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Abstract

This paper considers laser-driven optimal control of an ensemble of non-interacting molecules

whose dynamics lie in classical phase space. The molecules evolve independently under control

to distinct final states. We consider a control landscape defined in terms of multi-target (MT)

molecular states and analyze the landscape as a functional of the control field. The topology of

the MT control landscape is assessed through its gradient and Hessian with respect to the control.

Under particular assumptions, the MT control landscape is found to be free of traps that could

hinder reaching the objective. The Hessian associated with an optimal control field is shown to

have finite rank, indicating an inherent degree of robustness to control noise. Both the absence of

traps and rank of the Hessian are shown to be analogous to the situation of specifying multiple

targets for an ensemble of quantum states. Numerical simulations are presented to illustrate the

classical landscape principles and further characterize the system behavior as the control field is

optimized.

∗ hrabitz@princeton.edu
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I. INTRODUCTION

Optimal control of molecular dynamics phenomena with tailored laser pulses is generally

expressed in a quantum mechanical context [1–3]. However, classical mechanics often reli-

ably describes nuclear rotational and vibrational motion, especially that of large polyatomic

molecules [4–6], including biomolecules [7]. Classical molecular models are therefore often

relevant for control of the dynamics on the ground state potential surface. Previous opti-

mal control work suggests that, in some cases, the classical and quantum dynamical models

should give qualitatively similar results [8–13]. The conceptual and computational advantage

of classically modeled molecular control thus warrants further analysis of the foundations of

the subject. Studies considering classically and quantum mechanically modeled molecular

control often present suitable algorithms to compute control fields [14–24], and a recent work

[25] examined the control landscape of steering a classical system from an initial point in

phase space to a final target point. The present paper generalizes the latter findings by con-

sidering a finite ensemble of points in phase space (e.g., either corresponding to a discretized

set of distinct conditions for a single molecule or to a set of molecules). Control of multiple

classical systems has come up in various engineering contexts as well, and the landscape

analysis in the present paper could have relevance in that domain [26–29].

An understanding of optimal control may be obtained from analysis of the underlying

control landscape, defined as the target objective as a functional of the control field. It is

particularly important to assess whether traps, or local extrema with suboptimal landscape

values, exist, as their presence could hinder or prevent the search for optimal control fields.

Traps would correspond to critical points of the landscape, defined as points at which the

functional derivative of the objective with respect to the control is zero and the landscape is

not at the absolute maximal or minimal value, while the second derivative of the objective

(i.e., the Hessian) is respectively negative- or positive-semidefinite. Analysis and simulations

in a broad range of closed quantum systems show no evidence of traps upon satisfaction of

three specific assumptions: (1) controllability, (2) surjectivity, and (3) free access to control

resources [30–34]. Experiments have also verified this conclusion [35, 36]. While violation of

one or another of the assumptions can lead to traps, the preponderance of evidence shows
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that it is easy to satisfy the assumptions at least to a practical degree [37–39]. Furthermore,

a recent paper [40] shows that traps do not exist in the optimal control landscape of open

classical and quantum systems, assuming that any desired distribution of final states is

reachable; another work [25] reveals that under reasonable assumptions, traps do not exist

when a single classical state is sent to a single target state in phase space in a closed system.

The present paper builds on these findings by considering optimal control landscapes of

multi-target (MT) trajectories starting with an ensemble of distinct initial states in a closed

classical phase space that evolve under a control field aiming to reach specified final states.

Quantum mechanical landscape analyses often consider an N -level closed system with

the goal of maximizing the expectation value of a physical observable with the dynamics

described by a density matrix. In this study, we consider the classical mechanical analogue of

quantum mechanically maximizing the MT transition probability that an ensemble of initial

quantum states each achieves a specified target [41, 42]. In particular, we specify a final

target for each controlled trajectory of a classical ensemble represented by the phase space

distribution function. We will compare the classical critical point and Hessian expressions

to those in the analogous quantum case. Drawing a control analogy between a quantum

ensemble with a finite number of distinct states and a classical ensemble with a finite number

of distinct points in phase space is unusual, but informative since they share mathematically

similar landscape topologies.

The control of classical systems can sometimes be difficult due to the potential for chaotic

behavior, where high sensitivity to initial conditions and control perturbations can present

significant numerical issues for finding an optimally controlled trajectory. However, these

computational challenges do not pose a theoretical barrier to finding an optimal control

and examining its (local) stability properties. In addition, some nominally chaotic systems

have been shown to exhibit non-chaotic behavior under control [11, 16, 43]; one can also

use closed-loop feedback control to stabilize a chaotic system [44–47]. In this work, we

consider an open-loop search for an optimal control and assess its stability post-facto. A

full exploration of the chaotic dynamical regime, however, merits additional attention and is

beyond the scope of this work.

Section II describes the ensemble dynamics in the presence of a control field in classical
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phase space. We then formulate the classical MT control landscape and use the ensemble

dynamics to characterize the critical points of the control landscape in Section III. For

comparison, Section IV analyzes the properties of the quantum MT control landscape in an

analogous quantum phase space. Section V shows several simulations supporting our theo-

retical findings about classical control landscapes for various models of molecular ensembles,

and Section VI concludes the paper.

II. FORMULATION OF CONTROLLED CLASSICAL MOLECULAR ENSEM-

BLES

Consider a classically described molecule of n atoms, driven by a linearly polarized electric

control field ǫ(t). The state of the system at any time t is specified by the variables p = p(t)

and q = q(t), which are, respectively, the 3n-dimensional momentum and position vectors

in a 6n-dimensional phase space Ω. We consider an ensemble of chemically identical, non-

interacting molecules, whose state trajectories are distributed throughout the phase space.

We will write each trajectory as zζ(t) = (qζ(t),pζ(t)) with a distinct initial state ζ , i.e.,

ζ = (q(0),p(0)), which evolves independently to a state (qζ(t),pζ(t)) at time t, but under

the same control field, based on the Hamiltonian dynamics described below. Though we

formulate the optimal control problem for a general initial distribution ρ(ζ, 0), later in Section

IIIB we take ρ to be a sum of δ functions, corresponding to an ensemble of finitely many

trajectories. Thus, the ensemble of states zζ(t) at each time t evolves from t = 0 according to

Liouville’s equation. For simplicity, the explicit time-dependence generally will be dropped

with the understanding that (qζ(t),pζ(t)) ≡ (qζ ,pζ).

The Hamiltonian H(pζ ,qζ, t) of the n-atom molecule with given initial state ζ (i.e., cor-

responding to one trajectory in the ensemble) can be written as

H(pζ ,qζ, t) = H0(pζ,qζ , t) +H1(pζ ,qζ , t), (1)
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where the field-free and field-molecule interaction Hamiltonians are respectively

H0(pζ ,qζ , t) =
1

2
pT
ζ M

−1pζ + V (qζ) (2)

H1(pζ ,qζ , t) = −D (qζ) ǫ(t). (3)

Here we define

M =

















m1 0 . . . 0

0 m2 . . . 0
...

...
. . .

...

0 0 . . . mn

















, (4)

a 3n× 3n square diagonal matrix composed of 3× 3 sub-blocks

mi =











mi 0 0

0 mi 0

0 0 mi











; i = 1, 2, . . . , n, (5)

with mi being the mass of the i-th atom. For ease of notation, we set N = 3n in the following

treatment. The function V (qζ) is the potential energy between the atoms. We introduce

the square-integrable control field ǫ(t), acting over the time domain [0, T ], which couples

into the Hamiltonian dynamics via D (qζ), the projection of the dipole moment along the

linearly polarized control field ǫ(t).

We assume that ρ falls to zero sufficiently rapidly at infinite distance so that the products

of ρ(ζ) with V (qζ), D(qζ), ∂V/∂qζ , and ∂D/∂qζ are all square-integrable with respect to ζ

over the phase space. Moreover, V (qζ) and D(qζ) are considered to be twice differentiable

functions of the variable qζ. Each molecule in the ensemble is described by the same Hamil-

tonian governing its dynamics with the same field ǫ(t). The generalization to ensembles of

distinct molecules is straightforward; we show numerical examples of this case in Section

VD.

