
Hardware-aware Distributed Learning Algorithm

Ching-Yi Lin Wei Chen

Abstract

As state-of-art approaches for non-convex Federated
Learning, Federated Averaging and FedMAX contribute
to multiple applications due to their communication-
efficiency. However, there is a sporadic report of the algo-
rithm implementation on hardware. In this work, we uti-
lize the communication-efficient algorithms into the edge
devices (Raspberry Pi). By comparing the communication
cost of different network structures, we propose a hierarchi-
cal network to improve the communication-efficiency fur-
ther. We measure the test accuracy and the communication
latency of our network. We also simulate the model com-
pression to handle the device heterogeneity where edge de-
vices can have varied computational resources.

1. Introduction

Millions of data are generated from edge devices, such
as cell phones and tablets. It is appealing to train an in-
telligent model based on these data. However, with pri-
vacy concerns, cellphone users tend to preserve their data
on their own devices instead of sharing it with the server.
Federated learning (FL)[6], in which models are trained lo-
cally on each client1 and merged into a global model on
the server, becomes a new paradigm to train the distributed
data.

In real scenarios, there exists statistical and system het-
erogeneity in the FL setting.

1. Statistical heterogeneity: Distributed learning assumes
the independent and identically distributed (IID) data
across devices. However, since the data are collected
from different users, the data distribution will fluctuate
due to personal preference.

2. System heterogeneity: The devices involved in FL
training have different hardware configurations, such
as different computational power, communication
speed.

1Clients are also called devices, nodes, or users in the FL setting.

This project targets the system heterogeneity. Specifi-
cally, we exploit the hierarchical structure of the network
to achieve a communication-efficient FL system.

Changing topology is not a simple implementation prob-
lem. In network science or computer system, more local
computation usually implies higher efficiency or more ex-
ceptional performance. However, in machine learning, less
communication between data suggests using less amount of
data during the training, which might introduce less gener-
alizability or lower accuracy; even worse, the training pro-
cess overfits the split dataset.

As a communication efficient algorithm, FedMAX[5]
can effectively deal with non-identically distributed (non-
IID) data. However, there is no result in the communication
latency of FedMAX in a real application. It is also unknown
whether FedMAX can be suitable for devices with varied
computation resources.

In our work, we implement FedAvg and FedMAX in
a Raspberry Pi network and evaluate the performance of
different network topology. The remainder of this paper
is organized as follows. In section 2, we provide back-
ground on federated learning and an overview of related
work. In section 3, we discuss the assumptions in the FL
scenario and describe our approaches and algorithms. Then
we present our experimental setting and provide a thorough
empirical evaluation of the proposed algorithm in section
4. Our empirical results help to illustrate and validate the
communication-efficient of the algorithms in a hardware
system and demonstrate the practical improvements of the
hierarchical network over the star network.

2. Previous work

In the non-convex setting, Federated Averaging (Fe-
dAvg), based on averaging weight updates from each
node in the central server, has been shown to work well
empirically[7]. Unfortunately, FedAvg is quite challeng-
ing to deal with the issue that data is heterogeneously dis-
tributed in the network. Moreover, as each device generates
its local data, statistical heterogeneity is common when data
being non-IID between devices.

As a communication efficient algorithm, FedMAX[5]
can deal with non-identical distributed (non-IID) data.

Figure 1. Hierarchical node network. The
raspberry pi devices are connected to the lo-
cal server through the wired network, which
has shorter communication time, and local
servers are connected to the global server
through the wireless network, which has
longer communication time.

Compared with FedAvg, FedMAX has an additional cost
term in the object function, which acts as a constraint to
prevent the clients from varied too far from each other. Nev-
ertheless, the FedMAX is lack of implementation and veri-
fication of its communication efficiency.

In practical FL, systems contain servers and clients, and
there is a network protocol[1] dealing with this setting.
The protocol requires a central server and multiple devices
forming a star network, and models from different devices
are updated synchronously. Furthermore, each time only
a small part (about 10%) of total devices can be involved
in the training process. In this case, the model cannot be
efficiently updated, and many available devices waste time
waiting for getting involved in the training. So it is neces-
sary to develop a hierarchical structure network so that more
devices can contribute to the training.

