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Abstract—Charging different prices for Internet access at screen of network neutrality scrutiny. In fact, the daydim
different times induces users to spread out their bandwidth (counted as part of minutes used) and evening-time (free)
consumption across times of the day. The questions are: is it pricing long practiced by wireless operators is a simple, 2

feasible and how much benefit can it bring? We develop an - .
efficient way to compute the cost-minimizing time-dependen period TDP scheme. Small ISPs in New York and Alaska

prices for an Internet service provider (ISP), using both a satic have begun experimenting with TDP, although in their curren
session-level model and a dynamic session model with stostia implementation, users have no interface to react to the-time
arrivals. A key step is choosing the representation of the dependent prices, and the prices are not optimized acagydin
optimization problem so that the resulting formulations remain Given the “time inelasticity” of bandwidth demand in dif-
computationally tractable for large-scale problems. We ngt show . L I
simulations illustrating the use and limitations of time-dependent f€rent demographics and applications, it is not cle@w much
pricing. These results demonstrate that optimal prices, witch TDP can reduce ISPs’ costs, due to either impatient users or
“reward” users for deferring their sessions, roughly correlate time-sensitive applications, such as web browsing, riead-t
with demand in each period, and that changing prices based streaming, or online gaming. Yet at the same time, the volume
on real-time traffic estimates may significantly reduce ISP 6st. ¢ e _alastic applications is also on the rise. Multineedi
The degree to which traffic is evened out over times of the day . .
depends on the time-sensitivity of sessions, cost structuof the downloads, file sharing, Facebook updates, data backup, and
ISP, and amount of traffic not subject to time-dependent pries. nhon-critical software downloads all have various degrees o
Finally, we present our system integration and implementdon, time elasticity. Can we efficiently parametrize time-dtzst
called TUBE, and the proof-of-concept experimentation. and then leverage them in setting the right prices?

Even TDP’s feasibility needs examination. Research on inte
I grating traffic measurement, optimal price determinatand
A. Motivation user interface design is necessary for TDP to become feasibl

Internet service providers (ISPs) practicing flat rateipgc Furthermore, it is unclear if time-dependent prices cowd b
face a dilemma: unlike its cost, an ISP’s revenue does né# scaptimized in a computationally efficient way for near real-
with users’ ever increasing desire for more bandwidth. @sagime control. This paper investigates how an ISP can use TDP
based pricing has been adopted by ISPs outside the Unitgtmanage network congestion by addressing these questions
States and, with AT&T and Verizon's pricing plan changesye introduce a set of algorithms to efficiently determine
entered the U.S. wireless market this year (e.g. [1], [2)chM optimal prices, taking into account anticipated user ieact
of this is driven by the tremendous growth of both wirelinéanand then present an integrated system design called TUBE
wireless network traffic, which is out-pacing the increase @time-dependent usage-based broadband-price engiggexin
capacity and turning ISPs’ attention to pricing as the Wtin end-to-end TDP system for ISPs. Figure 1 summarizes the
congestion management tool to regulate bandwidth demamgp prototype as a control loop. This paper first discusses
Yet pricing based just on monthly bandwidth usage still ésavthe center module of computing optimal prices and quantifies
a timescale mismatch: ISP revenue is based on monthly usageefficacy in simulation, then explores the modules of user
but peak-hour congestion dominates its cost structurallide profiling, measurement, user interface, and finally present
ISPs would like bandwidth consumption to be spread everﬂystem integration and proof-of-concept experiment.
over all the hours of the day.

Time-dependent usage pricing TDP) charges a user baseds. Related Work

on not just “how much” bandwidth is consumed but also L
“when” it is consumed, as opposed time-independent The electricity industry has explored TDP over the years,

usage pricing (TIP), which only considers monthly con-8S shoyvn in Table I's summary of existing TDP Iitergt_ure._
sumption amounts. TDP has the potential to even out timeXtending these economic analyses to broadband pricing is
of-the-day fluctuations in bandwidth consumption [3]. As on-trivial for several reasons:

pricing practice that does not differentiate based on traffi « Our model forms part of Fig. 1's control loop, so that
type, protocol, or user class, TDP also sits lower on therrada ISPs can adapt prices in real time to user behavior while

I. INTRODUCTION



o] TABLE |

SUMMARY OF PREVIOUS PAPERS ON TIMEDEPENDENT PRICING
Work Industry | Periods | Model Type Description
Network Price e H im-
Measurement Determination [6] EleCtnC|ty 2 DF S&ggiﬁsdognsga
data
[7] Electricity 2 DFRD Analysis of Califor-
nia pilot study
[8] Electricity | 2 or3 | DF Various articles
] ] ) o ) [9] Electricity 2,24 | DFRD Pilot study proposal;
Fig. 1.  Overall schematic of time-dependent pricing systee first previous studies ref
discuss price determination and later explore user prgfilmeasurement, viewed
user interface and system integration. [10] Electricity 2 DFRD Quantitative user be-
havior prediction
. [11] Electricity 2 DF Application of theo-
users react to ISPs’ pricés. retical model to real
« We model TDP as users deferring part of their Internet data
usage, rather than the electricity market's model of users[12] | Electricity 2 DFRD Analysis of Califor-

nia pilot study

[13] Electricity n/a Spot  price | Cost-benefit analysig
pass-through | using previous trials

choosing the period in which to demand a resource.
« In prior work for the electricity industry, the bottleneck
is resource generation, not transit as for ISPs. This diff

; . . o ' [14] Electricity 2 DFRD Analysis of Japanese
ence requires tracking arrival and departure of applicatig results
sessions as in our dynamic model. [15] | Electricity 3 DFRD Ontario pilot study
« Previous models for brodband TDP use simplified “repre- analysis
sentative demand functions” to estimate resource demand16] | Electricity 24 DF Cost-benefit analysis
at peak and off-peak times, while we develop detaile _ of case studies
models directly incorporating sessions’ time-sensigivit | X7 | Electricity 2 DFRD Qgﬁmm g;‘g‘l;gisex'
. We usen (e.g.n = 48_for half hour granulant_y) perlod_s 18] Sp - Game Theo-| Theoretical analysis
instead of 2; the multiple peaks and valleys in bandwidth retic of SW
usage over one day make 2 period TDP inadequatejio] | General 2 | Price capped| Theoretical analysi|
Without a binary pre-classification of hours into peak angd DF of Sw
off-peak periods, the design is more challenging. [20] General n DF with un- | Theoretical model
. . certain
This paper’s formulation and methodology apply to botk . ty .
L . .. . L [21] General n/a Qualitative Argument for time-
wireline and wireless pricing. In the U.S., wireless TDPIwil description | dependent pricing

likely take off first, given its $10/GB usage price today, i DF: Demand function DFRD: DF from real data SW: Social welfar|
is about 10 times wireline usage pricing. In the last sectio
we point to a particularly interesting extension of this @ap
which we call the “$5 a month” wireless data pfan.

costs, given its estimates of user behavior and willingness
C. Overview of Models and Summary of Results defer sessions at different prices.

When determining optimal prices, an ISP tries to balance th The ISP’s decision can equivalently be formulated in terms
cost of demand exceeding capacity—e.g. the capital expeadi of rewards, as in our formulation. The ISP rewards users for
of capacity expansion—with the cost of offering reducedgsi de_ferrln\g/]v_?g trt1e| d|ffe][ence bel_tween Tlg and Opt'.Tal.:t-DP
to users willing to move some of their sessions to later timgd/ices. Without loss of generality, rewards are posi Veei

A user is a set of application sessions, each with a Waitil)(&lues.reflect movement of the baseline gsage price. )
function giving the willingness to defer that session fomeo Section Il develops the static model, which does not include

amount of time and some pricing incentive for doing sgtochastic arrival of new sessions. We prove that waiting
Pictorially, an ISP uses TDP to even out the “peaks” a lnctions concave in rewards and a piecewise linear cost of

“valleys” in bandwidth consumption over the day. The |Sp,gxc_ee_ding capacity_ imply that pr_ice determin_a_tion is a eanv
problem is then to set its prices to balance these two types@{imization, ensuring computational tractability. _
Section Ill extends to dynamic models with stochastic
IMany prior works on TDP for electricity do not model real-tnuser ~arrivals. For a single bottleneck network, this model reuo
reaction due to the lack of a convenient graphic user intergGUI) and the static model with demand under TIP equa| to the amount

the relatively low elasticity of electricity usage. In coagt, broadband TDP . L . . . ..
can readily position GUIs on Internet access devices, andethsticity of of traffic arriving in each pe“Od- The fixed-size versionfier

bandwidth consumption tends to be high for a good range dlicapions. extended to sessions with fixed duration and online adjustme
2There is also a variety of other commonly studied networkneatcs that tracks user behavior. This online algorithm is latezdus

topics, including inter-ISP pricing and its relationship BGP, two-sided . . : ; ) ;
pricing where ISP charges both consumers and content gmavig], and in the TUBE Optimizer, as in Fig. 9's schematic.

