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Abstract Optimal control techniques can be used to direct molecular dynamics to meet specified phys-
ical goals. However, the effectiveness of finding an optimal control field depends on the nature of the
control landscape, defined as the objective as a functional of the control. Extensive analysis has con-
sidered the prospect of such landscapes being free of suboptimal traps for particular cases of different
objective functions in both classical and quantum systems. While many typical objective functions have
been shown to yield trap-free landscapes upon satisfaction of certain assumptions, this work more broadly
considers the freedom in the choice of objective functionals. The latter freedom can be exploited to pos-
sibly accelerate the search for an optimal control, but we also show that the choice of functional needs
to be made carefully to avoid inducing artificial landscape traps.
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1 Introduction

Laser-driven optimal control of molecular dynamics phenomena can be expressed in either a quantum or
classical context, depending on the particular circumstance. Such optimal control efforts aim to maximize
a specified objective function to meet a physical goal. A common quantum mechanical goal is to maximize
the expectation value of a particular observable [3], e.g., the transition probability from one state to
another. Similarly, a classically-specified optimal control objective may be for certain atoms in a molecule
to reach specified positions and momenta [6]. The exact objective function(al) used, however, is not
uniquely specified by the physical control goal. In this work, we consider the appropriate specification
of the objective function to not only enforce reaching the control goal, but also ensure that an optimal
control field can be found without encountering hindrances, possibly accelerating the search for the
control. We aim to highlight this freedom in the choice of objective and to provide some initial guidelines
for choosing the objective; we expect that future simulation and laboratory studies will shed further light
on this choice.

Most computational algorithms for finding optimal controls are myopically gradient-based, and use
local information to iteratively evolve the control field. In doing so, they attempt to climb the control
landscape, which we define as the objective as a functional of the control field. The ability of these
algorithms to find an optimal control field is thus determined in large part by the topology of the control
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landscape. In particular, the presence of traps, or local extrema with suboptimal landscape values, can
hinder or prevent the search for optimal control fields.

In the quantum context, a natural choice of objective function is the expectation value of an ap-
propriate Hermitian operator (i.e., based on one of the postulates of quantum mechanics), which yields
a trap-free control landscape upon satisfaction of three reasonable assumptions. These assumptions of
controllability, surjectivity, and unconstrained control resources [3,5,9,10,12] are sufficient conditions for
establishing landscape topology. Landscapes arising from other objective functions, including optimizing
the Frobenius norm between a target unitary transformation matrix and that achieved under control,
have also been shown to be trap-free [2,11]. However, the topology of complex ratios or other forms using
multiple observables remains to be assessed [4]. In the classical context, there is no obviously natural
choice for the objective function, which nominally can be an arbitrary function of the positions and
momenta of the constituent atoms in the molecule of interest (see Section 2). Interestingly, satisfaction
of the same three assumptions underlies the analogous topological analysis of classical control landscapes
[6,7]. However, we show in this work that a poor choice of objective function can lead to landscape traps
in either the classical or quantum case. Concomitantly, carefully choosing the objective function and pos-
sibly adjusting the objective throughout the search could accelerate reaching the landscape maximum,
while avoiding the presence of traps.

The assessment here will be particularly focused towards gradient-based simulations, but the con-
clusions are relevant as well with other algorithms (e.g., stochastic methods are commonly performed
in the laboratory), as a potentially high density of traps could be a confounding factor in virtually any
circumstances. Section 2 considers the control landscape in classical mechanical scenarios for different
types of objective functions. More extensive treatment will be given to classical system landscape anal-
ysis in this section, as it is a newer development and will permit introducing freedom in the choice of
objective function, which also has a close parallel in the quantum case of Section 3. We then consider
the quantum scenario in Section 3. Section 4 concludes the paper.

2 Control of Classical Systems

In this section, we consider the classical control landscape for different types of objective functions. The
landscape analysis is separated into two parts: first, we summarize recent work [6] assessing landscape
topologies by characterizing suboptimal critical points of the control landscape. For ease of exposition, we
consider the control of a single molecule’s phase space trajectory, but the results can be readily extended
to an ensemble of trajectories in phase space [7].