3. Approach

3.1 Network architecture

Communication time is profoundly affected by traffic,
bandwidth, and distance. In this project, we explore the
two-layer hierarchical network. The structure of the pro-
posed network is in figure 1; the network consists of a cen-
tral global server, multiple local servers, and a large amount
of compute nodes connected to their local server. We will
show the benefit of this efficient network structure in the
following part.

3.1.1 Out-degree of nodes

The point-out edge shows the model update path for a node,
as shown in Fig.1. Compared to an arbitrary network, in
which out-degree for a node can be more than 1, the updat-
ing policy should be involved in to choose between all the
server candidates. In our network, the out-degree-1 prop-
erty uniquely specifies the update path for each node. This
property appears in a tree-based network usually and gives
us a static graph during the runtime.

3.1.2 In-degree of nodes

Due to the heterogeneous communication cost, the local
servers act as mailmen collecting all the updated results.
Then send the merged result in a single packet. This method
can get benefit from a node with large in-degree since it pre-
vents all the leaf nodes from spending an expensive cost to
communicate with the faraway node.

3.2 Assumption

1. Non-i.i.d. data distribution: The training data on a
given client is typically based on the usage of the mo-
bile device by a particular user. Hence, any particu-
lar user’s local dataset will not be representative of the
population distribution.

This non-IID property makes federated learning to a
hard problem in distributed machine learning. Since
data are not shared across devices, none of the devices
know the global data distribution. In other words, ev-
ery device is training a model overfitting to itself. The
goal of FL is aggregating those overfitting models to a
model that correctly estimates the global data distribu-
tion.

2. Heterogeneous communication cost: The communi-
cation time and cost vary largely because of the loca-
tion of the device, the medium of the communication
(3G, 4G, 5G, Wi-Fi). This heterogeneity is usually ig-
nored in most FL works. However, as the system scales
up, the communication overhead will increase, and this
variant becomes a crucial factor.

For this wide coverage, the proposed FL system should
leverage the local cluster to reduce the average round-
trip time (RTT). This local cluster can perform cheap
and fast communication inside and achieve higher
communication efficiency. In network science, the ad-
dition of the local server plays a role in creating a local
cluster and reduce the within-cluster distance.

3. Heterogeneous computation ability: This project
targets training everywhere. This vision includes var-
ious devices in the world. Those diversities include

2

architecture (CPU, memory size) and device status
(power, workload)[2]. Classic FL works trained a sin-
gle model fitting into all the devices. Thus the device
which does not match the model requirement will be
excluded in this classic FL system. However, data
in each device are unique. Despite less contribution,
those rare weak devices should be considered in the
FL scenario.

3.3 Iteration-level training strategy

To exploit the hierarchical network and alleviate the ef-
fect from heterogeneous communication costs, we increase
the frequency of local communication (from compute
nodes to local servers) and make global communication
(from local servers to the global server) rare.

We formally configure our communication system by
hyperparameters E1, E2. Shown in algorithm 1 and 2, the
local servers broadcast the model into their corresponding
leaf nodes (line 3 to 5). After both local servers (line 7 to 9
and local nodes (line 2 to 4) train for E1 epochs, the local
servers aggregate the updated models from local nodes
(line 10 to 12) and continue next round. The local average
model will be uploaded to the global server. We illustrate
an example with the setting (E1, E2) = (3, 6) in fig.2, in
which E1 = 3 infers the number of communication for
a compute node required to send the update to the local
server, and E2 = 6 indicates the same number, but to the
global server. Since compute nodes need the local server to
send the update to the global server, E2 has to be a multiple
of E1, and E2 > E1.

