
Vest: Verified, Secure, High-Performance Parsing and Serialization for Rust

Yi Cai†∗ Pratap Singh‡ Zhengyao Lin‡ Jay Bosamiya¶∗

Joshua Gancher§∗ Milijana Surbatovich† Bryan Parno‡

¶Microsoft Research §Northeastern University ‡Carnegie Mellon University
†University of Maryland, College Park

Abstract
Many software vulnerabilities lurk in parsers and serializers,
due to their need to be both high-performance and conformant
with complex binary formats. To categorically eliminate these
vulnerabilities, prior efforts have sought to deliver provable
guarantees for parsing and serialization. Unfortunately, secu-
rity, performance, and usability issues with these efforts mean
that unverified parsers and serializers remain the status quo.

Hence, we present Vest, the first framework for high-
performance, formally verified binary parsers and serializers
that combines expressivity and ease of use with state-of-the-
art correctness and security guarantees, including—for the
first time—resistance to basic digital side-channel attacks.
Most developers interact with Vest by defining their binary
format in an expressive, RFC-like DSL. Vest then generates
and automatically verifies high-performance parser and se-
rializer implementations in Rust. This process relies on an
extensible library of verified parser/serializer combinators we
have developed, and that expert developers can use directly.

We evaluate Vest via three case studies: the Bitcoin block
format, TLS 1.3 handshake messages, and the WebAssembly
binary format. We show that Vest has executable performance
on-par (or better) than hand-written, unverified parsers and
serializers, and has orders of magnitude better verification
performance relative to comparable prior work.

1 Introduction

Code that handles untrustworthy binary data, e.g., to process
a network packet or decode a file, is often buggy and hence
exploitable [26, 27, 44, 46, 61]. This is primarily due to the
conflicting goals of high performance and adherence to ex-
isting, complex binary formats. Trying to meet both goals
drives developers to manually write parsing libraries in un-
safe, low-level languages, such as C. Making matters worse,
these libraries must also handle serialization—often with dev-
astating security consequences if parsing and serialization are
not mutual inverses.

*Work done in part while at Carnegie Mellon University.

In response, the research community has proposed a num-
ber of formally verified frameworks to produce parsers and
serializers that guarantee correctness and security [25, 50,
54, 57, 59]. However, these tools are not yet mature enough
for software engineering at large: they can be slow to ex-
ecute [25, 59], slow to verify [50, 54] (making it painful
to iterate on new formats), missing functionality [54] (veri-
fying parsers but not serializers), lacking guarantees about
side-channel resistance [25, 50, 54, 59], or exposing difficult,
developer-unfriendly low-level APIs [50].
Our Approach. We present Vest, the first framework for for-
mally verified parsing/serialization that combines expressivity
and ease of use with state-of-the-art correctness and security
guarantees, including—for the first time—resistance to basic
digital side-channel attacks (e.g., through timing). Given a
description of a binary format in our simple, RFC-like DSL
(VestDSL), Vest generates high-performance parser and seri-
alizer implementations in safe Rust [35, 43] that are carefully
tailored to ensure automatic verification by Verus [37, 38], a
deductive program verifier for Rust code. In turn, the devel-
oper may use this generated code in ordinary Rust projects
through intuitive, simple interfaces and easy cargo integration.

VestDSL is expressive enough to capture real-world for-
mats. A key novelty of VestDSL is its robust support for both
variant and dependent formats. Variant formats include, e.g.,
optional fields, as well as unions that are explicitly tagged,
implicitly tagged, or even untagged. VestDSL’s dependent
formats support dependencies both within formats (e.g., for
tag-length-value formats), and external to formats (crucial for
formats that depend, say, on a protocol-level state machine).

For every VestDSL format, Vest proves that the correspond-
ing parsers and serializers are: safe (ruling out buffer over-
flows, integer overflows, use-after-free, . . .), correct (parsers
and serializers are mutual inverses, ruling out format con-
fusion [59] and malleability [50] attacks), and side-channel
free (specifically, source-level freedom from secret-dependent
memory accesses or timing). In short, Vest relieves developers
from worrying about trade-offs between security, correctness,
and ease of development.

The above guarantees are driven by VestLib, a library of
formally verified, high-performance parser and serializer com-
binators we have developed. A parser combinator [28] is a
function that takes in one or more parameters (some of which
may be parser combinators) and returns a new parser (and
likewise for serializer combinators). While VestDSL serves as
the primary workflow for most developers, each VestLib com-
binator has a consistent interface for their specification, proof,
and implementation. This uniform design enables experts to
straightforwardly extend VestLib with custom combinators
tailored for complex formats. Indeed, recent projects have
already leveraged VestLib extensively—for instance, to im-
plement provably secure parsers and serializers for X.509
certificate formats [41] and to automatically construct side-
channel resistant parsers for security protocols [52].

Evaluation. We evaluate Vest on three real-world case studies:
the Bitcoin block format, TLS 1.3 handshake messages, and
WebAssembly binaries, all encoded in VestDSL.1 Due to our
careful design choices and Verus’s powerful proof automation,
each case study’s generated implementations and security
proofs verify in seconds (compared to hours for previous
work [50, 54]), making it feasible to include parser/serializer
verification in CI pipelines. Thanks to our highly-efficient
parser and serializer implementations, our generated code’s
performance is competitive with (or faster than) state-of-the-
art, hand-optimized Rust implementations for all three of our
case studies.

Limitations. Vest’s guarantees depend on the correctness
of our verification tool, Verus, as well as the correctness of
the Rust compiler (rustc). In particular, Vest provides side-
channel resistance guarantees only at the level of Rust source
programs; compilation with rustc may undermine these guar-
antees. Prior work [15, 23] has developed constant-time pre-
serving compilers; applying these ideas to Rust is future work.

Contributions. In summary, we present:

1. The design of VestDSL, which combines readability with
real-world expressivity and the ability to automatically
produce verified parsers and serializers without requiring
any verification expertise from the developer.

2. An elegant, trait-based treatment of parser and serial-
izer combinators in Rust, supporting readable code and
automated proofs.

3. The first approach to automatically and generically pro-
duce parsers and serializers that guarantee freedom from
basic digital side channels.

4. Vest, a concrete instantiation of these techniques, and
the first verified parser/serializer framework in Rust.

5. A detailed evaluation on three real-world case studies.

2 A Developer’s View of Vest

Vest is a toolchain for formally defining binary formats and
generating verified, efficient parsers and serializers from those
definitions. Figure 1 illustrates Vest’s workflow. First, the pro-
grammer writes a formal definition of their format (possibly
derived from an existing external format specification) in
VestDSL, a declarative, RFC-like domain-specific language
for defining binary formats. Next, the VestDSL compiler type-
checks the definition and generates a Rust module. This mod-
ule contains four key components:

1. Data Type Definitions: Rust data types that mirror the
structure of the format.

2. Trusted Specifications: A set of parser and serializer
specifications (written in Verus [37, 38]) composed of
VestLib combinators that represent the format’s parsing
and serialization behaviors.

3. Correctness and Security Proofs: Machine-checkable
proofs of correctness and security for the specifications,
also written in Verus and constructed from existing com-
binator proofs in VestLib.

4. Efficient Implementations: Formally verified, efficient,
safe Rust implementations of the parser and serializer
for the format, again composed of VestLib combinators.

Once the generated module is verified by Verus, the program-
mer can integrate it via cargo into larger verified projects [41,
52], or into unverified Rust projects. The latter can use it
without depending on Verus.
Trusted vs. Untrusted Components. For security, Vest main-
tains a minimal trusted computing base (TCB) that consists
only of Verus/Rust and the portion of VestLib that defines
the formal properties of VestLib’s specification and imple-
mentation combinators (< 150 LoC). As illustrated in Fig-
ure 1, users need not trust the majority of VestLib, the entire
VestDSL compiler, nor the generated Rust module for security,
since it (or its output) is mechanically verified by Verus.

For end-to-end correctness of the generated implementa-
tion, however, we additionally trust the developer-authored
format definition in VestDSL, as well as the portion of the
compiler that lowers the DSL definition to the VestLib spec
combinators. Crucially, the implementation generation pro-
cess remains untrusted, as the generated implementations are
verified to match the generated specs.

Next, we describe Vest’s key features at a high-level and
explain how VestDSL and VestLib fit together.

2.1 VestDSL: Formal Definitions of
Binary Formats

We start by illustrating the challenges of defining binary for-
mats with existing informal approaches, and how VestDSL

1Vest and our three case studies are publicly available from https://
github.com/secure-foundations/vest.

https://github.com/secure-foundations/vest
https://github.com/secure-foundations/vest

Unverified
Rust Project

block = {
version: u32,
prev_blk: [u8; 32],
root: [u8; 32],
timestamp: u32,
bits: u32,
nonce: u32,
tx_cnt: varint,
txs: [tx; tx_cnt],

}

VestLib

Author

.rs

VestDSL

External Format
Specifications .vest

Implementations

Security Proofs

Specifications

Datatypes

Integrate with Cargo

Verified Rust
Project

Verus

Untrusted Trusted

Mechanically verified by Verus

Figure 1: Vest Workflow. For security, we trust VestLib’s formal specs and Verus, but everything else is untrusted, since it (or
its output) is mechanically verified. For compatibility with the intended format, we also trust the developer-authored format
definition in VestDSL, and the portion of the compiler that lowers the DSL definition to the VestLib spec combinators.

addresses this challenge by providing a formal, unambiguous
way to define binary formats.
Defining Binary Formats, Informally. Existing binary for-
mats are typically defined in RFCs or other documents, which
often mix English prose with C-like type definitions. This in-
formal approach can contain implicit constraints and ambigu-
ities; e.g., TLS 1.3 defines the HelloRetryRequest message
as:

“For reasons of backward compatibility with mid-
dleboxes, the HelloRetryRequest message uses the
same structure as the ServerHello, but with Ran-
dom set to the special value of the SHA-256 of
HelloRetryRequest: CF 21 AD 74 E5 9A 61 11 BE
1D 8C 02 1E 65 B8 91 C2 A2 11 16 7A BB 8C 5E
07 9E 09 E2 C8 A8 33 9C ” [51]

Instead of explicitly defining the HelloRetryRequest mes-
sage, the RFC warns the implementor that upon receiving
a handshake message with type server_hello, the parser
should first check if the Random field is equal to the special
byte sequence above. If so, the parser should treat the follow-
ing bytes as a HelloRetryRequest message, which has the
same structure as a ServerHello message but very different
behavior in the context of the handshake protocol.

As another example, consider the TLS ClientHello padding
extension, whose format descriptions and constraints are de-
fined “by example”:

“The “extension_data” for the extension consists
of an arbitrary number of zero bytes. For example,
the smallest “padding” extension is four bytes long
and is encoded as 0x00 0x15 0x00 0x00. The client
MUST fill the padding extension completely with
zero bytes, although the padding extension_data
field may be empty.” [36]

Even existing frameworks for verified binary formats lack

the expressivity to properly capture such ad-hoc constraints
for conditional or dependent formats [50, 54, 59]. Instead they
rely on staged parsing or require the programmer to manually
implement and verify the ad-hoc constraints.
Defining Binary Formats, Formally. VestDSL is an expres-
sive, declarative, unambiguous format description language
that comes with a set of built-in constructs for formally defin-
ing binary formats. The programmer can use VestDSL to
express primitive formats (e.g., fixed-/variable-size integers,
byte arrays), formats with restrictions (e.g., constants, inte-
gers within a range), structured formats (e.g., sequencing and
choice of formats), or even inter- and intra-dependencies be-
tween formats (e.g., parametric formats like tagged unions).