QoS differentiation via price differentiation as in Parietw Pricing [5]. Traditional economic models explicitly specify users’ +ep



TABLE I

A SUMMARY OF THE MAIN NOTATION. our system integration, called TUBE. We also show a proof-
of-concept experimentation with TUBE. These results comfir
Meaning the basic feasibility of TDP in advance of a planned fielddria
Symbol . .
Static Model Dynamic Model
p: || Reward for deferring to Same [l. STATIC SESSIONMODEL AND FORMULATION
eriod . . . .
P L — Different representations of the same underlying optimiza
z; Usage in period Same . . . .
: — tion problem may require different computational loads. In
A (Ay) Maximum capacity (in n/a

period i) fact, naive representations of several of our problem édam
7@) || max {z,0} Same tions would lead to non-convex, high-dimensional optimiza
tion. In contrast, our representation ensures computation
tractability of ISPs’ near real-time TDP price optimizatio

X; Period: usage with TIP  Same

w(p,t) || Waiting function Same e e o )
v; || Volume of sessiony na The ISP's objective is to minimize the weighted sum of the

S i || Sessiong originally in _ n/a cost of exceeding capacity and of offering reduced prices, (i
period i rewards). The optimization variables are these rewardghwh

i—k || i—kmodn Same give users incentives to defer bandwidth consumption. X gt
() || nia Sessions arriving in pef denote period demand under TIP. The phrase “originally in
riod i up to timet periodi” means that with TIP, this session occurs in period

M; k(1) || nfa Sessions deferring fér Suppose that the ISP divides the day intperiods, and that

periods_from periods its network has a single bottleneck link of capacityThis link

up to timet X ) - )
N@) | n/a Active sessions. ime is often the aggregation link out of the access network, whic
g || na PDF forw parameters has limited bandwidth compared to aggregate demand and is
w || na Allocated capacity often oversubscribed by a factor of five or more. The cost of
ws(p,1) || The function —E— na exceeding capacity in each periadcapturing both customer

complaints and expenses for capacity expansion, is debgted
f(xz; — A), wherez; is usage in period. Capital expenditure
cost is incurred over a large timescale; tfiecost function

resentative demand in each period, an approximate appro5gRfesents the fraction due to daily capacity exhaustion.
not easily scalable to multiple periods. Instead, our wgiti E@Ch periodi runs from time: — 1 to 7. A typical period
functions use only a general time-sensitivity to model siserf@Sts @ half hour. Sessions begin at the start of the period, a
deferral behavior. We also consider uncertainty in user b@ssumption readily modified to a distribution of startimges.
havior: these functions give the probability that a sessih 1 he time between periodsand is given byi — k, which is
defer for a given amount of time and reward. Waiting funcsiofh® numbeb € [1,n], b =i—k (modn). If k > i,i—k is the
may be distinct for each application session or may repteséfi’® Petween perio@ on one day and periodon the next.
an aggregate of users’ willingnesses to wait, averaged ovefOr €ach sessioforiginally in periodi, define thewaiting
concurrent sessions. function w;(p,t) : R*> — R, which measures the user’s
While the waiting functions depend on the amount of tim@illingness to waitt amount of time, given rewarg. Each
deferred, the ISP does not need to track users’ behaviorS@ssionj has bandwidth requirement;, so v;w;(p,t) is the
our design—it uses waiting function estimation to stataty amount of sessiony deferred by timet with reward p. To
model users’ deferral behavior. Thus, all sessions in angivBnsure that; € [0,1] and that the calculated usage deferred
period are charged the same price, no matter how long tHéyt of & period is not greater than demand under TIP, we
are deferred. In Section IV we give sample waiting function§0rmalize thew;, dividing by the sum over possible times
illustrating the variation in time-sensitivities and peeting deferred of w; (P, t). HereP is the maximum possible reward
a waiting function estimation algorithm. The estimatioresis ©ffered, or maximum marginal cost of exceeding capacity.
only aggregate, not individual, TIP and TDP usage data. TheProposition 1: The ISP’s optimization problem for time-
ISP only needs to record a user's TDP usage per periodviarying rewards can be formulated as
order to charge the correct amount on that user’s monthly bil
Throughout this paper, we assume the following: . ,
« ISPs are monopolies, facing an estimated distribution of ™™ Zpi Z .Zvjw-j(pi’z — k) |+ flwi - Ai)
users’ waiting functions. =t \R=LEALGER 1
« Each session consumes a fixed amount of ISP capacity, . (1)
e.g., the average over its short time-scale fluctuations. o .
« TDP does not cause application sessions to disappear. 5.8 2 =X — Zvj Z wj (P, k=) +
Section V shows numerical simulations of the models in n
Sections Il and Ill, based on empirical data from AT&T. Z Z'ijj(piai_k)a 2)
Section VI discusses practical aspects of implementing TDP k=1,ki jek

PDF: probability density function

n

JEL k=1k#i



var. p;;i=1,...,m. bottleneck network is proven equivalent to the static model
We assume that sessions arrive according to a Poisson
f . lizati K defemea f ndom process, and leave as a function of the amount of
;nn dCtiIr?tr(]) réc;rcr‘p]a 'éﬁgzn to track aggregate usage dete bandwidth allocated to each session. This stochastic nmisdel
P ' similar to that in the literature on congestion control (g.g
We have the following equivalence of problem formulationgiee the extensive bibliography in [22]). Each session has
a fixed size, e.g. file downloads, and stays in the network
Proposition 2: Minimizing cost in (1-2) and maximizing until completely processed. We adopt the commonly used
profit are equivalent. Poisson/exponential arrival model in the analysis, thotingh
Proof: See Appendix B. The key step is writing profiimplementation will likely also encounter other types afial
with TIP as revenue minus operational cost and dividing cosatterns. As with the static models, we assume a singlesbottl
into before and after exceeding capacity. Revenue with TDRck link. We user to denote the number of sessions arriving
is then revenue with TIP minus the cost of offering rewardsn this link andA(x) to denote the bandwidth allocated to the
m link by the ISP}

In usage-based pricing, whether time-dependent or not, théVeé assume that users defer only once. Consider one time
ISP may charge a flat rate until users reach a certain cap, #iod 4, with start timei — 1 and end timei, and define
after that charge a usage-based rate. Explicitly modetiigy t V(#) as the number of active sessions at tifme [0, n]. Since
cap in TDP considerably complicates tractability of thetpro S€ssions may be partially processai) can be non-integral.
lem, so we instead vary available capacity with time. In eadfé @ssume Poisson session arrival within the period with
period, the ISP subtracts from the network capacitysage parametellki. LetII;(t) dgnote the nqmber of sessions arriving
from those users not reaching the cap and thus not affecR&jween timei — 1 and timet. Session sizes are assumed to
by TDP. This time-dependence also allows for a cushion ge exponentially dlstnb_uted wnh m_eanSessmn arrival times
excess capacity against irrational users, a typical ptenafor ar¢ assumed to be uniformly distributed. L€tV (¢)) denote
ISPs. The optimization problem then only involves sessioffR€ Pandwidth allocation in sessions per second.
above the cap. Sincd;, the available capacity in periag is Proposition 4: The ISP’s optimization problem in the of-
independent of price, the model is essentially unchanged. fline dynamic model can be formulated as

For efficient price determination in TDP, the optimization . .

roblem must have a scalable solution algorithm. The most. .
Eseful criterion for this property is convex%ty: minimizjna min Z pi Z Mk (k) + F(bN (7)) 3)
convex function over a convex constraint set. We find mild )
conditions on thev; (p, t) that make the problem (1-2) convex . - =
and accommodaté(diff()arent price- and time-sensitivities. tN(t)=N(G-1) - kz:l M (t) + . ;¢_Mk’ik(k) *