2.1 Molecular Dynamics

Consider a molecule of n atoms, driven by a linearly polarized electric control field ε(t) over a finite time
interval [0, T ]. We use z(t) to denote the phase space state vector of the n atoms at any time t ∈ [0, T ].
Here z(t) is a concatenated vector of the molecule’s constituent atomic positions q(t) and momenta

p(t): z(t) =
[
qT (t) pT (t)

]T
with q(t) and p(t) ∈ RN and N = 3n, since each of the n atoms moves in

three-dimensional space. These variables evolve according to the Hamiltonian

Hcl =
1

2
pTM−1p + V (q)−D(q)ε(t), (1)

where the functions V and D represent the potential and dipole moment respectively; we assume that
they are twice differentiable and finite at any q ∈ RN . The mass matrix M is defined as the N × N
matrix diag {m1,m2, . . . ,mn}, where mi = diag {mi,mi,mi} and mi is the mass of the i’th atom.

2.2 Critical Points of the Classical Control Landscape

We suppose that the control field ε is chosen so as to maximize an objective function of the final state,
which we denote as O (z(T )). We assume that O is twice-differentiable and define the control landscape
to be the functional

J [ε(·)] = O (z(T )) , (2)
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where O (z(t)) satisfies the dynamics dO (z(t)) /dt =
{
Hcl, O (z(t))

}
with {·, ·} denoting the Poisson

bracket. In principle, O can be freely chosen among all twice-differentiable functions of both position
and momentum in classical mechanics. It is possible to add other terms to the objective, e.g., defining

J ≡ O (z(T )) + α
∫ T
0
ε(t)2 dt, α < 0 to bias the chosen control field. However, in this work we focus on

the landscapes defined in Eq. (2) and in particular on the choice of the objective function O.
Critical points of the control landscape can be found by differentiating Eq. (2) with respect to ε(t),

t ∈ [0, T ]:
δJ

δε(t)
=

dO

dz(T )

δz(T )

δε(t)
. (3)

A critical point corresponds to δJ/δε(t) = 0 for all t ∈ [0, T ]. We now make the assumption (1) that
{δz(T )/δε(t), t ∈ [0, T ]} is surjective, i.e., it spans R2N . Thus, a critical point is achieved if and only
if dO/dz(T ) = 0. Given that {δz(T )/δε(t)} consists of 2N -dimensional time-dependent vectors, each
of infinite length in t ∈ [0, T ], it is likely that surjectivity holds. This assumption has been verified as
satisfied in a number of numerical simulations [6,7].

We also make two additional assumptions: (2) controllability, i.e., that any initial state z(0) can
be steered to any target state ztar at some time T (z(T ) = ztar) with an appropriate control field
ε(t), t ∈ [0, T ]; and (3) that free access is available to any desired control field resource. The latter
assumption is necessary so as to avoid limiting the practical ability to satisfy (1) surjectivity and (2)
controllability. In realistic circumstances, control fields available in system-specific physically relevant
spectral domain(s) are likely adequate to avoid hindering the dynamics. Numerical studies have shown
at least a practical level of satisfaction of the three assumptions [6,7].

2.3 Avoiding Traps and the Choice of Objective Function

We now consider the topological nature of the critical points when the three assumptions hold. We first
differentiate Eq. (3) to find the Hessian, which we denote as H(t, t′) = δ2J/δε(t)δε(t′), at a critical point
of the control landscape:

H(t, t′) =

(
δz(T )

δε(t′)

)T
d2O

dz(T )2
δz(T )

δε(t)
. (4)

Since surjectivity holds, the nature of the critical point is determined by d2O/dz(T )2. This matrix is
symmetric, so we may write it as d2O/dz(T )2 = PTSP , where S is a diagonal matrix and P is an
orthogonal matrix. Thus, traps, or local, sub-optimal maxima, do not occur if d2O/dz(T )2 is not a
negative-definite matrix at any critical point of the control landscape except the global maximum. For
ease of terminology, we term this the classical trap-free criterion in the discussion below. The choice of
the objective function O (z(T )) can therefore be used to ensure that traps do not exist.