To facilitate the derivations, the dynamics of each member of the ensemble is described
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by the column vector

zζ(t) =





qζ(t)

pζ(t)





specifying the state at time t of the trajectory with initial condition zζ(0) ≡ ζ in the corre-

sponding 2N -dimensional phase space. The evolution of the system for each initial state ζ

is then governed by Hamilton’s equations:

żζ =





q̇ζ

ṗζ



 =





(

∂H(pζ ,qζ ,t)

∂pζ

)T

−
(

∂H(pζ ,qζ ,t)

∂qζ

)T



 = KN

[

∂H(pζ ,qζ ,t)

∂qζ

∂H(pζ ,qζ ,t)

∂pζ

]T

, (6)

where the dot denotes the time derivative and we define

KN =





∅N IN

−IN ∅N



 , (7)

with ∅N being the N ×N matrix of zeros and IN being the N -dimensional identity matrix.

The differentiability and integrability assumptions on V (qζ), D(qζ) and ǫ(t) imply that Eq.

(6) possesses a unique solution [48], given ζ . We can rewrite the dynamical equation (6)

using the Poisson bracket, which is defined as follows:

{f(zζ(t)), g(zζ(t))} ≡ ∂f

∂zζ(t)
KN

(

∂g

∂zζ(t)

)T

. (8)

Using the Poisson bracket, Eq. (6) becomes

żζ = {zζ(t), H(zζ(t))} = {zζ(t), H0(zζ(t))}+ {zζ(t), H1 (zζ(t))} . (9)

III. CLASSICAL MULTI-TARGET CONTROL LANDSCAPE FOR AN ENSEM-

BLE OF NON-INTERACTING MOLECULES

This section considers the landscape associated with controlling an ensemble. We will

establish the control objective, landscape critical points, and corresponding Hessian expres-
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sions for a finite number of ensemble members, which form the basis of the numerical test

simulations in Section V. The implications of the findings for the robustness and multiplicity

of optimal control solutions will also be discussed. The conclusions drawn about classical

control landscape topology rest on a few key assumptions described below; while the satis-

faction of these assumptions in any particular application is difficult to assess, the success

of the numerical simulations in Section V supports their validity.

A. Continuous ensemble under control

Consideration of a continuous ensemble is presented for generality and as a basis for

consideration in Section IIIB of the practical scenario of operating with a discrete, finite

number of systems (trajectories) under control in phase space. The objective is to control

the ensemble, and we consider a quadratic objective function

Oζ (zζ(T )) =
1

2

(

zζ(T )− ztarζ

)T
Lζ

(

zζ(T )− ztarζ

)

(10)

for each initial state ζ , where Lζ is a symmetric negative-semidefinite matrix such that

Oζ(zζ(T )) ≤ 0. The function Oζ (zζ(T )) is evidently maximized when the associated tra-

jectory at time T achieves its target state ztarζ . The corresponding MT control landscape

J [ǫ(t)] as a function of the control field ǫ(t) may be defined as an average of the objective

Oζ over the phase space distribution of initial states ρ(ζ, 0):

J [ǫ(t)] =

∫

Ω

Oζ(zζ(T ))ρ(ζ, 0) dζ, (11)

where the optimization goal is to achieve max
ǫ(t)

J [ǫ(t)].

It is possible to include other terms in the objective functional J (e.g., J ≡
∫

Ω
Oζ(zζ(T ))ρ(ζ, 0) dζ+

α
∫ T

0
ǫ(t)2 dt, α < 0) to bias the class of controls, but in this work we focus on the fundamen-

tal case where J [ǫ(t)] is given in Eq. (11) to assess the landscape topology without further

terms in the objective functional or constraints on the field.

Critical points of the MT control landscape J [ǫ(t)] correspond to the zero gradient con-
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dition
δJ

δǫ(t)
=

∫

Ω

∂Oζ

∂zζ(T )

δzζ(T )

δǫ(t)
ρ(ζ, 0) dζ = 0, t ∈ [0, T ], (12)

where ∂Oζ/∂zζ(T ) =
[

zζ(T )− ztarζ

]T
Lζ and an explicit expression for the functional deriva-

tive δzζ(T )/δǫ(t) can be readily derived using the Poisson bracket formulation for the system

dynamics in Eq. (9). Specifically, consider a perturbation of the control ǫ(t) → ǫ(t) + δǫ(t)

in Eq. (6) [49], with δzζ(t) denoting the response in zζ(t). From Eq. (9), we see that the

first order variation for each trajectory is

δżζ(t) = Aζ(t)δzζ(t) + Bζ(t)δǫ(t), (13)

where δzζ(t) =
[

δqζ
T (t) δpζ

T (t)
]T

, the 2N × 2N matrix Aζ(t) = KN (∂2H/∂zζ(t)
2), and

the 2N × 1 vector Bζ(t) = KN (∂H1/∂zζ(t))
T = −KN (∂D/∂zζ)

T ǫ(t). Integrating Eq. (13)

yields [50]

δzζ(T ) =Mζ(T )

∫ T

0

M−1
ζ (t)Bζ(t)δǫ(t) dt, Ṁζ(t) = Aζ(t)Mζ(t), Mζ(0) = I2N . (14)

Here Mζ(t) is the so-called fundamental matrix Mζ(t) = ∂zζ(t)/∂zζ(0), with the (i, j) entry

ofMζ(t) being ∂zζ,i(t)/∂zζ,j(0), representing the sensitivity of the ith component of the state

at time t to the jth component of the state at the initial time. The matrix Mζ(t) is also

symplectic [51] and thus invertible. We define Mζ(t, t
′) =Mζ(t)M

−1
ζ (t′) and use Eq. (14) to

derive

δzζ(T )

δǫ(t)
=Mζ(T, t)Bζ(t) =

∂zζ(T )

∂ζ

∂ζ

∂zζ(t)
KN

(

∂H1

zζ(t)

)T

=
∂zζ(T )

∂zζ(t)
KN

(

∂H1

∂zζ(t)

)T

. (15)

Here δzζ(T )/δǫ(t) is the functional derivative δǫ(t) → δzζ(T ) of the end-point mappings

ǫ → zζ(T ), defined in the neighborhood of the control field ǫ(t). The behavior of this

end-point mapping is important for achieving optimal control, as explained in Section IIIB.

Obtaining control over a continuous ensemble is very demanding, as nominally each dif-

ferential variation ζ+δζ of a state ζ needs to be separately controlled. In practice, numerical

calculations are always carried out upon a discrete set of initial points in phase space, and
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molecules are inherently discrete objects. In this sense, control over the full distribution

needs to be understood to an acceptable degree of resolution; the remainder of the paper

therefore takes a practical discrete perspective.

B. Finite ensemble under control

In practical circumstances, control simulations will treat either (i) a finite set of molecules

with each starting at a separate point in phase space, or (ii) a discretized distribution of a

single molecule expressed as a finitely resolved picture of the density over phase space under

control. Both cases can be expressed in terms of a finite number of M trajectories. Equation

(11) then becomes

J =
M
∑

j=1

ρjOj(zj(T )), (16)

where j is used instead of ζ to index the trajectories, ρj > 0 is the initial distribution weight

of the jth trajectory, and Oj is the discrete form of the target function set out in Eq. (10),

i.e., Oj(zj(T )) = (1/2)
[

zj(T )− ztarj

]T
Lj

[

zj(T )− ztarj

]

. We can formally view the transition

from Eq. (11) to Eq. (16) as arising from the original initial distribution, ρ(ζ, 0), reduced

to a sum of M phase space δ functions, with each generating a unique trajectory under

application of the control field. We use Oj to denote the objective function for the jth

trajectory.

We assume that the collective system is controllable, denoting this as Assumption 1,

in that with an appropriate control ǫ any collection of distinct initial states {zj(0)} can be

steered to any associated set of distinct target states
{

ztarj

}

at some time T (i.e., zj(T ) = ztarj

for i = 1, 2, . . . ,M). While controllability becomes a stronger demand as we take the limit to

an ever denser ensemble of initial or target states, it is a reasonable assumption for the finite

ensembles considered here. As we show in the discussion below, however, controllability

alone is not sufficient to ensure the absence of traps in the landscape. In particular, while

controllability guarantees that there exists a control field that will steer the initial state to

the target state at time T , it does not guarantee that a myopic gradient algorithm can find

the optimal field. We make two additional assumptions in the discussion below to ensure
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that an optimal field can be found. These are analogues of conditions known to be sufficient

to establish a trap-free landscape in quantum control [30].

