 80 35, 36 230

13, 14 70 37, 38 220

15, 16 80 39, 40 240

17, 18 110 41, 42 230

19, 20 130 43, 44 260

21, 22 170 45, 46 270

23, 24 230 47, 48 270

into the 10 waiting function types above; Appendix H gives
the waiting function distributions. We set the single bottleneck
link’s capacity to a constant 180 Megabytes/second (MBps).
The physical capacity of the bottleneck link may be larger,
but ISPs often target the usage to be no more than 80% of the
actual capacity, and we use that target as the value ofA.

The optimization yields an average daily cost per user of
$3.26 with TDP and $4.26 with TIP (a 24% savings). Figures
4 and 5 respectively show the optimal rewards and traffic
profile. Using Section II’s propositions, these rewards areboth
globally optimal and efficiently computed. The optimization
ran in under 10 seconds on a standard laptop, so it is easily
scalable to a large number of periods and many different
session models when run on powerful servers by an ISP.

The ISP never offers a reward greater than $0.15, or half
the maximum marginal benefit, due to the waiting functions’
linearity in p. The ISP’s marginal cost of offering a rewardp

is 2pC for each session, whereC represents the time deferred,
from (10). But the maximum marginal benefit to the ISP is
3C. Then since2pC ≤ 3C, the maximum possible reward is
p = 1.5, or in the monetary units assumed here,p = $0.15.

As intuitively expected, almost all of the periods with
nonzero rewards are also under capacity with TIP. An excep-
tion is p4 = $0.023; period 4 demand under TIP is 200 MBps.
The ISP rewards users for deferring to period 4, which is close
to over-capacity periods 1-3, and then rewards period 4 users
for deferring to under-capacity periods 5,6, etc. The net effect
reduces period 4 demand from demand under TIP; the ISP
transfers usage in two stages, though users only defer once.

We perturb period 1 demand under TIP for a 12 period
model, with 220 MBps as the baseline case. Table VI shows
both price change (the sum of the absolute values of base-
line minus perturbed rewards), and percentage change in the
cost using optimal and baseline rewards. As expected, these
changes decrease for demand under TIP close to 220 MBps.
The price change for increasing demand under TIP is smaller
than for decreasing demand; for larger demand under TIP,
the ISP would increase rewards for deferring from period 1.
However, these are already high; baseline period 1 usage is

TABLE VI
PRICE AND COST CHANGE, PERIOD1 DEMAND UNDER TIP

PERTURBATION.

Demand (MBps) Price Change ($0.10) Cost Change (%)

180 0.3505 -5.84

190 0.2164 -3.75

200 0.0942 -1.50

210 0.0042 0

230 0.0041 0

240 0.0031 0

250 0.0072 0

260 0.0077 0

Fig. 4. Optimal rewards, static session model. Rewards havean upper bound
of $0.15, and larger rewards roughly correlate with higher traffic.

over capacity. The small price changes for demands over 210
MBps yield cost changes under 0.01%; Appendix I contains
more details of the results for perturbation of demand under
TIP and waiting functions.

From Fig. 5, TDP for the 48 period model decreases the
maximum minus minimum usage from 200 to 119 MBps.
Overused periods closer to underused ones have the greatest
traffic reduction; users more easily defer for shorter times.
However, some periods are still over and others still under
capacity. TDP cannot completely even out bandwidth usage
fluctuations over a day if users are too impatient, sessions are
too time-sensitive, or the cost of exceeding capacity is toolow.

To measure the even-ing out of traffic over time, we define
residue spreadas the area between a given traffic profile and
one with the same total usage but with usage constant across
periods. Figure 5 yields a residue spread of 472.5 GB with
TDP and 923.4 GB with TIP. The area between the two profiles
is 450.9 GB, so 24% of traffic is redistributed over a day.

One would expect that when exceeding capacity is expen-
sive, the ISP will offer large rewards to even out demand.
Figure 6 shows residue spread with TDP versus the logarithm
of a, where the cost of exceeding capacity isaf(xi). Residue
spread decreases sharply fora ∈ [0.1, 10], then levels out for
a ≥ 10. For a ≥ 10, demand never exceeds capacity.

B. Dynamic Session Models

We finally simulate the offline dynamic model, with the
same ten waiting function types. We use the waiting function



Fig. 5. Traffic profile, static session model. Traffic in over-capacity periods
is deferred to under-capacity periods, even-ing out the overall profile.

Fig. 6. Residue spread for different costs of exceeding capacity. The ISP
never entirely evens out traffic, even at very high cost of exceeding capacity.

distributions from the static model to describe the amount of
traffic arriving in each period. We assume a single bottleneck
network with constant capacity 210 MBps, so that the only
differences between this and the static model are a uniform
arrival time distribution and usage carrying over into subse-
quent periods. Marginal cost of exceeding capacity is $0.10.

Figure 7 shows the optimal rewards, which yield an average
daily cost of $0.72 per user. We quantify the intuition that
these are generally larger than in the static model (Fig. 4),
where traffic did not carry over into different periods; the ISP
now has more incentive to even out traffic. Indeed, rewards
break the static simulation’s $0.15 barrier. As shown in Fig.
8, traffic in nearly all periods is much reduced; deferred traffic
from initially overused periods no longer carries over into
subsequent periods. Residue spread decreases dramatically
from 2623.1 GB with TIP to 1142.0 GB with TDP; the area
between these traffic profiles is 1495.2 GB.