Proposition 3: If the w(p, t) are increasing and concave in ¢ o
p, and f is piecewise-linear with bounded slope, the ISP’s IL;(t) —/ w(N(s))ds, teli—1,9 (4)
optimization problem is convex. . i-1
f PrOfJf. See _Appendlx C. The key s_tep is finding th(_e cost M (1) = / 0, ()i (8) %
unction’s Hessian matrix and observing that ISPs will not BJi 1
offer rewards greater than the marginal benefit of reduced we(Pipk, i — 1+ k—s)
capacity cost. [ | t—(i—1)

The conditions in Prop. 3 are readily satisfied: followingar. pi(k),i=1,2,...,nandk=1,2,...,n—1,
the principle of diminishing marginal utility;v; should be . )
increasing and concave jnand decrease in Users prefer to WhereM; () denotes the number of sessions deferring from
defer for shorter times. ISP cost can also be readily reptede Periodi to periodi + k between timel — 1 and timet, g; is

Proof: See Appendix A. The key step uses the waitin%l

i=1 k=1,k+i

dsdp (5)

with piecewise-linear functions of bounded sidpe. the probability djensity function of the waiting functions;
parametrized bys, and B is the range of possiblg.
I1l. DYNAMIC SESSIONMODELS AND FORMULATIONS Proof: See Appendix E. It is similar to that for Prop. 1,
A. Offline Model but we must keep track of the number of sessions that have

The dynamic model has offline and online versions. TH¥Tved and the number still in the network at time u
offline model uses historical demand statistics, and fonglsi For a single bottleneck networly(N) is just the access
link's fixed capacity. This allows for a closed-form solutio
SUsers may not always rationally follow estimated waitingdtions. Prob- for N(t) giving the following proposition'
abilistic waiting functions partially account for this wrtainty by assuming ! ’
that users decide to defer a session with a certain protyafiistead of always
deferring to the period maximizing their waiting functioAlternatively, in 4t is possible to adapt this formulation to sessions withdigeration, e.g.
Appendix D, we present a “definite choice model” in which gs#efer to the streaming video (see Appendix G). These sessions stay indtveork for a
period maximizing their waiting function. This model’s opization problem fixed amount of time and then leave; low bandwidth availgbiis reflected
is likely non-convex. in sound and image quality and not session completion.



Proposition 5: For a single bottleneck network, the dy-exceeding capacity, number of periods, ghdlrhe parameter
namic model is equivalent to the static model with uniformly > 0 is a “patience index’ with larger 5 indicating lower
distributed arrival times and leftover sessions from ongogle patience. Graphs of these for different 3, evaluated at the
carrying over into the next period. samep, are illustrated in Fig. 3 for a 12 period model and

Proof: See Appendix F. The key step compares Propsnit marginal cost of exceeding capacity. In practice, each
1 and 4 using a closed-form solution fdf(¢). The dynamic application session may have a differeft depending on
model thus retains the static model’s computational ttalityy. ~ factors such as the mood of the user at that time. Since the ISP
B sees an aggregated mix of sessions at any given time, there
will be one g per type of application in each access network.

B. Online Model The ISP estimates waiting functions by observing the dif-
Dynamic programming provides a way to solve the generf@rence between demand under TIP and demand under TDP.
problem in (3-5) with an online algorithm. Let 7; denote this difference in period Suppose there are

This system’s state variabl@sonsist of the rewards and thern types of sessions—for instance, the ten types in Section V.
number of sessions remaining at the end of each péridie  The variableg?;;, then parametrize waiting functions for type
ISP chooses these rewards to minimize the functityis), Ssessions in period In our case, these are patience indices. The
where C; is the incurred cost up to period The rewardp, Proportion of traffic taken up by each session type in period
in periodn is determined first, thep,, 1, etc. i is denoted byy;,. The patience indices and proportions can

We develop a low-complexity dynamic programming sovary in different periods; in each period, there aref the 3;;,
lution to the ISP’s optimization problem and provide a@ndm of thea;,, for a total of2mn parameters. The amount
online algorithm for determining rewards. While sub-omim Of traffic deferred from period to periodx # i is then
this algorithm is easy to implement and avoids the high m
dimensionality of a full dynamic programming solution. Qir = Xi Z a;,C pk . ©6)

ONLINE PRICE DETERMINATION ALGORITHM. il (k — i+ 1)%

1. Start with a set of rewards for the nextperiods, deter- WhereC' is the appropriate normalization constant. Edghs
mined with the static model or offline dynamic model. thus f‘ Ilq)ear function of th;x, yieldingn linear equations in

2. After the first period, use the static or offline dynamiéhe —5— variablesQ;.. One equation is redundant, since we
model to compute the optimal reward for théh period aSSume the sum of tHE, is zero (sessions never disappear).
after this first period, given the other— 1 rewards. The ISP can estimate the parametejsand j;; as follows:

3: After each subsequent period, compute the optimal rewardWAITING FUNCTION ESTIMATION ALGORITHM.
for the nth period after the current one.

1: Compute the differencel; between traffic under TIP and

This algorithm’s calculated rewards may not minimize the TDP, to obtainn linear equations for thé) ;.
aggregate cost over several future periods; however, @ecti 2: Solve forn — 2 of the Q;,, making sure that for each
V's simulations show that it indeed improves the ISP’s cost periodj, at least one of th&),;; is not solved for.
from that with TIP. Section VI shows that it can also be 3: Plug these expressions back into the original equations for
integrated into the TUBE implementation. T;, so that only one equation, linear in tlig, remains.

4: This remaining equation then becomes a function of the
IV. WAITING FUNCTION ESTIMATION offered rewards and the parameters and 3;;.

In addition to price optimization as in Sections Il and Ill, 5: Use the TIP and TDP data for this function to estimate
a TDP system requires a module estimating waiting functions (e.g. with nonlinear least-squares) all the, and 3;,
and the size of their corresponding sessions. Given itsruse i parameters involved in this one equation.
optimizing over prices, this section briefly describes an apé: The parameter estimates give us the waiting functions.
proach to estimating the;. Our proposed algorithm requires

only aggregate usage data under TIP and TDP, which canrg jjjustrate this algorithm, we consider a simple example,

be obtained in control experiments during initial marketlsr with 2 types of sessions and 3 periodS. Actual traffic propor-
before rolling out TDP. The ISP need not measure the traffigns and patience indices given in Table III.

of individual users or separate traffic into different ckess We first solve for theT; in terms of theQ,. Then

The ISP chooses a parametrized family of waiting functions
and then estimates each period’s parameter distributiam F T 23: Qi — 23: O )
Prop. 3, these functions should be concave and increasing in v — ik — ki

and decreasing in. One reasonable choice is = C%l)ﬁ, _ _ _
where the normalization constaft depends on the cost ofwhere for ease of notation we defigg; = 0. Takingi = 1
in (7), we solve forQ,2 = T1 + Q21 + Q31 — Q13 and obtain
5The initial state comes from using some set of initial rewafdr instance
determined by optimization of the static model. To = Qo3 — Q32 — (Th + Q31 — Q13) . (8)



TABLE Il TABLE IV
ACTUAL AND ESTIMATED PARAMETER VALUES IN SIMULATION OF SAMPLE SESSIONS FOR EACH PATIENCE INDEX
WAITING FUNCTION ESTIMATION.

Patience Index| Example of an application session.

Period Actual Values Estimated Values Maximum 0.5 | File backup.
B, P2,  oa; | B1; B2, a1, | Percent Error 1 | Non-critical software update.
1] 1 2 017103 248 046 11.8 1.5 | Non-critical file download (e.g. peer-to-peer).
2| 1 233 05| 102 249 045 9.0 2 | Website browsing.
1 267 083|090 215 071 0.5 2.5 | Online purchases.