Each of the high-level DSL constructs has a precise formal
semantics in the form of an equivalent VestLib combinator. As
a simple example, VestDSL’s structure format a = { x: u8, y: u8 }
specifies a structure with two concatenated fields x and y that
are both 8-bit unsigned integers, without any padding. The
formal semantics is a parser that reads two bytes in sequence
from the input buffer and maps them to the fields x and y of
the struct, and a serializer that accesses the fields x and y of
the struct and writes them to the output buffer in sequence.

VestDSL enables the programmer to capture the subtleties
of binary formats in a precise, unambiguous manner, in con-
trast to informal prose descriptions. For example, in Figure 2,
we show how a programmer can formally define the choice
between ServerHello and HelloRetryRequest messages,
as well as the dependencies and constraints in the ClientHello
padding extension in VestDSL. First, we define a format
named sh_or_hrr that includes a dependent field @random and
a field payload that chooses between the two sub-formats based
on the value of @random. The choose construct functions like
the match construct found in Rust or similar languages; it
takes in a dependent field (denoted with the @ symbol) and
pattern-matches on the field’s value to select between dif-

1 sh_or_hrr = {
2 // some fields elided
3 @random: [u8; 32],
4 payload: choose (@random) {
5 [0xcf, 0x21, 0xad, 0x74, 0xe5, 0x9a, 0x61, 0x11,
6 0xbe, 0x1d, 0x8c, 0x02, 0x1e, 0x65, 0xb8, 0x91,
7 0xc2, 0xa2, 0x11, 0x16, 0x7a, 0xbb, 0x8c, 0x5e,
8 0x07, 0x9e, 0x09, 0xe2, 0xc8, 0xa8, 0x33, 0x9c]⇒

hello_retry_request,
9 _⇒ server_hello,

10 },
11 }

1 padding_extension(@len: u16) = {
2 extension_data: [u8; @len]�= Vec<zero_byte>,
3 }

Figure 2: VestDSL Examples.

ferent formats. In this case, if the value of the field @random
is the special byte sequence defined in the RFC, the format
is a hello_retry_request message; otherwise (denoted by the
wildcard _), it is a server_hello message, where each message
adheres to a precisely defined format. Similarly, we formally
define the padding_extension format. This format is parameter-
ized by a u16 value that specifies the length of the extension_data
field, which is constrained to be a vector of zero bytes (de-
noted by �= Vec<zero_byte>).

2.2 VestLib: Verified Parsers & Serializers
Once the programmer has formally defined their binary format
in VestDSL, the VestDSL compiler generates the correspond-
ing Rust data type definitions, efficient parser and serializer
implementations, and, for proof purposes, a set of annotations
in Verus [37, 38], a state-of-the-art, semi-automated program
verifier for Rust.
Background on Verus. Although Vest can be directly inte-
grated into unverified Rust projects via cargo, understanding
some of Verus’s key features is valuable, especially since
part of the generated code is written in Verus (Figure 1).
Specifically, Verus enhances each Rust function by allowing
annotations for pre-conditions (requires) and post-conditions
(ensures). These annotations are automatically translated into
logical formulas and verified by the underlying SMT solver.
Moreover, Verus supports ghost code (e.g., functions marked
with spec or proof), which is not executed at runtime but used
to help reason about the program’s behavior. In Vest, we
leverage these ghost functions to precisely define the for-
mal semantics and to capture the correctness and security
properties of the parsers and serializers. Finally, using Verus,
we develop modular and reusable specifications, proofs, and
implementations within VestLib that the VestDSL compiler
employs extensively as it processes user-defined formats.
Understanding the generated code. The VestDSL compiler
translates each DSL construct straightforwardly to a lower-

level combinator in VestLib, which serves as an intermediate
representation for the underlying format. For example, under
the hood, the VestDSL’s structure format a = { x: u8, y: u8 } (de-
scribed in the previous section) translates to a Pair combinator
that sequentially composes two U8 combinators, and a Mapped

combinator that maps the result of the Pair combinator to the
fields x and y of the struct (and back for serialization).

For each combinator, VestLib provides a Verus specifica-
tion, defining the combinator’s formal semantics for both
parsing and serialization, a proof of correctness and security
for that spec, and a performant implementation that provably
obeys the spec.

Crucially, VestLib’s combinators have been carefully de-
signed to have a uniform interface, which enables straight-
forward composition into complex formats. In other words,
given a user-defined format, which is typically more compli-
cated than a simple struct with two integer fields, the VestDSL
compiler can cleanly combine VestLib combinators to build
up a specification, a proof, and a corresponding implementa-
tion from the existing combinator definitions in the library.
We give a multi-step example in Figure 3, which shows the
output of compiling the VestDSL description of the TLS 1.3
server_hello format.

The server_hello format (a) specifies a sequence of fields
that are either primitive formats (e.g., u8) or sub-formats
defined elsewhere in the specification. The VestDSL com-
piler generates the corresponding Rust data type definition
ServerHello (b), which mirrors the structure of the format and
serves as the internal structured representation of the serial-
ized bytes. Then, the VestDSL compiler generates two func-
tions that contain the intermediate representation of the for-
mat, using the combinators defined in VestLib. Leveraging
the dual aspects of VestLib combinators—both their specifica-
tions and verified implementations—the compiler generates
two closely matching versions of the intermediate representa-
tion, one specification version spec_server_hello (c) and an ex-
ecutable version server_hello (d). The spec combinators used
for composing spec_server_hello are written in a purely func-
tional style for simplicity, but are too inefficient for practical
implementations. Instead, the server_hello function consists
of exec combinators, which are both verified and expands to
performant code (e), allowing for efficient, zero-copy parsing
and in-place serialization.

2.3 Integration with Larger Projects

As parsers and serializers are often just one of the many
components in a larger systems, Vest is designed to be easily
integrated into existing Rust projects.

To avoid excessive data copying, prior verified binary parser
generators required the programmer to write complex seman-
tic actions [54], or to invoke a series of low-level validators,
accessors, jumpers and readers for parsing, and low-level writ-
ers and finalizers for serialization [50]. In contrast, Vest sup-

(a)
1 server_hello = {
2 legacy_session_id_echo: session_id,
3 ciphersuite: cipher_suite,
4 const legacy_compression: u8 = 0,
5 extensions: server_extensions,
6 }

(b)
1 struct ServerHello<’a> {
2 legacy_session_id_echo: SessionId<’a>,
3 ciphersuite: CipherSuite,
4 legacy_compression: u8,
5 extensions: ServerExtensions<’a>,
6 }

(c)
1 spec fn spec_server_hello()→
SpecServerHelloCombinator {

2 Mapped(Pair(spec_session_id(),
3 Pair(spec_cipher_suite(),
4 Pair(Refined(U8, |x: u8| x == 0),
5 spec_server_extensions()))),
6 ServerHelloIso)
7 }(d)

1 exec fn server_hello()→ (o: ServerHelloCombinator)
2 ensures o.view() == spec_server_hello() {
3 Mapped(Pair(session_id(),
4 Pair(cipher_suite(),
5 Pair(Refined(U8, |x: u8| x == 0),
6 server_extensions()))),
7 ServerHelloIso)
8 }

(e)
1 let (n, session_id) = session_id().parse(&buf)?;
2 let (n, cipher_suite) = cipher_suite().parse(&buf[n..])?;
3 let (n, legacy_compression) = U8.parse(&buf[n..]).refined(|x| x == 0)?;
4 let (n, server_extensions) = server_extensions().parse(&buf[n..])?;
5 ServerHello { legacy_session_id_echo, cipher_suite,
6 legacy_compression, server_extensions }

Figure 3: A VestDSL spec of the ServerHello message in TLS 1.3 (a), the corresponding data type definition in Rust (b), the
format’s formal semantics (c), the combinator-based implementation of the format (d), and the result (e) of expanding the exec
combinators by calling server_hello().parse(&buf). Some details omitted for brevity.

ports zero-copy parsing for byte arrays, where parsed data
types (e.g., struct ServerHello<’a> in (b)) contain references
to the input buffer, rather than copying the bytes into the data
type.2 Vest does this by leveraging Rust’s lifetimes, which
encapsulate the aliasing relationship between the parsed data
type and the input buffer. Without lifetimes, we would need a
complex, ad-hoc separation logic predicate for each parser to
guarantee memory safety.

Ultimately, Vest provides a simple, idiomatic developer in-
terface without compromising performance. For example, the
developer can include VestLib as a dependency in their (veri-
fied or unverified) Rust project, import the generated module,
and use the generated server_hello parser and serializer as
“one-liners” in their application code:

1 let (consumed, msg1) = server_hello().parse(&ibuf)?;
2 // produce a new message msg2 to write back out
3 let len = server_hello().serialize(&mut obuf, &msg2, 0)?;

The parse function operates on byte slices (&[u8] in Rust);
the serialize function writes the serialized value in-place to
a byte buffer, given a mutable reference (&mut Vec<u8>) and
an offset (0 in the example above), without any heap allo-
cation. Consequently, the generated parsers and serializers
are not only verified for correctness and security but are also
ergonomic and efficient. With Vest, programmers can con-
centrate on the high-level design of their systems, while the
VestDSL compiler and VestLib handle the low-level details
of parsing and serialization.

2Small primitive types (e.g., u32, where a reference would be more
memory-expensive than copying) are copied into the resulting data type.

3 Vest’s Design

We present the design of Vest, a novel framework for verified
binary parsing and serialization. Vest has two parts: VestDSL,
a simple yet expressive front-end language for specifying
binary formats (§3.1), and VestLib, our back-end library of
parser/serializer combinators, which we use to give state-of-
the-art correctness, security, and performance to VestDSL
formats.

3.1 A Language for Defining Binary Formats

Previous frameworks for verified binary parsing and serializa-
tion either lack a high-level format definition language [57],
provide format definitions as meta-programs embedded in
proof assistants [25, 59], or lack expressivity [50]. We ar-
gue that an expressive, and user-friendly format definition
language is essential for bridging the gap between informal
binary format descriptions and verified parsers and serializers.

Hence we design VestDSL as a standalone language for
binary formats with semantics defined via VestLib. Each
VestDSL format defines a corresponding Rust data type, along
with a VestLib combinator that defines how parsing and serial-
ization should behave, along with their relevant security prop-
erties. Figure 4 shows VestDSL’s main syntactic constructs,
their intuitive meaning, and their semantics in VestLib.
Bytes, Integers, and Refinements. The first four rows of
Figure 4 show VestDSL’s first-class support for various byte
arrays and integers, which are the basic building blocks of
binary formats. The syntax [u8; N] represents a fixed-length
byte array of length N. The semantics maps this construct
to the bytes::Fixed::<N> combinator in VestLib, which handles
parsing and serializing a fixed number of bytes.