We now simulate the online dynamic model. Suppose that
capacity is again 210 MBps, and that while running the online
algorithm, the ISP finds that 200 instead of 230 MBps arrives
in period 1 (under TIP; the ISP is using our waiting function
estimation algorithm). Then optimal rewards for deferring
from period 1 increases from $0.045 to $0.572. The ISP
continues to determine optimal rewards for periods 2, 3, etc.
These yield an average daily cost per user of $0.63, which is

Fig. 7. Optimal rewards, dynamic session model. Rewards aregenerally
greater than in the static session model (Fig. 4), breaking the $0.15 barrier.

Fig. 8. Traffic profile, dynamic session model. The traffic is greatly reduced,
since deferred sessions from over-capacity periods no longer carry over into
subsequent periods.

5% smaller than the cost with nominal rewards, $0.66. Since
in general all periods’ TIP arrival rates will vary, an online
adaptation of prices to real-time data very likely represents a
significant cost-saving opportunity for the ISP.

VI. I MPLEMENTATION AND EXPERIMENTATION

To further evaluate feasibility and benefits of TDP, we are
pursuing the following path towards deployment. First, we
implemented TDP theory and algorithms in a Linux evaluation
testbed, and integrated them with measurement and GUI in a
system called TUBE. Second, in the local trial to be carried
out early next year at Princeton, each participant’s Internet
connection fee (wireline and wireless) will be paid by the
TUBE project to their ISPs. The TUBE project will act as
an ISP to them, charging them based on TDP principles and
design. Third, this will be followed by demonstration and
potential adoption by those ISPs that have recently started
using TDP but without optimizing the prices or enabling user
reaction.

This section presents our implementation of TUBE and
initial results running experiments with it.

A. Implementation and System Integration

The two main components of the TUBE prototype are the
TUBE GUI (graphic user interface) and TUBE Optimizer, as
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Fig. 9. Overall schematic of the TUBE system architecture, expanding the
network management and user interface boxes in Fig. 1.

in Fig. 9. This figure expands the network measurement and
user interface boxes of the TDP control loop in Fig. 1.

Individual users install the TUBE GUI on their machines;
the GUI shows their bandwidth usage and corresponding prices
offered by the ISP. The TUBE Optimizer, run on ISP servers,
measures individual usage and determines the prices being
offered to the ISP users using Section III’s online algorithm.

We implemented the TUBE GUI as a loadable plugin to
Ntop [23], an open source Unix tool showing network usage.6

We also implemented the TUBE Optimizer on Linux systems
by usingIPtablesto account for each user’s traffic usage.

The prices determined from the TUBE Optimizer are synced
to the TUBE GUI at every period. The GUI loads a filter
instructing thePcap packet capture device to forward only
the traffic it needs for accounting. It also uses a Round Robin
Database (RRD) [24] to store the history of TDP prices being
offered and the average Internet usage.

The TUBE Optimizer consists of measurement, profiling,
and price determination engines. The measurement engine
keeps track of each user’s aggregate history and passes this
information to the profiling engine, which estimates a patience
index (in the waiting function) for each traffic class. Giventhe
patience indices, the price determination engine calculates the
optimal reward and publishes it to each user.

B. Practical Considerations

Waiting Functions. Neither the TUBE GUI nor the TUBE
Optimizer needs to keep track of when the original sessions
arrive and depart, due to the statistical method in Section
IV. This algorithm only requires the usage history under TIP
and aggregate TDP usage data per period, which is available
through measurement at the TUBE Optimizer.

Efficiency of the TUBE Optimizer. We measured the run
time of the TUBE Optimizer’s profiling and price determina-
tion engines on a standard laptop. With 12 periods and 10
different types of sessions, the online price determination was

6SinceNtop runs on popular modern operating systems such as Windows,
FreeBSD, MacOSX, and Linux, the TUBE GUI also runs on those platforms
without modification.

Fig. 10. Topology of the TUBE testing experiment.

(a) User 1’s traffic under TIP. (b) User 2’s traffic under TIP.

Fig. 11. TIP traffic for both types of users.

completed in less than 5 seconds; with 3 periods and 2 types
of sessions, the waiting function estimation was completedin
under 25 seconds. The TDP algorithm may be run in almost
real time due to the solution efficiency in Sections II and III.

Security. The TUBE communication engine sends the
prices determined from TUBE Optimizer to TUBE GUI
through a secure SSL/TLS connection. For security and
scalability of the systems, the TUBE GUI pulls the price
information only once in each period. The billing data of
an ISP should be protected from unauthorized access. The
TUBE GUI is self-contained, and the TUBE Optimizer keeps
the usage and price (reward).

