
Improving User QoE for Residential Broadband:
Adaptive Traffic Management at the Network Edge

Felix Ming Fai Wong∗, Carlee Joe-Wong∗, Sangtae Ha†, Zhenming Liu∗, Mung Chiang∗
∗Princeton University, Princeton, NJ, USA †University of Colorado, Boulder, CO, USA

{mwthree, cjoe, chiangm}@princeton.edu, sangtae.ha@colorado.edu, zhenming@cs.princeton.edu

Abstract—Recent increases in network traffic have led to severe
congestion in broadband networks. We propose to mitigate this
problem with a two-level edge-based solution that incentivizes
users to moderate their bandwidth usage based on their actual
needs. In the first level, home gateways are given QoE (quality
of experience) credits that they can spend to receive more
bandwidth at congested times; to ensure fairness, the credits are
redistributed to other gateways after they are spent. We show
that this scheme guarantees long-term fairness and maximizes
users’ total satisfaction at the equilibrium. In the second level,
each gateway allocates bandwidth among its users and apps
according to its own priorities. Gateways can thus customize their
bandwidth allocation depending on individual preferences. We
develop a prototype of this second-level allocation on commodity
wireless routers. We then consider an example scenario and
show by simulation and implementation results that our solution
outperforms an equal bandwidth allocation, increasing users’
overall utility and fairly allocating bandwidth across users.

I. INTRODUCTION

A. Motivation: Demand in Broadband Networks

Recently, ISPs have seen a large, sustained increase in data
usage, driven by popular streaming and cloud services such as
Netflix and Dropbox [1]. While many strategies for managing
this demand have been proposed [2], few works explicitly
consider wired cable networks. Broadband providers have
themselves considered two measures to manage congestion:
content-agnostic bandwidth (network capacity) distribution
based on usage history [3] and deep packet inspection to throt-
tle “abusive” users, e.g., those running BitTorrent. However,
these solutions ignore users’ true quality of experience (QoE),
which introduces two key challenges:

Incentivizing responsible usage. Simply throttling heavy
users does not always improve users’ QoE, e.g., when ev-
eryone overloads the network by streaming HD videos at the
same time. Yet in today’s networks, users have no incentive
to moderate their bandwidth consumption only to the amount
they actually need, at times when they need it.

Addressing different bandwidth needs. The same band-
width rates can yield different QoE levels for different types of
traffic. Yet users today cannot communicate their bandwidth
needs to the ISP without telling ISPs which content they
are consuming, violating their privacy and network neutrality.
Consider, for instance, two neighbors who both use a sub-
stantial amount of bandwidth in the evening. One of them
watches Netflix, and the other backs up large files from work.

Residential
Gateways Internet

Apps/Devices

Apps/Devices

…
 …

…

Level 1 Allocation
(Sections II & III)

CMTS

Level 2 Allocation
(Section III)

Fig. 1. Hierarchical edge-based bandwidth allocation.

The optimal solution would be to prioritize the first neighbor
during the evening, and incentivize the second neighbor to
back up his files a few hours later. Yet in today’s networks, the
broadband provider might simply give both equal bandwidth.

B. A Home Solution to a Home Problem

We argue that broadband providers can fully account for
user QoE by pushing congestion management to the network
edge at home gateways.1 Thus, we empower the user to
improve his or her own experience in using the network.
We propose to allocate bandwidth in a two-level hierarchy,
as shown in Figure 1. Bandwidth is first allocated among
home gateways and then allocated locally among the users
and devices connected to each gateway. While our solution
can apply to any broadband network, we maintain a particular
focus on cable networks, which have recently suffered from
particularly egregious congestion [3].

Level 1: Our Level 1 solution distributes QoE credits [4]
to the gateways. Each gateway uses its credits to “purchase”
guaranteed bandwidth rates at congested times, giving it an
incentive to moderate network usage due to its limited credit
budget. We limit the total bandwidth demand to the network
capacity by fixing the total number of credits in the system
and recirculating credits to gateways as they are spent.

The ISP divides the day into a series of discrete time
periods, e.g., each lasting an hour, and designates some as
“congested.” At such times, traffic is divided into two classes:
a first-tier class that gateways must purchase with credits and a
second-tier class that requires no credits but is always of lower

1A gateway in this paper refers to the combination of a broadband modem
and an in-home WiFi access point.

priority.2 This scheme ensures that the network is fully utilized
if there is sufficient demand, yet still encourages gateways to
spend credits at different times.

At the start of the period, each gateway first decides how
many of its credits to spend, i.e., how much guaranteed
bandwidth to purchase.3 A central server in the ISP’s network
records the total credits spent by each gateway and redis-
tributes the appropriate number of credits to each gateway
in the next time period. Each gateway updates its budget by
deducting the credits spent in the previous time period and
adding the number of credits received. In the next time period,
each gateway then knows its updated budget and can again
choose how many credits to spend.

Level 2: Our Level 2 solution allows gateway users to
prioritize different apps and automatically allocates bandwidth
accordingly.4 One user, for instance, might prioritize stream-
ing music, while another might prioritize file transfers. The
gateway then divides its purchased bandwidth among these
apps according to their priorities. We focus on elephant traffic,
which tends to be non-bursty and amenable to bandwidth
throttling. Since the allocation runs locally at each gateway,
the user has full control over these decisions.

Prioritizing different applications requires both automati-
cally classifying sessions entering the gateway into different
apps and enforcing rate limits for each app. While standard
mechanisms are available for doing so in a router, they
generally require static priority configurations and server-side
support when prioritizing downlink traffic. We thus develop
our own classification and rate limiting solutions, which run
locally on each gateway, and prototype them in a modified
home gateway router.

C. Practical Advantages
We show that our credit-based edge solution is both theo-

retically sound and practically deployable, by first analyzing
gateways’ credit spending behavior and then presenting a
prototype implementation on a modified home gateway. Our
solution has the following advantages for users and ISPs:

Fairness across gateways: Credits are circulated back to
each gateway in a way that depends on other gateways’
behavior. Over time, every gateway will be able to use a
fair portion of the bandwidth, as gateways that spend a lot
of credits in one time period will have fewer to spend later.

User-driven QoE optimization: Each gateway spends cred-
its so as to maximize its own overall satisfaction or QoE,
and is free to allocate this purchased bandwidth among its
apps and devices. Our credit redistribution mechanism ensures
that gateways’ credit spending choices optimize the collective
social welfare, i.e., all gateways’ satisfaction, over time.

Session-level granularity: Within each gateway, users can
allocate bandwidth to different apps according to their specific

2By spending credits, users essentially sort their first-class traffic into
customized classes defined by the different guaranteed bandwidths purchased.

3In practice, an automated agent acting on behalf of the gateway’s users
makes this decision, with possible manual overrides.

4Should explicit prioritization prove too complex for average users, we can
introduce default priorities for different types of apps and devices.

needs and priorities, ensuring that all apps have satisfactory
QoE. More centralized solutions generally cannot optimize
bandwidth at the session level, as this violates user privacy.

Privacy preservation: We design an algorithm that runs at
individual gateways and utilizes only the information on how
the credits are circulated to find the optimal spending. Thus,
users need not reveal their individual QoE preferences to other
gateways or to the ISP.