3 | Movie download for immediate viewing.
3.5 | Critical file download or software update.
4 | Checking email.
4.5 | Television program streaming.
5 | Live sporting event.
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We now take (8) as our function of the rewargs with =

parametersy;, and 3;,. We generate data for the estimation
by evaluating (8) at sets of offered rewangse [0, 1]. Table : pr = = i
Il shows the parameter values estimated by nonlinear least Time Deferred (Hours)
squares. The percent difference between actual and estimat _ . _ _ N
L. . . . Fig. 3. Comparison of waiting functions for patierit £ 0.5) and impatient
waiting functions for each period remains small at under %g°_s ;;sers and reward = $0.049.
percent. Estimated and actual waiting functions for pefiod
are graphed in Fig. 2; other periods yield similar compangso
This estimation algorithm uses a baseline measure of ag-obtain, so we sweep the waiting function distribution rove
gregate demand under TIP for each period. To account f9rrange of typical values (see Table 1V) to quantify TDP’s
changes in the baseline over time, we iterate our algorithimpact. Our convex formulation of the static session model
The ISP uses TDP data from a relatively long period of timgSection Il) and low-complexity dynamic programming algo-
e.g. one week, to estimate the waiting functions. It can theithm (Section 1) result in computationally-efficientlstions.
take these estimated parameters as given and solve for the )
demand under TIPX;, in each period. Then equations (7) A- Static Session Model
are linear equations iX;, and all other variables are known. We first set the number of periods, each period’s demand
Due to noise in the data, different sets of rewards may givwader TIP, sessions’ waiting functions, and the ISP’s aostf
different X;; the ISP can take an average to determine thien for exceeding capacity, and then set up the optimiratio
baselineX;. For instance, in our 3 period example, defing problem (1-2) in a standard convex optimization solver.
to be the (known) value of the waiting function in peribtbr We parametrize session waiting functions as in Section IV:

deferring to period:, at a given rewargy. Then (7) becomes B P
X1 —x1 = X1 (w2 +wiz) — Xowar — Xzwzr  (9) (t+1)

ati — 1, with similar expressions fok, and X. whereg = 0.5, 1, 1.5, ..., 5. Table IV gives sample types of
' %ssions with these waiting functions. For simplicity,sthe

Since demand under TIP statistics are also used in tﬁ y ) d ity Fi 3 ilrase
price determination, updated TIP estimates directly inffae 1ave a finear price- or reward-Sensitivity. FIgure 5 1Ifases
time sensitivities for normalized waiting functions in a 12

optimal rewards. Estimation of waiting functions is notfeet iod del. Using Table I . defi h
no matter what statistical techniques are used, so the n??f'o model. Using Table II's notation, we define the cost

section will also present simulations with incorrect wegti Unction of exceeding capacity as follows:
functions used by the ISP in their price optimization. f(z; — A;) = 3max [z; — Ay, 0].

V. SIMULATION AND PERFORMANCEEVALUATION For illustrative purposes, we use monetary units of $0.10.
In this section, aggregate traffic data over times of the dayWe use 48 half hour periods, starting at 12am. Table V
(the blue dotted line in Fig. 5) comes from one week afhows the resulting demand under TIP in each period; this
empirical traces by AT&T. User patience data is much hardir typical of a system with ten users. Sessions are divided



TABLE V TABLE VI
TOTAL DEMAND UNDER TIP PER PERIOD FORA8 PERIODS PRICE AND COST CHANGE PERIOD1 DEMAND UNDER TIP
PERTURBATION.

Period | Amount (MBps) || Period | Amount (MBps)

1,2 230 25, 26 200 Demand (MBps) || Price Change ($0.10) Cost Change (%),
3,4 200 27,28 200 180 0.3505 -5.84
5,6 160 29, 30 200 190 0.2164 -3.75
7,8 130 31, 32 220 200 0.0942 -1.50
9, 10 90 33, 34 220 210 0.0042 0
11, 12 80 35, 36 230 230 0.0041 0
13, 14 70 37, 38 220 240 0.0031 0
15, 16 80 39, 40 240 250 0.0072 0
17, 18 110 41, 42 230 260 0.0077 0
19, 20 130 43, 44 260

21, 22 170 45, 46 270 0.12

23, 24 230 47, 48 270

=

d
1Y
&

into the 10 waiting function types above; Appendix H gives
the waiting function distributions. We set the single bdck
link's capacity to a constant 180 Megabytes/second (MBps).
The physical capacity of the bottleneck link may be larger,
but ISPs often target the usage to be no more than 80% of the ooz
actual capacity, and we use that target as the valué. of ‘
The optimization yields an average daily cost per user of ’ T
$3.26 with TDP and $4.26 with TIP (a 24% savings). Figures
4 and 5 respectively show the optimal rewards and trafffig- 4. Optimal rewards, static session model. Rewards Aavgpper bound
profile. Using Section II's propositions, these rewardstzoth of $0.15, and larger rewards roughly correlate with highaffit.
globally optimal and efficiently computed. The optimizatio

ran in under 10 seconds on a standard laptop, so it is eagjl) capacity. The small price changes for demands over 210
scalable to a large number of periods and many differegf g vield cost changes under 0.01%; Appendix | contains
session models when run on powerful servers by an ISP. e getails of the results for perturbation of demand under

The ISP never offers a reward greater than $0.15, or halfp 5nq waiting functions.
the maximum marginal benefit, due to the waiting functions’ grom Fig. 5, TDP for the 48 period model decreases the
!inearity inp. The ISP’S marginal cost of offerir!g arewapd maximum minus minimum usage from 200 to 119 MBps.
is 2pC for each session, whete represents the time deferred gy erysed periods closer to underused ones have the greatest
from (10). But the maximum marginal benefit to the ISP i§affic reduction; users more easily defer for shorter times
3C. Then sincezpC < 3C, the maximum possible reward ispoyever, some periods are still over and others still under
p = 1.5, or in the monetary units assumed hees $0.15.  capacity. TDP cannot completely even out bandwidth usage

As intuitively expected, almost all of the periods withyyctuations over a day if users are too impatient, sessioms a
nonzero rewards are also under capacity with TIP. An excegy time-sensitive, or the cost of exceeding capacity iddoo
tion is ps = $0.023; period 4 demand under TIP is 200 MBps. To measure the even-ing out of traffic over time, we define
The ISP rewards users for deferring to period 4, which iseclogesidue spreadas the area between a given traffic profile and
to over-capacity periods 1-3, and then rewards period 4susghe with the same total usage but with usage constant across
for deferring to under-capacity periods 5,6, etc. The nfetoef erinds, Figure 5 yields a residue spread of 472.5 GB with
reduces period 4 demand from demand under TIP; the I$Bp and 923.4 GB with TIP. The area between the two profiles
transfers usage in two stages, though users only defer onGg.450.9 GB, so 24% of traffic is redistributed over a day.

We perturb period 1 demand under TIP for a 12 period one would expect that when exceeding capacity is expen-
model, with 220 MBps as the baseline case. Table VI showge the ISP will offer large rewards to even out demand.
both price change (the sum of the absolute values of bagggure 6 shows residue spread with TDP versus the logarithm
line minus perturbed rewards), and percentage change in §1¢, where the cost of exceeding capacity:if(z; ). Residue
cost using optimal and baseline rewards. As expected, theggead decreases sharply foe [0.1,10], then levels out for
changes decrease for demand under TIP close to 220 MBps- 1(). For ¢ > 10, demand never exceeds capacity.

The price change for increasing demand under TIP is smaller ) )

than for decreasing demand; for larger demand under THp, Dynamic Session Models

the ISP would increase rewards for deferring from period 1. We finally simulate the offline dynamic model, with the
However, these are already high; baseline period 1 usagesasne ten waiting function types. We use the waiting function

Reward for Deferring ($)
- -
2 3
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Fig. 7. Optlmal rewards, dynamlc session model. Rewardsgarerally

Fig. 5. Traffic profile, static session model. Traffic in owapacity periods greater than in the static session model (Fig. 4), breakieg$0.15 barrier.

is deferred to under-capacity periods, even-ing out theadivprofile.
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Fig. 8. Traffic profile, dynamic session model. The traffic isaily reduced,

Fig. 6. Residue spread for different costs of exceeding @gpalhe ISP gince deferred sessions from over-capacity periods ncetoogrry over into
never entirely evens out traffic, even at very high cost okering capacity. subsequent periods.

distributions from the static model to describe the amount g9 smaller than the cost with nominal rewards, $0.66. Since
traffic arriving in each period. We assume a single bottlenefh general all periods’ TIP arrival rates will vary, an orgin
network with constant capacity 210 MBps, so that the onbydaptation of prices to real-time data very likely représen
differences between this and the static model are a unifogignificant cost-saving opportunity for the ISP.

arrival time distribution and usage carrying over into sibs

quent periods. Marginal cost of exceeding capacity is $0.10 VI. IMPLEMENTATION AND EXPERIMENTATION