VestDSL Syntax Description VestLib Semantics

1 [u8; N] Fixed-length byte-arrays bytes::Fixed::<N>

2 u8, u16, u24, u32, u64 Fixed-size unsigned integers U8, U16Be, U16Be, U24Be, U24Le, . . .

3 u16 | 8..0xFFFE Integers with constraints Refined(U16Le, |x: u16| 8 ≤ x ≤ 0xFFFE)

4 const a: [u8; 48] = [0; 48] Constant byte-arrays Refined(bytes::Fixed::<48>, |x: &[u8]| x == &[0; 48])

5 b(@len: u24)= [u8; @len] Variable-length byte-arrays fn b(len: u24)→_ { bytes::Variable(len.into()) }

6 c = { @x: u24, y: b(@x)} Struct with dependent fields Mapped(Pair(U24Le, |x: u24| b(x)), CIso)

7 d = (@cnt: u64)= [a; @cnt] Count-bounded repetitions fn d(cnt: u64)→_ { RepeatN(a(), cnt.into()) }

8 e = { @len: u8, v: [u8; @len]
�= Vec<d> }

Length-bounded repetitions Mapped(Pair(U8, |len|
AndThen(bytes::Variable(len.into()), Repeat(d())), EIso))

9 g = Option<[u8; 32]> Optional values Opt(bytes::Fixed::<32>)

10 f = enum { A = 1, B = 2 } Finite enumerations Refined(U8. |x| x == 1 || x == 2)

11 h(@flag: f)= choose(
@flag){ A⇒ c, B⇒ e }
i = { @tag: f, y: h(@tag)}

Implicitly tagged and
explicitly tagged unions

fn h(flag: F)→_

{ Mapped(Choice(Cond(flag == F::A, c()), Cond(flag == F::B, e())), HIso) }
Mapped(Pair(f(), |tag| h(tag)), IIso)

12 msg = choose { A(u8 | ..0xfe),
B(u8 | 0xff)}

Untagged unions Mapped(Choice(Refined(U8, |x| 0 ≤ x ≤ 0xFE),
Refined(U8, |x| x == 0xFF)), MsgIso)

Figure 4: VestDSL Syntax and Its Semantics in VestLib. u8, u16, . . . are primitive formats; a, b, . . . are user-defined format
names; choose, const, . . . are VestDSL keywords; and Fixed, Refined, Mapped, . . . are VestLib specification combinators. CIso, EIso,
. . . are functions that convert between anonymous, structural types and the corresponding (isomorphic) nominal, Rust data types.

The u8, u16, u32, and u64 types in VestDSL represent fixed-
size unsigned integers, which are mapped onto their corre-
sponding primitive types in Rust. VestDSL allows specifying
the endianness of the integers (defaulting to little-endian)
and automatically selects the corresponding combinator in
VestLib; for example, U16Le in VestLib defines a parser that
reads two bytes from the input buffer and interprets them as an
unsigned 16-bit integer in little-endian order (and vice versa
for serialization). VestDSL also supports u24, which is used
for instance in TLS (§6.2); to support u24 in VestLib, we use
a 3-byte array internally and include verified, bidirectional
conversions between this byte array and u32s (constrained to
fall within the appropriate range).

In addition to basic integers and byte arrays, VestDSL sup-
ports defining formats with specific constraints on their values.
Rows 3 and 4 in Figure 4 illustrate this with a 16-bit integer
constrained to a specific range and a 48-byte array with a con-
stant value. VestDSL maps these refinements of formats into
the Refined combinator in VestLib, which checks a predicate
after parsing and before serializing the value. These formats
are represented by the same type as the base format, but the
values must satisfy the predicate.
Parametric and Dependent Formats. VestDSL has robust
support for parametric and dependent formats, which are es-
sential for expressing binary formats whose field structures
or sizes depend on other fields or external parameters. The

syntax format(@x: a)= ...@x... defines a format with external de-
pendencies, where @x in format a is passed as a parameter and
used in the format definition. The semantics of parametric
formats correspond to functions. For example, b(@len: u24)= [
u8; @len] in row 5 defines a parametric format that contains a
variable-length byte array: it semantics is a function that takes
a u24 length and returns the bytes::Variable combinator for
parsing or serializing a dynamically known length of bytes.

Internal dependencies within formats, such as c = { @x: u24
, y: b(@x)} in row 6 , are also supported in VestDSL. In this
example, the format c is a struct with two fields: @x, an un-
signed 24-bit integer, and y, a byte array whose length depends
on the value of @x. For all struct formats, VestDSL first maps
the format to a (dependent) Pair of combinators in VestLib,
where the Pair combinator parses (or serializes) the first field
and then uses its value to determine the desired behavior for
parsing and serializing the second field. However, as a generic
combinator, Pair operates on anonymous tuples, so if VestDSL
only used the Pair to encode dependent struct formats, users
would have to work with the tuple type (u24, byte_array), which
is not very ergonomic. Instead, VestDSL also leverages the
Mapped combinator in VestLib to convert between the anony-
mous tuples and the corresponding nominal struct types in
Rust (e.g., a struct with fields x and y for format c).
Bounded Repetitions. Another common pattern in binary
formats is a contiguous sequence of homogeneous data ele-

ments, often referred to as a list or vector format. For security
and predictable parsing, these repetitive formats often need to
be bounded, either by a preceding count field indicating the
number of elements, or by a preceding length field indicating
the total number of bytes occupied by the following elements.
VestDSL supports both kinds of repetitions, as shown in rows

7 and 8 of Figure 4. The syntax [a; N] represents a fixed
number of repetitions of the format, where N can be a constant
integer or a dependent value. The semantics of this construct
is defined by VestLib’s RepeatN combinator, which takes a
given combinator and an integer n and repeats the combinator
exactly n times.

On the other hand, the syntax [u8; @len]�= Vec<d> in row
8 defines a length-bounded repetition. The infix operator
�= (monadic bind) is used to re-interpret parsed bytes into
a different format, and the Vec construct is used to define an
unbounded repetition (via the Repeat combinator) of the for-
mat d. Crucially, the semantics of �= defined by the AndThen

combinator ensures that for security, Vec<d> must consume
exactly @len bytes. Both formats correspond to Rust’s vector
type Vec<T>, where T is the data type of the repeated format.
Variant Formats. One of the most interesting and challenging
formats to support in a verified parser/serializer framework
are variant formats. These formats often define structures that
can take multiple forms. The simplest variant format is an
optional format, as shown in row 9 of Figure 4. The format g
wraps a 32-byte array with the Option construct. The semantics
of this format is defined by the Opt combinator, where for
parsing, it invokes the inner combinator and returns None if the
inner combinator fails, and for serialization, it serializes the
value if it exists, or does nothing if the value is None.

More complex variant formats include unions, which can
be implicitly tagged, explicitly tagged, or even untagged. For
instance, the format h in row 11 is an implicitly tagged union,
where the body of the format definition uses the choose con-
struct to dynamically select between two formats c and e

based on the value of an external enumeration format @flag.
The implicitly tagged union can be made explicit by defining
a struct format that includes a @tag field preceding the union
field, as shown in the definition of format i. VestDSL uses
a combination of VestLib’s Choice, Cond, and Mapped combina-
tors to define the semantics of tagged unions. The (ordered)
Choice combinator takes two combinators and returns the re-
sult of the first if it succeeds; otherwise, it backtracks and
returns the result of the second. The Cond combinator takes a
boolean expression and only invokes the given combinator
if the expression evaluates to true. Lastly, the Mapped combi-
nator applies the isomorphism between structural sum types
(nested Eithers) and Rust’s nominal enum types after parsing
and before serialization, exposing an ergonomic interface to
users, similar to the struct format. For untagged unions like
the format msg in row 12 , VestDSL uses Choice and Mapped to
define its semantics in a similar manner.

It is important to note that variant formats are only condi-

tionally secure. For example, if we modify row 9 to Option

<[u8; 0]> or row 12 to choose { A(u8 | 0..7), B(u8 | 5..10)}, neither
format remains secure. We discuss the formal security of such
formats in §4, and provide additional examples in §6.

3.2 A Compositional Combinator Library
We now turn to VestLib, a library of verified parser/serializer
combinators in Verus. Aside from providing the semantic
underpinning of VestDSL, expert developers may also use
VestLib directly to implement new combinators. All VestLib
combinators are designed to be high performance: both in
generated concrete implementations and verification time.

We implement our combinator library using Rust/Verus’s
excellent support for traits. In Rust, traits define a set of meth-
ods and associated types that types must implement, similar
to interfaces or type classes in other languages. For example,
one can define a trait Parser with an associated type Output

and a method parse that takes a byte slice and returns a value
of type Self::Output.

1 trait Parser {
2 type Output;
3 fn parse(&self, input: &[u8])→Self::Output;
4 }

By defining combinators as first-order, standard types (Rust’s
struct type) that implement certain traits, VestLib avoids the
significant complexity attached to formally verifying data
structures containing arbitrary higher-order functions. Instead,
theorems proven for one of Vest’s combinators can be auto-
matically inherited by any combinator that composes with it,
significantly reducing the proof burden and verification time.

SpecCombinator
type Type;

spec fn parse …
spec fn serialize …

Combinator: View
type Type: View;
exec fn parse …

exec fn serialize …

Obeys

Proves

Abstracts

Has a
view

Extends
proof fn theorem…

proof fn lemma…

proof fn corollary…

SecureCombinator
: SpecCombinator

Figure 5: VestLib’s Trait-based Architecture.

As described in §2, VestLib’s design seeks to separate
a combinator’s specification, implementation, and correct-
ness proofs. We achieve this through a trait-based inter-
face with three main traits: Combinator, SpecCombinator, and
SecureCombinator. Figure 5 illustrates their interactions. A
SpecCombinator is any type that implements the SpecCombinator

trait, which defines the specification (a mathematical view) of
a combinator. It includes Verus’s spec-mode ghost functions
parse and serialize, as well as an associated type Type that

represents the abstract data type of the format. In contrast,
a Combinator defines the concrete data type of the format, as
well as the actual, efficient implementations of exec-mode
functions for parsing and serializing, which are proved to
match the behavior of the corresponding SpecCombinator. A
SecureCombinator is a sub-trait of SpecCombinator and defines a
set of correctness and security properties that must be proven
for the SpecCombinator to be considered secure.

Notably, each Combinator must implement the View trait, and
through trait bounds at the Rust level, we force this view
to be a SecureCombinator. This design has two key benefits.
First, it makes VestLib developers specify the behavior of
an executable combinator, as failing to do so will result in a
Rust compiler error indicating that the View trait is not im-
plemented. Second, it ensures that the specifications pro-
vided by VestLib developers are correct and secure by re-
quiring machine-checked proofs of the properties defined by
the SecureCombinator trait. By eschewing higher-order func-
tions, our trait-based design provides fast verification times,
allowing developers to quickly iterate through a “specify-
implement-verify” workflow. More detail about our combina-
tor design is given in Appendix A.

4 Vest’s Correctness & Security

Central to Vest is its strong correctness and security guaran-
tees, which lie along three axes:

• Functional Correctness and Memory Safety. 3 All
Vest executable parsers/serializers are proven equivalent
to their specs (§3.2), written in simple, pure functions
over mathematical sequences of bytes. Functional equiv-
alence precludes crashes, non-termination, memory un-
safety, and integer overflows.