Scalability: A solution at the gateway level naturally allows
for a distributed bandwidth allocation, since each gateway
decides how to spend its credits and allocate its bandwidth. It
can be easily deployed via modified home gateways and does
not require substantive changes to ISPs’ network architecture.

Incremental deployability: Since the number of total cred-
its is fixed, we can incrementally deploy the solution by
starting with a small number of credits and introducing more
as more gateways begin to participate.

We introduce our credit redistribution algorithm in Section
II and show that gateways’ total satisfaction is maximized in
equilibrium. In Section III, we present practical algorithms
for each gateway to decide how many credits to spend and to
distribute bandwidth among its apps and devices. We present
our prototype implementation on a home gateway router in
Section IV and show simulation and implementation results of
an example scenario in Sections V and VI. We briefly discuss
related works in Section VII before concluding in Section VIII.

II. CREDIT DISTRIBUTION AND OPTIMAL SPENDING

In this section, we describe the bandwidth allocation at
the higher level of Figure 1. We first describe our system
of credits for purchasing bandwidth (Section II-A) and show
that it satisfies several fairness properties. We then show that
even if each gateway selfishly maximizes its own satisfaction,
the total satisfaction across all gateways can be maximized
(Section II-B). All proofs are in Appendices A–F.

A. Credit Distribution

We divide congested times of the day into discrete time
periods, e.g., of a half-hour duration, and allow gateways to
“purchase” bandwidth in each period. The spent credits are
redistributed at the end of each period. Users’ credit budgets
at the end of each day carry over into the next day, so our
model is not affected by these time gaps in credit spending.

We suppose that a fixed number B = βC of credits is shared
by n different gateways, where C is the network capacity in
Gbps and β an over-provisioning factor chosen by the ISP.
We consider T + 1 time periods indexed by t = 0, 1, . . . , T ,
e.g., T + 1 periods per week. We use bit to denote the budget,
i.e., number of credits owned, of gateway i at time t, and we
suppose that the total credits are initially distributed equally
across gateways, i.e., bi0 = B/n for all i. For brevity, in
the remainder of the paper we use “budget” to mean “credit
budget,” or the number of credits available to the gateway at
a given time. We use xit to denote the number of credits used

by gateway i in time period t. We then update each gateway
i’s budget as

bi,t+1 = bit − xit +
1

n− 1

∑
j 6=i

xjt, (1)

where we sum over all gateways j except gateway i. Each
gateway i is constrained by 0 ≤ xit ≤ bit: it cannot spend
negative credits, and the number of credits spent cannot exceed
its budget. This credit redistribution scheme conserves the total
number of credits for all times t:

Lemma 1: At any time t, the number of credits distributed
among gateways is fixed, i.e.,

∑n
i=1 bit = B = βC.

Since users cannot spend more than their budgets, their total
bandwidth purchases are therefore limited to at most βC.

Heavy gateways are prevented from hogging the network,
as a large xjt (i.e., large usage by gateway j at time t) simply
means that the other gateways i 6= j will receive larger budgets
in the time interval t + 1. This natural fluctuation in credit
budgets enforces a form of fairness across gateways. In fact,
if this redistribution leads back to a previous budget allocation,
all gateways spend the same number of credits:

Lemma 2: Suppose that for some times s and t, bis = bit
for all gateways i, e.g., s = 0 and bit = B/n. Then each
gateway spends the same number of credits between times s
and t: for all gateways i and j,

∑t−1
τ=s xiτ =

∑t−1
τ=s xjτ .

Using this result, we can more generally bound the differ-
ence in the number of credits gateways can spend:

Proposition 1: At any time t, for any two gateways i and
j,
∣∣∣∑t

s=0 xis −
∑t
s=0 xjs

∣∣∣ ≤ B(n − 1)/n. Thus, the time-
averaged difference in spending

lim
t→∞

1

t

∣∣∣∣∣
t∑

s=0

xis −
t∑

s=0

xjs

∣∣∣∣∣ ≤ lim
t→∞

B(n− 1)

nt
= 0. (2)

Over time, fairness is enforced in the sense that all gateways
can spend approximately the same number of credits.

Though these fairness results limit heavy gateways’ hogging
the network, gateways with less usage may conversely “hoard”
credits, hurting other gateways’ budgets. To limit hoarding,
we cap each gateway’s budget at a maximal value of B, with
B/n < B ≤ B.5 For instance, the ISP might choose B =

B
n−m+1 , where m is the minimum number of gateways on
the network at any given time. The n−m inactive gateways
at that time can then hoard at most B(n −m)/(n −m + 1)
credits, letting active gateways use the remaining B/(n−m+
1) credits.

To enforce this budget cap, the excess budget(
bit − xit +

∑
j 6=i

xjt

n−1

)
− B of any gateway i exceeding

the cap is evenly distributed among all gateways below the
cap. Should these credits push any gateway over the cap,
the resulting excess is evenly redistributed to the remaining

5If B = B/n, then we would have bit = B/n for all gateways i at all
times t. We therefore take B > B/n to ensure that there is a feasible set of
budgets {bit} with each bit ≤ B.

gateways until all budgets are below the cap. Since B > B/n
and we reallocate to fewer gateways after each iteration, this
process converges after at most n − 1 iterations. We expect
that users will rarely reach the budget cap, as even without
the cap, no single gateway can hoard all available credits:

Proposition 2: Let α = (n − 2)/(n − 1) and suppose that
a given gateway i uses at least ε bandwidth every p periods,
where B/n > ε ≥ 0 and p may denote, e.g., one day. Then at
any time t, gateway i’s budget

bit ≤
B

n
αt+1 +B

(
1− αt+1

)
− ε

(
αp − αp(1+b

t+1
p c)

1− αp

)
→ B − εαp

1− αp
(3)

as t → ∞. Thus, if ε > 0, bit < B. Moreover, at any fixed
time t, at most one gateway can have a budget of zero credits.

For instance, if a gateway spends ε credits at each time,
then as t → ∞, bit ≤ B − ε(n − 2): if ε is relatively large,
a gateway hoards fewer credits, since these are redistributed
among others once spent. Conversely, a gateway that spends
very little can asymptotically hoard almost B credits. More
broadly, if a number m of gateways are inactive in a network
for a certain number of time periods s, then we can bound the
number of credits these m gateways accumulate:

Proposition 3: Suppose that m gateways are inactive from
times 0 to s−1 (i.e., for s periods). Then the number of credits
that these gateways can accumulate by time s is given by

m∑
i=1

bis − bi0 ≤
(

1−
(
n− 2

n− 1

)s)(
B −

m∑
i=1

bi0

)
(4)

where we index the inactive gateways by i = 1, 2, . . . ,m.

B. Optimal Credit Spending

Given the above credit distribution scheme, each gateway
must decide how many credits to spend in each period. To
formalize this mathematically, let Uit denote gateway i’s utility
as a function of the guaranteed bandwidth xit in time interval
t. Though gateways may increase their utilities with second-
tier traffic, we do not consider this traffic in our formulation.
Second-tier bandwidth is difficult to predict: gateways could
only obtain historical information on its availability by regu-
larly sending such traffic, which they are unlikely to do.