1. Landscape critical points

The first step in assessing the landscape topology consists of locating critical points where

δJ/δǫ(t) = 0, t ∈ [0, T ]. Taking the derivative of Eq. (16), we find that

δJ

δǫ(t)
=

M
∑

j=1

ρj
∂Oj(zj(T ))

∂zj(T )

δzj(T )

δǫ(t)
=

M
∑

j=1

ρj

[

zj(T )− ztarj

]T

Lj

δzj(T )

δǫ(t)
. (17)

We may rewrite this expression as a scalar product by concatenating the column vectors zj

into one large, 2MN -dimensional column vector Z:

δJ

δǫ(t)
=

∂J

∂Z(T )

δZ(T )

δǫ(t)
, (18)

where ∂J/∂Z(T ) is a 2MN -dimensional row vector, i.e.,

∂J

∂Z(T )
=

[

ρ1
∂O1

∂z1(T )
ρ2

∂O2

∂z2(T )
. . . ρM

∂OM

∂zM(T )

]

=
[

ρ1
(

z1(T )− ztar1

)T
L1, ρ2

(

z2(T )− ztar2

)T
L2, . . . , ρM

(

zM(T )− ztarM

)T
LM

]

,

(19)

and δZ(T )/δǫ(t) is a 2MN -dimensional column vector, i.e.,

δZ(T )

δǫ(t)
=

















δz1(T )/δǫ(t)

δz2(T )/δǫ(t)
...

δzM(T )/δǫ(t)

















. (20)

It is readily seen that if {δZ(T )/δǫ(t)} spans R2MN , then δJ/δǫ(·) = 0 in Eq. (18) implies
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that ∂J/∂Z(T ) = 0, leading to the kinematic critical conditions

∂Oj

∂zj(T )
=
(

zj(T )− ztarj

)T
Lj = 0 ∀j = 1, 2, . . . ,M, (21)

where we use the fact that ρj > 0 ∀j. Satisfaction of Eq. (21) is the defining criterion of a

kinematic critical point. Thus, all critical points (i.e., control fields ǫ(t) with δJ/δǫ = 0) are

kinematic if {δZ(T )/δǫ(t)} spans R
2MN , or equivalently if the family of linear functionals

{δZ(T )/δǫ(t), t ∈ [0, T ]} is surjective on R
2MN , which we take as our Assumption 2. It is

likely that this assumption will be satisfied to a practical degree, as the dynamics in Eq. (14)

for each Mj(t) depend on time in a complicated manner, via qj(t), pj(t), and ǫ(t), and the

dynamical equation (6) has a unique and distinct solution for each initial state. An ensemble

with a set of M distinct molecules and corresponding Hamiltonians {Hj} makes surjectivity

of {δZ(T )/δǫ(t)} even more likely by introducing additional dynamical richness into the

trajectory ensemble (e.g., Section VD presents some examples). We may view satisfaction

of surjectivity as assuring that any differential change δz(T ) at an arbitrary location on

the landscape has a corresponding differential change in the control δǫ(t) that can meet the

demand. Thus, satisfaction of surjectivity can be viewed as permitting local freedom to

move to any neighboring location, which is important as a sufficient condition for exploiting

a local gradient to climb the landscape. Surjectivity is distinct from controllability, which

assumes that some control field exists that will produce an optimal solution.

In the landscape analysis we also assume that free access is available to any desired control

field ǫ(t) resources, which we take as our Assumption 3. This assumption is necessary so

as to avoid limiting the practical ability to satisfy Assumptions 1 (controllability) and 2

(surjectivity). In realistic circumstances, control fields available in system-specific physically

relevant spectral domain(s) are likely adequate to avoid hindering the dynamics. In addition

to the three physical assumptions above, we have also considered that differentiability and

integrability of ρ, V , and D are satisfied.

Taken together, the three assumptions present sufficient conditions whose collective sat-

isfaction allows one to start with any initial field and maximize the objective function, even

with a myopic gradient algorithm. Importantly, the three assumptions represent independent

11



properties. There are many examples of classical systems where controllability is satisfied

but surjectivity is not [49]. Examples of controllable but non-surjective systems can also be

found in the quantum control literature [39], where this situation may, or may not, lead to

landscape traps [52] depending on the circumstances.

Surjectivity (Assumption 2) is perhaps the most subtle of the assumptions to assess a

priori, and its satisfaction depends on the dynamics being sufficiently rich; analogous As-

sumptions to 1, 2, and 3 are made for the control of quantum systems in [30, 53]. We

numerically investigate whether surjectivity holds for some sample model systems in Section

V; the resultant satisfactory behavior also confirms that the controllability and control re-

source assumptions are at least adequately satisfied. The assumptions should be viewed as

sufficient conditions to assess the landscape topology, and in this regard we also present an

example in Section V of an uncontrollable system for which good results are nonetheless still

attained.

2. Landscape Hessian analysis

After locating the critical points on the landscape J [ǫ(t)], the next step is to determine

their local character as either extrema of some type (i.e., global or suboptimal) or interme-

diate saddle features. Towards this end, we can differentiate the critical point equation Eq.

(17) to obtain an expression for the Hessian δ2J/δǫ(t)δǫ(t′), denoted as H(t, t′):

H(t, t′) =

M
∑

j=1

ρj

(

(

δzj(T )

δǫ(t′)

)T
∂2Oj

∂zj(T )2
δzj(T )

δǫ(t)
+

∂Oj

∂zj(T )

δ2zj(T )

δǫ(t′)δǫ(t)

)

. (22)

At the kinematic critical points, we have ρj (∂Oj/∂zj(T )) = 0 for each j, so that

H(t, t′) =

M
∑

j=1

ρj

(

δzj(T )

δǫ(t′)

)T
∂2Oj

∂zj(T )2
δzj(T )

δǫ(t)
=

M
∑

j=1

ρj

(

δzj(T )

δǫ(t′)

)T

Lj

δzj(T )

δǫ(t)
. (23)
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Rewriting this equation in matrix form produces

H(t, t′) =

(

δZ(T )

δǫ(t′)

)T

X
δZ(T )

δǫ(t)
, (24)

where X is defined as the block diagonal matrix X = diag {ρ1L1, ρ2L2, . . . , ρMLM}. We can

now easily see that the signature of the Hessian in Eq. (24) is exactly the signature ofX at the

kinematic critical points [32, 54], assuming that δZ(T )/δǫ(t) is full rank (i.e., the surjectivity

assumption is satisfied). Thus, since the Lj are negative semi-definite matrices, the Hessian

is also negative semi-definite at all critical points. No critical point exists as a trap (i.e.,

a local, non-global maximum): Oj(zj(T )) has its unique maximum value Oj(zj(T )) = 0

when the kinematic critical point criterion in Eq. (21) is satisfied. Thus, J [ǫ(t)] reaches its

maximum value of 0 at all critical points (i.e., corresponding to the set of all controls that

produce J = 0) of the control landscape, and neither traps nor saddles arise.

The Hessian in Eq. (24) is of finite rank, implying the presence of a null space and an

inherent degree of robustness for optimal control field solutions. We can then diagonalize

the matrix X at any given kinematic critical point and rewrite the Hessian as

H(t, t′) =

(

δZ(T )

δǫ(t′)

)T

PTΣP
δZ(T )

δǫ(t)
, (25)

where P is a 2MN -dimensional orthogonal matrix and Σ is diagonal. Thus, letting φl(t)

denote the lth entry in the vector P
(

δZ(T )/δǫ(t)
)

, we have

H(t, t′) =

2MN
∑

l=1

σlφl(t)φl(t
′), (26)

where σl is the lth diagonal entry of Σ. Equation (26) allows for bounding the second-

order variation of J [ǫ(t)] about the absolute landscape maximum due to a variation ǫ(t) →
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ǫ(t) + δǫ(t) in the control:

|δJ | = 1

2

2MN
∑

l=1

σl

∫ T

0

∫ T

0

|φl(t)φl(t
′)δǫ(t)δǫ(t′)| dt dt′ (27)

≤ 1

2

2MN
∑

l=1

σl

(
∫ T

0

φ2
l (t) dt

)

×
(
∫ T

0

[δǫ(t)]2 dt

)

(28)

≤ T‖δǫ‖2TTrH, (29)

where ‖ · ‖T is defined as

‖f‖2T =
1

T

∫ T

0

fTf dt

and the trace of the Hessian satisfies

TrH =

∫ T

0

H(t, t) dt =
2MN
∑

j=1

σl

∫ T

0

φ2
l (t) dt ≤ T (TrX)

∥

∥

∥

∥

δZ(T )

δǫ(t)

∥

∥

∥

∥

2

T

. (30)

Assuming a uniform bound on δzj(T )/δǫ(t) = Mj(T, t)Bj(t) for all j, we see from Eq. (29)

that the variation in J due to a variation ǫ(t) → ǫ(t) + δǫ(t) is proportional to the square

of the time-averaged norm of δǫ(t), i.e., the energy in the field noise. A bound on the

δzj(T )/δǫ(t) is consistent with each entry in ∂Dj/∂zj(t) and Mj(T, t) being bounded; this

follows from Eq. (14) and the set of molecular trajectories zj(t) being bounded, as they start

from a bounded set of initial states zj(0) and both T and ‖ǫ‖T are finite. The bound on

the Hessian in Eq. (30) implies an additional degree of robustness to disturbances, resulting

from a lack of extremely “steep” paths off the top of the landscape.