• Parser & Format Security. Our proof fns in §3.2 prove
strong security lemmas for each combinator (§4.1). Es-
sentially, each parser and serializer must be mutually
inverse, which eliminates large classes of vulnerabilities,
e.g., format-confusion [59] and malleability [50] attacks.

• Side-Channel Resistance. A key novelty of Vest is
its support for side-channel resistance, which prevents
parsers that operate over secret data from leaking it
through timing channels or memory access patterns. We
employ type abstraction to generically protect parser
combinators against side-channel attacks (§4.2).

4.1 Formal Correctness of Binary Formats
We outline the main correctness and security guarantees of all
VestLib combinators. As identified in prior work (e.g., Com-
parse [59]), we need parsers and serializers to be mutually
inverse. Requiring parsing and serialization to be inverse rules
out large classes of vulnerabilities, as we discuss below.

3Vest does not use unsafe Rust.

To formalize our mutual inverse properties, we first for-
mally define a binary format and its constituent routines. Let
B= {0, . . . ,255}∗ denote the set of byte sequences. Then, a
binary format F is a tuple (T,P,S), where: T is an abstract
data type; P : B→ (T×N)+⊥ is a partial parsing function
mapping bytes to a representation in T, along with the number
of bytes parsed; and S : T→ B is a total serializing function
that returns a byte sequence. Parsers may fail and return ⊥
due to unexpected or malformed inputs (e.g., not enough data
available for parsing).

We formally state our mutual inverse properties via two
Round Trip theorems. We prove these Round Trip theorems
for all Vest formats, including our case studies (§6).
Theorem 1 (1st Round Trip Theorem). For every binary
format F = (T,P,S), if S(v) returns b ∈ B, then P(b) 6= ⊥
and returns (v, |b|), where |b| is the length of b.

Intuitively, Theorem 1 says that if serializing a structured
value gives a byte sequence, then parsing that byte sequence
must succeed and return the original value. This defines cor-
rectness of the parser with respect to the serializer.
Theorem 2 (2nd Round Trip Theorem). For every binary
format F = (T,P,S), if P(b) 6= ⊥ and returns (v,n), then
S(v) 6=⊥ and returns b[0, . . . ,n].

Similarly, Theorem 2 states that if parsing succeeds, then
serializing the result must give back the same byte buffer (up
to leftover bytes from parsing). This defines correctness of
the serializer with respect to the parser.

Crucially, both theorems are strong enough to derive several
important security properties for binary parsers and serializers.
For instance, from the 1st Round Trip Theorem, we prove
that a serializer is injective, meaning that distinct structured
values are always serialized into distinct byte sequences. This
property ensures that each byte sequence uniquely represents
a structured value, preventing format ambiguities that could
lead to format confusion attacks [59]. Similarly, from the 2nd
Round Trip Theorem, we prove that a parser is non-malleable,
meaning that a byte sequence cannot be altered in a way
that misleads the parser. This ensures that every well-formed
structured value has a unique byte sequence representation,
preventing a range of parser malleability attacks [50, 54].
Auxiliary Lemmas. To prove our round trip properties, we
rely on several auxiliary lemmas for each combinator. First,
following prior work [50, 59], we prove that certain parsers
satisfy a prefix lemma. This lemma asserts that if a byte se-
quence b parses to a value v, then any extended sequence
b+ b′ must also parse to v with the same number of bytes
parsed. Prefix lemmas are essential for parsing sequentially
composed formats (e.g., structs and repetitions), as the parser
must recognize when one field ends and the next begins.

Next, we prove that certain parsers are disjoint from others,
ensuring non-ambiguity in untagged unions (§3.1, §6.3). We
again leverage Rust’s trait system for compositional verifica-
tion; by generically implementing disjointness lemmas for

higher-order combinators (e.g., Pair, Choice), we can automat-
ically derive disjointness for user-defined combinators.

Finally, we prove each combinator’s productivity, ensuring
that successful parsing or serialization consumes or produces
at least one byte. Similar to the theory of derivatives for regu-
lar expressions [48], we require a combinator to be productive
whenever we apply it zero-or-more times (e.g., Opt, Repeat).

4.2 Side-channel Security

Motivation. Defending against side-channel attacks is par-
ticularly important for parsers and serializers that handle se-
cure data. For example, consider a virtual private network
(VPN) protocol in which two peers exchange encrypted IP
packets over a public network. When an encrypted packet
arrives, the recipient must parse the decrypted data according
to the IP packet format; if the parser’s execution time depends
on parsed values, then it could disclose information about
the secret IP traffic. Attacks of this flavor have been demon-
strated against the Zcash blockchain [56] and the mbedTLS li-
brary [6], underscoring the importance of side-channel-secure
parsing and serialization.
Our Approach. Vest protects against classic digital side-
channel attacks by supporting a form of type abstraction,
similar to prior work [62]. This technique encapsulates se-
cret data inside of an opaque wrapper type, where application
code cannot use values of that type for control flow or memory
accesses. Our wrapper type prevents surrounding code from
accessing the values of individual bytes, but does not prevent
code from reading the size of protected bytestrings or from
slicing those bytestrings into multiple parts. In this way, our
side-channel resistance properties guarantee privacy for the
values of data but not their lengths.

To construct this opaque wrapper type, one could naively
hardcode a particular wrapper inside of Vest, e.g., one named
SecretBytes. While this would suffice for simple use cases,
advanced applications may need custom security policies
(e.g., declassification [24] policies); these would necessitate
custom opaque wrapper types that implement the desired
policy. Hardcoding SecretBytes within Vest would preclude
applications from defining their own wrapper type (at least,
without forking Vest), effectively forcing all users of Vest to
adhere to whatever security policy we define.

In contrast, our approach to side-channel security does not
fix a particular “secret” type, but instead exposes an interface
on buffers that specifies which operations are needed to parse
and serialize. Thus, Vest can provide constant-time parsing
for exactly the formats that support it, i.e., those that do not
rely on reading specific concrete values during parsing. Users
can define their own opaque types according to their desired
security policy—the types need only implement our interface
to work with Vest.

We define our buffer interface via Rust traits. The strictest
interfaces are given by the traits VestInput and VestOutput,

which only allow one to retrieve the buffer’s length and
set/retrieve subranges of buffers. For parsers and serializers
that require viewing the data (e.g., converting between two
bytes and a u16), we have the interfaces VestPublicInput and
VestPublicOutput, which extend their corresponding strict in-
terfaces. These interfaces are for fully public bytes, since they
allow the code freely convert between the underlying buffer
and a Rust slice of u8s. The full trait definitions for our buffer
interface are provided in Appendix A.
Use Cases. VestDSL defaults to generating parsers and seri-
alizers that operate over VestPublicInput and VestPublicOutput

types. This allows VestDSL to support rich binary formats
that contain primitive integer types and arbitrary dependen-
cies (which may necessitate inspecting the input data when
parsing). For side-channel resistant formats, developers can di-
rectly use VestLib and define the custom SecretBytes type dis-
cussed above. The SecretBytes type may implement only the
VestInput and VestOutput traits, hiding the underlying buffer
permanently, or it may also allow the user to retrieve the value
of the buffer at a particular index, subject to user-defined
declassification constraints.
Caveats. Although attempts to introduce side-channel vul-
nerabilities in our implementation, e.g., by branching on or
accessing memory using a secret value while parsing, are
immediately rejected by rustc, Vest does not provide a formal
statement of side-channel resistance, as Verus cannot directly
express properties about execution time. Additionally, as dis-
cussed in §1, Vest provides side-channel resistance only at
the Rust source level; we trust rustc not to introduce control-
flow or memory-access dependencies that violate our type
abstraction. Formalizing a cost semantics [19] and writing a
constant-time preserving compiler [15, 23] for Rust remains
an open problem.

5 Vest’s Implementation

VestLib includes ten primitive combinators, nine higher-order
combinators, and five derived combinators. Each combinator
comes with a specification, implementation, and formally ver-
ified correctness and security properties. In total, this amounts
to ∼6K lines of Verus code (with ∼1:1:1 ratio of spec, proof,
and exec code). Notably, VestLib does not rely on any external
Rust libraries (other than Verus), and every component is for-
mally verified, ensuring there are no unverified, trusted com-
ponents. With our carefully designed, trait-based interface for
combinators and Verus’s excellent verification performance,
the entire library verifies in less than 10 seconds.

We develop the VestDSL compiler in 5,807 lines of Rust
code (including 1,240 for parsing, 1,442 for elaboration and
type checking, and 3,125 for code generation). As VestDSL
is designed as a standalone language, we include features to
allow users to define formats in a succinct and precise manner.
These features include a basic macro system, exhaustiveness
checks for the choose construct, cyclic format checks, type

inference for enumerations, and type checking for dependent
and parametric format definitions and invocations. To provide
users with an ergonomic interface for the generated data types,
we adhere to user-provided format names, field names, and
variant names, generating idiomatic Rust type definitions.

6 Case Studies

We present three case studies to demonstrate Vest’s capa-
bilities: the Bitcoin block and transaction formats, TLS 1.3
handshake message formats, and the WebAssembly binary
format. We choose these binary formats because they are
widely used in practice, have complex structures, and are
designed for high-performance and security-critical applica-
tions. Although there are existing verified [50] or partially
verified [21, 50] parsers and serializers for these formats, we
demonstrate that Vest offers greater expressivity and orders
of magnitude faster verification.

Producing the necessary format definitions in VestDSL re-
quired careful work reading through existing documentation
and occasional corrections to achieve compatibility. Nonethe-
less, using lines of code as a crude metric, we can compare
the size of the baseline, manually implemented parsers and
serializers to the size of the VestDSL format descriptions
and find that VestDSL provides substantial productivity gains.
Specifically, the baseline Bitcoin library is ∼2,000 LoC (vs.
∼67 LoC in VestDSL), TLS is ∼7,000 LoC (vs. 500), and
WebAssembly is ∼30,000 LoC (vs. 600 LoC).

6.1 Bitcoin Block and Transaction Formats
A Bitcoin block consists of a block header and a variable num-
ber of transactions. Parsing and serializing the block header
is fairly simple, as it is a fixed-size sequence of 80 bytes
containing fields that are all built-in formats in Vest: the ver-
sion (u32), previous block hash ([u8; 32]), Merkle root ([u8; 32]),
timestamp (u32), target (u32), and nonce (u32). In contrast, the
Bitcoin transaction format is more complex, particularly with
the segregated witness (segwit) extension [42], which prior
work like EverParse [50] cannot handle out-of-the-box.

The left of Figure 6 shows the binary structure of a Bitcoin
transaction with the segwit extension, with a description of
each field. Crucially, the format contains an optional witness
flag after the version field and a list of witnesses whose value
is dependent on the witness flag and the input transactions.
This mix of interleaved dependencies and variant formats
makes the transaction format challenging to define.
Bitcoin Variable-length Integer. To specify the Bitcoin
transaction format, we first add a primitive format btc_varint
in VestDSL that represents the Bitcoin variable-length inte-
ger [17], which uses a space-efficient encoding illustrated in
Figure 7. These integers are used to represent the number
of transaction inputs, outputs, and witnesses. We implement
btc_varint using VestDSL, as shown in the btc_varint_helper

definition below, except for a custom conversion function that
maps between the internal data type of btc_varint_helper and
the appropriate Rust integer type. Importantly, we implement
the custom conversion with VestLib combinators, ensuring
that btc_varint enjoys the same correctness and security guar-
antees as other Vest formats.