We consider a finite time horizon T , e.g., one week, since
the utility functions cannot be reliably known far into the
future. Each gateway i then optimizes its total utility from
the current time s to s+ T :

max
xit

s+T∑
t=s

Uit (xit) , s.t. 0 ≤ xit ≤ bit, ∀t. (5)

Here the budgets bit are calculated using the credit redistri-
bution scheme (1), with appropriate adjustments to enforce
the budget limit B. For ease of analysis, we do not model
these budget caps here. In practice, the ISP can cap gateways’
budgets for each time period during the credit redistribution.

We first note that the budget expressions (1) can be used to
rewrite the inequality xit ≤ bit as the linear function

t∑
τ=s

xiτ −
∑
j 6=i

t−1∑
τ=s

xjτ
n− 1

≤ bi0. (6)

Thus, if the Uit are concave functions, then given the amount
spent by other gateways xjτ , (5) is a convex optimization
problem with linear constraints.6

Since each gateway chooses its own xit to solve (5), these
joint optimization problems may be viewed in a game-theoretic
sense: each gateway is making a decision that affects the
utilities of other gateways. From this perspective, the game
has a Nash equilibrium at the social optimum:

Proposition 4: Consider the global optimization problem

max
xit

n∑
i=1

s+T∑
t=s

Uit (xit) , s.t. 0 ≤ xit ≤ bit, ∀i, t (7)

with the credit redistribution (1) and strictly concave Uit. Then
an optimal solution {x∗it} to (7) is a Nash equilibrium.

While Prop. 4’s result is encouraging from a system stand-
point, in practice this Nash equilibrium may never be achieved.
Since the gateways do not know each others’ utility functions,
they do not know how many credits will be spent and
redistributed at future times, making the future credit budgets
unknown parameters in each gateway’s optimization problem.
These must be estimated based on historical observations,
which we discuss in the next section.

III. AN ONLINE BANDWIDTH ALLOCATION ALGORITHM

We now consider a gateway’s actions at both levels of
bandwidth allocation. We first give an algorithm to decide
credit spending (Level 1) and then show how the purchased
bandwidth can be divided at the gateway (Level 2). Using
Algorithm 1, each gateway iteratively estimates the future
credits redistributed, chooses how many credits to spend, pri-
oritizes apps, and updates its credit estimates. We assume the
gateway’s automated agent knows its users’ utility functions.

A. Estimating Other Gateways’ Spending

To be consistent with (5)’s finite time horizon, we suppose
that gateways employ a sliding window optimization. At any
given time s, gateway i chooses rates for the next T periods
s, . . . , s+T −1 so as to maximize its utility for those periods.
At time s+1, the gateway updates its estimates of future credits
redistributed and optimizes over the next T periods, etc.

We use scenario optimization to estimate the number of
credits each gateway will receive in the future.7 Scenario
optimization considers a finite set Si of possible scenarios
for each gateway i, associating each scenario σ ∈ Si with a
probability πσ that it will take place. Computing the credit

6The assumption of concavity, i.e., U ′′
it(xit) < 0, may be justified with the

economic principle of diminishing marginal utility as bandwidth increases.
7This technique is often used in finance to solve optimization problems

with stochastic constraints that are hard to predict, e.g., market dynamics [5].

Algorithm 1 Gateway spending decisions.
s← 1 {s tracks the current time.}
while s > 0 do

if s > 1 then
Update estimate of future amounts redistributed using Algo-
rithm 2.

end if
Calculate

∑
j 6=i xjt/(n− 1) for t = s, . . . , s+ T − 1.

Solve (5) with budget constraints (9) given
∑
j 6=i xjt/(n− 1).

Choose the application priorities µk by solving (10).
s← s+ 1

end while

redistribution and optimal spending xit for each σ then yields
a probability distribution of the possible credits spent. In our
case, a “scenario” is a set of utility functions {Ujt} for the
other gateways. We parameterize these scenarios by noting
that gateways’ utilities depend on the application used, e.g.,
streaming versus downloading files. We consider K different
applications and define uk(x) as the (pre-determined) utility
from an application of type k (e.g., k = 1 corresponds to
streaming, k = 2 to file downloads, etc.). We thus take

Ujt = γjt

K∑
k=1

pkjtuk (8)

for each gateway j, where γjt is a scaling factor specified by
individual gateways. The variable pkjt denotes the (estimated)
probability that gateway j optimizes its usage with the utility
function uk, e.g., if app k is used the most at time t.

With this utility definition, we can define a scenario σ by the
coefficients γjt(σ) and pkjt(σ) of gateways’ utility functions.
Since gateway i cannot distinguish between other gateways, it
need only estimate their behavior in aggregate. These gateways
can be thus viewed as one “gateway” j by adding their utility
functions and budget constraints. Gateway j then maximizes

Ujt =

T∑
t=1

γjt(σ)

K∑
k=1

pkjt(σ)uk

subject to the budget constraints 0 ≤ xjt ≤ bjt, where
the coefficients γjt(σ)pkjt(σ) represent the added coefficients
for all gateways 6= i. Since gateway i cannot know the
accuracy of its or gateway j’s estimates of future usage, for
the purpose of estimation we assume that both gateways’
future usage estimates are correct. Thus, following Prop. 4,
all gateways choose their usage so as to maximize the collec-
tive utility

∑
t (Ujt + Uit) subject to the budget constraints.

This optimization may be solved to calculate the credits∑
j 6=i xjt(σ)/(n − 1) redistributed to user i at each time t

in scenario σ.
To improve our credit estimates, at each time t we update

the scenario probabilities πσ by comparing the observed
number of credits redistributed at time t − 1, denoted by∑
j 6=i xj,t−1/(n− 1), with the estimated amount redistributed∑
j 6=i xj,t−1(σ)/(n − 1) for each σ ∈ Si. We suppose that

gateways’ behavior is sufficiently periodic (e.g., over T = one
week) for the πσ at times t and t+ T to be the same.

Algorithm 2 Estimating credit redistribution.
s← 1 {s tracks the current time.}
while s > 0 do

for all gateways i = 1, . . . , n do {this loop may be run in
parallel}

Choose scenarios Si.
for each scenario σ ∈ S do

Calculate the predicted amount redistributed∑
j 6=i xjt(σ)/(n − 1) for t = s, . . . , s + T − 1,

assuming other gateways know xit for all t.
if s > 1 then

Update probability πσ using Bayes’ Rule.
end if

end for
end for

end while

We use P
(∑

j 6=i xj,t−1 =
∑
j 6=i xj,t−1(σ)

)
to denote the

probability that, given
∑
j 6=i xj,t−1/(n − 1) credits redis-

tributed to gateway i, gateways 6= i use scenario σ’s utility
function at time t. We find these probabilities with the L2 dis-
crepancy between estimated and observed credits redistributed:

P

(∑
j 6=i

xj,t−1 =
∑
j 6=i

xj,t−1(σ)

)
=

1

|Si| − 1

1−

(∑
j 6=i xj,t−1 −

∑
j 6=i xj,t−1(σ)

)2
∑|Si|
l=1

(∑
j 6=i xj,t−1 −

∑
j 6=i xj,t−1(l)

)2
 .

We then update the scenario probabilities πσ using Bayes’ rule
and use the new πσ in Algorithm 2.