IV. COMPARISON TO ANALOGOUS QUANTUM MULTI-TARGET CONTROL

LANDSCAPES

This section will demonstrate the relationship between the results of Section III and those

for an analogous ensemble quantum system. We emphasize that the relationship between the

classical and quantum cases is that of an analogy rather than one being the limit of the other

scenario. Thus, in analogy to the finite ensemble of classical molecular trajectories in Section

14



III, we consider a quantum system with N distinct, linearly independent N -level quantum

pure states, represented by |ψj(t)〉, j = 1, 2, . . . , N . We specify targets for M ≤ N of these

quantum states. The variable M is thus analogous to the number of classical trajectories,

M, in Section II, while the number of states N is analogous to the number of classical atoms

n. The dynamics of each quantum state satisfies the time-dependent Schrödinger equation

ı~
∂|ψj(t)〉
∂t

= (Hqu
0 − µǫ(t)) |ψj(t)〉, (31)

where (using standard notations in quantum control) Hqu
0 is the unperturbed Hamiltonian

and µ is the dipole moment operator. We define the time-dependent Hamiltonian Hqu(t)

as Hqu(t) = Hqu
0 − µǫ(t) and, for simplicity, we will assume that both H0 and µ are real

symmetric matrices. Furthermore, we assume without loss of generality that all initial states

|ψj(0)〉 are linearly independent from each other.

The quantum Hamiltonian dynamics can be written analogously to the classical case [55]

if we identify the quantum states |ψj(t)〉 with the unit vectors

xj(t) ≡
1√
2





q
qu
j (t)

p
qu
j (t)



 ,
∥

∥xT
j (t)

∥

∥

2
= xT

j (t)xj(t) = 1,

where qqu
j (t) ≡

√
2ℜ (|ψj(t)〉) and p

qu
j (t) ≡

√
2ℑ (|ψj(t)〉). These vectors evolve according to

Hamiltonian dynamics

dqqu
j (t)

dt
= ∇p

qu
j
H

qu
j

(

q
qu
j ,p

qu
j , t

)

=
1

~
[Hqu

0 − µǫ(t)]pqu
j (t),

dpqu
j (t)

dt
= −∇q

qu

j
H

qu
j

(

q
qu
j ,p

qu
j , t

)

=
−1

~
[Hqu

0 − µǫ(t)]qqu
j (t), (32)

where the Hamiltonian H
qu
j is defined as

H
qu
j ≡ 1

2~

[

q
quT
j (t) p

quT
j (t)

]





Hqu
0 − µǫ(t) 0

0 Hqu
0 − µǫ(t)









q
qu
j (t)

p
qu
j (t)





=
1

2~

(

p
qu,T
j (t) [Hqu

0 − µǫ(t)]pqu
j (t) + q

qu,T
j (t) [Hqu

0 − µǫ(t)]qqu
j (t)

)
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Note that Hqu
j is quadratic in xj(t), which comes from the linearity of the quantum dynamics

in Eq. (31). In contrast, the classical Hamiltonian given in Eqs. (1–3) can be arbitrarily

nonlinear in the state vector zζ(t).

As in the classical case considered in Sections II and III, we consider unique target

states xtar
j for each state j. To meet these targets, we consider multi-objective functions

Oqu
j (xj(T )) = −

(

xj(T )− xtar
j

)T (

xj(T )− xtar
j

)

/2 that are maximized subject to the con-

straints xT
j (T )xj(T ) = 〈ψj(T )|ψj(T )〉 = 1, j = 1, . . . ,M . We thus define the functional

Jqu[ǫ(t)] =

M
∑

j=1

rjO
qu
j (xj(T )) (33)

as the quantum MT control landscape in the control space specified over the control field

ǫ(t), where we normalize the weights rj > 0 so that
∑M

j=1 rj = 1. This landscape is similar

to that of the so-called “W problem” of generating a specific unitary transformation W from

a given set of initial states to desired final states at time T , which was considered in [56, 57].

However, our scenario is a special case in that if M < N , then the M initial states seek to

reach the M target states, forming an N ×M portion of the target matrix W . Importantly,

for the quantum control case we adopt the same three Assumptions made in the classical

context. Here, Assumption 1 is that any distinct set of N initial states {|ψj(0)〉} may be

steered to reach any set of distinct final states {|ψj(T )〉} at time T . Similarly we adopt the

surjectivity Assumption 2 (see the discussion below Eq. (34)) and Assumption 3 that access

is available to any desired control field. In the discussion below, we derive critical point and

Hessian expressions for this control landscape.

Critical points of Jqu occur when δJqu/δǫ(t) = 0, leading to the relation

M
∑

j=1

rj
(

xj(T )− xtar
j

)T δxj(T )

δǫ(t)
= 0 ∀t ∈ [0, T ] (34)

To follow the classical analysis of such landscape critical points, we now wish to assume that

the concatenated vector {δxj(T )/δǫ(t)} is surjective, yielding the condition xj(T ) = xtar
j for

each trajectory j at all critical points. However, in the quantum scenario δxj(T )/δǫ(t) is re-

16



stricted by the requirement that ‖xj‖ = 1, imposing the condition that δ
(

xT
j (T )xj(T )

)

/δǫ(t) =

2xT
j (T ) (δxj(T )/δǫ(t)) = 0. Thus, each δxj(T )/δǫ(t) is of rank at most 2N − 1, and the

concatenated vectors {δxj(T )/δǫ(t)} have rank at most (2N − 1)M . Assuming that they

achieve this maximum rank, Eq. (34) is satisfied when

xj(T )− xtar
j = αjxj(T ) (35)

for a scalar αj ∈ R. Equivalently, xj(T ) = xtar
j /(1− αj). Since both xj(T ) and xtar

j are unit

vectors, we must then have 1−αj = ±1, or equivalently αj = 0 or 2, leading to the relation

xj(T ) = ±xtar
j . As a result, it is seen that Jqu = −∑M

j=1 rjα
2
j at the kinematic critical

points, which renders a global maximum value equal to 0 and a global minimum value equal

to −4, corresponding to all αj = 0 and all αj = 2 respectively.

The nature of these landscape critical points (i.e., whether they correspond to minima,

maxima, or saddles) depends on the signature of the quantum Hessian matrix. We can write

the Hessian as Hqu(t, t′) =
∑

j Hqu
j (t, t′) and consider the term Hqu

j (t, t′) for each trajectory

j by differentiating Eq. (33):

Hqu
j (t, t′) = rj

(

δxT
j (T )

δǫ(t′)

∂2Oqu
j

∂xj(T )2
δxj(T )

δǫ(t)
+

∂Oqu
j

∂xj(T )

δ2xj(T )

δǫ(t′)δǫ(t)

)

, (36)

where ∂Oqu
j /∂xj(T ) = −

[

xj(T )− xtar
j

]T
and ∂2Oqu

j /∂x
2
j (T ) = −I. Using Eq. (35), we

thus find that

Hqu
j (t, t′) = −rj

(

δxT
j (T )

δǫ(t′)

δxj(T )

δǫ(t)
+ αjx

T
j (T )

δ2xj(T )

δǫ(t′)δǫ(t)

)

,

where αj = 0 or 2, corresponding to xj(T ) = xtar
j and xj(T ) = −xtar

j respectively. We can

further simplify the Hessian in Eq. (36) by noting that the requirement ‖xj(T )‖ = 1 implies

that the second derivative satisfies

δ2
(

xT
j (T )xj(T )

)

δǫ(t′)δǫ(t)
= 2

δxT
j (T )

δǫ(t′)

δxj(T )

δǫ(t)
+ 2xT

j (T )
δ2xj(T )

δǫ(t′)δǫ(t)
= 0.
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Thus, using Eq. (36) we can derive the full Hessian

Hqu(t, t′) = −
M
∑

j=1

rj(1− αj)

(

δxT
j (T )

δǫ(t′)

δxj(T )

δǫ(t)

)

. (37)

The Hessian is therefore a symmetric kernel with a finite number of nonzero eigenvalues, as

in the classical case. By defining the functions φj,k(t) as the kth element of δxj(T )/δǫ(t), we

can write Eq. (37) as a symmetric sum of functions φj,k:

Hqu(t, t′) = −
M
∑

j=1

rj(1− αj)

M
∑

k=1

φj,k(t)φj,k(t
′). (38)

We now observe that the surjectivity assumption that δxj(T )/δǫ(t) has rank 2N − 1 implies

that Hqu
j has rank of at most 2N − 2. Thus, the {φj,k} in Eq. (38) can be orthogonalized to

a set of at most (2N − 2)M linear independent, orthogonal functions.