1 btc_varint_helper = {
2 @tag: u8,
3 rest: choose(@tag) {
4 0..0xFC⇒ empty,
5 0xFD⇒ u16 | 0xFD..0xFFFF,
6 0xFE⇒ u32 | 0x10000..0xFFFFFFFF,
7 0xFF⇒ u64 | 0x100000000..,
8 },
9 }

Bitcoin Transaction Format in VestDSL. Using btc_varint,
we can now specify the Bitcoin transaction format in VestDSL,
shown in Figure 6. This format is tricky to specify because
of the optional witness field and the associated witness data.
We identify three subtle points from the informal description
of the Bitcoin transaction format from the Bitcoin wiki. First,
the witness flag, if present, is always two consecutive bytes [0
x00, 0x01]. Second, the number of transaction inputs, encoded
as a btc_varint, is never zero. Third, the witness count is equal
to the transaction input count, and the witness data is omitted
if the witness flag is absent.

Given these points, we specify the Bitcoin transaction for-
mat as a choice of two sub-formats: one for the newer, segwit-
enabled case and one for the legacy, non-segwit case. The
parser of the tx format first parses version as a u32, then parses
@txin_count as a btc_varint, and finally chooses between the
segwit and non-segwit sub-formats based on the value of
@txin_count. If @txin_count is 0x00, the tx_segwit format is cho-
sen, where 0x00 is interpreted as the first byte of the witness
flag; otherwise, the tx_nonsegwit format is chosen. tx_segwit
contains the remaining byte of the witness flag, the transac-
tion inputs, the transaction outputs, the witnesses, and the
lock_time, while tx_nonsegwit simply takes the number of
transaction inputs as a parameter and omits the witnesses.
Importantly, txins and witnesses in tx_segwit are both bounded
by the number of transaction inputs @txin_count, satisfying the
third point above.

6.2 TLS 1.3 Handshake Messages
TLS 1.3 is a widely adopted cryptographic protocol that
ensures secure communication over the internet by provid-
ing confidentiality, integrity, and authenticity of data ex-
changed between clients and servers. The security of TLS
1.3 relies on the correct implementation of its underly-
ing binary formats, which are detailed across numerous
RFCs [14, 16, 29, 31, 39, 45, 47, 51, 60]. Crucially, the high-
level message serialized by the sender must match the value
parsed by the recipient, which is satisfied by the mutual inver-
sion property guaranteed for all parsers and serializers gener-

Size Data Type Descriptions and comments

4 uint32_t Transaction format version number

0/2 optional

uint8_t[2]
Witness flag. If present, always
0001, indicates a segwit transaction

1+ var_int txin_count, # of trans. inputs (> 0)

41+ tx_in[] List of 1 or more trans. inputs

1+ var_int txout_count, # of trans. outputs

9+ tx_out[] List of 1 or more trans. outputs

0+ tx_witness[] List of witnesses, 1 for each tx_in;
omitted if the witness flag is absent

4 uint32_t Block number or timestamp at
which this transaction is unlocked

1 tx = {
2 version: u32,
3 @txin_count: btc_varint,
4 rest: choose(@txin_count) {
5 0x00⇒ tx_segwit,
6 _⇒ tx_nonsegwit(@txin_count),
7 },
8 }

1 tx_segwit = {
2 const flag: u8 = 1,
3 @txin_count: btc_varint,
4 txins: [txin; @txin_count],
5 @txout_count: btc_varint,
6 txouts: [txout; @txout_count],
7 witnesses: [witness; @txin_count],
8 locktime: lock_time,
9 }

1 tx_nonsegwit(@txin_count: btc_varint) = {
2 txins: [txin; @txin_count],
3 @txout_count: btc_varint,
4 txouts: [txout; @txout_count],
5 locktime: lock_time,
6 }

Figure 6: Bitcoin Transaction Format. As described in the Bitcoin wiki [18] (left) and the VestDSL specification (right).

Size Format
1 A uint8_t less than 0xFD
3 0xFD followed by a uint16_t in [0xFD, 0xFFFF]
5 0xFE followed by a uint32_t in [0x10000, 0xFFFFFFFF]
9 0xFF followed by a uint64_t greater than 0xFFFFFFFF

Figure 7: Bitcoin Variable-length Integer Format [17]. An
integer less than 0xFD is encoded as an 8-bit integer. Larger
integers are encoded as a 1-byte prefix indicating the integer
length followed by the (little endian) integer.

ated from VestDSL. In this section, we highlight key aspects
of the TLS 1.3 handshake message formats that are prone
to implementation errors and demonstrate how VestDSL can
avoid such pitfalls.
Handling Tag-Length-Value (TLV) Formats. TLV formats
are commonly used in TLS 1.3 handshake messages to en-
code data types. Each TLV element consists of a type (tag)
identifier, the length of the data, and the value itself. This
structure allows for flexible and extensible data encoding
but also introduces potential pitfalls, such as incorrect length
calculations and improper handling of nested TLV elements.
Figure 8 illustrates the VestDSL definition of the TLS 1.3
handshake message format. The handshake parser first parses
two dependent fields sequentially: the message type @msg_type
(as a handshake_type, an enumeration format) and the @length
(as a u24, a 3-byte unsigned integer). It then extracts @length
bytes from the input buffer as the payload and parses this
payload (instead of the original input buffer) using a choose

construct based on @msg_type. Crucially, the �= operator
in VestDSL ensures that the sub-format fully consumes the
payload field, adhering to the requirements specified in the
RFC. Additionally, since the �= operator can be chained
within the definition of sub-formats, it ensures this length
restriction transitively for any nested TLV-encoded messages.

1 handshake = {
2 @msg_type: handshake_type,
3 @length: u24,
4 payload: [u8; @length]�= choose(@msg_type) {
5 ClientHello⇒ client_hello,
6 ServerHello⇒ sh_or_hrr,
7 NewSessionTicket⇒ new_session_ticket,
8 EndOfEarlyData⇒ empty,
9 EncryptedExtensions⇒ encrypted_extensions,

10 Certificate⇒ certificate,
11 CertificateRequest⇒ certificate_request,
12 CertificateVerify⇒ certificate_verify,
13 Finished⇒ finished(@length),
14 KeyUpdate⇒ key_update,
15 },
16 }

Figure 8: TLS 1.3 Handshake Message in VestDSL.

Handling Implicitly Tagged Union Formats. Implicitly
tagged unions are formats whose structure is determined by
external (or contextual) information, rather than an explicit
tag, easily leading to ambiguities and implementation errors.
For example, the finished message shown in Figure 8 is an
implicitly tagged union where the message type is determined
by the digest size of the hash algorithm negotiated during
the handshake. We can easily express this using VestDSL’s
parametric formats:

1 finished(@size: digest_size) = choose(@size) {
2 HashLegacy⇒ [u8; 12],
3 Sha256⇒ [u8; 32],
4 Sha384⇒ [u8; 48],
5 Sha512⇒ [u8; 64],
6 _⇒ [u8; @size],
7 }

In contrast, tools like EverParse [50], which do not support
parametric formats, must either express implicitly tagged
unions as uninterpreted bytes (essentially not parsing the for-

mat) or parse them in a staged fashion, which is not compo-
sitional and requires the user to manually invoke the correct
parser/serializer based on the external information.

6.3 WebAssembly Binary Format
WebAssembly (Wasm) [32] is a binary instruction format
that serves as a portable compilation target for languages like
C, C++, and Rust. Wasm is designed both for fast decoding
and execution and for safety and security, making it suitable
for high-performance applications that execute in untrusted
environments. Naturally, these benefits depend on the format
decoder and encoder implementations being secure, correct,
and efficient, which is precisely what Vest offers.
Capturing Common Patterns with Macros. The official
Wasm binary format specification [13] describes some of its
formats using grammar rules that involve “meta-variables”.
For example, the section grammar rule is defined as a con-
stant byte (section ID) followed by an unsigned integer and
some arbitrary grammar rule.

sectionN(B) ::= N:byte size:u32 cont:B (‖B‖= size) | ε

Here N can be instantiated with concrete byte values and
B can be instantiated with any grammar rule that would
consume size number of bytes. Since there are more than
100 formats in the Wasm spec, manually expanding such
meta-variables into concrete formats in VestDSL would
be tedious and error-prone. For such cases, VestDSL
supports user-defined macros, allowing us to mirror the
Wasm spec. For example, the section rule above can
be simply expressed and reused in VestDSL as follows:

1 macro section!(n, t) = {
2 @size: wrap(u8 = n, u32),
3 cont: [u8; @size]�= t,
4 }

memsec = section!(5, mem)
globsec = section!(6, global)
expsec = section!(7, export)
...

Securely Defining Variant Formats. Wasm includes numer-
ous variant formats that represent choices between different
language constructs. As discussed in §3.1 and §4.1, variant
formats like Choice or Opt are only conditionally secure. We
define these variant formats precisely as specified in the Wasm
documentation and rely on Vest to verify the resulting parser
and serializer and confirm that the Wasm spec is secure.

For instance, Wasm defines the valtype rule as a choice
between numtype, reftype, and funcref, expressed in
VestDSL using the choose construct. The generated parser
and serializer can only be secure if the numtype, reftype, and
vectype formats are mutually disjoint. As these three formats
are indeed defined as distinct enumerations in the Wasm spec,
Verus verifies the disjointness conditions Vest generates.

As another example, all instantiated sections discussed above
are defined as optional formats in the Wasm specification,
which means that a module with zero sections present and a

module with all sections present are both valid. This kind of
format is non-ambiguous only if each of the sections is pro-
ductive—i.e., non-empty. Again, the Wasm spec requires that
all sections, if present, must be non-empty (with an explicit
section ID), and Vest formally verifies this property.
Securely Omitting Parsed Data. Decoding is just the first
step in executing a Wasm module, so it is important to provide
a clean interface for the resulting data types to make them
easy to use in the rest of the Wasm interpreter or compiler. For
instance, the import description format importdesc is defined
as a tagged union of four different types, which should ideally
be parsed into a high-level sum type that abstracts away tag
details and allows for pattern matching, as shown below:

importdesc ::= 0x00 typeidx ⇒
| 0x01 tabletype

| 0x02 memtype

| 0x03 globaltype

importdesc ::= fun typeidx

| tab tabletype

| mem memtype

| glb globaltype

Unfortunately, existing verified binary parsing and
serialization frameworks do not support omitting parsed
data and must expose low-level binary format details to
the rest of the system. With Vest, however, we can define
the importdesc format as a choice between four wrapped sub-
formats, generating a high-level, easy-to-use enum type in Rust:

1 importdesc = choose {
2 Fun(wrap(u8 = 0, typeidx)),
3 Tab(wrap(u8 = 1, tabletype)),
4 Mem(wrap(u8 = 2, memtype)),
5 Glb(wrap(u8 = 3, globaltype)),
6 }

1 enum Importdesc {
2 Fun(Typeidx),
3 Tab(Tabletype),
4 Mem(Memtype),
5 Glb(Globaltype),
6 }

Importantly, allowing users to omit fields arbitrarily can
lead to ambiguities, so VestDSL restricts data omission to the
wrap construct, ensuring that omitted fields are constant, stati-
cally known values. In this way, Vest remembers the omitted
fields and correctly encodes each variant during serialization.
Limitations. Wasm represents structured control flow in-
structions (block, loop, and if) as nested, recursive for-
mats. However, decoding such recursive structures can be
resource-intensive and may cause stack overflow issues even
for moderately-sized modules [4]. To address this, we follow
the approach of existing Wasm binary parsers [4, 12] and
parse the instructions as a flat vector. One caveat is that the
opcode 0x0B is used both for control flow terminators and to
indicate the end of the instruction stream. Since Vest does
not have a concept of a “stack counter” we cannot validate
the well-bracketedness of nested instructions directly. Instead,
we use a preprocessor to encode the size before each instruc-
tion stream. This limitation is also present in prior verified
WebAssembly parsers, such as vWasm [21], which uses Ev-
erParse [50] and employs a more complex preprocessor to
handle instructions.