One type of function O (z(T )) that meets the desired criterion is a concave function: all critical
points of a concave function are both local and global maxima. Concavity, however, is not a neces-
sary condition: consider, for instance, a monotonically increasing transformation of a concave function
O (z(T )) = h (g (z(T ))), where h is a strictly increasing function and g is concave. It is easy to show that
the critical points of O (z(T )) are the same as the critical points of g (z(T )). For instance, the Gaussian
function

O (z(T )) = exp
(
−
(
z(T )− ztar

)T (
z(T )− ztar

))
(5)

is a monotonically increasing transformation of the concave quadratic function g (z(T )) = − (z(T )− ztar)
T

(z(T )− ztar), with a unique maximum located at z(T ) = ztar.
We now show that even monotonic transformations of concave functions do not span the full class of

objective functions for which the control landscape remains trap-free. To do so, we consider a bimodal
function:

O (z(T )) = −
(
z(T )− ztar

)T (
z(T )− ztar

)
exp

(
− (z(T )− ztar)

T
(z(T )− ztar)

2

)
. (6)

Taking the first derivative, we find two critical points: one local maximum of value zero at z(T ) = ztar

and one local minimum at (z(T )− ztar)
T

(z(T )− ztar) = 2. This function therefore has no local, non-
global maxima, though it is neither concave nor a monotonic transformation of a concave function. We
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Fig. 1 Possible objective functions for classically-specified dynamics. In order to graphically depict the function, we take
q and p to be scalars in the projection where p = 0 with ztar = 0. The (a) concave quadratic and (b) Gaussian functions
only have a global maximum at q = 0, while the (c) bimodal function has global maxima at q = 0 and q→∞, where the
latter condition corresponds to dissociation. The (d) Gaussian-weighted cosine function has a global maximum at q = 0
and local, non-global maxima at q2 = 2πk − π/4, k ∈ N.

note, however, that for the ith coordinate of z(T ) satisfying zi(T ) → ∞, the function asymptotically
approaches its global maximum of 0. The latter maxima correspond to dissociation of the molecule
associated with the ith coordinate, which may not be a desirable goal in some cases (i.e., compared to
achieving the same function value at z(T ) = ztar).

Conversely, it is easy to find objective functions that do not fit the criterion for a trap-free landscape.
For instance, the Gaussian-weighted cosine function

O (z(T )) = exp

(
− (z(T )− ztar)

T
(z(T )− ztar)

2

)
cos
((

z(T )− ztar
)T (

z(T )− ztar
))

(7)

has a unique global maximum at z(T ) = ztar, but also has local maxima at (z(T )− ztar)
T

(z(T )− ztar) =
2πk − π/4, for k ∈ Z. Thus, the landscape corresponding to this objective function would have traps.

Figure 1 compares the four types of objective functions considered above: (a) a concave quadratic
function −

(
zT (T )− ztar

)
(z(T )− ztar), (b) the Gaussian function in Eq. (5), (c) the bimodal function

in Eq. (6), and (d) the Gaussian-weighted cosine function in Eq. (7). While all four have a unique global
maximum at z(T ) = ztar, the Gaussian-weighted cosine function has additional local, non-global maxima.
Thus, the designer’s choice of objective function should take into account not just the global maximum
of the objective, but also its overall structure.

An additional practical criterion for choosing the objective function is the efficiency with which
gradient-based or other local algorithms can climb the control landscape. In a typical optimization
with gradient algorithms, much of the algorithmic effort is often spent in the initial and last por-
tions of the landscape climb as a result of a small gradient near the bottom and top of the land-
scape, respectively. One could accelerate convergence by increasing the sensitivity of J to changes
in the control field (e.g., at the final stages of the search by increasing δJ/δε near the landscape

maximum). For instance, the quadratic function O (z(T )) = − (z(T )− ztar)
T

(z(T )− ztar) has a lin-

early decreasing first derivative ∂O/∂z(T ) = −2 (z(T )− ztar)
T

near its maximum, while the Gaussian

exp
(
− (z(T )− ztar)

T
(z(T )− ztar)

)
weights the linear term of its first derivative with a quadratic ex-

ponential. Thus, choosing a quadratic objective would encourage faster convergence near the landscape
maximum due to a steeper landscape gradient. A more dramatic example is provided by the sub-quadratic

objective function J = −
(

(z(T )− ztar)
T

(z(T )− ztar)
)γ

for 0 < γ < 1, whose first derivative approaches
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±∞ as z(T )→ ztar. The gradient δJ/δε thus increases as the landscape maximum is approached to ac-
celerate the convergence rate.