B. Online Spending Decisions and App Prioritization

Algorithm 1 shows how the credits spent in different scenar-
ios are incorporated into choosing a gateway’s rates xit and
application priorities. Each gateway constrains its spending
depending on the estimated redistributed credits: for instance,
a conservative gateway might choose the xit so that the budget
constraints 0 ≤ xit ≤ bit hold for all scenarios. In the
discussion below, we suppose that gateways constrain the xit
so that (6) holds in expectation:

t∑
τ=s

xiτ −
∑
σ∈Si

πσ

∑
j 6=i

t−1∑
τ=s

xjτ (σ)

n− 1

 ≤ bi0. (9)

We also constrain bit ≤ B, i.e., the expected budget at a given
time cannot exceed the budget cap: users would rather spend
more credits to remain under the budget cap than be forced to
redistribute excess credits to other gateways.

Each gateway can further improve its own experience with
its Level 2 allocation: dividing the purchased bandwidth
among its apps. It does so by assigning priorities to different
devices and applications, so that higher priority apps receive
more bandwidth. Since users cannot be expected to manually
specify priorities in each time period, we introduce an auto-
mated algorithm that leverages the gateway’s known utility
functions (8) to optimally set application priorities.

We consider the K application categories in (8) and use µk
to represent each category k’s priority. Since the applications

Home Gateway

Youtube

Dropbox

Netflix

Web

Usage
Monitor

Apps

Usage
Monitor

Device
Classifier

App
Classifier

Tablet

Laptop

Desktop

Smartphone

Devices O
ptim

izer (L2 A
llocator)

C
redit

R
edistribution

Users

ISP

Proxy Rate Limiter

User Interface

rate

Optimizer
(L1 Allocator)

Credit
Redistribution

Estimator

Spending
Decision
Engine

Fig. 2. System architecture. Dashed lines represent traffic flow, and solid
lines represent rate and credit information.

active at a given time may change during a period, e.g., if
a user starts or stops watching a video, we define an app’s
priority in relative terms: for any apps k1 and k2, µk1/µk2 =
yk1/yk2 , where yk is the bandwidth allocated to application k
and

∑
k yk = xit, ensuring that all the purchased bandwidth

is used. We normalize the priorities to sum to 1:
∑
k µk = 1.

Since it is difficult to predict which apps will be active at
a given time, we choose the app priorities µk according to
a “worst-case scenario,” in which all apps are simultaneously
active. In this case, each app k receives yk = µkxit bandwidth,
and we choose the µk to maximize total utility:

max
µk

K∑
j=1

uk (µkxit) , s.t.

m∑
k=1

µk = 1. (10)

Since each function uk is assumed to be concave and the
constraint is linear in the µk, (10) is a convex optimization
problem and may be solved rapidly with standard methods.

IV. DESIGN AND IMPLEMENTATION

Figure 2 summarizes the architecture of our system. It
consists of four modules: 1) When traffic goes through the
gateway for forwarding, it is passed to a device and application
classifier to identify the traffic type and priority. 2) All traffic
is redirected through a proxy process that forwards traffic
between client devices and the Internet. The data forwarding
rate is determined by the optimizer (L2 Allocator) in each
gateway by considering app priorities and is enforced by
a rate limiter. 3) The bandwidth (credit spending) for each
gateway is computed by the optimizer (L1 Allocator). 4) A
user can access the gateway through a web interface to view
its usage (at aggregate or joint device-app levels) and update
its preferences, i.e., when to spend more credits and traffic
priorities, so as to adjust the optimizer’s decisions. Screenshots
of the user interface are shown in Figures 3(a) and 3(b).

We implement our system in a commodity wireless router,
a Cisco E2100L with an Atheros 9130 MIPS-based 400MHz
processor, 64MB memory, and 8MB flash storage (Figure 4).
We replaced the factory default firmware with OpenWrt, a
Linux distribution commonly used for embedded devices. The
implementation poses two significant challenges:

Traffic and device classification: Standard approaches for
classifying traffic from different devices include port-based
protocol detection and OS fingerprinting. However, different
apps can run on the same protocol, e.g., videos streamed in

(a) Usage tracking. (b) Traffic priorities and device/OS classification.

Fig. 3. Screenshots of the web interface.

Fig. 4. Cisco E2100L board.

HTTP, and many device types run on the same OS, e.g.,
most smartphones run on a variant of Linux. Moreover, home
gateways have only limited computational resources, but both
these approaches require significant computational overhead.

Rate limiting and prioritization: We can limit a session’s
bandwidth rate by directly setting its TCP advertised window
size [6], [7]. However, doing so requires knowing each con-
nection’s RTT and the number of active connections, both of
which can be difficult to estimate in practice.

A. Traffic and Device Classification

To build a low-overhead classifier, we integrate a kernel-
level netfilter module that inspects the first several packets
of a connection for application matching. If a match is found,
the classifier marks the connection with a mark to be queried
at userspace by our proxy processes through netlink.

Our classifier module performs traffic classification above
layer 7, i.e., it can differentiate YouTube and Netflix, through
a combination of content matching, byte tracking and protocol
fingerprinting. We classify devices and OSes by using the same
module to monitor HTTP traffic and inspect user-agent header
strings for device information. This approach is practically
effective due to the prevalence of devices using HTTP traffic.

B. Rate Limiting Engine

Our goal is to: 1) enforce an aggregate rate limit over multi-
ple connections, and 2) enforce prioritization, i.e., which gets
higher bandwidth, among the connections given the aggregate
limit. In this paper we only consider throttling incoming traffic,
because the other direction can be easily and accurately done
using standard token bucket-based traffic shaping tools.

Transparent Proxy. During the establishment of a connec-
tion between a client device and a server, it is intercepted at
the gateway and redirected to the proxy process running in
the gateway. Then the proxy establishes a new connection to
the server on behalf of the client and forwards traffic between
the two (proxy-server and client-proxy) connections. We use
the Linux splice() function to achieve zero-copying, i.e., all
data are handled in kernel space.

Implicit Receive Window Control. TCP’s flow control
mechanism allows the receiver of a connection to advertise
a receive window to the sender so that incoming traffic does
not overwhelm the receiver’s buffer. While originally set to
match the available receiver buffer space, the receive window
can be artificially set to limit bandwidth using the relation
cwnd = rate × RTT: given a maximum rate and measured
round trip time (RTT), the receive window can be set to no
greater than rate × RTT. We opt for an adaptive approach
such that the proxy does not need to know the RTT or compute
the exact window size.

To illustrate our approach we consider a one connection
case. As data from the server arrive at the proxy, they are
queued at the proxy’s receive buffer until the proxy issues a
recv() on the proxy-server socket to process and clear them
(at the same time the proxy issues a send() on the client-
proxy socket to forward the data to the client). Note that if we
modulate the frequency and the size of recv()’s, we modulate
the size of the receive buffer and effectively the sending rate.

More specifically, we consider the model in Figure 5: the
queue is the proxy’s receive buffer, B is the receive buffer
size,8 and at time t, F (t) is the fill rate (sending rate, which
the proxy cannot directly control), D(t) is the drain rate (how
frequent the proxy issues recv()’s), Q(t) is the queue length,
and W (t) = B −Q(t) is the advertised window size.