Figure 7 shows the optimal rewards, which yield an averageTo further evaluate feasibility and benefits of TDP, we are
daily cost of $0.72 per user. We quantify the intuition thgbursuing the following path towards deployment. First, we
these are generally larger than in the static model (Fig. 4hplemented TDP theory and algorithms in a Linux evaluation
where traffic did not carry over into different periods; &Pl testbed, and integrated them with measurement and GUI in a
now has more incentive to even out traffic. Indeed, rewargdgstem called TUBE. Second, in the local trial to be carried
break the static simulation’s $0.15 barrier. As shown in. Figut early next year at Princeton, each participant’s Irgern
8, traffic in nearly all periods is much reduced; deferreffita connection fee (wireline and wireless) will be paid by the
from initially overused periods no longer carries over intdUBE project to their ISPs. The TUBE project will act as
subsequent periods. Residue spread decreases drampatiealISP to them, charging them based on TDP principles and
from 2623.1 GB with TIP to 1142.0 GB with TDP; the arealesign. Third, this will be followed by demonstration and
between these traffic profiles is 1495.2 GB. potential adoption by those ISPs that have recently started

We now simulate the online dynamic model. Suppose thasing TDP but without optimizing the prices or enabling user
capacity is again 210 MBps, and that while running the onlirreaction.
algorithm, the ISP finds that 200 instead of 230 MBps arrives This section presents our implementation of TUBE and
in period 1 (under TIP; the ISP is using our waiting functiomitial results running experiments with it.
estimation algorithm). Then optimal rewards for deferrin ) )
from period 1 increases from $0.045 to $0.572. The ISP Implementation and System Integration
continues to determine optimal rewards for periods 2, 3, etc The two main components of the TUBE prototype are the
These yield an average daily cost per user of $0.63, whichTi®BE GUI (graphic user interface) and TUBE Optimizer, as
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Fig. 9. Overall schematic of the TUBE system architecturpaading the
network management and user interface boxes in Fig. 1.

in Fig. 9. This figure expands the network measurement ai
user interface boxes of the TDP control loop in Fig. 1. e e &
Individual users install the TUBE GUI on their machines; (a) User 1's traffic under TIP. (b) User 2's traffic under TIP.
the GUI shows their bandwidth usage and correspondinggprice
offered by the ISP. The TUBE Optimizer, run on ISP servers,
measures individual usage and determines the prices being

offered to the ISP users using Section llI's online algamth completed in less than 5 seconds; with 3 periods and 2 types
We implemented the TUBE GUI as a loadable plugin tgf sessions, the waiting function estimation was complated

Ntop [23], an open source Unix tool showing network us&geynder 25 seconds. The TDP algorithm may be run in almost

We also implemented the TUBE Optimizer on Linux systeMga time due to the solution efficiency in Sections Il and IlI

by usinglPtablesto account for each user’s traffic usage. Security. The TUBE communication engine sends the
The prices determined from the TUBE Optimizer are synceffices determined from TUBE Optimizer to TUBE GUI

to the TUBE GUI at every period. The GUI loads a filteghrough a secure SSL/TLS connection. For security and

instructing thePcap packet capture device to forward onlyscalability of the systems, the TUBE GUI pulls the price

the traffic it needs for accounting. It also uses a Round Rolfformation only once in each period. The billing data of

Database (RRD) [24] to store the history of TDP prices beingh |SP should be protected from unauthorized access. The

offered and the average Internet usage. TUBE GUI is self-contained, and the TUBE Optimizer keeps
The TUBE Optimizer consists of measurement, profilinghe usage and price (reward).

and price determination engines. The measurement engine )

keeps track of each users aggregate history and passes thiExperimental Results

information to the profiling engine, which estimates a patee ~ As a proof-of-concept emulation before the planned real-

index (in the waiting function) for each traffic class. Giwtie user trial, we test the TUBE implementation with two types

patience indices, the price determination engine caleslte of users. Users in group 1 are less patient than those in group

40 50 60

Fig. 11. TIP traffic for both types of users.

optimal reward and publishes it to each user. 2. We include background traffic fluctuation at the bottldnec
_ _ _ link too. The topology is shown in Fig. 10.
B. Practical Considerations Figure 11 shows a typical TIP traffic pattern over one hour,

Waiting Functions. Neither the TUBE GUI nor the TUBE drawn from our TUBE testbed. Traffic is high at the beginning
Optimizer needs to keep track of when the original sessiofisthe hour for both users, but lower at the end. In Fig. 12r use
arrive and depart, due to the statistical method in Sectidnnever defers due to high patience indices compared to the
IV. This algorithm only requires the usage history under TIrmount of reward offered. User 2 defers; total traffic volume

and aggregate TDP usage data per period, which is availaleved by TDP is 143.2 MB for web traffic, 707.8 MB for ftp,

through measurement at the TUBE Optimizer. and 8460.7 MB for streaming video. Thus, user 2's patience
Efficiency of the TUBE Optimizer. We measured the run index for video is lower, corresponding to watching videos f

time of the TUBE Optimizer's profiling and price determinapPleasure. The amount of traffic evend out compares well with

tion engines on a standard laptop. With 12 periods and §@ction V's simulations.

different types of sessions, the online price determimatias "The bandwidth of the bottleneck is set to 10 MBps and the busfee

is set to 120 packets. The background traffic flows are geswbraased on

6Since Ntop runs on popular modern operating systems such as Windowke parameters used by the recent study [25] and the per-fidaysi are

FreeBSD, MacOSX, and Linux, the TUBE GUI also runs on thostf@ms assigned to these flows based on the empirical distributiom fan Internet
without modification. measurement study [26].
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Fig. 12. TDP traffic for both types of users. [9]
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VII. EXTENSIONS AND CONCLUDING REMARKS 1]

This paper develops the models, formulations, algorithms,
system design, and prototype of a TDP system. We CORy)
struct a computationally tractable price optimizationnfiea
work for time-dependent, cost-minimizing pricing for ISPs[13]
Using the proposed static and dynamic models and sweept'ﬂg
over a range of waiting function mixes, the ISP can solve
an offline, convex optimization problem for optimal time-
dependent prices. We then develop an online model tHEY
uses real-time user behavior to adjust the prices, and also
present an algorithm to estimate waiting function paransetd16]
and underlying TIP usage. Using empirical time-of-the-day
patterns in bandwidth consumption, our numerical simaitegi [17]
illustrate how much TDP with optimized prices can help even
out the traffic, reduce residue spread, and reduce ISP ¢
Our TUBE implementation describes the architecture for a
practical deployment.

Time-dependent pricing can be further generalizeddn-
gestion-dependent pricinghen TDP’s timescale is very short.

[19]
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Periods may be 30 seconds in wireless Internet access, wHédk H. Chao, “Peak Load Pricing and Capacity Planning witniand and

channel conditions or mobility may rapidly change congesti
conditions. In such cases (and for general timescales), TPRR
can be put on “auto-pilot” mode, where a user need not be
bothered once he or she specifies a basic configuration, &9
the maximum monthly bill, which applications should never b
deferred, etc. Pushing theuto-pilot, fast-timescale, wireless
TDP approach further, there is an opportunity to bridge tHé3
“digital divide,” by offering extremely affordable, e.g5%a [24]
month, Internet access plans, where users wait for time slot
in which congestion conditions and prices are sufficierdly. | [25]
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APPENDIXA
PROOF OFPROR 1

Wall Street JournalJun. 2010. First, consider the cost of paying rewards in a given period
[2] R. Cox and R. Cyran, “Variable Pricing and Net Neutrglitfhe New 4. The amount of usage deferred into pem‘cislz Yi,i,» Where

York Times Aug. 2010.
[3] V. Glass and P. U. Princeton Edge Lab, “United States &aad