We can now classify critical points into three types depending on the αj values for each

trajectory and determine the signature of Eq. (38) for each type. In the first type of

critical point, αj = 0 for all trajectories, indicating all trajectories achieve their targets (i.e.,

xj(T ) = xtar
j ) and the Hessian is strictly negative-semidefinite, i.e., the system achieves the

global maximum. In the second type, αj = 2 for all trajectories, with xj(T ) = −xtar
j , so

the Hessian is strictly positive-semidefinite, indicating that the system achieves the global

minimum. Finally, the third type of critical points corresponds to αj = 0 for some trajectories

and αj = 2 for others, i.e., some trajectories achieve their targets but some do not. The

Hessian for these critical points is indefinite, indicating a landscape saddle point. We thus

conclude that saddle points of the quantum control landscape can arise, unlike the classical

scenario in which no saddles appeared for quadratic objective functions. However, no traps

are present in either case upon satisfaction of the same three assumptions. We note that

the quantum control landscape analogue here, carried out in a unique classically analogous

fashion [55], is consistent with prior results as a special reduced case of the unitary matrix

control problem [56, 57].

Our analysis above considers only kinematic critical points, at which δxj(T )/δǫ(t) is of
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full rank. Singular critical points at which an analogous condition does not hold, however,

have been found in quantum scenarios [37, 39, 58]. We expect that they will also exist in the

classical landscapes considered in Section III, though we did not encounter any in numerical

simulations (Section V). Importantly, singular controls may not necessarily correspond to

traps, and may not halt a local gradient algorithm (i.e., the blocking of some local directions

on the landscape may still permit successful exploitation of others), but some singular con-

trols may be associated with traps. Singular critical points forming traps have been found

to be rare in quantum scenarios, and in light of the formal analogy drawn between the two

types of systems here, we expect that they will also be encountered only rarely in classical

landscapes [39, 58]. We also add that a reduction of controllability (i.e., Assumption 1) can

lead to traps, and significant constraints on control resources (i.e., Assumption 3) can distort

the apparent landscape, including with the creation of artificial traps. The impact of the

breakdown of any of the three assumptions needs careful further study.

V. NUMERICAL SIMULATIONS

The results in Section III on the trap-free classical control landscape rest on satisfaction

of the second Assumption that δZ(T )/δǫ(t) is surjective, which will generally also require

satisfaction of Assumptions 1 (controllability) and 3 (free access to control resources). To

test the surjectivity assumption, we performed classical optimal control calculations based

on Hamilton’s equations for a range of model molecular systems with various Hamiltonians.

All simulations start with distinct initial states for the ensemble members and distinguish

two types of objectives: “all-to-all” control, in which a different initial state and target is

specified for each trajectory in the ensemble, and “all-to-one” control, in which the same

target is specified for all trajectories although they start out at distinct initial states. The

latter circumstance is considered as a special case, since it is not possible for all trajectories

to have exactly the same final state with different initial states, due to the reversibility of

classical Hamiltonian dynamics. Thus, the all-to-one simulations become less controllable as

the target is more closely approached, so we naturally expect that these cases will be very

demanding, resulting in a practical limit on the achieved quality of the control objective and
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showing ever higher condition numbers (i.e., ratios of the maximum to minimum singular

values) for {δZ(T )/δǫ(t)} as the target is more closely approached.

The simulations consider the objective function

J = −
M
∑

i=1

ρi
2





qi(T )− qtar
i

pi(T )− ptar
i





T

Li





qi(T )− qtar
i

pi(T )− ptar
i



 . (39)

where qtar
i and ptar

i are the target positions and momenta, respectively, for the ith trajectory,

and the Li are positive-definite matrices. The function in Eq. (39) is the same as that

considered in Eq. (16). If the (qtar
i ,ptar

i ) are distinct from
(

qtar
j ,ptar

j

)

for all values of i 6= j,

then J enforces all-to-all control, while if the target states are the same for at least some or

all of the trajectories, J attempts to reach all-to-one control as best as possible. In addition,

we may partially specify identical target states, e.g., specifying the same target positions qtar
j

without specifying the auxiliary target momenta and vice versa. In this case there are in

principle an infinite number of accessible auxiliary possible target states, so distinct initial

states can all achieve distinct target states while maintaining reversibility of the dynamics.

Testing a variety of objective functions allows us to illustrate the theoretical results for a

range of scenarios. To this end, we also vary the values of L, qtar, and ptar throughout the

simulations. The simulations are meant to broadly illustrate the results from the previous

sections for a variety of plausible scenarios. We restrict ourselves to relatively simple, low-

dimensional systems in order to avoid rising computational costs. We emphasize, however,

that the formalism and analysis in Sections II and III is not limited to such simple systems.

The tools presented here should enable analogous studies for higher-dimensional systems.

In the following presentation, Section VA will give an overview of the numerical techniques

employed. We then present the simulation results, with the cases summarized in Table I and

presented in Sections VB–VC. Section VB compares all-to-all and all-to-one control for a

two-trajectory ensemble of a model diatomic molecule, while Section VC considers specifying

only position targets, only momentum targets, and cases with more than two trajectories.

In Sections VB and VC, the molecules in the ensemble are the same, while Section VD

presents simulations with distinct molecules. In all simulations, we find that {δZ(T )/δǫ(t)}
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Simulation Subsection # Variables Description

1 B 2 All-to-one control

2 B 2 All-to-all control

3 B 2 All-to-all with longer time interval

4 C 2 Position-only control

5 C 2 Momentum-only control

6 C 2–6 All-to-all with more molecules

7 D 6 Simultaneous control of two physical systems (I)

8 D 6 Simultaneous control of two physical systems (II)

9 D 4 Simultaneous control of two physical systems (III)

TABLE I. Simulations presented in Section V.

is surjective to a practical computational level, with a condition number smaller than 105.

In the all-to-one simulations, we found that the condition number continued to increase as

the final state was more closely approached, consistent with the loss of controllability when

trying to force initially distinct trajectories to reach a common final point in phase space.

A. Numerical techniques: Symplectic integration and D-MORPH optimization

algorithms

In the following simulations, unless noted otherwise, the initial control field ǫ0(t) is chosen

as a sum of three sine functions with randomly selected amplitudes and phases. The frequen-

cies are taken to be multiples of the fundamental frequency of the system (i.e., found in the

absence of a control field). The control field ǫ(t) morphed towards its optimal form. The field

is discretized on an evenly spaced temporal grid, i.e., tj = j∆t ∈ [0, T ], j = 1, 2, . . . , T/∆t,

where ∆t is a small, fixed time-step. During the optimization, the field is allowed to freely

vary as a discretized function of time, 0 ≤ t ≤ T , with the field at each time point treated as

a control variable. Finding an optimal control field involves iterating two steps: (i) solving

Hamilton’s equations and (ii) updating the control field with the gradient algorithm, until

J has reached a maximum value to acceptable tolerance.

In step (i), a fourth-order symplectic integrator [59] was used to solve Hamilton’s equations

(Eq. (6)); a symplectic integrator was chosen for reasons of numerical stability, although
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other methods could be utilized. The adopted method involves four substeps to evolve the

state from time t to time t + ∆t. Specifically, denoting the state at time t by (q0,p0), for

i = 1, 2, 3, 4, we have

qi = qi−1 + bi
∂H

∂p
(pi)∆t, pi = pi−1 − ci

∂H

∂q
(qi−1)∆t (40)

with (q(t+∆t),p(t+∆t)) ≡ (q4,p4). The values of the fixed parameters bi and ci are given

in [60, 61].