C. Experimental Results

As a proof-of-concept emulation before the planned real-
user trial, we test the TUBE implementation with two types
of users. Users in group 1 are less patient than those in group
2. We include background traffic fluctuation at the bottleneck
link too. The topology is shown in Fig. 10.7

Figure 11 shows a typical TIP traffic pattern over one hour,
drawn from our TUBE testbed. Traffic is high at the beginning
of the hour for both users, but lower at the end. In Fig. 12, user
1 never defers due to high patience indices compared to the
amount of reward offered. User 2 defers; total traffic volume
moved by TDP is 143.2 MB for web traffic, 707.8 MB for ftp,
and 8460.7 MB for streaming video. Thus, user 2’s patience
index for video is lower, corresponding to watching videos for
pleasure. The amount of traffic evend out compares well with
Section V’s simulations.

7The bandwidth of the bottleneck is set to 10 MBps and the buffer size
is set to 120 packets. The background traffic flows are generated based on
the parameters used by the recent study [25] and the per-flow delays are
assigned to these flows based on the empirical distribution from an Internet
measurement study [26].



(a) User 1’s traffic under TDP. (b) User 2’s traffic under TDP.

Fig. 12. TDP traffic for both types of users.

VII. E XTENSIONS AND CONCLUDING REMARKS

This paper develops the models, formulations, algorithms,
system design, and prototype of a TDP system. We con-
struct a computationally tractable price optimization frame-
work for time-dependent, cost-minimizing pricing for ISPs.
Using the proposed static and dynamic models and sweeping
over a range of waiting function mixes, the ISP can solve
an offline, convex optimization problem for optimal time-
dependent prices. We then develop an online model that
uses real-time user behavior to adjust the prices, and also
present an algorithm to estimate waiting function parameters
and underlying TIP usage. Using empirical time-of-the-day
patterns in bandwidth consumption, our numerical simulations
illustrate how much TDP with optimized prices can help even
out the traffic, reduce residue spread, and reduce ISP cost.
Our TUBE implementation describes the architecture for a
practical deployment.

Time-dependent pricing can be further generalized tocon-
gestion-dependent pricingwhen TDP’s timescale is very short.
Periods may be 30 seconds in wireless Internet access, where
channel conditions or mobility may rapidly change congestion
conditions. In such cases (and for general timescales), TDP
can be put on “auto-pilot” mode, where a user need not be
bothered once he or she specifies a basic configuration, e.g.
the maximum monthly bill, which applications should never be
deferred, etc. Pushing theauto-pilot, fast-timescale, wireless
TDP approach further, there is an opportunity to bridge the
“digital divide,” by offering extremely affordable, e.g. $5 a
month, Internet access plans, where users wait for time slots
in which congestion conditions and prices are sufficiently low.
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APPENDIX A
PROOF OFPROP. 1

First, consider the cost of paying rewards in a given period
i. The amount of usage deferred into periodi is

∑

k 6=i

yk,i, where

yk,i is the amount of usage deferred from periodk to period
i. Consider a sessionj ∈ k. The amount of usage in sessionj

deferred from periodk to periodi is vjwj(pi, i−k), since such



sessions are deferred byi − k amount of time. Thus,yk,i =
∑

j∈k

vjwj(pi, i − k), and the ISP’s total cost of rewarding all

sessions in periodi is pi

∑

k 6=i

∑

j∈k

vjwj(pi, i − k).

Consider the cost of exceeding capacity. Using the above
expressions foryk,i, usage in periodi is

xi = Xi −
∑

j∈i

vj

n
∑

k=1,k 6=i

wj(pk, k − i) +

n
∑

k=1,k 6=i

∑

j∈k

vjwj(pi, i − k). (11)

The ISP’s total cost function for periodi is then

Ci = pi

∑

k 6=i

∑

j∈k

vjwj(pi, i − k) + f(xi − Ai),

and summing overi yields the desired formulation.

APPENDIX B
PROOF OFPROP. 2

The ISP’s total revenue under TDP isP − D, whereP is

the ISP’s revenue under TIP andD =
n
∑

i=1

pi

∑

k 6=i

yk,i denotes

the cost of rewarding users for deferrals. As above,yk,i is
the amount of traffic deferred from periodk to periodi, i.e.
deferredi − k periods after periodk.

Denote the time-independent usage-based price per MBps

as p. Then the ISP’s revenue under TIP isp

(

n
∑

i=1

Xi

)

, and

revenue under TDP is

p

(

n
∑

i=1

Xi

)

−

n
∑

i=1

pi

∑

k 6=i

yk,i.

Subtracting the cost of operations with TDP, the ISP’s profit
under TDP is

π = p

(

n
∑

i=1

Xi

)

−

n
∑

i=1

pi

∑

k 6=i

yk,i −

d

(

n
∑

i=1

xi

)

−

n
∑

i=1

f(xi − Ai), (12)

where d is the constant marginal cost of offering a user
1 MBps without exceeding capacity. But we assumed that

n
∑

i=1

xi =

n
∑

i=1

xi = X for some fixed constantX–no sessions

leave the network. Thenπ = pX − C − dX , whereC is the
cost minimized in Prop. 1. SincedX andpX are constants, the
ISP’s profit maximization problem maximizes−C, and thus
minimizes C. Thus, the ISP’s cost minimization and profit
maximization problems are equivalent.

APPENDIX C
PROOF OFPROP. 3

For simplicity and without loss of generality, assume one
session in each periodi, with unit size and waiting function
wi. For clarity, we suppress the time dependence of thewj .
To facilitate discussion of the Hessian matrix for the objective
function (1), we assume that then rewards are ordered in
vector form asp1, p2, . . . , pn.