Goals: Managing Spillover Effects to Increase Availapjliddoption Yk

ki
is the amount of usage deferred from periodo period

and Investment” 2010, white paper. [Online]. Availablettph %: Consider a sesgoﬁe k. The ?—moum of usage In sessipn
/Iscenic.princeton.edu/paper/NECAPrincetonPape 2l pdf deferred from period to periodi is v;w;(p;, i—k), since such



sessions are deferred by- £ amount of time. Thusy, ; = APPENDIXC

> wjw;(pi,i — k), and the ISP's total cost of rewarding all PROOF OFPROR 3
Jjek For simplicity and without loss of generality, assume one
sessions in periodis p; Y > wvjw;(pi,i — k). session in each period with unit size and waiting function
k#i jEk w;. For clarity, we suppress the time dependence of:uthe
Consider the cost of exceeding capacity. Using the aboyg facjlitate discussion of the Hessian matrix for the otijec
expressions fogy, ;, usage in period is function (1), we assume that the rewards are ordered in
n vector form aspy, pa, ..., pn.
z= X, — Z v Z w; (pr, k — i) + _ Th_e ISP’s cost_ (1? is reproduced here for one session of unit
Tt kel size in each period:
D D uwy(pei=h). (1) =3 {0 welon) + Flari — A
k=1,k+i jek i=1 ki
The ISP’s total cost function for periadis then This is just the sum of the cost; = p; Zwk (pi) + f(xi —
. ki
Ci=pi Yy Y vjwi(pi,i— k) + (i — Ay), A;) in each period. Denoting the Hessian@fby H; and the
k#i jek Hessian ofC by H, note that eaclC; = C;; + C; 2, where
and summing over yields the desired formulatiom Ci1=pi Zwk (ps), (13)
ki
APPENDIXB with HessianH; ;, and

PROOF OFPROPR 2
Cio = f(xi — Ay), (14)
The ISP’s total revenue under TDPB D, whereP is

the ISP’s revenue under TIP addl = sz Zyk . denotes With HessianH, ;. ThenH = Z Hiy+ Hip = ZH

i=1 k#i
the cost of rewarding users for deferrals. As abayg; is

the amount of traffic deferred from periddto periodsi, i.e.

Fix a period: and conS|derH11 Since eachplwk(pl)
depends only omp;, H;; is a scalar. We thus differentiate

deferredi — k periods after period. to find
Denote the time-independent usage-based price per MBps dC; 1 dwy,(p;)
A reint 1 D Db el LD BLACHE
asp. Then the ISP’s revenue under TIP ZXi , and Di ki Pi k#i
=1 . . .
revenue under TDP is Upon taking second derivatives,
n 1 d*C; 1 d?wy,(p;) dwy,(p;)
p(Z)Q) —Zpizyk,z‘- dp? =Dpi ZT?? +2 ZTPZ . (15)
i=1 i=1  k#i k#i ki

Subtracting the cost of operations with TDP, the ISP’s profit Consider f1;;, the Hessian off(z; — 4;). Using (2) to
under TDP is substitute forz;, we have

_p@&)_imzym_ flai—A) =1 (Xt 3 [welps) — wilpw)] — A |
i=1

— / k=1,k#i
- :171 k#i (16)
where f is a linear or piecewise-linear, increasing, convex
d i - i — Ai), 12 - : : :
(Zx ) Z flz ) (12) function. Note tha'g” :171 A;) is a function of alln variables.

. 6]“
Now conS|derap B for k # r. If k& # 4, Do

where d is the constant marginal cost of offering a user dwi(pr) v 9% f

1 MBps Wlthout exceeding capacity. But we assumed thatf (ddp(k ))' Then sincef” = 0, dprdpr
—f" dwilpk) ) — . Similarly, if & = i, 2L =

in = le = X for some fixed constank—no sessions Fiws = A ( dpy, ) Y ' ops

i=1 i=1 n )

leave the network. Then = pX — C' — dX, whereC'is the  f'(z; — A;) [ > dwi(pi) ) 8}?25; = 'z —

cost minimized in Prop. 1. SinegX andpX are constants, the k=1,k+i dp

ISP’s profit maximization problem maximizesC, and thus " duw(p)

minimizes C. Thus, the ISP’s cost minimization and profitd,) Z RRAvA2A s ThenH, , is a diagonal matrix.

maximization problems are equivale . k=1,k#i dp



Since eactH, ; is also a diagonal matrix{ is also, greatly
simplifying convexity tests.

To compute the entries df; o, we first find the gradient of
f. From above, we have

af / - dwk(pi)

= f(zi — A —
g =1 ) k_%i T, (17)
ﬂ,_ Moo — A dwi(pk)) i
) () i)

Since the cross-derivatives are zero, the entrie§ of are

0% f —~ & wi(pi)
=i —A) | D ;o (19
3 2
Op; My Pl
e 0 & wi(pi)
Iy — AR
o2 iz — A;) i (20)

We now addH; ; and H; » to computeH;. For k # 4, the
kth entry is just (20), but fok = ¢, it becomes

d? wk dwk pz
bi Z — a2 Z
ki dpl ki dp;
’ - dwy, (pl)
+ (@i — Ai) Z 0. |’
k=1,k+#i Pi
which upon regrouping becomes
dwy (pi) d*wy (pi) /
 dp, 27 (pi + [ (zi = A3)).
k#i k#i ? (21)

sufficient condition for (22) to be nonnegativeris+ f/(z; —
— Zf’(a:k — Ag) < 0. This inequality is equivalent to

ki
pi <Y f(wk — Ap)— f/(zi— Ai). Sinced  f'(xx — Ay) —
ki ki

f'(z;— A;) is the ISP’s marginal benefit from offering a reward
for deferring to period andp; is the reward that the ISP must
pay for this to happen, the inequality will always hold. The
ISP will not reward a user for deferring a session with more
than it gains from having the user defer a session. Thus, the
ISP’s optimization problem in (1-2) is always convex if the
w functions are increasing and concavegmand if f, the
cost of exceeding capacity, is linear or piecewise-lingat a
increasingm

APPENDIXD
DEFINITE CHOICE SESSIONMODEL

The definite choice session model assumes that users defer
to one definite period, as opposed to the probabilistic nsodel
presented in this paper. We develop the static definite ehoic
model and shows its likely non-convexity.

To develop the model, it is convenient to approximate the
seriespy, po, . . ., pn, as a differentiable function of time. Thus,
let p : [0,n] — R be such that fot € [0,n], p; = p;, where
e > 0 is an arbitrary small constant ande [i — 1 +€,i — €.
Given this functiorp, each user chooses a time that maximizes
his or her waiting function, or willingness to defer.

Consider a sessionin period:. We assume that, (p;, t —
i+ 1) is a convex function of time on0,n] with a global
maximum not located at= 0 ort¢ = n, yielding the following
proposition:

Proposition 6: The ISP’s problem can be formulated as

Since the full HessianH is diagonal, a necessary and

sufficient condition for it to be positive semidefinite is for

each entry to be> 0. Consider theth entry of H. From (21)
and (20), this is

dw (pi)

d2wk(pi) /
2 —— | (pi + f'(zi — Ay))
kzﬂ dp; kzﬁ dp?
d? i
—Zf (xr — Ag) wk(p)7
k#i

where the first two terms in the sum come from the Hes&lan
in (21) and the third from théf;, for k # i. Upon rearranging,
the Ith diagonal entry of théth sub-matrix ofH is

Kti
pi + f'(xi — A;) —

dwy,(pi)
dp;
f'(xr — Ap)]. (22)

dwy, (p;)
dp;

Thewy(p;) are increasing ip;, S02 Z
k#i
The wy(p;) are also concave ip;, SO %(’“) < 0, and a

min ZZ Zpt;xzek(t;)vj + flzi —

A;) (23)
i=1 k£i \ jek
ap Qw;
t — ot
IR T a2 R 24
S ot t; %ﬂ |t]. ( )
Dt
wi= X+ | D xi k() =D xail
ki \ jck =
(25)

n,

var. p; and t] and z;;i = 1,.. .,

wheret; is the amount of time sessighis deferred and

xi(tj) = {

Proof: Consider a sessiop € i. Since users defer to
the time maximizing their willingness to wait, at this time
duj(pet—itl) “’J 9. — 0. Since 2% and 3% are
known functions of time or reward and are assumed nonzero

(w; decreases with time and increases with reward), we solve

lifl—1<t <1
’ (26)

0 otherwise.




for

ij t—i+1
o @)
ot ow, 1t
Ope

number of sessions remaining at the end of pefi@db is

the mean size of each sessions. We now find expressions for
eachN (i), including session deferments. As a corollary, we
obtain the cost to the ISP of offering rewards to users, since

The user chooses;, the amount of time deferred, to satisfyhat depends only on the rewards and the number of sessions
this equation. To ensure that the waiting function is n@fat will defer.

maximized at = 0 or¢ = n, we may choose waiting functions 14 find an expression faN ()

, we first find the number of

such thatw; (0,7) = 0 for ¢ € [0,n] and note that the user only soqqions that will be deferred from perioto another period

defers to a time in the half-open interJ&l n), never deferring

a full day.
The ISP knows eacl‘n;

becomes

min Z Z ZPt;Xi—k(t;)Uj + flz — Ai)  (28)

i=1 k#t1 \ jE€k
8p Swj
t ot
Opt

var. p; and ¢},
wherex; denotes usage in periad
n

We know thatz; = X; + Z Yk,i — Yik, Whereyy;
k=1,k+i
is the amount of traffic deferred from periddto periodi.
A sessionj € k is deferred from period: to periodi if
i—1—k< t}( <i—k. ThUS,yk,i = Z’iji—k(t;)- So
Jj€k

m= Xt Do | Do vxaek(t) = D vix-it]) .

k=1k#i \ jEk jei
(30)

i + k between timei — 1 and a given timet. The number
of sessions arriving between timie- 1 and timet is IL;(¢).