Algorithm 1 Hierarchical training (on local server)
Input: Local data X, y, global parameter θ
Output: None (The updated parameter θ will be sent to

the global server)
1: while Ping by global server do
2: for i = 1, 2, . . . , E2/E1 do
3: for j = {1, 2, . . . , Nclient} do
4: θj = Send(nodej , θ)
5: end for
6: θ0 ← θ
7: for j = {1, 2, . . . , E1} do
8: θ0 =LocalTrain(X, y, θ0)
9: end for

10: for j = {1, 2, . . . , Nclient} do
11: θj = Recv(j)
12: end for
13: θ ← 1

Nclient+1 (θ0 +
∑Nclient

j=1 θj)
14: end for
15: Send(θ, Global server)
16: end while

Algorithm 2 Hierarchical training (on local node)
Input: Local data X, y, global parameter θ
Output: None (The updated parameter θ will be sent to

the local server)
1: while ping by Local server do
2: for i = {1, 2, . . . , E1} do
3: θ =LocalTrain(X, y, θ)
4: end for
5: Send(θ, Local server)
6: end while

3.3.1 Baseline training strategy

Prior FL methods like [6] and [9] do not consider the node
network in their application. We can reproduce their set-
tings by assigning E2 = E1. That is, when the compute
node sends the updated model to the local server, it also
sends it to the global server. This is the baseline without
any architectural assumption, and the communication cost
is expensive due to the frequent global communication.

3.3.2 For heterogeneous communication

From our assumption in section 3.2, we want to prevent
high communication cost from server to server, but require
different nodes to share information between them. Thus,
we increase E1 to have more local sharing inside the
coverage of a local server and decrease E2 to reduce the
communication overhead in global sharing.

In terms of information gain, discriminative E1 and E2

make a trade-off between local sharing and global sharing.
When ratio E1/E2 is high, compute nodes get information
from their neighbor nodes.

In terms of accuracy, since this hierarchy cannot get ben-
efit in communication round number, which is the most
common metric in FL, this imbalanced aggregation affects
the performance is not widely discussed in prior works.
This is one of the focus in this work: How tolerant feder-
ated learning is for the imbalanced neighborhood.

3.4 Model-level training strategy

Training on distributed systems is suffered from non-
IID data and significant communication overhead. In this
project, we target on communication efficiency of the FL.
This work focus on the practical implementation, in which
all the operation, including communication, computation,
and value update, will not be the fixed number. This uncer-
tainty is very crucial in a practical FL system but seldom be
mentioned in most of the works.

3

Figure 2. Iteration-level training strategy. The models from each device merge on the local server
after three local training rounds. Moreover, the global model forms by averaging the models from
local servers.

4. Experimental setup and results

4.1 Platform implementation

In FL, the model parameters are transmitted between the
server and nodes. To communicate between the server and
nodes, a PyTorch model is parsed into JSON format, which
is an open-standard file format that uses human-readable
text for the transmission, and the JSON file is sent/received
from Transmission Control Protocol (TCP). Each node acts
as a TCP server, waiting for a service request in the net-
work. When the global model is available, that model will
be sent to each node. This model transmission is a request
from the central parameter server to each node.2

The communication contains two parts in FL: Broadcast-
ing the global model and aggregating the locally trained
model. Ideally, the broadcasting is performed at the be-
ginning of each round, and the parameter server asyn-
chronously aggregates from each node. In python, the TCP
package is default point-to-point communication. To imple-
ment this broadcast-aggregation pattern, we do the commu-
nication sequentially. Accurately, the server will send the

2Although the parameter server, responsible for aggregating the param-
eters and broadcasting the updated model, it controls all the parameter up-
date. This parameter server acts as a client under TCP infrastructure; in the
opposite, a node passively receiving the updated model is a TCP server.
These confusing roles match their characteristic in TCP: An active client
sends the request, and a passive server handles that.

model to node one first, then waiting for the weight update
from that node. This send/receive will be repeated for all
nodes. After that, the parameter server will do the aggrega-
tion and obtain the new global model. This is the baseline
of the system. In the following milestones, we will optimize
this flow and achieve better performance.