Bitcoin Vest RustBitcoin
Parsing (ms) 253.6 593.9
Serializing (ms) 252.1 93.7
TLS Vest Rustls
Parsing (µs) 76.6 95.7
Serializing (µs) 18.4 41.9
WebAssembly Vest Cranelift
Parsing (ms) 8.8 8.2

Figure 9: Runtime Performance Comparison Between Vest
and Unverified Baselines. Smaller is better.

7 Evaluation

We aim to evaluate Vest against existing parsers and serializers
to answer the following questions:
Q1 Does Vest generate parsers and serializers with com-

petitive performance compared to state-of-the-art veri-
fied/unverified implementations (§7.1)?

Q2 How does the verification performance of Vest compare
to prior verified parsers and serializers (§7.2)?

In answering both questions, we use a machine with an Intel
Core i9-13950HX CPU and 32 GiB of RAM. To reduce noise,
we disable hyper-threading and isolate a performance core
pinned to the highest frequency.

7.1 Runtime Performance
We evaluate the performance of Vest-generated parsers and
serializers with a real-world benchmark for each case study.

• Bitcoin 1K: 1,000 uniformly sampled blocks (out of
~870,000 blocks at the time of writing) from the Bitcoin
main chain, with about 670 MB of data.

• TLS/Tranco: Handshake traces of TLS connections from
making HTTPS requests the top 100 most visited do-
mains according to the Tranco list [40].

• PolyBenchC [9]: A canonical Wasm benchmark [32]
consisting of 30 C programs compiled to Wasm.

On these benchmarks, we evaluate Vest as well as
parsers and serializers from three other state-of-the-art,
hand-optimized libraries: Rust Bitcoin [10], Rustls [11], and
wasmparser [12] (used in Cranelift [7]). All benchmarks are
performed via the Rust Criterion benchmarking library [8],
with a sample size of 100 and a measurement time of 5
seconds. We did not test serialization performance for We-
bAssembly, as wasmparser does not have a serializer. Note
that wasmparser is a lazy parser that generates events for each
AST node without returning an entire parsed AST. While lazi-
ness can benefit performance and be useful in certain cases,
popular Wasm toolchains typically need the full AST for fur-
ther compilation/analysis. Hence, we construct a full AST
from the events generated by wasmparser to ensure a fair
comparison with Vest’s eager parser.

LoC (w/o comments) Verif. Time
VestDSL QD Rust C Vest EverParse

Bitcoin 67 27 2,185 1,344 2.7 s 121 s
TLS 502 919 17,425 192,229 43.9 s 4 h
Wasm 569 501 16,836 45,402 52.7 s 29 m

Figure 10: Vest Case Studies. Left to right, we show: the num-
ber of lines of VestDSL code; the number of lines of Quack-
yDucky (QD) code (the frontend of EverParse [50]); the to-
tal number of lines of generated Rust code by the VestDSL
compiler; the total number of lines of generated C code by
QuackyDucky; and the wall-clock time for Verus to verify Vest
generated code vs F? to verify EverParse generated code.

Figure 9 summarizes our results. Parsers generated by Vest
perform on par or better than the unverified baselines. Vest’s
Bitcoin parser outperforms Rust Bitcoin by over 2.3×, Vest’s
TLS parser outperforms Rustls by 1.25×, and Vest’s We-
bAssembly parser is comparable in performance to Cranelift’s
parser. Vest’s serializers are also competitive, beating Rustls
by 2.3×, although lagging behind Rust Bitcoin by 2.7×.

Vest’s parsers are faster than Rustls and Rust Bitcoin be-
cause they perform fewer copies and runtime checks (e.g.,
arithmetic overflow checks, termination checks, and most
bounds checks are provably eliminated). Vest’s TLS serializer
is faster than Rustls because it writes to a pre-allocated buffer
in place; in contrast, since it lacks the ability to (provably)
predict the size of the serialized output, Rustls must allocate a
new buffer for each serialization and extend it as needed. On
the other hand, Rust Bitcoin’s serializer is faster than Vest’s
because it hand-optimizes the structure of nested vectors used
for the SegWit extension.

7.2 Verification Performance

Besides runtime performance, another important metric for
the usability of Vest is its verification performance, i.e., the
time it takes to verify the generated parser and serializer im-
plementations. This directly correlates to the productivity of
using Vest, as a faster verification time allows the developer to
discover issues early and iterate more on the design or proofs.

We compare the verification time of Vest (Figure 10)
against three other formally verified implementations all writ-
ten in the EverParse framework [50]: Bitcoin and TLS formats
from the original EverParse work, and the WebAssembly for-
mat from vWasm [21]. EverParse Bitcoin does not support the
SegWit extension (while Vest does), and EverParse verifies
both TLS 1.2 and 1.3 (while Vest only verifies TLS 1.3).

In a single thread, Vest’s combined verification time for
both parsers and serializers beats EverParse’s Bitcoin parser
by 44×, EverParse’s TLS parser by 328× , and vWasm’s
WebAssembly parser by 33×. Thus, Vest improves on the
verification time of prior work by orders of magnitude.

We attribute Vest’s fast verification performance to several
factors. First, Vest is entirely implemented in Verus, which is
designed with verification performance in mind. For instance,
by utilizing Rust’s ownership type system, Verus eliminates
the need for the extensive heap reasoning and complex mem-
ory safety proofs found in other verification tools such as
Low? (used by EverParse for zero-copy parsers).

Second, Vest’s trait-based combinators (§3.2) significantly
reduce the need for complex quantifier reasoning over higher-
order functions. Combined with Verus’s deliberately conser-
vative use of quantifiers, this approach enhances both the
performance and stability of SMT queries.

Finally, the design of the VestDSL compiler plays a cru-
cial role in verification performance. In an earlier version
of Vest, we noticed that the performance of type checking
and verification in Verus degraded drastically as the complex-
ity of the combinators grew (e.g., in deeply nested choice
combinators), which was due to the interaction between com-
plex trait bounds in Vest combinators. To mitigate this, we
introduced an optimization in the VestDSL compiler to recur-
sively wrap sub-combinators in a fresh combinator without
trait bounds, which essentially caches Rust’s trait resolution
of sub-combinators and improves the performance of both the
Rust type checker and Verus on the generated code. This op-
timization improved the performance of verification by over
60×.
Maintainability/Extensibility. Originally, Vest’s parsers and
serializers had much lower runtime performance compared to
the unverified industrial baselines. This was mainly because
our initial focus on verification led us to use owned types
for both parsing and serialization, which simplified reasoning
but resulted in significant memory overhead. Subsequently,
we implemented and verified several optimizations on both
interfaces that significantly enhanced runtime performance,
without sacrificing correctness or security. Thanks to our uni-
fied combinator interface, these improvements typically re-
quired only one or two person-weeks of work (including both
implementation and verification).

While a full evaluation of extensibility would require a
complex user study, anecdotally, adding a new combinator
to prior verification frameworks [50, 54] required significant
time from deep experts in those frameworks, whereas a grad-
uate student with prior Verus experience, but no experience
with Vest, used VestLib’s combinator interface to add 57 new
project-specific combinators in less than 3 weeks.

8 Related Work

While there are numerous industry tools for generating binary-
format parsers and/or serializers [1–3, 5, 30], here we focus
on verified frameworks and how their features compare with
Vest’s. As context, EverParse [50] and EverParse3D [54] use
the Low? [49] subset of F? [53] and then extract C code.
Narcissus [25] is verified in Coq [55] and Comparse [59]

Vest
—

This
Pap

er

Eve
rP

ars
e [50

]

3D
[54

]

Com
pa

rse
[59

]

Narc
iss

us
[25

]

vG
S [57

]

Parse+Serialize
DSL
Dependencies
Parameters
Repetition
Variants
Non-malleable
Non-ambiguity
Fast Execution
Fast Verif.
No Dbl Fetch
Side-channels

– Provides – Does not provide –Partially provides

Figure 11: Comparison of Vest and other verified frameworks.

is verified in F?, but both extract OCaml code. van Geest
and Swierstra (vGS) [57] use Agda [22] for verification and
extract Haskell code. In contrast, Vest directly produces Rust
code with Verus [38] annotations. All frameworks produce
parsers; all but EverParse3D produce serializers.

Below, we compare these frameworks based on the features
they and we consider important for expressive and secure
parsers and serializers. Figure 11 summarizes the comparison.
DSL. Instead of a dedicated DSL, Narcissus and Comparse
embed their DSLs in a proof assistant, which requires users to
learn a fair bit of syntax specific to that proof assistant. These
DSLs also tend to be less succinct than VestDSL; e.g., for
TLS 1.3 Vest uses ∼500 LoC vs. ∼1,000 for Comparse.
Dependent Formats. The format definition DSL in EverParse
has limited support for data-dependency; e.g., a union must
have its tag immediately preceding it, precluding interleaved
data dependencies. However, the underlying LowParse library
does support arbitrarily complex data dependencies (with a
similar dependent pair combinator), which is leveraged by
EverParse3D.
Parametric Formats. EverParse and Narcissus lack any sup-
port for parametric formats, while EverParse3D only sup-
ports value-parametric formats (e.g., “casetypes” for implic-
itly tagged unions). Specifically, EverParse3D only generates
validators for each format, requiring the user to supply ad-
ditional imperative actions for parsing the data. In contrast,
Vest directly produces complete parsers. The trade-off is that
EverParse3D offers more fine-grained control over the pars-
ing process (such as avoiding unnecessary allocations), while
Vest offers more robust support for parametric formats (allow-
ing inter-dependencies for all format definitions), albeit with
slightly less flexibility.

Repetitive Formats. Only Vest and EverParse support both
length-bounded and count-bounded repetitions; the others
only support length-bounded repetitions.
Variant Formats. Only Vest supports Choice and Opt formats
with full generality; i.e., their conditional security is man-
ifested formally with our disjointness & productivity lem-
mas §4.1. Comparse briefly mentions disjointness and non-
emptiness (which relates to productivity) in the context of
mathematical relations on binary formats, but it does not for-
mally connect them to concrete parsers and serializers. The
underlying LowParse library for EverParse and EverParse3D
has the notion of a “non-zero-byte” parser kind, which is sim-
ilar to our productivity condition, but it does not relate it to
the serializers.