) from s_Ql_ving (@7). 'I_'he _COSt of However, to calculate the likelihood that a given sessiolh wi
rewarding the user for each sessiprs v;p;+. So if /5 is also

treated as a variable with constraint (27§, the ISP’s probl

defer to periodk, we need to know the waiting functiom

€and the amount of time between the session’s arrival time

and period: + k. The waiting functions can be estimated
from a historical distribution, but the arrival times catno
To simplify calculations we assume that the arrival time is
uniformly distributed throughout the intervgl—1,¢], i.e. that
sessions are equally likely to arrive at any time.

We assume each waiting function is parametrized by a
vector 3, and usewg to denote the waiting function with
parametersﬁ. These functions have a known probability
density function (PDF)g;(3). Given @ sessions, then, the
ISP faces a waiting function distribution with PDByg;(5).
Using this information, the ISP can computg ; (), the total
number of sessions deferrediteriods after periodbetween
time ¢ — 1 and timet, as a function ofp;x:

t
Mﬂ@://’mmmmwme4+wWW—WA»%w
B Ji—1
. (32)
where B denotes the possible values @fandi — 1 + k — s
denotes the time mod between: — 1 + k, the time to which
the session is deferred, andthe session’s arrival time. Then

and substituting this equation into (28-29), we obtain tHE€ number of sessions remaining at timis

optimization problem in (23-25). [ ]

n—1
Since our formulation involves a derivative pf we cannot N(t) = N(i — 1) + Th(t) Z Mo (t) - /t WV () do
k=1 i-1

easily pass from our approximatiprto the discrete;, which

are constant in each period. In that case, the user has a finite _ _ _
number of “times deferred” to choose from, and the optimégnoring the number of sessions that might defer to pefiod

time deferred may not correspond tgé"?j [;I=0.
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from other periods:. We turn next to this topic.
From the above analysis, the number of sessions deferring to
n

periods is given by Z My, i—r (k). Since all sessions are

Ignoring any session deferments, the amount of work prg_eferred to the be k=1,ki

cessed during periodbetween starting timé— 1 and timet

is ;—1 u(N(s)) ds, and the amount of work that has arrived

between time — 1 and timet is II;(¢). Thus,

N{t) = NG — 1)+ T(t) — /

i—1

t

(N(s)) ds (31)

represents the number of sessions in the network at time

periodi.

The amount of work remaining at the end of a time peri
can be interpreted as how much the ISP exceeds capa

in that time period. Thusf(bN (7)) representsf(xz; — A;),

the cost of exceeding capacity in perigdsince N (i) is the

ginning of periadwe have fort € [i —1, ]
n—1
N(t)=N(i—1)+TL(t) = > M;x(t) +
k=1

> Mo - [ V) s @)

k=1,k+#i

0'5he cost of rewarding users for deferring is the sum of the

Eﬁ\yard offered in each periadtimes the number of sessions

deferring, or Z pr My i~ (k) for periodi. Thus, the ISP’s
k=1,k#i



optimization problem is

min Z Z prb My i1 (k) + f(DN(4))

i=1 \k=1,k#i

n n—1
st N =NGi—1)+ > Meip(k)— > Mix(t) +
k=1,k#i k=1

Hz(t)—/_l
Mty = [ [ Tas) «
wa(Pisk,i —1+k—s)(t—(i—1))dsdB

var. p;,t =1,2,...,n.

w(N(s)) ds,t € [i — 1,1
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The ISP’s optimization problem in the static model is

n
min Z Di

i=1

n

Z Z”jwj(]?iai — k)| + flz: — A)
k=1,k+i jek

n

s.t.xiin—Zvj Z w;(pr, k — 1) +
JEI k=1k#i
n

> D viwipii— k),

k=1,k#i jck
var. p;;i=1,...,n.

To adjust for uniformly distributed arrival times, the ISRush

For a single bottleneck network(N (s))

and (4) givesN (i)

. X;
N —1) + 5 —

> Miir(k)— % which upon multiplying byb gives,
k=1,k#i
except forN (i — 1), z; — A; wherex; is given by (35)m

APPENDIX G
DYNAMIC MODEL FORFIXED-TIME SESSIONS

Let N,(t) denote the number of sessions in the network at
some timet € [i — 1,4], less the number of sessions deferred
to time ¢ — 1. The ISP’s optimization problem for fixed-time
sessions can be formulated as

n
min E

n

> pebMiii(k) + f (BN;) (36)
i=1 \ k=1,ksi
. ) n—1
N;(i — 1) =N;_1+ Z b]\/fk,i_k(k) (38)

k=1,k#i
Mi,k(t)z/B/_IHi(t)gi(ﬂ) X

w3 (Piski —1+k—s)(t— (i —1))dsdp
(39)
var. p;,t=1,2,...,n,

where arrival times are uniformly distributed and the s@ssi
arrival rate without deferments in periads

replace eacli — 1 start time by the integral over start timesThe proof is similar to that of the fixed-size sessions and
from i — 1 to i. Thus, the objective function (1), reproduceds therefore omitted. We describe the dynamics /6f in

above, becomes

n n k
PP Z/kil“jwa‘(mai—l—t)(t—(k—l))dt

=1 k=1 keti jek
+ fl@; — Ai). (34)

But this isjusthi Z bMy i—r(k)+ f(x; — 4;), if one
i=1  k=1,k#i

takesII;(t) to be X; x (¢t — (¢ — 1)), so that the number of

differential rather than integral form due to theN;(¢) term

in the dynamics—sessions leave in an amount proportional to
the number of sessions in the network. This term necessitate
exponentiating to find a closed form solution 16(¢); for
clarity, we did not perform this exponentiation.

APPENDIXH
WAITING FUNCTION DISTRIBUTIONS

Table VII gives the waiting function distribution by paties
index used for the 48 period simulations. Table VIII gives th

sessions arriving in periodin the dynamic model is the total §istribution used for the 12 period simulations.
number of sessions in the period for the static model, and the

sum over allj € i is replaced by the integral over the PDF of
the w,. Since N (i), the number of sessions remaining at the

end of periodi, corresponds tg (z; — A;), we only need to
check thatz; — A; = bN(¢). With the uniform distribution of
start times, (2), reproduced above, becomes

n—1 n
zi=X;— Y bMp(t)+ > bMi,; x(k).  (35)
k=1

k=1,k#i

APPENDIX |
IMPERFECTDATA AND ONLINE DYNAMIC MODEL

First, we present the details from the online dynamic model
simulations in Section V above. Table VIII shows the waiting
function distribution of the usage arriving in each peritte
total amount of usage arriving is given in Table IX. Table X
gives the period 1 optimal reward changes when 200 MBps,
instead of 230 MBps, arrives in period 1.