To ensure quick convergence both near and far from the maximum, it is desirable to define an objective
function with relatively large gradients in both regimes. For instance, we might take

O (z(T )) = −
(
z(T )− ztar

)T (
z(T )− ztar

)
−
((

z(T )− ztar
)T (

z(T )− ztar
))γ

. (8)

When (z(T )− ztar)
T

(z(T )− ztar) > 1, the quadratic term dominates, encouraging a rapid initial land-
scape climb. Near the landscape maximum, the sub-quadratic term dominates, steepening the landscape
gradient relative to that with the quadratic function alone and accelerating convergence to the opti-
mal field. Since this function O has no local, non-global maxima, the resulting control landscape is also
trap-free.

3 Control of Quantum Systems

In the quantum control scenario, we suppose that the system evolves over an adequate finite time interval
[0, T ] and consider a mixed-state quantum ensemble in which the state is described by a Ñ × Ñ density
matrix ρ(t) that satisfies

ı~
∂ρ

∂t
= [Hqu(t), ρ(t)] = [H0 − µε(t), ρ(t)] , (9)

with Hamiltonian Hqu(t) = H0 − µε(t), where [·, ·] denotes the matrix commutator. Here H0 and µ are,
respectively, the field-free diagonal Hamiltonian and the dipole moment matrices. Equation (9) implies
that ρ(t) = U†(t, 0)ρ(0)U(t, 0), where U(t, 0) is a unitary matrix propagator. Analogues of the three
assumptions introduced classically are also adopted in the quantum case. We assume full controllability
of U , i.e., that for an appropriate control field ε(·), U(0, 0) can be steered to an arbitrary unitary matrix
U(T, 0). Surjectivity desires that δU(T, 0)/δε(t), t ∈ [0, T ], has full rank, and adequate control resources
are assumed to be available. Extensive works have examined the landscape topology in the quantum case
upon satisfaction of these assumptions [3,5,9,10,12], and here we strictly consider issues of the choice of
objective function.

In principle, we can specify any objective function Oqu (ρ) and then search for a control field ε
maximizing Oqu. However, in practice the common situation is to express the objective function in
terms of the expectation value of a quantum observable Aqu for maximization [3]. Extensive analysis has
shown that J = Tr (ρ(T )Aqu) is trap-free upon satisfaction of the same three assumptions that entered
the classical case [3,9,10]. Although this choice of objective function naturally arises from one of the
postulates of quantum mechanics, one could also choose various functions of J with similar cautionary
guidance as in the classical case. In fact, a similar argument as in Section 2 shows that taking the objective
to be J = F (Tr (ρ(T )Aqu)) yields a trap-free landscape if the function F has no local, non-global maxima
[4].

Other objectives, besides expectation values, can arise in quantum mechanics; for example, a case
of interest is to generate a specific unitary transformation matrix W . One possible objective functional
is J [ε(t)] = ‖U(T, 0)−W‖2, where ‖·‖ denotes the Frobenius norm. The resulting control landscape
has been shown to be free of traps under the same assumptions as above [2,11]. Another objective of

interest is to simply create a desired target state ρtar; the resulting objective function J = ‖ρtar − ρ(T )‖2

similarly yields a trap-free landscape. Many additional objective functions have been proposed for the
latter purpose [1,8], but the presence of traps in the resulting control landscapes remains to be assessed.

4 Conclusion

In this work, we consider the role of choosing the objective function in determining the topology of
optimal control landscapes while meeting the physical objective and satisfying other criteria. A succinct
summary of prior classical and quantum control landscape topology assessments is given as a basis for
guiding this choice. The classical context was used to give conditions under which the choice of objective
function ensures a trap-free control landscape and to present some examples of functions that satisfy
these conditions. Like freedom exists in quantum mechanics, even with the fortunate assurance that the
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postulated observable J = Tr (ρ(T )Aqu) of quantum mechanics is trap-free. Some alternative function
cases in quantum mechanics for state preparation have yet to be assessed for their topology.

The customary freedom available in choosing objective functions could also aid in accelerating the
convergence of the gradient or other local algorithms in reaching the landscape maximum. In particular,
a typical optimization rises slowly at low and high values of J , while rapidly traversing the intermediate
portions of the landscape. This situation might be ameliorated by increasing the “sensitivity” of J to
the minimum and maximum regions by a suitable transformation of the objective function. The goal of
this paper is to draw attention to the freedom in the choice of objective function, and utilization of this
freedom (with duly noted caution about the introduction of traps) will likely call for practical experience
gained in future simulations and laboratory studies.
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