In step (ii), the control field is refined using a gradient algorithm based on D-MORPH

[62] via a homotopy parameter (progress variable) s, such that the field is written as ǫ(s, t)

and ǫ(0, t) = ǫ0(t). The D-MORPH equation to update the field is

dǫ(s, t)

ds
≡ β

δJ

δǫ(s, t)
, β > 0, (41)

ensuring that

dJ

ds
=

∫ T

0

δJ

δǫ(s, t)

dǫ(s, t)

ds
dt = β

∫ T

0

(

δJ

δǫ(s, t)

)2

dt ≥ 0. (42)

Equation (41) is discretized over time, as described above. The field ǫ(s, t) morphs as

ǫ(s, t) → ǫ(s + ∆s, t) in order to increase J until δJ/δǫ(t) < 10−4. Equation (41) is in-

tegrated with respect to s using a fourth-order Runge-Kutta method at each of the time

points tj. At each increment in s, the gradient δJ/δǫ(s, t) is computed using Eqs. (15), (18

- 20) once Hamilton’s equations are solved and then using Eq. (40) in step (i) based on the

control field ǫ(s−∆s, t) in the preceding iteration.

B. All-to-one and all-to-all optimal control of a model diatomic molecule

Consider a model vibrating diatomic molecule driven by a control field ǫ(t), t ∈ [0, T ],

aligned with the molecular axis. The diatom is modeled as a Morse oscillator with Hamilto-
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nian

H =
p2

2m
+ V (q)−D(q)ǫ(t) =

p2

2m
+D0

(

1− e−αq
)2 −Aqe−ξq4ǫ(t), (43)

where q and p are, respectively, the relative distance and momentum between the two atoms.

We have removed the center of mass motion and work in internal coordinates; the control

landscape in this formulation should still exhibit the general behavior derived in Section III.

This Hamiltonian will be used throughout the simulations, except where indicated.

We choose the parameters for the Hamiltonian in Eq. (43) so as to model the internal

coordinate motion of the HF molecule, drawing on prior studies [18, 63, 64]. The parameters

have the values: m = 1732 (the reduced mass), D0 = 0.2101 (the dissociation energy),

α = 1.22, A = 0.4541 and ξ = 0.0064, all given in atomic units (a.u.). Unless otherwise

noted below, the pulse length of the control field is fixed at T = 320π and the initial

conditions of the diatom are chosen to be two equally weighted (i.e., ρ1 = ρ2 = 0.5) states

(q1(0), p1(0), q2(0), p2(0)) = (−0.3, 0, 0, 0.5).

Simulation 1: As a reference case, we first simulate the demanding situation of “all-to-

one” control by choosing the observable function specified by Eq. (39), with qtar1 = qtar2 =

qtar = 0.5 and ptar1 = ptar2 = ptar = −5.0 for both trajectories; the matrices in the objective

function Eq. (39) are L1 = L2 = I, the identity. The initial control field is chosen to be a

sum of three sine functions as described in Section VA; the phases and amplitudes of the

sine functions are drawn from a standard normal distribution (0 mean and unit variance)

and a uniform distribution over the range [0, 0.1], respectively.

The objective function with respect to the progress variable s is shown in Fig. 1; after a

rapid increase, the function value keeps rising, but with ever more difficulty as it attempts to

approach J = 0, as expected from the uncontrollable nature of the objective. Figure 2 shows

the initial and final control fields; as commonly found in many quantum control simulations,

the final (best) control field shows some resemblance to the initial one. Figure 3 shows

that the control field significantly distorts the phase plane trajectories in order to nearly

achieve the target, despite the lack of controllability: the final momenta, p1(t) and p2(T ),

reached the target value of −5.0, but the final positions q1(T ) = 0.59 and q2(T ) = 0.41 differ

from the target value of 0.5. Figure 4 shows the condition number of the time-discretized
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FIG. 1. Objective as a function of the progress variable for an all-to-one target state specification

(Simulation 1 in Table I). The inset shows the initial portion of the landscape climb.
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FIG. 2. Initial and final control fields for an all-to-one target state specification (Simulation 1 in

Table I).

matrix of δZ(T )/δǫ(t) for t ∈ [0, T ], where Z =
[

q1 p1 q2 p2

]T

, near the end of the control

field evolution. The condition number is modest, near 300, but more importantly continues

to increase with s, which is consistent with an all-to-one objective becoming increasingly

singular upon approaching ever closer to the target state.

Simulation 2: This case considers the ability to perform all-to-all control. We again

consider two trajectories with the same Hamiltonian, initial condition, and final time as in

Simulation 1. The objective function is

J = −q1(T )2 − (p1(T )− 19.0)2 − (q2(T ) + 0.2)2 − (p2(T ) + 5.0)2 , (44)
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FIG. 3. Individual phase plane trajectories with initial and final control fields for an all-to-one

target state specification (Simulation 1 in Table I). The X marks the start of each trajectory;

a ∗ marks the final state of the trajectory with the initial field and a + the final state of the

trajectory with the final field. The achieved states with initial and final fields are, respectively,

(q1(T ), p1(T ), q2(T ), p2(T )) = (0.57, 2.09,−0.05,−4.16) and (0.59,−5.00, 0.41,−5.00). The target

objective is (0.5,−5.0, 0.5,−5.0).
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FIG. 4. Condition number of δz(T )/δǫ(t) towards the end of the control field iterations for Simu-

lation 1 in Table I.

i.e., Eq. (39) with target states (qtar1 , ptar1 , qtar2 , ptar2 ) = (0.0, 19.0,−0.2,−5.0), ρ1 = ρ2 = 0.5,

and L1 = L2 = 4I. We observe a similar evolution in the objective function in Fig. 5a

as in Simulation 1 (Fig. 1), with an initial rapid increase followed by a slower approach

towards J = 0. However, unlike the all-to-one case in Simulation 1, the present all-to-all

objective should be reachable. The optimal control field (Fig. 5b) significantly distorts the

phase plane trajectories (not shown) to achieve final states of (q1(T ), p1(T ), q2(T ), p2(T )) =

(0.10, 19.01,−0.20,−5.00), compared to (q1(T ), p1(T ), q2(T ), p2(T )) = (0.31,−11.68,−0.12, 8.31)

with the initial control field.
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FIG. 5. Simulation results for an all-to-all target state specification (Simulation 2 in Table I). (a)

The objective as a function of the progress variable, and (b) the initial and optimal control fields.

The matrix of δZ(T )/δǫ(t) has a condition number of 279 at the optimal field, comparable

to the all-to-one case. However, unlike the all-to-one simulation, the condition number

actually decreases as the near-optimal control field evolves, reflecting the reachability of the

all-to-all objective. Similar results were found when different target and initial states were

specified.

Simulation 3: This case considers an all-to-all objective with a much longer time interval

of T = 1920π a.u. to show that subtle changes in the control field can lead to significantly

enhancing the final dynamical outcome. These simulations impose the practical condition

that the field die away to zero at the beginning and end of the time interval by introducing

a Gaussian envelope function G(t) = exp (−81(t− 960π)2/ (1.25× 107)) on the control field.

Thus, we have ǫ(t) = G(t)E(t), and the field ǫ(t) is optimized with respect to the function

E(t). We choose the initial state to be (q1(0), p1(0), q2(0), p2(0)) = (−0.5, 1.0, 0.5,−1.0) and

specify the final state as (qtar1 , ptar1 , qtar2 , ptar2 ) = (0.8, 10.0, 0.2, 7.0). The objective function in

Eq. (39) is chosen have ρ1 = 0.3, ρ2 = 0.7, L1 = L2 = diag (2, 2× 10−4).

Figure 6 shows the initial and optimal control fields; the initial function E(t) is a sum

of three sine functions with random amplitudes and phases where the periodicity is cho-

sen to be one half, one, and two times the natural periodicity observed for the field-free

system. We see that the changes in the control field are barely perceptible, though the

objective function value changes significantly: with the initial control field, the final states

are (q1(T ), p1(T ), q2(T ), p2(T )) = (1.12, 5.12, 0.10, 10.05), while with the optimal control field

we have (q1(T ), p1(T ), q2(T ), p2(T )) = (0.84, 12.1, 0.21, 7.2). The small change in the control
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FIG. 6. Initial and optimal control fields for an all-to-all specification with Gaussian envelope

having an extended control time interval (Simulation 3 in Table I). The inset magnifies a portion

of the fields to reveal their slight difference.

field has an accumulated impact over the extended dynamical time interval, resulting in

increased sensitivity of the final state to the control field, as seen by the condition number

of δZ(T )/δǫ(t) being 5.76 × 104 at the optimal control field. From a practical perspective,

it is likely best to operate with smaller final times, in keeping with still maintaining control,

to permit a measure of significant distinction between the initial and final fields and thereby

provide a degree of robustness to small field variations.