TABLE VII TABLE X

DEMAND UNDER TIP BY PATIENCE INDEX FOR48 PERIODS(lO MBPS). OPTIMAL REWARDS, PERIOD1 ADJUSTMENT OF DYNAMIC MODEL.
Patience Index Rewards ($0.10). Rewards ($0.10).
Periods || 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 Period | Original | Adjusted| Period | Original | Adjusted
1&2 5| 5| 71| 1]0| 2 |0]|] 0|2 1 0.45 0.57 25 0.26 0
384 4 (3| 7|0l 0|0 20| 0|4 2 0.41 0.41 26 0.10 0
5&6 3|2|5|1|1|0|1]|0|] 0|3 3 0.50 0.36 27 0.04 0
788 1 |12] 4|22 ]1|1]|0] 0|0 4 0.37 0.31 28 0 0
9&10 1|12 3|1 11]0|1]|0]oO0]|0O 5 0.35 0.32 29 0 0
11&12 1|22 |0|o0]0|1]|0] 1|1 6 0.32 0.30 30 0 0
13&14 1|2 1|0|0}]0|1]|0] 1|1 7 0.34 0.32 31 0 0
15816 o| 1] 2|00 |21 |0]| 1|1 8 0.32 0.30 32 0 0
17&18 1 /3] 2|0 1|01 ]|212] 1|1 9 0.31 0.29 33 0 0
19620 || 2 | 1| 3 |Oo| 1 |0]| 1 |3| 1|1 10 0.32 0.31 34 0 0
21&22 2|5 30| 1|0| 2 |0]| 2|2 11 0.32 0.31 35 0 0
23824 || 5 | 5| 7 |1] 1|0 2 |0| 0|2 12 0.32 0.31 36 0 0.02
25826 3 |6| 4|2 1]0|2]0] 2|0 13 0.32 0.31 37 0.04 0.05
27828 3 |4 4|0| 3|0 2 |0]| 2|2 14 0.32 0.31 38 0 0
29830 || 3 | 4| 4 |2 1|0 2 |0| 2|2 15 0.36 0.35 39 0 0
31&32 6 | 3| 50| 1|12 |2]|]0]|2 16 0.33 0.33 40 0.06 0.05
3334 || 8 | 2| 5|0 1|0 2 |1] 1|2 17 0.23 0.24 41 0.11 0.11
35836 || 4 | 7| 2 |0 12 ]0| 2 |5] 0|2 18 0.20 0.22 42 0.01 0.04
37&38 6 | 5| 22| 2|12 |1] 0|1 19 0.17 0.21 43 0 0
3940 || 4 | 7| 5|0 0 |O| 2 |O0]| 4|2 20 0.13 0.18 44 0.11 0.12
41842 7| 6| 7 |0|]1|2|0]|0]|] 0|0 21 0 0.07 45 0.21 0.21
43844 || 9 | 5| 5 0| 1 |0| 3 |3] 0O 22 0 0.05 46 0.33 0.33
45846 7| 8|5 |0|]1]0|1]|0]| 1|3 23 0 0 47 0.57 0.59
47848 8 |11| 5 |0o| 0o |0o| O |3] 00O 24 0.14 0 48 0.03 0.10
TABLE VIII TABLE XI
DEMAND UNDER TIP BY PATIENCE INDEX FOR12 PERIODS(10 MBPS). PERTURBED WAITING FUNCTION DISTRIBUTIONS FOR DEMAND
PERTURBATION(UNITS 10 MBPS).
Patience Index .
Period || 05 | 1 | 15| 2] 25 ]335 ] 4] 455 Patience Index
Total | 05 [1 15 [ 2] 25 [3]35[4]45]5
1 4 |4| 7 |1 1|0] 2 |0]| 013
2 s lo2l a1l 110l 1l0l ol>2 18 4 3| 6|0l 0|0 2 |0]| 013
3 112l 210l 1210l 110l 11lo0 19 3 (3|6 |1, 0|0 20| 014
4 112l 110l ol1l11l0l 11 20 3 (3|6 |1 1|0] 2 |0]| 0|4
5 112l 210l 1210l 1121111 21 3 (3|7 |1 1]|0] 2 |0]| 0|4
6 303l a1l 11l 211l 212 22 3 (4| 7 |1 1|0] 2 |0]| 0|4
7 3 lsl a1l 210l 210l 21 23 3 (4|7 |1 1]|0] 2 |0]|] 0]S5
8 5 {als |11 111l 2111112 24 3 (4|8 |1 1]|0] 2 |0]|] 0|5
9 6 151 alol1lo0l 213|112 25 4 (4| 8 1| 1|0] 2 |0]| 0|5
10 s el a1l 1011l 2111 212 26 4 |4 8 |1 1|0] 3 |0| 0]S5
11 8 |5/ 6 0| 1 |1]1|1]|]01]0O0
12 7 ]9 5|01 ]0| 1 |1] 1|1
waiting function distribution in Table VIl as the baselinase.
TABLE IX Table XI shows the new distribution of sessions by patience
TOTAL DEMAND UNDER TIP PER PERIOD FORL2 PERIODS(10 MBPS).  ndex in period 1 when total period 1 volume varies from 180
e | to 260 MBps, with 220 MBps as the baseline case. TableXI
erio

shows the rewards from these perturbations, as discussed in

1 2 3 4 5 6 7 8 9 10 11 12 Section V.

22 13 8 8 11 19 20 23 24 25 23 2P Next, suppose that demand under TIP is unchanged, but
the ISP incorrectly measures users’ waiting functions. For
instance, suppose that the patience index distributiopddod

We next consider perturbations of the discrete static modgél is given in Table XllI instead of that in Table VIII; in
For presentational simplicity, we use only 12 periods, whth effect, users are now less willing to defer. Then the rewards




TABLE XII
REWARDS FOR PERIODL DEMAND PERTURBATION(UNITS $0.10).

Demand in Period 1 (10 MBps)
18 19 20 21 | 22&23 | 24 | 25& 26
1] 020 ]| 0.12 | 0.04 0 0 0 0
21043 | 044 | 046 | 048 0.48 0.48 0.48
3| 036 037 | 0.38| 0.40 0.40 0.40 0.40
4
5

0.34 | 0.35| 0.36 | 0.37 0.38 0.37 0.38
0.33 | 0.34 | 0.35| 0.36 0.36 0.36 0.36

TABLE XV

DEMAND UNDER TIP BY PATIENCE INDEX (10 MBPS), WAITING
FUNCTION PERTURBATION

612 | 0 0 0 0 0 0 0
Patience Index
TABLE XIIl Period || 05 | 1 [ 15 [2] 25 [3[35[4]45]5
DEMAND UNDER TIP BY PATIENCEINDEX(lO MBPS),PERIODlWAITING 1 3 4 5 0 1 2 2 0 0 5
FUNCTION PERTURBATION
2 2 2| 4|11 ]0] 1]0| 0|2
Patience Index 3 1422 }0} 1101|010
Period || 05 | 1 [ 15 [2]25[3[35][4]45]5 4 0|2 10 1 )11 )01 1
5 12| 2|01 ]0o| 1]2| 1|1
[+ [s]4[sJofs]2[2]0f0]s] e lalaslslalilalalilals
TABLE XIV 7 || 3|5 2 |12 ]0|] 2]0| 2|3
OPTIMAL REWARDS ($0.10),PERIOD1 WAITING FUNCTION 8 2 4 5 1 1 1 2 1 3 2
PERTURBATION. 9 4 2 4 0 1 0 2 4 4 2
10 || 2 |5 5 |10 |1 2]|2| 3|3
| Period || Original | Adjusted 11 5 4 2 3 1 1 5 1 2 1
1 0 0 12 6 |8| 5|0 1|0o|1|1]| 2|3
2 0.48 0.48
3 0.40 0.39
4 0.37 0.37
5 0.36 0.36
6-12 0 0
for deferring to and from period 1 change as in Table XIV.
Rewards barely change, most likely because period 1 is
immediately followed by several under-capacity periodaug,
the patience indices of period 1 sessions do not much matter
since the sessions are being deferred for a small amount of
time.
Since sessions from under-capacity periods receive no re-
wards for deferring to other periods, it is worth remarkihgtt
changes in thev functions of these sessions have no effect on TABLE XVI

the ISP’s optimal prices or optimal cost.

We now suppose that the ISP is wrong about the waiting
function distribution in all periods. The new distributios
given in Table XV, with optimal rewards in Table XVI. There
are some differences between the optimal rewards (the 220
MBps case in Table XII), but these only slightly reduce the
cost from $3.04 with nominal rewards to $3.03. Thus, our
numerical simulations show that the static session model is
more robust to errors in waiting function or demand estiorati
than the dynamic model. In particular, the ISP’s optimaltcos
with adjusted rewards is not significantly lower than thathwi
baseline rewards.

OPTIMAL REWARDS ($0.10),PERIOD1 WAITING FUNCTION

PERTURBATION.

| Period || Original | Adjusted

1
2

g~ w

@
P

0 0
0.48 0.48
0.40 0.38
0.37 0.35
0.36 0.33

0 0