The ISP’s cost (1) is reproduced here for one session of unit
size in each period:

C =

n
∑

i=1



pi

∑

k 6=i

wk(pi) + f(xi − Ai)



.

This is just the sum of the costsCi = pi

∑

k 6=i

wk(pi)+ f(xi −

Ai) in each period. Denoting the Hessian ofCi by Hi and the
Hessian ofC by H , note that eachCi = Ci,1 + Ci,2, where

Ci,1 = pi

∑

k 6=i

wk(pi), (13)

with HessianHi,1, and

Ci,2 = f(xi − Ai), (14)

with HessianHi,2. ThenH =

n
∑

i=1

Hi,1 + Hi,2 =

n
∑

i=1

Hi.

Fix a period i and considerHi,1. Since eachpiwk(pi)
depends only onpi, Hi,1 is a scalar. We thus differentiate
to find

dCi,1

dpi

= pi





∑

k 6=i

dwk(pi)

dpi



+
∑

k 6=i

wk(pi).

Upon taking second derivatives,

d2Ci,1

dp2
i

= pi





∑

k 6=i

d2wk(pi)

dp2
i



+ 2





∑

k 6=i

dwk(pi)

dpi



 . (15)

ConsiderHi,2, the Hessian off(xi − Ai). Using (2) to
substitute forxi, we have

f(xi − Ai) = f



Xi +

n
∑

k=1,k 6=i

[wk(pi) − wi(pk)] − Ai



 ,

(16)
where f is a linear or piecewise-linear, increasing, convex
function. Note thatf(xi −Ai) is a function of alln variables.

Now consider ∂2f
∂pk∂pr

for k 6= r. If k 6= i, ∂f
∂pk

=

−f ′(xi − Ai)
(

d wi(pk)
d pk

)

. Then sincef ′′ = 0, ∂2 f
∂ pk∂ pr

=

−f ′′(xi − Ai)
(

d wi(pk)
d pk

)

= 0. Similarly, if k = i, ∂f
∂pi

=

f ′(xi − Ai)





n
∑

k=1,k 6=i

dwk(pi)

d pi



, so ∂2f
∂pi∂pr

= f ′′(xi −

Ai)





n
∑

k=1,k 6=i

dwk(pi)

d pi



 = 0. ThenHi,2 is a diagonal matrix.



Since eachHi,1 is also a diagonal matrix,H is also, greatly
simplifying convexity tests.

To compute the entries ofHi,2, we first find the gradient of
f . From above, we have

∂f

∂pi

= f ′(xi − Ai)





n
∑

k=1,k 6=i

dwk(pi)

d pi



 (17)

∂f

∂pk

= −f ′(xi − Ai)

(

dwi(pk)

d pk

)

, k 6= i. (18)

Since the cross-derivatives are zero, the entries ofHi,2 are

∂2f

∂p2
i

= f ′(xi − Ai)





n
∑

k=1,k 6=i

d2 wk(pi)

d p2
i



 , (19)

and
∂2f

∂p2
k

= −f ′(xi − Ai)
d2 wi(pk)

d p2
k

. (20)

We now addHi,1 andHi,2 to computeHi. For k 6= i, the
kth entry is just (20), but fork = i, it becomes

pi





∑

k 6=i

d2wk(pi)

dp2
i



+ 2





∑

k 6=i

dwk(pi)

dpi





+ f ′(xi − Ai)





n
∑

k=1,k 6=i

dwk(pi)

d pi



 ,

which upon regrouping becomes

2





∑

k 6=i

dwk(pi)

dpi



+





∑

k 6=i

d2wk(pi)

dp2
i





(

pi + f ′(xi − Ai)
)

.

(21)
Since the full HessianH is diagonal, a necessary and

sufficient condition for it to be positive semidefinite is for
each entry to be≥ 0. Consider theith entry ofH . From (21)
and (20), this is

2





∑

k 6=i

dwk(pi)

dpi



+





∑

k 6=i

d2wk(pi)

dp2
i





(

pi + f ′(xi − Ai)
)

−
∑

k 6=i

f ′(xk − Ak)
d2 wk(pi)

d p2
i

,

where the first two terms in the sum come from the HessianHi

in (21) and the third from theHk for k 6= i. Upon rearranging,
the lth diagonal entry of theith sub-matrix ofH is

2





∑

k 6=i

dwk(pi)

dpi



+
∑

k 6=i

(

d2wk(pi)

dp2
i

)

×

[pi + f ′(xi − Ai) − f ′(xk − Ak)] . (22)

Thewk(pi) are increasing inpi, so2





∑

k 6=i

dwk(pi)

dpi



 ≥ 0.