Suppose updates happen at intervals of ∆t. The window
update equation is then

W (t+ ∆t) = W (t) +
[
D(t)− F (t)

]+
∆t (11)

and taking a fluid approximation by setting ∆t→ 0, we have

Ẇ (t) =
[
D(t)− F (t)

]+
. (12)

8The receive buffer size can change with time due to Linux’s buffer
autotuning mechanism, but these changes do not affect our algorithm.

server client

B

Q(t)W (t)

D(t)F (t)

Fig. 5. Receive buffer model.

Our rate limiting goal is equivalent to getting F (t) = R for
large enough t through controlling D(t). By setting D(t) = R
at all t, it is not difficult to verify from (12) that at equilibrium9

we have F ∗(t) = R and W ∗(t) = R× RTT.

C. Traffic Prioritization Engine

When there are multiple connections the proxy spawns
multiple threads such that each thread serves one connection,
and we aim to limit the aggregate rate R over all connec-
tions. To allocate bandwidth fairly among the connections,
we coordinate socket reads of these threads through a time
division multiplexing scheme: using a thread mutex, we create
a virtual time resource such that each socket read is associated
with an exclusively held time slot of length proportional to
the number of bytes read. Although more complicated socket
read scheduling mechanisms can be considered, for simplicity
we leave the scheduling to the operating system, and from
experiments we observe that the time slots are shared fairly.

For traffic prioritization we assign a relative priority pa-
rameter αi ∈ (0, 1] for every connection i such that for n
busy connections, i.e., each has a sufficiently large backlog,
we want the sum of their rates Ri to be

∑n
i=1Ri = R, and

Ri/Rj = αi/αj for i, j = 1, . . . , n.
We achieve the desired prioritization through truncated

reads. When the proxy issues a socket read, it needs to specify
a maximum block size b to read (we set it as the page size of
the processor architecture) and for a busy connection this limit
b is always reached. If connection i is of lower priority with
αi < 1, we truncate this block limit by setting it to be αib.
Since each access to a time slot is associated with a server
socket read (equivalently, a client socket write) of αib bytes
and time slots are fairly distributed across connections, the
achieved client rate Di (equivalent to Ri) scales with αi.

By virtue of statistical multiplexing, our rate allocation
mechanism does not require the number of busy connections
n, which is difficult to track in practice; hence it can read-
ily accommodate new connections. To accommodate bursty
connections, the proxy first queries the receive buffer for the
number of pending bytes. If it is above b then it does a
truncated read as described above; otherwise it does not. The
pseudocode of a proxy thread is shown in Algorithm 3.

V. EXPERIMENTAL RESULTS

A. Rate Limiting

We compare our approach with the standard Linux traffic
policing approach using the tc command with two different

9Note that if we throttle a connection through TCP flow control, a static
equilibrium can indeed be achieved because the rate is now limited by the
receive window rather than self-induced congestion, i.e., the usual sawtooth
W (t) time evolution no longer occurs.

Algorithm 3 Incoming rate control.
Input: R, b, αi,
server fd: socket of server connection,
client fd: socket of client connection,
mutex: thread mutex shared by all connections
while connection open do

bytes read = recv(server fd, b)
bytes per write = αi × bytes read
while not all bytes read written to client do

send(client fd, bytes per write)
lock(mutex)

sleep(bytes per write/R)
unlock(mutex)

end while
end while

choices of the burst parameter. Two experiments are performed
using iperf. In the first one, we fix network RTT to be 100ms
and vary the rate limit from 1 to 15Mbps to observe the actual
rate achieved. Figure 6(a) shows that our approach results in
more accurate rate limiting (less than 4% error in each setting).
While it appears that increasing the burst parameter helps in
improving rate limiting accuracy, we note the values chosen
are rather large (a typical value is 10k, while we use 50k and
200k) and may harm network stability. The sensitivity of the
results of tc with respect to the parameters suggests the need
for careful parameter tuning, which is undesirable given the
diversity of network environments.

The first experiment hints that traffic policing, or using
packet drops to signal the sender to reduce its rate, is too
drastic as a rate control mechanism. Our second experiment
confirms this observation. We fix the rate limit at 8Mbps
and burst parameter at 50k, and vary network RTT from
20 to 100ms. Figures 6(b) and 6(c) show that tc results in
significantly more packet retransmissions and higher jitter.
This result shows that our approach is indeed more graceful
in rate limiting.

B. Traffic Prioritization

Consider a scenario with two users, one watching a 720p
YouTube video stream and the other downloading a large file
with wget, competing for a limited bandwidth of 2Mbps. We
vary the priorities of the two types of traffic and observe the
effect on video playback.

Let α1 and α2 be the priorities of YouTube and wget re-
spectively. With α1 fixed, we vary α2 and measure the amount
of video played over time.10 Note there are two base cases:
the case α1/α2 = ∞ corresponds to YouTube traffic without
wget interference and is the best possible result we can expect;
the case α1/α2 = 1 is equivalent to no prioritization. Figure
7 shows the results. When α1/α2 > 1, i.e., YouTube has
higher priority, playback performance (inversely related to the
duration of pauses or flat regions in a curve) is strictly better
than the no prioritization case. Also, performance improves
with increasing α1/α2 ratio. Not only is our system able to
do fine-grained traffic classification with two types of traffic

10We create a video-embedded webpage with a Javascript snippet that
periodically queries the YouTube API for playback progress.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2

4

6

8

10

12

14

Target rate (Mbps)

A
c
h
ie

v
e
d
 r

a
te

 (
M

b
p
s
)

tc, burst = 200k

tc, burst = 50k

Our approach

(a) Throughput.

20 40 60 80 100
0

50

100

150

200

RTT (ms)

N
u
m

b
e
r

o
f
re

tr
a
n
s
m

is
s
io

n
s

Policing

Our approach

(b) Retransmission counts.

20 40 60 80 100
0

2

4

6

8

10

12

14

16

RTT (ms)

J
it
te

r
(m

s
)

Policing

Our approach

(c) Jitter.

Fig. 6. Our rating limiting algorithm is more (a) accurate and (b, c) graceful than rate limiting through tc. We average all results over 10 runs, 60 seconds
each, and show 95% confidence intervals.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Time elapsed (s)

P
la

y
b
a
c
k
 p

ro
g
re

s
s
 (

s
)

α
1
/α

2
 = ∞

α
1
/α

2
 = 5

α
1
/α

2
 = 2

α
1
/α

2
 = 1

α
1
/α

2
 = 0.5

Fig. 7. YouTube playback performance improves as α1/α2 increases and
YouTube receives higher prioritization over wget.

running under HTTP, but our traffic prioritization algorithm
also produces noticeable improvement in user experience.

VI. GATEWAY SHARING RESULTS

To demonstrate our sharing framework’s efficacy, we con-
sider sixteen gateways sharing a cable link. We compare our
credit-based allocation to equal sharing, in which the ISP
divides its capacity into slots with a minimally acceptable level
of bandwidth, e.g., 1 Mbps, and assigns them to gateways in a
round-robin fashion until the network capacity is reached. This
approach, which is similar to current practices in that gateways
are all treated equally, risks inefficiency: gateways may gain
little additional utility from the full bandwidth of their assigned
slots, but cannot redistribute any excess bandwidth to gateways
that would benefit more. Our credit-based approach addresses
this disadvantage, and we show in our simulations that it
significantly improves gateway utilities while enforcing a fair
rate allocation.