4.2 Communication time measurement

To demonstrate the heterogeneity between medium, the
nodes in hierarchical FL system communicate in two differ-
ent ways: The local communications are performed under
the Ethernet network from a router; in contrast, the global
communications deploys the public Wi-Fi.

Medium Mean Stdev
Local communication Ethernet 13.2 1.7
Global communicaion On-campus Wi-Fi 160 86.7

Table 1. Communication measurement on the
real system

Shown in table 1, the local/global update takes 13.2/160
ms in average. This 10 times difference reflects the intuition
of this work.

In spite of 10-times difference in cost, those communica-
tions are still on-campus and very fast. We conduct a small

4

experiment to ping servers in the world. Although ping op-
erations do not consider the large packet size, the huge gap
between ping time demonstrates the potential and impor-
tance to solve the problems in heterogeneous communica-
tion cost.

Domain Wired RPi Wireless RPi Google Baidu
Ping time 0.8 ms 6 ms 13.4 ms 1600 ms

Table 2. Ping time to different servers

Shown in table 2, on-campus wireless communication is
two times faster than off-campus wired. In other words, the
local fast communication in our work can get more benefit
if we apply our system to the real world.

4.3 Algorithm implementation

To evaluate the effectiveness of our method, we use the
Raspberry Pi to reproduce the real scenario. The system
consists of 8 Raspberry Pis as a physical client, a laptop as
the central parameter server. The Raspberry Pis connect to
the server through a wired network.

A Convolutional Neural Network (CNN) model consist-
ing of two convolutional layers and two fully-connected
layers is used for experiments in this work. We train this
CNN with 7 thousand parameters on the non-IID MNIST
dataset[3], and each device contains only a part of the en-
tire dataset. At each communication round, the Raspberry
Pi and all processes are involved in the training. The train-
ing process lasts 100 communication rounds; the mini-batch
size of the model in Raspberry Pi is 16, but the mini-batch
size in other processes is 100. The learning rate is initialized
to 0.1 and decays by 0.996.

The test accuracy of FedAvg and FedMAX are shown
in Fig.3 As we can see, the accuracy can get about 77%,
which means the two-layer CNN is enough for the MNIST
dataset. Furthermore, it shows that the Raspberry Pi can
successfully communicate with the server and perform the
training locally. However, the test accuracy of FedAvg and
FedMAX is similar, which means FedMAX cannot provide
better communication efficiency in this case. We assume
the FedMAX can provide a regularization of the parameters
of CNN. However, with only about 7,000 parameters, it is
hard to see the improvement compared with a larger neural
network with about millions of parameters.

The test accuracy of FedAvg with different network
structure is shown in Fig.4. The blue line represents the
accuracy of the star network, and the red line represents
the accuracy of the hierarchical network, with configuration
E1 = 6 and E2 = 3. In this figure, we observe the higher
accuracy at the first 500 seconds in communication. This
demonstrates the hierarchical network has a faster conver-

Figure 3. Test accuracy of FedAvg and Fed-
MAX from the network of edge devices. The
network contains 8 nodes as clients and 1
node as central server. Each client node rep-
resents a Raspberry Pi and each server node
represents a laptop.

gence speed than the network without a hierarchical struc-
ture.

Another noting point is the time achieve 75% accuracy.
Although with faster training speed at the beginning, the hi-
erarchical network has a longer time to reach 75% accuracy.
The possible explanation might be the lack of global com-
munication. The star network takes longer time per epoch
to aggregate all the model in different nodes. This implies
a more intense knowledge exchange between local models.
However, in our hierarchical network, the training is still
restricted by the less global communication during the lat-
ter stages. We might apply a more sophisticated strategy
to make a tradeoff between accuracy and speed along the
entire training process, but this is beyond our scope in this
work.

4.4 Algorithm exploration

Apart from the algorithm implementation, multiple ap-
proaches are explored to deal with the device heterogene-
ity. In this setting, we simulate a total of 100 local devices,
and half of them are designed as poor devices, which take
longer time to perform local training and have limited stor-
age space; half of them are designed as good devices, which
can perform fast local training and have more space for the
model.