The wk(pi) are also concave inpi, so d2wk(pi)
dp2

i

≤ 0, and a

sufficient condition for (22) to be nonnegative ispi + f ′(xi −

Ai) −
∑

k 6=i

f ′(xk − Ak) ≤ 0. This inequality is equivalent to

pi ≤
∑

k 6=i

f ′(xk − Ak)−f ′(xi−Ai). Since
∑

k 6=i

f ′(xk − Ak)−

f ′(xi−Ai) is the ISP’s marginal benefit from offering a reward
for deferring to periodi andpi is the reward that the ISP must
pay for this to happen, the inequality will always hold. The
ISP will not reward a user for deferring a session with more
than it gains from having the user defer a session. Thus, the
ISP’s optimization problem in (1-2) is always convex if the
w functions are increasing and concave inp and if f , the
cost of exceeding capacity, is linear or piecewise-linear and
increasing.

APPENDIX D
DEFINITE CHOICE SESSIONMODEL

The definite choice session model assumes that users defer
to one definite period, as opposed to the probabilistic models
presented in this paper. We develop the static definite choice
model and shows its likely non-convexity.

To develop the model, it is convenient to approximate the
seriesp1, p2, . . . , pn as a differentiable function of time. Thus,
let p : [0, n] → R be such that fort ∈ [0, n], pt = pi, where
ǫ > 0 is an arbitrary small constant andt ∈ [i − 1 + ǫ, i − ǫ].
Given this functionp, each user chooses a time that maximizes
his or her waiting function, or willingness to defer.

Consider a sessionj in periodi. We assume thatwj(pt, t−
i + 1) is a convex function of time on[0, n] with a global
maximum not located att = 0 or t = n, yielding the following
proposition:

Proposition 6: The ISP’s problem can be formulated as

min

n
∑

i=1

∑

k 6=i





∑

j∈k

pt⋆
j
χi−k(t⋆j )vj



+ f(xi − Ai) (23)

s. t.
∂pt

∂t
|t⋆

j
=

−
∂wj

∂t
∂wj

∂pt

|t⋆
j

(24)

xi = Xi +
∑

k 6=i





∑

j∈k

χi−k(t⋆j )vj −
∑

j∈i

χk−i(t
⋆
j )vj





(25)

var. pt and t⋆j and xi; i = 1, . . . , n,

wheret⋆j is the amount of time sessionj is deferred and

χl(t
⋆
j ) =

{

1 if l − 1 ≤ t⋆j ≤ l

0 otherwise.
(26)

Proof: Consider a sessionj ∈ i. Since users defer to
the time maximizing their willingness to wait, at this time
dwj(pt,t−i+1)

dt
=

∂wj

∂t
+

∂wj

∂pt

∂pt

∂t
= 0. Since ∂wj

∂t
and ∂wj

∂pt
are

known functions of time or reward and are assumed nonzero
(wj decreases with time and increases with reward), we solve



for
∂pt

∂t
|t⋆

j
=

−
∂wj(t−i+1)

∂t
∂wj

∂pt

|t⋆
j

. (27)

The user choosest⋆j , the amount of time deferred, to satisfy
this equation. To ensure that the waiting function is not
maximized att = 0 or t = n, we may choose waiting functions
such thatwj(0, t) = 0 for t ∈ [0, n] and note that the user only
defers to a time in the half-open interval[0, n), never deferring
a full day.

The ISP knows eacht⋆j from solving (27). The cost of
rewarding the user for each sessionj is vjpt⋆

j
. So if l⋆j is also

treated as a variable with constraint (27), the ISP’s problem
becomes

min

n
∑

i=1

∑

k 6=i





∑

j∈k

pt⋆
j
χi−k(t⋆j )vj



+ f(xi − Ai) (28)

s. t.
∂pt

∂t
|t⋆

j
=

−
∂wj

∂t
∂wj

∂pt

|t⋆
j

(29)

var. pt and t⋆j ,

wherexi denotes usage in periodi.

We know thatxi = Xi +
n
∑

k=1,k 6=i

yk,i − yi,k, whereyk,i

is the amount of traffic deferred from periodk to period i.
A sessionj ∈ k is deferred from periodk to period i if
i − 1 − k ≤ t⋆j ≤ i − k. Thus,yk,i =

∑

j∈k

vjχi−k(t⋆j ). So

xi = Xi +

n
∑

k=1,k 6=i





∑

j∈k

vjχi−k(t⋆j ) −
∑

j∈i

vjχk−i(t
⋆
j )



,

(30)
and substituting this equation into (28-29), we obtain the
optimization problem in (23-25).
Since our formulation involves a derivative ofp, we cannot
easily pass from our approximationp to the discretepi, which
are constant in each period. In that case, the user has a finite
number of “times deferred” to choose from, and the optimal
time deferredl may not correspond todwj

dt
|l= 0.

APPENDIX E
PROOF OFPROP. 4

Ignoring any session deferments, the amount of work pro-
cessed during periodi between starting timei− 1 and timet

is
∫ t

i−1
µ(N(s)) ds, and the amount of work that has arrived

between timei − 1 and timet is Πi(t). Thus,

N(t) = N(i − 1) + Πi(t) −

∫ t

i−1

µ(N(s)) ds (31)

represents the number of sessions in the network at timet in
period i.

The amount of work remaining at the end of a time period
can be interpreted as how much the ISP exceeds capacity
in that time period. Thus,f(bN(i)) representsf(xi − Ai),
the cost of exceeding capacity in periodi, sinceN(i) is the

number of sessions remaining at the end of periodi and b is
the mean size of each sessions. We now find expressions for
eachN(i), including session deferments. As a corollary, we
obtain the cost to the ISP of offering rewards to users, since
that depends only on the rewards and the number of sessions
that will defer.