After comparing the credit-based and equal sharing so-
lutions, we evaluate our online algorithm for users’ credit
spending decisions (Algorithm 1 in Section III). We find
that all gateways achieve near-optimal utilities despite their
uncertain future budgets in the online case. The gateways
actively save and spend credits at different times, resulting
in a fair bandwidth allocation.

A. Gateway Utilities and Simulation Parameters

We suppose that credit-based sharing is enforced in the
congested hours between 6pm and midnight, with half-hour
timeslots. Users at each gateway are assumed to make their

TABLE I
NUMBER OF DEVICES AT EACH GATEWAY.

Gateway iPhones Androids Windows laptops Mac laptops

1,4,9,13 1 1 1 1
2,6,10,14 2 0 2 1
3,7,11,15 1 1 1 2
4,8,12,16 2 0 1 1

credit spending decisions based on their probability of using
four types of applications: streaming, social networking, file
downloads, and web browsing. We use the utility functions

u1(x) =
2(25x)1−α1

1− α1

u2(x) =
(25x)1−α2

1− α2

u3(x) =

(
1

α3 − 1
+

(25x+ 1)1−α3

1− α3

)
u4(x) = 15

(
1

α4 − 1
+

(25x+ 1)1−α4

1− α4

)

in (8) to respectively model the utility received from each
application, where (α1, α2, α3, α4) = (0.7, 0.5, 0.2, 3). The
probabilities pkit of using each application are adapted from a
recent measurement study of per-app usage over time for iOS,
Android, Windows, and Mac smartphones and computers [8].
Table VI-A shows the devices at each gateway. We choose
coefficients γi(t) to be larger in the evening, as is consistent
with observed data usage [8], and add random fluctuations to
model period-to-period variations in each gateway’s behavior.

We assume a budget of B = 160 total credits, with each
credit representing 1Mbps.11 The budget bit for each gateway
i is capped at 32 credits at any given time. In addition to
the purchased bandwidth, we suppose that gateways send a
random amount of traffic over the second tier, which is capped
at the network capacity. We consider one week of credit
redistributions and bandwidth allocations.

11Though 160 Mbps is a relatively small bottleneck bandwidth, we limit
the number of users and link capacity in order to better illustrate the effect
of QoE credit allocation on individual users.

18 2418 2418 2418 2418 2418 2418 24
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (Hour of the Day)

J
a

in
’s

 I
n

d
e

x

Instantaneous

Cumulative

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(a) Jain’s Index for gateway rates.

18 2418 2418 2418 2418 2418 2418 24
0

5

10

15

20

25

30

Time (Hour of the Day)

B
u

d
g

e
t

(c
re

d
it

s
)

GW 1

GW 2

GW 3

GW 4

Day 1 Day 2 Day 3 Day 5 Day 6Day 4

(b) Credit budgets for representative gateways.

Fig. 8. With our credit sharing scheme, all gateways (a) achieve comparable cumulative rates by (b) actively saving and spending credits at different times.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Optimal Utility/Equal−Share Utility

P
ro

b
a

b
il

it
y

 C
D

F

All Gateways

GW 1

GW 2

GW 3

GW 4

Fig. 9. With our credit sharing scheme, users achieve similar utility gains
over equal sharing over one week.

B. Bandwidth Allocations

Globally Optimal Solution: We first compute the globally
optimal rates, i.e., those that maximize (7). To show that the
overall rate allocation is fair, we compute Jain’s Index over
the gateways’ rates, including second-tier traffic, at each time
in Figure 8(a). Jain’s Index is relatively low at some times,
indicating a large variation in gateways’ rates: some gateways
use little bandwidth to save credits, while others spend a lot
of credits to receive large rates. Yet if we compute the index
for all gateways’ cumulative usage over time, its value quickly
converges to 1. The gateways receive comparable cumulative
rates, consistent with the fairness property of Prop. 1.

The large variability in gateway allocations at a given time
can be seen more clearly in Figure 8(b), which shows the
budgets of four representative gateways over time. All four
sometimes save credits to spend at other times. This flexibility
causes total achieved utility to increase by 29.7% relative to
equal sharing (allocating 10Mbps to each gateway at all times).

Figure 9 shows the cumulative density function (CDF) of
the ratio of gateway utilities under credit allocation and equal
sharing at different times. We plot the CDF over all gateways
and times as well as the CDF over all times for each gateway
shown in Figure 8(b). All of the CDFs are comparable,
indicating that credit-based allocation benefits all gateways’
utilities. While the gateways reduce their utility nearly half of
the time, the utility more than doubles in some periods.

Online Solution: We next compare the globally optimal
utilities with those obtained when the gateways follow Al-
gorithm 1. To perform the credit estimation, we use four
scenarios, in which all other gateways are assumed to use only
streaming, only social networking, etc. Each gateway assumes
(falsely) that the other gateways’ γi(t) coefficients are the
same, and the probabilities πσ of each scenario are initialized

to be uniform. After learning the scenario distribution for only
the simulation’s first four days, the algorithm recovers most
(84.7%) of the optimal utility for the remaining three days.

As with the optimal solution, at any given time gateways’
rates can be very different: Jain’s indices in Figure 10(a) for all
gateways’ usage at a given time can be quite low. However, all
gateways achieve similar cumulative rates: Jain’s index of the
cumulative rates quickly converges to 1. Indeed, the budgets
(and thus spending) of four representative gateways (Figure
10(b)) vary over time, as with the optimal solution (Figure
8(b)). Incentivizing gateways to delay some of their usage
significantly improves users’ overall satisfaction and utility.

VII. RELATED WORK

Using pricing to manage network congestion is a long-
studied research area [2]. Our work differs in targeting broad-
band users on flat-fee service plans, prompting us to use a
credit scheme instead of extra fees for prioritized access. Other
credit-based schemes have been proposed for flow admission
control [9] and for regulating access to higher-quality service
[10], but these have remained theoretical proposals, due to
users’ reluctance to manually make complex token bidding
decisions. We present a complete solution, from algorithms to
implementation, for a specific problem of peak-hour broad-
band access. Moreover, our solution leverages user-specified
QoE indicators to optimize traffic according to users’ needs;
while some works have introduced ways for users to give QoE
feedback [11], [12], none of them have used this information
to adjust bandwidth allocations.

From a systems perspective, there has been much re-
cent work on developing smart home gateways with plain
Linux/Windows or open-source router software such as Open-
Wrt. Smart home gateways have been used for network mea-
surement [13], [14], providing intuitive interfaces for home
network management [15], [16] and better QoS provisioning
[17], [18]. One such gateway uses weighted fair queueing
to allocate uplink traffic according to manual QoE feedback
[19]. However, we are not aware of any work in coordinating
bandwidth usage across households. We also develop our
own incoming rate limiting tool, as off-the-shelf tools (e.g.,
Linux tc) are insufficient for our application. The Congestion
Manager (CM) project [20] shares similar goals of reducing
congestion at the network edge, but we propose a QoE
credit scheme to incentivize users to reduce usage, while CM

18 2418 2418 2418 2418 2418 2418 24
0.5

0.6

0.7

0.8

0.9

1

1.1

Time (Hour of the Day)

J
a

in
’s

 I
n

d
e

x

Instantaneous

Cumulative

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

(a) Jain’s Index for gateway rates.