During each communication round, 10% of these devices
are randomly selected for local training. The training pro-
cess lasts 600 communication rounds; the mini-batch size at

5

Figure 4. Test accuracy of FedAvg with dif-
ferent network structure. The blue line rep-
resents star network, and the red line repre-
sents hierarchical network.

each selected device is 100. The learning rate is initialized
to 0.1 and decays by 0.996.

In order to make the poor devices have similar train-
ing speed as good devices, different models are assigned
to different kinds of devices. The poor devices are trained
with reduced CNN, which has fewer convolutional kernels
at each layer; instead, good devices keep training with nor-
mal CNN. On the server, the different models are aggre-
gated by merging the small model with a random but fix the
position of the larger model. The approach can finally get
37.65% accuracy.

Figure 5. Using different models for power-
ful and poor devices: (a) Merge the small
model with first k channels of larger model,
(b) Prune the large model into smaller one,
after training map the small model back to
the large model, and merge large model and
mapped large model

Approach First k channels Channel pruning
Test accuracy 37.65% 66.63%

Table 3. Final accuracy of different merging
approach

Another approach to deal with the device heterogene-
ity is using the model pruning[4] to form a small model
and record the index of pruned channels, as shown in Fig.5.
After the local training, the small model maps back to the
shape of the original model w.r.t the index recorded in the
dictionary. This mapped model can be directly averaged
with the large model to form a new global model. This ap-
proach can finally get 66.63% accuracy.

4.5 Illustration

Figure 6. Digit classification illustration. The
neural network can give a right classification
or wrong classification

After we train the model in eight Raspberry Pi devices
for 100 rounds, our model can finally get 75% accuracy.

6

We use an interactive demo to show the results of model, as
shown in Fig.6. From the left figure we can see the ”8” is
correctly classified, but on the right side, ”8” is misclassi-
fied. One reason is our model can only get 75% accuracy
which is not high enough, so that the model cannot perform
the right classification sometimes. Another reason is even
with high accuracy on MNIST test dataset, the model still
has chance to classify the digit wrongly. The digit writ-
ten on the board may have different characteristic from the
MNIST dataset, so that the model can be easily fooled by
the plot. Therefore, it is important to find a way to have a
model that can generalize[8] well to different distribution.

5. Conclusion

In this work, we implemented the communication-
efficient algorithm FedAvg and FedMAX on the hardware
devices and measured the training time and test accuracy
of these two algorithms. The test accuracy of FedAvg and
FedMAX are similar due to the small size of the training
model.

We also addressed the hardware heterogeneity by as-
signing different sizes of models for devices with different
abilities by pruning the model. We verified that the algo-
rithm can be implemented in hierarchical structure network,
which means our work can be possibly scaled to larger set-
ting with more than 8 devices. We plan to increase the
E1/E2 = 2 to save more communication time.

In the future, We plan to train a larger model to make the
most of FedMAX. We will measure the performance of de-
vices with different algorithms and communication latency
during the training process.

References

[1] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Inger-
man, V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B.
McMahan, et al. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046, 2019.

[2] R. Buchty, V. Heuveline, W. Karl, and J.-P. Weiss. A survey
on hardware-aware and heterogeneous computing on multi-
core processors and accelerators. Concurrency and Compu-
tation: Practice and Experience, 24(7):663–675, 2012.

[3] L. Deng. The mnist database of handwritten digit images for
machine learning research [best of the web]. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

[4] S. Han, H. Mao, and W. J. Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantiza-
tion and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[5] B. Kartikeya, C. Wei, and M. Radu. Fedmax: Activation
entropy maximization targeting effective non-iid federated
learning. 2019.

[6] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T.
Suresh, and D. Bacon. Federated learning: Strategies
for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[7] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, et al.
Communication-efficient learning of deep networks from de-
centralized data. arXiv preprint arXiv:1602.05629, 2016.

[8] M. Vidyasagar. A theory of learning and generalization.
Springer-Verlag, 2002.

[9] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chan-
dra. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

7