To find an expression forN(t), we first find the number of
sessions that will be deferred from periodi to another period
i + k between timei − 1 and a given timet. The number
of sessions arriving between timei − 1 and timet is Πi(t).
However, to calculate the likelihood that a given session will
defer to periodk, we need to know the waiting functionw
and the amount of time between the session’s arrival time
and periodi + k. The waiting functions can be estimated
from a historical distribution, but the arrival times cannot.
To simplify calculations we assume that the arrival time is
uniformly distributed throughout the interval[i−1, t], i.e. that
sessions are equally likely to arrive at any time.

We assume each waiting function is parametrized by a
vector ~β, and usewβ to denote the waiting function with
parameters~β. These functions have a known probability
density function (PDF)gi(β). Given Q sessions, then, the
ISP faces a waiting function distribution with PDFQgi(β).
Using this information, the ISP can computeMi,k(t), the total
number of sessions deferred tok periods after periodi between
time i − 1 and timet, as a function ofpi+k:

Mi,k(t) =

∫

B

∫ t

i−1

Πi(t)gi(β)wβ(pi+k, i − 1 + k − s)
(

t − (i − 1)
)

ds dβ,

(32)
whereB denotes the possible values of~β and i − 1 + k − s

denotes the time modn betweeni− 1 + k, the time to which
the session is deferred, ands, the session’s arrival time. Then
the number of sessions remaining at timet is

N(t) = N(i − 1) + Πi(t) −
n−1
∑

k=1

Mi,k(t) −

∫ t

i−1

µ(N(s)) ds,

ignoring the number of sessions that might defer to periodi

from other periodsk. We turn next to this topic.
From the above analysis, the number of sessions deferring to

periodi is given by
n
∑

k=1,k 6=i

Mk,i−k(k). Since all sessions are

deferred to the beginning of periodi, we have fort ∈ [i−1, i]

N(t) = N(i − 1) + Πi(t) −

n−1
∑

k=1

Mi,k(t) +

n
∑

k=1,k 6=i

Mk,i−k(k) −

∫ t

i−1

µ(N(s)) ds. (33)

The cost of rewarding users for deferring is the sum of the
reward offered in each periodi times the number of sessions

deferring, or
n
∑

k=1,k 6=i

pkMk,i−k(k) for periodi. Thus, the ISP’s



optimization problem is

min

n
∑

i=1





n
∑

k=1,k 6=i

pkbMk,i−k(k) + f(bN(i))





s. t. N(t) = N(i − 1) +

n
∑

k=1,k 6=i

Mk,i−k(k) −

n−1
∑

k=1

Mi,k(t) +

Πi(t) −

∫ t

i−1

µ(N(s)) ds, t ∈ [i − 1, i]

Mi,k(t) =

∫

B

∫ t

i−1

Πi(t)gi(β) ×

wβ(pi+k, i − 1 + k − s)
(

t − (i − 1)
)

ds dβ

var. pi, i = 1, 2, . . . , n.

APPENDIX F
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The ISP’s optimization problem in the static model is

min

n
∑

i=1

pi





n
∑

k=1,k 6=i

∑

j∈k

vjwj(pi, i − k)



+ f(xi − Ai)

s. t. xi = Xi −
∑

j∈i

vj

n
∑

k=1,k 6=i

wj(pk, k − i) +

n
∑

k=1,k 6=i

∑

j∈k

vjwj(pi, i − k),

var. pi; i = 1, . . . , n.

To adjust for uniformly distributed arrival times, the ISP must
replace eachi − 1 start time by the integral over start times
from i − 1 to i. Thus, the objective function (1), reproduced
above, becomes

n
∑

i=1

pi

n
∑

k=1,k 6=i

∑

j∈k

∫ k

k−1

vjwj(pi, i − 1 − t)
(

t − (k − 1)
)

dt

+ f(xi − Ai). (34)

But this is just
n
∑

i=1

pi

n
∑

k=1,k 6=i

bMk,i−k(k)+f(xi −Ai), if one

takesΠi(t) to be Xi × (t − (i − 1)), so that the number of
sessions arriving in periodi in the dynamic model is the total
number of sessions in the period for the static model, and the
sum over allj ∈ i is replaced by the integral over the PDF of
the wα. SinceN(i), the number of sessions remaining at the
end of periodi, corresponds tof(xi − Ai), we only need to
check thatxi −Ai = bN(i). With the uniform distribution of
start times, (2), reproduced above, becomes

xi = Xi −

n−1
∑

k=1

bMi,k(t) +

n
∑

k=1,k 6=i

bMk,i−k(k). (35)

For a single bottleneck networkµ(N(s)) = Ai

b
, a constant,

and (4) givesN(i) = N(i − 1) + Xi

b
−

n−1
∑

k=1

Mi,k(t) +

n
∑

k=1,k 6=i

Mk,i−k(k)−
Ai

b
, which upon multiplying byb gives,

except forN(i − 1), xi − Ai wherexi is given by (35).