Other frameworks support limited forms of variant for-
mats. For example, EverParse and Comparse both rely on
F?’s built-in dependent types and the match statement to en-
code tagged unions. The result is that (1) they cannot express
(the secure subset of) untagged unions, and (2) they lack
compositional verification for variant formats. Vest’s Choice

combinator builds up the proofs modularly (pairwise for the
variants), whereas EverParse and Comparse need to gener-
ate ad-hoc match statements for each different variant format
(which also tends to reduce verification performance).
Non-malleability & Non-ambiguity. Vest, Comparse, and
EverParse all prove the bi-directionality of their parsers and
serializers. EverParse3D only proves non-malleability (one
direction of the roundtrip theorems), since it only supports
parsers, while Narcissus and vGS only prove non-ambiguity.
To be fair, non-malleability is not a goal for Narcissus, as they
aim to support non-deterministic formats like Protobuf.
Fast Execution & Verification. Only Vest simultaneously
provides fast implementations and fast verification.
Advanced Security. Only EverParse3D guarantees double-
fetch freedom (useful in concurrent settings). Only Vest pro-
vides basic digital side-channel resistance.

9 Discussion and Future Work

Security Lessons. Parsers and serializers have historically
been a major source of security vulnerabilities. Vest for the
first time demonstrates that even without formal methods ex-
pertise, programmers can productively develop parsers and
serializers that are provably secure (including side-channel
resistance), fast, and easy to use. Vest achieves these conflict-
ing goals by implementing ergonomic, performant, zero-copy
parsers and in-place serializers in Rust; formally verifying the
security properties thereof with Verus; efficiently composing
the implementations and proofs via trait-based combinators;
and exposing the combinators through VestDSL, a DSL that
is easy for non-experts to use.
Verification Lessons. During the development of Vest, we
learned that formal verification is not just a tool for giving
provable correctness/security guarantees to programs, but also

a powerful tool for designing high-quality software. For ex-
ample, during the specification and verification of the Opt

and Choice combinators, we discovered that the roundtrip the-
orems could not be proved without having restrictions on
the combinators’ arguments, which led us to formally define
the concepts of disjointness and productivity (§4.1). Like-
wise, when proving the security properties of the AndThen(A, B)
combinator, we found that A and B must always consume ex-
actly the same number of bytes (§3.1). In contrast, unverified
frameworks [3] often have no such restrictions on combina-
tors, leading to potential ambiguities and surprising behaviors
that can only be discovered at runtime.

Additionally, because our trait-based interface (§3.2) en-
abled quick iteration of the “specify-implement-verify” work-
flow, we were able to efficiently develop and verify optimiza-
tions for the combinators. For example, by enhancing the
pre- and post-conditions of parsing and serialization, we were
able to provably eliminate most runtime checks (e.g., bound
checks, checks for arithmetic overflows, termination checks,
etc.), leading to cleaner implementations and more performant
code than unverified frameworks [3].
Future Work. While Vest is strictly more expressive than
regular grammars (with context sensitivity/lookahead intro-
duced by dependent and variant combinators) and can ex-
press a wide variety of real-world complex formats, it cannot
cover arbitrary formats (which require a Turing Machine).
Adding support for recursive definitions [20] would bring
Vest’s expressiveness on par with PEG/CFG-based parser
generators, though recursive definitions are rarely found in
security-critical formats (as they may give attackers control
over the amount of stack used). Other future work includes
extending Vest to support bit-precise formats [20, 33], which
would permit more compact and efficient parsers and serial-
izers; supporting streaming formats, which would allow for
incremental parsing of large data streams [34]; and finding
ways to securely support malleable formats [58].

Ethical Considerations

This research investigates using formal verification to make
parsers and serializers more correct and secure, and thus does
not carry significant ethical concerns. No attacks or vulnera-
bilities in public software were discovered as a result of this
work.

Open-Science Policy

Our implementation of Vest (§5) and the accompanying case
studies (§6) are publicly available in our open-source reposi-
tory at https://github.com/secure-foundations/vest.
Additionally, a permalink to Vest’s artifact can be accessed at
https://doi.org/10.5281/zenodo.15611769.

https://github.com/secure-foundations/vest
https://doi.org/10.5281/zenodo.15611769

Acknowledgements

This work was supported in part by National Science Foun-
dation (NSF) Grant No. 2224279, funding from AFRL and
DARPA under Agreement FA8750-24-9-1000, and the Future
Enterprise Security initiative at Carnegie Mellon CyLab (Fu-
tureEnterprise@CyLab). Pratap Singh was also funded by the
NSF Graduate Research Fellowship Program under Grant No.
DGE2140739.

We thank the anonymous reviewers for their helpful com-
ments and suggestions. We thank Chris Hawblitzel and the
rest of the Verus team for their constant support and feedback
on Verus-related issues, especially on the development of
VestLib. We also thank Nikhil Swamy and Tahina Ramananan-
dro helping us understand the properties of EverParse and
EverParse3D.

References

[1] Construct 2.10. https://github.com/construct/
construct.

[2] Hammer. https://github.com/abiggerhammer/
hammer.

[3] nom, eating data byte by byte. https://github.com/
rust-bakery/nom.

[4] wasmbin. https://github.com/RReverser/
wasmbin.

[5] What is BinData? https://github.com/dmendel/
bindata.

[6] CVE-2021-24119 (mbedTLS base64 PEM side-
channel vulnerability). https://nvd.nist.gov/
vuln/detail/CVE-2021-24119, July 2021.

[7] Cranelift. https://cranelift.dev/, 2024.
[8] Criterion.rs. https://github.com/bheisler/

criterion.rs, 2024.
[9] Polybench/c. https://github.com/

MatthiasJReisinger/PolyBenchC-4.2.1, 2024.
[10] Rust bitcoin. https://github.com/rust-bitcoin/

rust-bitcoin, 2024.
[11] Rustls. https://github.com/rustls/rustls, 2024.
[12] wasmparser. https://github.com/

bytecodealliance/wasmparser, 2024.
[13] WebAssembly binary format. https://webassembly.

github.io/spec/core/binary/, 2024.
[14] D. E. E. 3rd. Transport Layer Security (TLS) Extensions:

Extension Definitions. RFC 6066, Jan. 2011.
[15] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte,

D. Pichardie, and A. Trieu. Formal verification of a
constant-time preserving c compiler. Proceedings of
the ACM on Programming Languages, 4(POPL):1–30,
2019.

[16] K. Bhargavan, A. Delignat-Lavaud, A. Pironti, A. Lang-
ley, and M. Ray. Transport Layer Security (TLS) Session

Hash and Extended Master Secret Extension. RFC 7627,
Sept. 2015.

[17] Bitcoin Wiki. Protocol documentation: Variable length
integer. https://en.bitcoin.it/wiki/Protocol_
documentation#Variable_length_integer. Ac-
cessed January, 2025.

[18] Bitcoin Wiki. Transaction. https://en.bitcoin.it/
wiki/Transaction Accessed January, 2025.

[19] G. E. Blelloch and J. Greiner. A provable time and
space efficient implementation of nesl. ACM SIGPLAN
Notices, 31(6):213–225, 1996.

[20] C. Bormann and P. Hoffman. Concise binary object
representation (cbor). RFC 8949, Dec. 2020.

[21] J. Bosamiya, W. S. Lim, and B. Parno. Provably-safe
multilingual software sandboxing using WebAssembly.
In Proceedings of the USENIX Security Symposium,
August 2022.

[22] A. Bove, P. Dybjer, and U. Norell. A brief overview of
agda — a functional language with dependent types. In
Proceedings of the International Conference on Theo-
rem Proving in Higher Order Logics, 2009.

[23] S. Cauligi, G. Soeller, F. Brown, B. Johannesmeyer,
Y. Huang, R. Jhala, and D. Stefan. Fact: A flexible,
constant-time programming language. In 2017 IEEE Cy-
bersecurity Development (SecDev), pages 69–76. IEEE,
2017.

[24] S. Chong and A. C. Myers. Security policies for down-
grading. In Proceedings of the 11th ACM conference on
Computer and communications security, pages 198–209,
2004.

[25] B. Delaware, S. Suriyakarn, C. Pit-Claudel, Q. Ye, and
A. Chlipala. Narcissus: correct-by-construction deriva-
tion of decoders and encoders from binary formats.
Proceedings of the ACM on Programming Languages,
3(ICFP):1–29, 2019.

[26] A. Delignat-Lavaud. RSA signature forgery attack in
NSS due to incorrect parsing of ASN.1 encoded Di-
gestInfo. MITRE CVE-2014-1569, Sept. 2014.

[27] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman,
M. Payer, N. Weaver, D. Adrian, V. Paxson, M. Bailey,
and J. A. Halderman. The matter of Heartbleed. In
Proceedings of the Conference on Internet Measurement
Conference (IMC), 2014.

[28] R. Frost and J. Launchbury. Constructing natural lan-
guage interpreters in a lazy functional language. Comput.
J., 32(2):108–121, Apr. 1989.

[29] D. K. Gillmor. Negotiated Finite Field Diffie-Hellman
Ephemeral Parameters for Transport Layer Security
(TLS). RFC 7919, Aug. 2016.

[30] Google. Wuffs. https://github.com/google/
wuffs.

[31] P. Gutmann. Encrypt-then-MAC for Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS). RFC 7366, Sept. 2014.

https://github.com/construct/construct
https://github.com/construct/construct
https://github.com/abiggerhammer/hammer
https://github.com/abiggerhammer/hammer
https://github.com/rust-bakery/nom
https://github.com/rust-bakery/nom
https://github.com/RReverser/wasmbin
https://github.com/RReverser/wasmbin
https://github.com/dmendel/bindata
https://github.com/dmendel/bindata
https://nvd.nist.gov/vuln/detail/CVE-2021-24119
https://nvd.nist.gov/vuln/detail/CVE-2021-24119
https://cranelift.dev/
https://github.com/bheisler/criterion.rs
https://github.com/bheisler/criterion.rs
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/MatthiasJReisinger/PolyBenchC-4.2.1
https://github.com/rust-bitcoin/rust-bitcoin
https://github.com/rust-bitcoin/rust-bitcoin
https://github.com/rustls/rustls
https://github.com/bytecodealliance/wasmparser
https://github.com/bytecodealliance/wasmparser
https://webassembly.github.io/spec/core/binary/
https://webassembly.github.io/spec/core/binary/
https://en.bitcoin.it/wiki/Protocol_documentation#Variable_length_integer
https://en.bitcoin.it/wiki/Protocol_documentation#Variable_length_integer
https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Transaction
https://github.com/google/wuffs
https://github.com/google/wuffs

[32] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Hol-
man, D. Gohman, L. Wagner, A. Zakai, and J. Bastien.
Bringing the Web up to speed with WebAssembly. SIG-
PLAN Not., 52(6):185–200, June 2017.

[33] International Telecommunications Union. Informa-
tion technology - ASN.1 encoding rules: Specifica-
tion of basic encoding rules (BER), canonical en-
coding rules (CER) and distinguished encoding rules
(DER). https://www.itu.int/rec/T-REC-X.690/
en. Accessed May, 2025.