18 2418 2418 2418 2418 2418 2418 24
0

5

10

15

20

Time (Hour of the Day)

B
u

d
g

e
t

(c
re

d
it

s
)

GW 1

GW 2

GW 3

GW 4

Day 1 Day 2 Day 3 Day 5Day 4 Day 6

(b) Credit budgets for representative gateways.

Fig. 10. Despite their uncertain future budgets, with our online algorithm gateways (a) achieve comparable cumulative rates by (b) saving and spending
credits at different times over one week.

provides an API for applications to adapt to varying network
conditions and requires sender-side support.

Receiver-side rate control is mostly done through explicitly
controlling the receive window [21] or the receive socket
buffer [22], e.g., to implement low-priority transfers [23] and
prioritize traffic [6], [7]. Our solution does not modify client
devices or track the number of active connections and their
RTTs. It also avoids interfering with Linux’s buffer autotuning
mechanism [24]. Our approach of implicit window control is
similar to that of Trickle [25], but they serve different goals.
Trickle is designed for non-root users to voluntarily rate limit
their applications, while we aim to impose mandatory rate
limits that are transparent to users.

VIII. CONCLUDING REMARKS

In this paper, we propose to solve peak-hour broadband
network congestion problems by pushing congestion manage-
ment to the network edge. We design incentive mechanisms to
empower users to moderate their demand in a decentralized,
personalized solution that respects user privacy and requires
minimal support from ISP infrastructure and user devices.

Our solution performs a two-level bandwidth allocation:
in Level 1, gateways purchase bandwidth on a shared link
using QoE credits, and in Level 2 they divide the purchased
bandwidth among their apps and devices. We show analytically
that our credit distribution scheme yields a fair bandwidth
allocation across gateways and describe our implementation of
the bandwidth purchasing and app prioritization on commodity
wireless routers. Our implementation can successfully enforce
app priorities and increase users’ satisfaction. Finally, we
show in an example scenario that our algorithm’s ability to
adapt to users’ QoE yields a fair bandwidth allocation that
significantly improves user utility relative to a baseline equal-
sharing scheme.

ACKNOWLEDGEMENTS

This work was supported by NSF CNS 1347234.

REFERENCES

[1] Cisco Systems, “Cisco visual networking index: Forecast and method-
ology, 20132018,” June 2014, http://tinyurl.com/VNI2014.

[2] S. Sen, C. Joe-Wong, S. Ha, and M. Chiang, “A survey of smart
data pricing: Past proposals, current plans, and future trends,” ACM
Computing Surveys, vol. 46, no. 2, 2013.

[3] Comcast, “Frequently asked questions
about network management,” 2014,
http://customer.comcast.com/Pages/FAQViewer.aspx?seoid=frequently-
asked-questions-about-network-management#technique.

[4] F. Kelly, A. K. Maulloo, and D. H. K. Tan, “Rate control for commu-
nication networks: Shadow prices, proportional fairness, and stability,”
Journal of the Operational Research Society, vol. 49, pp. 237–252, 1998.

[5] A. Consiglio, F. Cocco, and S. A. Zenios, “Scenario optimization asset
and liability modelling for individual investors,” Annals of Operations
Research, vol. 152, no. 1, pp. 167–191, 2007.

[6] N. T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson,
and B. Bershad, “Receiver based management of low bandwidth access
links,” in Proc. IEEE INFOCOM, 2000.

[7] Y. Im, C. Joe-Wong, S. Ha, S. Sen, T. T. Kwon, and M. Chiang,
“AMUSE: Empowering users for cost-aware offloading with throughput-
delay tradeoffs,” in Proc. IEEE INFOCOM, 2013.

[8] J. Y. Chung, Y. Choi, B. Park, and J.-K. Hong, “Measurement analysis
of mobile traffic in enterprise networks,” in Proc. APNOMS, 2011.

[9] J. K. MacKie-Mason, L. Murphy, and J. Murphy, “Responsive pricing
in the Internet,” Internet Economics, pp. 279–303, 1995.

[10] D. Lee, J. Mo, J. Walrand, and J. Park, “A token pricing scheme for
internet services,” in Economics of Converged, Internet-Based Networks.
Springer, 2011, pp. 26–37.

[11] J. S. Miller, A. Mondal, R. Potharaju, P. A. Dinda, and A. Kuzmanovic,
“Understanding end-user perception of network problems,” in Proceed-
ings of the first ACM SIGCOMM workshop on Measurements up the
stack. ACM, 2011, pp. 43–48.

[12] C.-C. Tu, K.-T. Chen, Y.-C. Chang, and C.-L. Lei, “Oneclick: A
framework for capturing users network experiences,” Proceedings of
ACM SIGCOMM 2008 (poster), 2008.

[13] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford,
and A. Pescapè, “Broadband Internet performance: A view from the
gateway,” in Proc. ACM SIGCOMM, 2011.

[14] A. Patro, S. Govindan, and S. Banerjee, “Observing home wireless
experience through WiFi APs,” in Proc. ACM MobiCom, 2013.

[15] R. Mortier, T. Rodden, P. Tolmie, T. Lodge, R. Spencer, A. crabtree,
J. Sventek, and A. Koliousis, “Homework: Putting interaction into the
infrastructure,” in Proc. ACM UIST, 2012.

[16] J. Yang, W. Edwards, and D. Haslem, “Eden: Supporting home network
management through interactive visual tools,” in Proc. ACM UIST, 2010.

[17] C. E. Palazzi, M. Brunati, and M. Roccetti, “An OpenWRT solution for
future wireless homes,” in Proc. IEEE ICME, 2010.

[18] C. Gkantsidis, T. Karagiannis, P. Key, B. Radunovi, E. Raftopoulos, and
D. Manjunath, “Traffic management and resource allocation in small
wired/wireless networks,” in Proc. ACM CoNEXT, 2009.

[19] J. S. Miller, J. R. Lange, and P. A. Dinda, “Emnet: Satisfying the
individual user through empathic home networks,” in INFOCOM, 2010
Proceedings IEEE. IEEE, 2010, pp. 1–9.

[20] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An integrated congestion
management architecture for Internet hosts,” in Proc. ACM SIGCOMM,
1999.

[21] L. Kalampoukas, A. Varma, and K. K. Ramakrishnan, “Explicit window
adaptation: A method to enhance TCP performance,” in Proc. IEEE
INFOCOM, 1998.

[22] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP buffer tuning,”
in Proc. ACM SIGCOMM, 1998.

[23] P. Key, L. Massouliè, and B. Wang, “Emulating low-priority transport
at the application layer: A background transfer service,” in Proc. ACM
SIGMETRICS/Performance, 2004.

[24] M. Fisk and W.-c. Feng, “Dynamic right-sizing in TCP,” in Proc. LACSI
Symposium, 2001.