APPENDIX G
DYNAMIC MODEL FOR FIXED-TIME SESSIONS

Let Ni(t) denote the number of sessions in the network at
some timet ∈ [i − 1, i], less the number of sessions deferred
to time i − 1. The ISP’s optimization problem for fixed-time
sessions can be formulated as

min

n
∑

i=1





n
∑

k=1,k 6=i

pkbMk,i−k(k) + f (bNi)



 (36)

s. t. Ṅi = νi − diNi(t) −
∂

∂t

n−1
∑

k=1

Mi,k(t) (37)

Ni(i − 1) = Ni−1 +

n
∑

k=1,k 6=i

bMk,i−k(k) (38)

Mi,k(t) =

∫

B

∫ t

i−1

Πi(t)gi(β) ×

wβ(pi+k, i − 1 + k − s)
(

t − (i − 1)
)

ds dβ

(39)

var. pi, i = 1, 2, . . . , n,

where arrival times are uniformly distributed and the session
arrival rate without deferments in periodi is

Ṅi = νi − diNi(t). (40)

The proof is similar to that of the fixed-size sessions and
is therefore omitted. We describe the dynamics ofN in
differential rather than integral form due to thediNi(t) term
in the dynamics–sessions leave in an amount proportional to
the number of sessions in the network. This term necessitates
exponentiating to find a closed form solution toN(t); for
clarity, we did not perform this exponentiation.

APPENDIX H
WAITING FUNCTION DISTRIBUTIONS

Table VII gives the waiting function distribution by patience
index used for the 48 period simulations. Table VIII gives the
distribution used for the 12 period simulations.

APPENDIX I
IMPERFECTDATA AND ONLINE DYNAMIC MODEL

First, we present the details from the online dynamic model
simulations in Section V above. Table VIII shows the waiting
function distribution of the usage arriving in each period;the
total amount of usage arriving is given in Table IX. Table X
gives the period 1 optimal reward changes when 200 MBps,
instead of 230 MBps, arrives in period 1.



TABLE VII
DEMAND UNDER TIP BY PATIENCE INDEX FOR48 PERIODS(10 MBPS).

Patience Index

Periods 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1&2 5 5 7 1 1 0 2 0 0 2

3&4 4 3 7 0 0 0 2 0 0 4

5&6 3 2 5 1 1 0 1 0 0 3

7&8 1 2 4 2 2 1 1 0 0 0

9&10 1 2 3 1 1 0 1 0 0 0

11&12 1 2 2 0 0 0 1 0 1 1

13&14 1 2 1 0 0 0 1 0 1 1

15&16 0 1 2 0 0 2 1 0 1 1

17&18 1 3 2 0 1 0 1 1 1 1

19&20 2 1 3 0 1 0 1 3 1 1

21&22 2 5 3 0 1 0 2 0 2 2

23&24 5 5 7 1 1 0 2 0 0 2

25&26 3 6 4 2 1 0 2 0 2 0

27&28 3 4 4 0 3 0 2 0 2 2

29&30 3 4 4 2 1 0 2 0 2 2

31&32 6 3 5 0 1 1 2 2 0 2

33&34 8 2 5 0 1 0 2 1 1 2

35&36 4 7 2 0 1 0 2 5 0 2

37&38 6 5 2 2 2 1 2 1 0 1

39&40 4 7 5 0 0 0 2 0 4 2

41&42 7 6 7 0 1 2 0 0 0 0

43&44 9 5 5 0 1 0 3 3 0 0

45&46 7 8 5 0 1 0 1 0 1 3

47&48 8 11 5 0 0 0 0 3 0 0

TABLE VIII
DEMAND UNDER TIP BY PATIENCE INDEX FOR12 PERIODS(10 MBPS).

Patience Index

Period 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1 4 4 7 1 1 0 2 0 0 3

2 2 2 4 1 1 0 1 0 0 2

3 1 2 2 0 1 0 1 0 1 0

4 1 2 1 0 0 1 1 0 1 1

5 1 2 2 0 1 0 1 2 1 1

6 3 3 3 1 1 1 2 1 2 2

7 3 5 4 1 2 0 2 0 2 1

8 5 4 5 1 1 1 2 1 1 2

9 6 5 4 0 1 0 2 3 1 2

10 5 6 4 1 1 1 2 1 2 2

11 8 5 6 0 1 1 1 1 0 0

12 7 9 5 0 1 0 1 1 1 1

TABLE IX
TOTAL DEMAND UNDER TIP PER PERIOD FOR12 PERIODS(10 MBPS).

Period

1 2 3 4 5 6 7 8 9 10 11 12

22 13 8 8 11 19 20 23 24 25 23 26

We next consider perturbations of the discrete static model.
For presentational simplicity, we use only 12 periods, withthe

TABLE X
OPTIMAL REWARDS, PERIOD1 ADJUSTMENT OF DYNAMIC MODEL.

Rewards ($0.10). Rewards ($0.10).