C. Partial target specification and effects of multiple trajectories

This section investigates the control behavior with the Hamiltonian in Eq. (43) when only

the momentum or only the position is specified at the target, as well as when more than

two trajectories are considered. When optimizing only the position or only the momentum

variables, since one of them is free to vary, we expect that sending all position variables to

the same value, or all momentum variables to the same value, will be achievable and will not

result in singularities (i.e., it is not strictly an example of an all-to-one scenario).

Simulation 4: We first examine position target specification for two trajectories, taking

the objective function in Eq. (39) to be J = −0.5
(

q1(T ) − 0.8
)2 − 0.5

(

q2(T ) − 0.8
)2

with

the target position qtar = 0.8 a.u. for both trajectories. As for Simulation 3 above, we take
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FIG. 7. Initial and final control fields for (a) position- and (b) momentum-only target specification

(Simulations 4 and 5 in Table I, respectively).

a large final time of T = 1920π a.u. and multiply the control field by the same Gaussian

envelope function G(t). The control E(t) is initialized as the sum of two sine functions with

frequencies equal to one and two times the system’s fundamental frequency. The initial state

variables are (q1(0), p1(0), q2(0), p2(0)) = (−0.5, 1.0, 0.5,−1.0).

Figure 7(a) shows the initial and optimal control fields ǫ(t) for this simulation. We see

that the overall amplitude of the field is quite low, less than 0.03, compared to the previous

cases where all final values of qtar and ptar are specified as goals, posing more stringent

demands. The evolution was stopped at J = −0.0012, with (q1(T ), p1(T ), q2(T ), p2(T )) =

(0.800, 16.694, 0.751, 2.251).

Simulation 5: This case specifies only the final momenta as the targets ptar1 = ptar2 = 5.0

and utilizes the same two initial states and final time as in Simulation 4. Figure 7(b)

shows the initial and optimal control fields, which appear very similar, though the optimal

control field has a slightly higher amplitude towards the end of the time interval [0, T ]. The

final objective function value reached to J = −10−5, indicating that the target momenta

are very closely achieved. The objective function value is thus larger than that obtained

when specifying only the position targets in Simulation 4, indicating that it is easier to

optimize momentum rather than position targets. This difference is likely due to the fact

that the time derivative ṗ in Eq. (6) is directly coupled to the control field ǫ(t) in Eq. (43)’s

Hamiltonian, while the evolution q̇ of the position is coupled to the control field only through

the momentum p.

Simulation 6: To further explore the feasibility of simultaneously controlling a trajectory
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Trajectories q1 p1 q2 p2 q3 p3 q4 p4 q5 p5 q6 p6

2
Initial −0.5 1.0 0.5 −1.0 – – – – – – – –

Target 0.8 10.0 0.2 7.0 – – – – – – – –

3
Initial −0.25 1.0 0.25 0 0.75 −1.0 – – – – – –

Target 0.1 −4.8 1.0 2.5 0.5 −4.0 – – – – – –

4
Initial −0.17 1.0 0.17 0.33 0.5 −0.33 0.83 −1.0 – – – –

Target 0.4 5.1 0 3.7 0.1 12.6 1.1 −10.4 – – – –

5
Initial −0.125 1.0 0.125 0.5 0.375 0 0.625 −0.5 0.875 −1.0 – –

Target 0.3 10.8 0 2.7 0.5 −1.8 0.1 12.3 0.3 23.5 – –

6
Initial −0.1 1.0 0.1 0.6 0.3 0.2 0.5 −0.2 0.7 −0.6 0.9 −1.0

Target 0.2 −7.8 0 2.4 −0.2 −1.0 0.8 5.2 0.1 −14.0 −0.3 −14.4

TABLE II. Initial and target states for ensembles consisting of increasing numbers of multiple

trajectories with the Hamiltonian in Eq. (43) for Simulation 6.

ensemble, we again consider all-to-all target specification for the Hamiltonian in Eq. (43),

but with consideration of two to six trajectories. In all cases, we use the objective function

in Eq. (39) with Li = diag (1/M, 1/ (100M)). We preferentially weight the momentum due

to its larger dynamic range compared to the position. Table II gives the initial and target

states (qi(0), pi(0)) and (qtari , ptari ) for each simulation; the initial states are randomly chosen

over the uniform distribution on [−1, 1].

As an indication of the difficulty in controlling increasing numbers of trajectories simul-

taneously, we consider the condition numbers of δZ(T )/δǫ(t) for trajectories very near the

target objective (J < 0.002) and those somewhat further away (J ≈ 0.1). Figure 8 shows

the condition numbers in each case; we see that for both cost function values, the condi-

tion numbers first increase and then decrease with the number of trajectories to then finally

increase again. Moreover, neither trajectory type yields consistently larger or smaller condi-

tion numbers, indicating that the surjectivity of δZ(T )/δǫ(t) does not necessarily increase as

the final states approach their target values. As the number of trajectories increases, more

stringent conditions are placed on the collective controlled evolution, which increases the

condition number of δZ(T )/δǫ(t); however, Fig. 8 shows that these effects are modest.
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FIG. 8. Condition numbers of δZ(T )/δǫ(t) for trajectory ensembles (Simulation 6 in Table I).

D. Simultaneous control of two physical systems

This section explores the feasibility of simultaneously controlling two distinct systems

with different Hamiltonians, which is of interest in the general scenario of controlling het-

erogeneous media. The cases will range from those with a pair of very different systems to a

pair of very similar systems. Since multiple Hamiltonians introduce additional richness into

the ensemble dynamics, we expect that δZ(T )/δǫ(t) will remain comfortably surjective.

Simulation 7: First, we consider simultaneous control of the one-dimensional Hamil-

tonian in Eq. (43) along with a two-dimensional system of two coupled Morse oscillators

that models the triatomic SO2 molecule [65, 66]. We choose a coordinate frame for the

latter system in which the two oscillators are coupled through the potential in addition to a

kinetic coupling due to the finite mass of the central atom. The dual systems are driven by

a single time-dependent control field ǫ(t), t ∈ [0, T ]. We let (q2, q3) and (p2, p3) denote the

two position and momentum variables, respectively, of the second Hamiltonian:

H (q2, p2, q3, p3) =
1

2

(

p22
m2

+
2βkp2p3
m2

+
p23
m2

)

+ V (q2, q3)−D(q2, q3)ǫ(t)

=
p22 + 4βkp2p3 + p23

2m2

+ d0
(

1− e−α2q2
)2

+ d0
(

1− e−α3q3
)2

+

2d0β
(

1− e−α2q2
) (

1− e−α3q3
)

−
(

q2e
−ξ0q2 − q3e

−ξ0q3
)

ǫ(t). (45)

The center of mass motion has been removed and the problem is expressed in internal

coordinates; as in the single oscillator example, the control landscape in this formulation
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FIG. 9. Simultaneous control over the dynamics with two distinct Hamiltonians (Simulation 7 in

Table I). The initial state was (q1(0), p1(0), q2(0), p2(0), q3(0), p3(0)) = (0, 0.2, 0.5,−0.2,−0.5, 0),

and the final achieved state was (q1(T ), p1(T ), q2(T ), p2(T ), q3(T ), p3(T )) =

(0.065, 1.913, 0.954, 1.113, 0.333, 0.654) compared to the target of
(

qtar1 , ptar1 , qtar2 , ptar2 , qtar3 , ptar3

)

=

(0, 1.9, 1.0, 1.0, 0.3, 0.7). The initial and optimal control fields are shown in (a) and the phase space

trajectories under optimal control in (b). An ’X’ marks the initial states, and the ’+’ marks the

final states.

should still exhibit the general behavior identified in Section III. The parameters in Eq.

(45) are chosen to have the values: d0 = 0.2102, α2 = 1.1282, α3 = 0.9712, β = 0.1,

βk = −0.1616, and ξ0 = 0.1, m2 = 10.667, all given in atomic units (a.u.). These parameter

values are taken from a model of the SO2 molecule used in Ref. [66].