[25] M. A. Eriksen, “Trickle: A userland bandwidth shaper for Unix-like
systems,” in Proc. USENIX Annual Technical Conference, 2005.

APPENDIX A
PROOF OF LEMMA 1

We proceed by induction: at time t = 0, clearly the sum of
gateways’ budgets

∑
i bi0 = B from the budget initialization.

Supposing that
∑n
i=1 bit = B at time t, we then calculate

n∑
i=1

bi,t+1 =

n∑
i=1

bit − xit +
∑
j 6=i

xjt
n− 1

= B −

n∑
i=1

xit +

n∑
i=1

(n− 1)xit
n− 1

= B.

APPENDIX B
PROOF OF LEMMA 2

We first note that (1) is equivalent to the statement that

bit = bis +

t−1∑
τ=s

−xiτ +
∑
j 6=i

xjτ/(n− 1)

 .

Then if bis = bit for all gateways i, we obtain the system of
equations

t−1∑
τ=s

xiτ =

t−1∑
τ=s

∑
j 6=i

xjτ
n− 1

. (13)

It suffices to show that (13) implies the proposition.
We proceed by induction on n. If n = 2, then clearly (13)

is exactly our desired result, since n−1 = 1. We now suppose
that the proposition holds for n = m and show that it holds
for n = m+ 1. From (13), we have

t−1∑
τ=s

x1τ =

t−1∑
τ=s

n∑
j=2

xjτ
n− 1

.

Substituting this equality into (13) for i > 1, we have for all
such i,

t−1∑
τ=s

xiτ =

t−1∑
τ=s

n∑
j=2

xjτ
(n− 1)2

+

t−1∑
τ=s

∑
j 6=i,j>1

xjτ
n− 1

.

Thus, we have upon rearranging that(
1− 1

(n− 1)2

) t−1∑
τ=s

xiτ =

(
1

(n− 1)2
+

1

n− 1

) t−1∑
τ=s

∑
j 6=i,j>1

xjτ .

Simplifying, we obtain

t−1∑
τ=s

xiτ =

t−1∑
τ=s

∑
j 6=i,j>1

xjτ
n− 2

for all i > 1. By induction, this implies that
∑t−1
τ=s xjτ =∑t−1

τ=s xkτ for all j, k > 1, and the proposition follows upon
solving for

∑t−1
τ=s x1τ .

APPENDIX C
PROOF OF PROPOSITION 1

We first show that given a distribution of budgets {bit} at a
fixed time t, there exists a set of gateway spending decisions
{xit} such that bi,t+1 = B/n for all gateways i. Suppose that
each gateway i spends xit = bit(n − 1)/n credits at time t.
Then Lemma 1’s budget conservation allows us to conclude
that gateway i’s budget at time t+ 1 is

bi,t+1 = bit −
bit(n− 1)

n
+
∑
j 6=i

bjt(n− 1)

n(n− 1)
=

n∑
i=1

bit
n

=
B

n
.

We now observe that since each bi0 = B/n, we can apply
Lemma 2 to conclude that
t+1∑
s=0

xis =

t∑
s=0

xis+
bit(n− 1)

n
=

t∑
s=0

xjs+
bjt(n− 1)

n
=

t+1∑
s=0

xjs

for all gateways i and j. We then rearrange this equation to
find the first part of the proposition:∣∣∣∣∣

t∑
s=0

xis −
t∑

s=0

xjs

∣∣∣∣∣ = |bjt − bit|
n− 1

n
≤ B(n− 1)

n
.

The time average follows immediately upon dividing by t and
taking limits as st→∞.

APPENDIX D
PROOF OF PROPOSITION 2

To prove the first part of the proposition, we note that if
each xit = 0, then (1) yields

bi,t+1 = bit − xit +
∑
j 6=i

xjt
n− 1

≤ B

n− 1
+ bit

n− 2

n− 1
− xit,

where the inequality comes from each gateway’s budget con-
straint

∑
j 6=i xjt ≤

∑
j 6=i bjt = B − bit. Thus, at time t + 1,

we have

bi,t+1 =

t∑
τ=0

(
B

n− 1
− xiτ

)(
n− 2

n− 1

)τ
+
B

n

(
n− 2

n− 1

)t+1

≤ B

n
αt+1 +B

(
1− αt+1

)
− ε
b t+1

p c∑
τ=1

αpτ

=
B

n
αt+1 +B

(
1− αt+1

)
− ε

(
αp − αp(1+b

t+1
p c)

1− αp

)
as desired, using the fact that

∑s+n
τ=s xiτ ≥ ε at any time s.

We obtain (3) by taking t → ∞, substituting for α = n−2
n−1 ,

and simplifying.
To prove the second part of the proposition, suppose that

gateways i and k both have zero budgets at time t + 1, i.e.,
bi,t+1 = bk,t+1 = 0, but that bit > 0. Since each bi0 = B/n >
0, such a time t must exist. But then from (1), bi,t+1 = bit −
xit+

∑
j 6=i xjt/(n−1) = 0, and since each xjt ≥ 0, we have

xit = bit > 0. But then bk,t+1 = bkt − xkt +
∑
j 6=k xjt/(n−

1), and since xkt ≤ bkt, we have bk,t+1 > 0, which is a
contradiction. Thus, at most one gateway can have zero budget
in any given time period.

APPENDIX E
PROOF OF PROPOSITION 3

We first note that at each time t < s,
m∑
i=1

bi,t+1 ≤
m∑
i=1

bit +
∑
j>i

xit
n− 1

≤
m∑
i=1

bit +
B −

∑m
i=1 bit

n− 1

=
B

n− 1
+

(
n− 2

n− 1

) m∑
i=1

bit.

An inductive argument then shows that
m∑
i=1

bi,s ≤
B

n− 1

(
s−1∑
τ=0

(
n− 2

n− 1

)s)
+

(
n− 2

n− 1

)s m∑
i=1

bi0.

Expanding the sums and subtracting
∑m
i=1 bi0 then yields the

proposition.

APPENDIX F
PROOF OF PROPOSITION 4

Suppose that {x∗it} solve (7), and let λit denote the corre-
sponding Lagrange multiplier for the constraint 0 ≤ xit ≤ bit,

with νit the multiplier for the constraint xit ≥ 0. Since
the Uit are strictly concave, it suffices to show that these
multipliers satisfy the Karush-Kuhn-Tucker conditions for (5),
augmented by all gateways’ constraints:

max
xit

s+T∑
t=s

Uit (xit) , s.t. 0 ≤ xit ≤ bit, ∀i, t.

Since the budget constraints 0 ≤ xit ≤ bit are identical to
those of (7), it suffices to show that

dUit
dxit

−
n∑
j=1

s+T∑
τ=t

λiτ +
∑
j 6=i

s+T−1∑
τ=t

λjτ
n− 1

+ νit = 0, (14)

where we use (6) to sum over the appropriate multipliers λiτ .
However, this equation is just one of the KKT conditions
for (7): the only change between (7) and (5) is the addition
of utility terms Ujt(xjt), which are additively decoupled
from gateway i’s spending decisions xit. Thus, (14) must be
satisfied by the x∗it and multipliers λit, νit. Each gateway i
is thus optimizing its own utility, given other gateways’ credit
spending decisions x∗jt.