Period Original Adjusted Period Original Adjusted

1 0.45 0.57 25 0.26 0

2 0.41 0.41 26 0.10 0

3 0.50 0.36 27 0.04 0

4 0.37 0.31 28 0 0

5 0.35 0.32 29 0 0

6 0.32 0.30 30 0 0

7 0.34 0.32 31 0 0

8 0.32 0.30 32 0 0

9 0.31 0.29 33 0 0

10 0.32 0.31 34 0 0

11 0.32 0.31 35 0 0

12 0.32 0.31 36 0 0.02

13 0.32 0.31 37 0.04 0.05

14 0.32 0.31 38 0 0

15 0.36 0.35 39 0 0

16 0.33 0.33 40 0.06 0.05

17 0.23 0.24 41 0.11 0.11

18 0.20 0.22 42 0.01 0.04

19 0.17 0.21 43 0 0

20 0.13 0.18 44 0.11 0.12

21 0 0.07 45 0.21 0.21

22 0 0.05 46 0.33 0.33

23 0 0 47 0.57 0.59

24 0.14 0 48 0.03 0.10

TABLE XI
PERTURBED WAITING FUNCTION DISTRIBUTIONS FOR DEMAND

PERTURBATION(UNITS 10 MBPS).

Patience Index

Total 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

18 4 3 6 0 0 0 2 0 0 3

19 3 3 6 1 0 0 2 0 0 4

20 3 3 6 1 1 0 2 0 0 4

21 3 3 7 1 1 0 2 0 0 4

22 3 4 7 1 1 0 2 0 0 4

23 3 4 7 1 1 0 2 0 0 5

24 3 4 8 1 1 0 2 0 0 5

25 4 4 8 1 1 0 2 0 0 5

26 4 4 8 1 1 0 3 0 0 5

waiting function distribution in Table VIII as the baselinecase.
Table XI shows the new distribution of sessions by patience
index in period 1 when total period 1 volume varies from 180
to 260 MBps, with 220 MBps as the baseline case. TableXI
shows the rewards from these perturbations, as discussed in
Section V.

Next, suppose that demand under TIP is unchanged, but
the ISP incorrectly measures users’ waiting functions. For
instance, suppose that the patience index distribution forperiod
1 is given in Table XIII instead of that in Table VIII; in
effect, users are now less willing to defer. Then the rewards



TABLE XII
REWARDS FOR PERIOD1 DEMAND PERTURBATION(UNITS $0.10).

Period
Demand in Period 1 (10 MBps)

18 19 20 21 22 & 23 24 25 & 26

1 0.20 0.12 0.04 0 0 0 0

2 0.43 0.44 0.46 0.48 0.48 0.48 0.48

3 0.36 0.37 0.38 0.40 0.40 0.40 0.40

4 0.34 0.35 0.36 0.37 0.38 0.37 0.38

5 0.33 0.34 0.35 0.36 0.36 0.36 0.36

6-12 0 0 0 0 0 0 0

TABLE XIII
DEMAND UNDER TIP BY PATIENCE INDEX (10 MBPS), PERIOD1 WAITING

FUNCTION PERTURBATION.

Patience Index

Period 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1 3 4 5 0 1 2 2 0 0 5

TABLE XIV
OPTIMAL REWARDS ($0.10),PERIOD1 WAITING FUNCTION

PERTURBATION.

Period Original Adjusted

1 0 0

2 0.48 0.48

3 0.40 0.39

4 0.37 0.37

5 0.36 0.36

6-12 0 0

for deferring to and from period 1 change as in Table XIV.
Rewards barely change, most likely because period 1 is
immediately followed by several under-capacity periods. Thus,
the patience indices of period 1 sessions do not much matter
since the sessions are being deferred for a small amount of
time.

Since sessions from under-capacity periods receive no re-
wards for deferring to other periods, it is worth remarking that
changes in thew functions of these sessions have no effect on
the ISP’s optimal prices or optimal cost.

We now suppose that the ISP is wrong about the waiting
function distribution in all periods. The new distributionis
given in Table XV, with optimal rewards in Table XVI. There
are some differences between the optimal rewards (the 220
MBps case in Table XII), but these only slightly reduce the
cost from $3.04 with nominal rewards to $3.03. Thus, our
numerical simulations show that the static session model is
more robust to errors in waiting function or demand estimation
than the dynamic model. In particular, the ISP’s optimal cost
with adjusted rewards is not significantly lower than that with
baseline rewards.

TABLE XV
DEMAND UNDER TIP BY PATIENCE INDEX (10 MBPS), WAITING

FUNCTION PERTURBATION.

Patience Index

Period 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1 3 4 5 0 1 2 2 0 0 5

2 2 2 4 1 1 0 1 0 0 2

3 1 2 2 0 1 0 1 0 1 0

4 0 2 1 0 1 1 1 0 1 1

5 1 2 2 0 1 0 1 2 1 1

6 3 3 3 1 1 1 2 1 2 2

7 3 5 2 1 2 0 2 0 2 3

8 2 4 5 1 1 1 2 1 3 2

9 4 2 4 0 1 0 2 4 4 2

10 2 5 5 1 0 1 2 2 3 3

11 5 4 2 3 1 1 2 1 2 1

12 6 8 5 0 1 0 1 1 2 3

TABLE XVI
OPTIMAL REWARDS ($0.10),PERIOD1 WAITING FUNCTION

PERTURBATION.

Period Original Adjusted

1 0 0

2 0.48 0.48

3 0.40 0.38

4 0.37 0.35

5 0.36 0.33

6-12 0 0