In the subsequent discussion, we use the notation Z(t) =
(

q1(t), p1(t), q2(t), p2(t), q3(t), p3(t)
)

to denote the concatenated state variables; the first coordinates (q1(t), p1(t)) correspond to

the Hamiltonian in Eq. (43). We choose the initial state to be Z(0) = (0, 0.2, 0.5− 0.2,−0.5, 0)

and the target state to be Ztar = (0, 1.9, 1.0, 1.0, 0.3, 0.7). The resulting objective function

is given by Eq. (39) with L1 = diag (2, 0.2) and L2 = diag (2, 2, 0.2, 0.2), ρ1 = ρ2 = ρ3 =

1/3. We use a control field pulse length of T = 80π and a Gaussian envelope function

G(t) = exp (− (t− 40π)× 10−4); the initial control function E(t) is a randomly chosen sum

of three sine functions as in Simulation 3. To account for the differing periodicities of the

two Hamiltonians in Eqs. (43) and (45), we scale the time dynamics of (q1(t), p1(t)) by a

factor of 8, i.e., we divide the Hamiltonian in Eq. (43) by 8.

Figure 9(a) shows the initial and optimal control fields for Simulation 7. We see that

the control field evolves from the initial field, with a particular increase in amplitude near

the end of the time interval. The phase space trajectories at the optimal field are shown

in Figure 9(b). The two Hamiltonians result in differently shaped trajectories; comparing
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(q1, p1) to that of (q2, p2, q3, p3), the latter trajectories have a larger range of position and

appear aperiodic.

Simulation 8: This case considers simultaneous control of a pair of molecules consisting

of the system in Eq. (43) along with an altered form of the Hamiltonian in Eq. (45) in order

to demonstrate that optimal controls can be found for a variety of dynamical scenarios. In

particular, we modify Eq. (45) to be

H (q2, p2, q3, p3) =
1

2

(

(

p2
m2

)2

+

(

p3
m3

)2
)

+ V (q2, q3)−D(q2, q3)ǫ(t)

=
p22
2m2

+
p23
2m3

+ d0

[

(

1− e−α2q2
)2

+
(

1− e−α3q3
)2

+ 2β
(

1− e−α2q2
) (

1− e−α3q3
)

]

−
(

q2e
−ξ0q2 − q3e

−ξ0q3
)

ǫ(t). (46)

This case could arise when the central atom for a triatomic molecule is of very large mass

relative to the two end atoms. The parameters in Eq. (46) are chosen to have the values:

d0 = 0.2102, α2 = 1.1282, α3 = 0.9712, β = 0.1, and ξ0 = 0.1, m2 = 10.0, m3 = 5.0, all given

in atomic units (a.u.). We choose the initial state to be Z(0) = (0, 0.2, 0.5− 0.2,−0.5, 0) and

the target state to be Ztar = (0.2, 2.4, 2.0, 0, 0.5,−0.5), with the same objective function,

control field pulse length, and Gaussian envelope as in Simulation 7. The initial control

function E(t) is again taken to be a randomly chosen sum of three sine functions, and we

again scale the time dynamics of (q1(t), p1(t)) by a factor of 8.

Figure 10(a) shows the initial and optimal control fields for Simulation 8, and Fig. 10(b)

shows the trajectories of all three (qi, pi) pairs with the final control field. As in Simulation

7, we see that the first (q1, p1) pair has qualitatively different shape from those of the second

Hamiltonian, and all of the trajectories are quasi-periodic, in contrast to the aperiodic ones

in Figure 9(b).

Simulation 9: This scenario addresses another aspect of simultaneous control of mul-

tiple systems, relevant to discriminating their presence [67] as has been studied quan-

tum mechanically. We show that Section III’s results hold even when two trajectories

arising from near-identical Hamiltonians are sent to the same target state. We consider

the Hamiltonian in Eq. (43) with the Morse potential parameter α = 0.97 for the first
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FIG. 10. Simultaneous control over the dynamics with two distinct Hamiltonians (Simulation 7 in

Table I). The initial state was (q1(0), p1(0), q2(0), p2(0), q3(0), p3(0)) = (0, 0.2, 0.5,−0.2,−0.5, 0),

and the final achieved state was (q1(T ), p1(T ), q2(T ), p2(T ), q3(T ), p3(T )) =

(0.167, 2.402, 1.983, 0.16, 0.5,−0.524) compared to the target of
(

qtar1 , ptar1 , qtar2 , ptar2 , qtar3 , ptar3

)

=

(0.2, 2.4, 2.0, 0, 0.5,−0.5). The initial and optimal control fields are shown in (a) and the phase

space trajectories under optimal control in (b). An ’X’ marks the initial states, and the ’+’ marks

the final states.

trajectory (q1, p1) and α = 1.22 for the second trajectory (q2, p2). The initial state is

(q1(0), p1(0), q2(0), p2(0)) = (0, 0.2, 0.5,−0.2) and the initial and optimal fields are shown

in Figure 11(a); the objective function in Eq. (39) has ρ1 = ρ2 = 0.5 and L1 = L2 = 4I.

The optimal field is significantly different from the initial field, gaining an additional low-

frequency component and increasing in amplitude. The evident high frequency observed in

the fields is due to the near, but distinct, frequency structure of the two oscillators. Both

trajectories’ final states reached the target state of (qtar1 , ptar1 , qtar2 , ptar2 ) = (0.2, 2.4, 0.2, 2.4)

within 10−4, as indicated by the phase space plots in Figure 11(b). Although both trajec-

tories have the same target states, the slight difference in the two Hamiltonians offers just

enough dynamical freedom to make the target relatively “easy” to achieve with the condition

number of δz(T )/δǫ(t) being quite low, at 49.5. Despite the similarity in Hamiltonians, the

different initial states cause the trajectories to follow very different paths in the phase space:

the first trajectory “spirals out” to reach the target, but the second trajectory spirals in,

and the distinctiveness apparently aids in satisfying the surjectivity condition. Interestingly,

the time reversal of this control process starting at the point ’+’ in Figure 11(b) may be

interpreted as corresponding to desired discrimination of the two similar systems.
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FIG. 11. Results for the ensemble with two similar Hamiltonians (Simulation 8 in Table I).

The initial state was (q1(0), p1(0), q2(0), p2(0)) = (0, 0.2, 0.5,−0.2), and the target state was
(

qtar1 , ptar1 , qtar2 , ptar2

)

= (0.2, 2.4, 0.2, 2.4). The initial and optimal control fields are shown in (a)

and the phase space trajectories under optimal control in (b). The controlled trajectories achieve

their targets within 10−4 a.u. An ’X’ marks the initial states, and the ’+’ marks the final states.

VI. CONCLUSION

This paper examines optimal control landscapes for an ensemble of classical molecular

trajectories following Hamiltonian dynamics, focusing in particular on the case of a finite

ensemble, e.g., the discretization of an initial distribution in phase space. The objective

function aims to send each trajectory of the ensemble to a particular target state in phase

space. We derive expressions for the critical points of these control landscapes and use

these to determine the Hessian at critical points of the landscape. The Hessian forms a

finite-rank matrix, allowing for analysis of conditions under which it is positive- or negative-

semidefinite or indefinite. We find that neither saddle critical points nor traps arise on

the control landscape, and the finite rank of the Hessian permits finding a bound on the

response of J [ǫ(t)] to a variation in an optimal control field. The finite rank also implies that

a submanifold of optimal control fields exists.

The results in Section III are analogous to the quantum mechanical objective of max-

imizing the probability that each state in a distinct ensemble of quantum states reaches

a specified distinct target. To see this analogy, in Section IV we write the quantum me-

chanical dynamics in a classical-like framework and compare the resulting critical point and

Hessian expressions with their classical counterparts. We find that saddle critical points can

arise when only a subset of analogous classical trajectories (respectively quantum states)
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reach their targets at the end of the specified time interval. No traps, however, are found:

the control landscape has a unique maximum at which all trajectories (resp. states) reach

their targets. The similarity between the classical and quantum landscapes extends to the

landscape Hessian: the Hessians in both circumstances have finite rank, permitting their

expression in terms of a finite linear combination of orthogonal, linear independent func-

tions. However, the quantum analogue has saddles arising from the extra condition on the

normalization of each state, while the classical case has no such extra condition on its states

and therefore no saddles are present. The latter conclusion is also consistent with the simu-

lations, where none of the plots of J(s) have indicated the characteristic behavior of slowing

down upon coming close to a saddle.

The analysis in Section III rests on the nature of the objective functional, the controlla-

bility and surjectivity of the system, and access to any desired control. As in the quantum

case, it would be interesting to investigate the fundamental and practical consequences of

violating the assumptions to varying degrees. Moreover, further examination of the continu-

ous classical ensemble control in Section IIIA would be interesting, particularly considering

the subtle issues of controllability and surjectivity. Additional applications of the present

work may also extend to control of classical systems in engineering contexts, e.g., [26–29],

including to the synchronization of multiple coupled oscillators [68–71].
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