[34] ISO/TC 171/SC2. ISO 32000-2:2020 (PDF 2.0). In-
ternational Standard ISO 32000-2:2020, International
Organization for Standardization, 2020.

[35] S. Klabnik and C. Nichols. The Rust Programming
Language. No Starch Press, USA, 2018.

[36] A. Langley. A Transport Layer Security (TLS) Clien-
tHello Padding Extension. Internet-Draft draft-ietf-tls-
rfc8446bis-11, Internet Engineering Task Force, Oct.
2015.

[37] A. Lattuada, T. Hance, J. Bosamiya, M. Brun, C. Cho,
H. LeBlanc, P. Srinivasan, R. Achermann, T. Chajed,
C. Hawblitzel, J. Howell, J. Lorch, O. Padon, and
B. Parno. Verus: A practical foundation for systems
verification. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), November 2024.

[38] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe,
Y. Zhou, J. Howell, B. Parno, and C. Hawblitzel. Verus:
Verifying Rust programs using linear ghost types. In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), October 2023.

[39] B. Laurie, A. Langley, and E. Kasper. Certificate Trans-
parency. RFC 6962, June 2013.

[40] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczyński, and W. Joosen. Tranco: A research-
oriented top sites ranking hardened against manipula-
tion. In Proceedings of the 26th Annual Network and
Distributed System Security Symposium, NDSS 2019,
Feb. 2019.

[41] Z. Lin, M. McLoughlin, P. Singh, R. Brennan-Jones,
P. Hitchcox, J. Gancher, and B. Parno. Towards practical,
end-to-end formally verified x.509 certificate validators
with Verdict. In Proceedings of the USENIX Security
Symposium, Aug. 2025.

[42] E. Lombrozo, J. Lau, and P. Wuille. Bip 141: Segregated
witness (consensus layer). https://github.com/
bitcoin/bips/blob/master/bip-0141.mediawiki,
12 2015.

[43] N. D. Matsakis and F. S. Klock. The Rust language.
Ada Lett., 34(3):103–104, Oct. 2014.

[44] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov,
and B. Preneel. A cross-protocol attack on the TLS
protocol. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2012.

[45] D. McGrew and E. Rescorla. Datagram Transport Layer
Security (DTLS) Extension to Establish Keys for the
Secure Real-time Transport Protocol (SRTP). RFC 5764,
May 2010.

[46] Mitre. 2024 CWE top 25 most dangerous software weak-
nesses. https://cwe.mitre.org/top25/archive/
2024/2024_cwe_top25.html Accessed January, 2025.,
Nov. 2024.

[47] B. Moeller, N. Bolyard, V. Gupta, S. Blake-Wilson, and
C. Hawk. Elliptic Curve Cryptography (ECC) Cipher
Suites for Transport Layer Security (TLS). RFC 4492,
May 2006.

[48] S. Owens, J. Reppy, and A. Turon. Regular-expression
derivatives re-examined. Journal of Functional Pro-
gramming, 19(2):173–190, 2009.

[49] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ra-
mananandro, P. Wang, S. Zanella-Béguelin, A. Delignat-
Lavaud, C. Hritcu, K. Bhargavan, C. Fournet, and
N. Swamy. Verified low-level programming embedded
in F*. PACMPL, 1(ICFP), Sept. 2017.

[50] T. Ramananandro, A. Delignat-Lavaud, C. Fournet,
N. Swamy, T. Chajed, N. dim Kobeissi, and J. Protzenko.
EverParse: Verified secure zero-copy parsers for authen-
ticated message formats. In Proceedings of the USENIX
Security Symposium, Aug. 2019.

[51] E. Rescorla. The Transport Layer Security (TLS) Proto-
col Version 1.3. Internet-Draft draft-ietf-tls-rfc8446bis-
11, Internet Engineering Task Force, Sept. 2024. Work
in Progress.

[52] P. Singh, J. Gancher, and B. Parno. OwlC: Compiling
security protocols to verified, secure, high-performance
libraries. In Proceedings of the USENIX Security Sym-
posium, Aug. 2025.

[53] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-
Lavaud, S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub,
M. Kohlweiss, J.-K. Zinzindohoué, and S. Zanella-
Béguelin. Dependent types and multi-monadic effects
in F*. In Proceedings of the ACM POPL, 2016.

[54] N. Swamy, T. Ramananandro, A. Rastogi, I. Spiridonova,
H. Ni, D. Malloy, J. Vazquez, M. Tang, O. Cardona,
and A. Gupta. Hardening attack surfaces with formally
proven binary format parsers. In Proceedings of the
43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation, pages
31–45, 2022.

[55] The Coq Development Team. The Coq Proof Assistant
Reference Manual, version 8.7, Oct. 2017.

[56] F. Tramèr, D. Boneh, and K. G. Paterson. Remote side-
channel attacks on anonymous transactions. In Pro-
ceedings of the 29th USENIX Conference on Security
Symposium, SEC’20, USA, 2020. USENIX Association.

[57] M. van Geest and W. Swierstra. Generic packet descrip-
tions: verified parsing and pretty printing of low-level
data. In Proceedings of the 2nd ACM SIGPLAN Inter-

https://www.itu.int/rec/T-REC-X.690/en
https://www.itu.int/rec/T-REC-X.690/en
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

national Workshop on Type-Driven Development, TyDe
2017, page 30–40, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[58] K. Varda. Protocol buffers. https://developers.
google.com/protocol-buffers/, 2008.

[59] T. Wallez, J. Protzenko, and K. Bhargavan. Comparse:
Provably secure formats for cryptographic protocols. In
Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’23, page
564–578, New York, NY, USA, 2023. Association for
Computing Machinery.

[60] P. Wouters, H. Tschofenig, J. I. Gilmore, S. Weiler, and
T. Kivinen. Using Raw Public Keys in Transport Layer
Security (TLS) and Datagram Transport Layer Security
(DTLS). RFC 7250, June 2014.

[61] P. Wuille. BIP62: Dealing with malleability. https:
//bips.dev/62/, Mar. 2014.

[62] J. K. Zinzindohoué, K. Bhargavan, J. Protzenko, and
B. Beurdouche. HACL*: A verified modern crypto-
graphic library. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS),
2017.

A Detailed Trait Definitions

In real-world systems, binary format parsers and serializers
are performance-critical components that need to be imple-
mented in a low-level, efficient systems programming lan-
guage. For VestLib, we use Rust due to its combination of
high-level abstractions, low-level control, and strong safety
guarantees.

Figure 12 shows the detailed definitions for our three main
traits. Both the Combinator and SpecCombinator traits have an
associated type Type that represents the internal data type of
a format and a pair of parse and serialize functions. (We
abbreviate specification functions with s_). The associated
type for a Combinator would be the actual data type that the
combinator parses and serializes (like a &[u8] for all bytes
combinators or a Vec<T> for all repetition combinators), while
the corresponding associated type for a SpecCombinator would
be the mathematical view of that data type (like a Seq<u8>
for all bytes combinators and Seq<T> for all repetition combi-
nators). The SecureCombinator trait extends the SpecCombinator

trait with a set of formally proven properties that ensure the
correctness and security of the combinator’s trusted specifi-
cation. As discussed in §3.2, the trait bound Self: View and
Self::V: SecureCombinator<Type = <Self::Type as View>::V> for the
Combinator trait ensures that every combinator has a view, and
that view should be a SecureCombinator with the same internal
data type (modulo the view).

Notably, the Combinator trait is generic over two types I and
O, which represent the input and output buffer types, respec-
tively. I and O are further given trait bounds VestInput and

VestOutput; the definitions for these traits are shown in Fig-
ure 13. The VestInput and VestOutput traits define a common in-
terface for input and output buffers. Rust’s built-in buffer types
(like &[u8], Rc<Vec<u8>>, etc.) or custom buffer types can imple-
ment these traits. VestLib users can, for example, instantiate
all input and output buffer types in Combinator<I, O> with &[u8]
and Vec<u8>. As discussed in §4.2, VestInput and VestOutput en-
able our side-channel security guarantee via type abstraction.
We also have subtraits VestPublicInput and VestPublicOutput,
which extend VestInput and VestOutput to allow fully public
access to the bytes; these are used for combinators that must
view or manipulate bytes, such as integers.

As an illustration, we now discuss parse and serialize,
specialized to the common use case where we use
VestPublicInput/VestPublicOutput on public bytes. After spe-
cializing, we receive these signatures:

• parse: &[u8]→PResult<T>

• serialize: (&T, &mut Vec<u8>, usize)→SResult<usize>

Here, T represents the internal data type of the format. The
parse function takes a byte slice and returns a Result contain-
ing either a tuple of the number of bytes consumed and the
parsed value of type T, or an error. The serialize function
takes an immutable reference to the value of type T, a mutable
reference to a Vec for the destination byte vector, an offset in
the byte vector, and returns a Result with the number of bytes
written to the byte vector or an error. The Result type is a sum
type with Ok and Err variants, indicating the success or failure
of the parsing and serialization operations.

Importantly, the parse function operates on an input buffer
of a reference type (&[u8]), and the parsed values are often
borrowed forms of the input buffer. This design ensures that
parsing can be zero-copy and non-allocating whenever possi-
ble, meaning that it parses the input buffer without duplicating
its contents or allocating new memory. The only exception
is when the format requires a dynamically-known number
of repetitions, in which case the parser needs to allocate a
vector to store the parsed values (the elements of the vector
would still be borrowed forms of the input buffer). On the
other hand, the serialize function operates on a pre-allocated
output buffer of a vector and writes the serialized bytes to
the buffer in-place, avoiding the overhead of heap allocation
during serialization.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://bips.dev/62/
https://bips.dev/62/

1 type PResult<Type> = Result<(usize, Type), Error>;
2 type SResult<Type> = Result<Type, Error>;
3
4 /// The specification (view) of an implementation combinator.
5 trait SpecCombinator {
6 /// The view of [Combinator::Result].
7 type Type;
8
9 spec fn s_parse(self, s: Seq<u8>)→PResult<Self::Type>;

10 spec fn s_serialize(self, v: Self::Type)→Seq<u8>;
11 }
12
13 /// The properties of a secure combinator.
14 trait SecureCombinator: SpecCombinator {
15 proof fn theorem_serialize_parse_rt(&self, v: Self::Type)
16 ensures
17 self.s_parse(self.s_serialize(v)) ==
18 Ok((self.s_serialize(v).len(), v))
19 ;
20 proof fn theorem_parse_serialize_rt(&self, b: Seq<u8>)
21 ensures
22 self.s_parse(b) matches Ok((n, v)) =⇒
23 self.s_serialize(v) == b[..n]
24 ;
25 // More lemmas and corollaries...
26 }
27
28 /// Implementation for parser and serializer combinators.
29 trait Combinator<I, O> where Self: View,
30 I: VestInput, O: VestOutput<I>,
31 // A combinator’s view must be a [SecureCombinator].
32 Self::V: SecureCombinator<Type = <Self::Type as View>::V>,
33 {
34 /// The output type of parsing.
35 type Type: View;
36
37 /// The input type of serialization.
38 type SType: View<V = Self::Type::V>;
39
40 exec fn parse(&self, input: I)→ (r: PResult<Self::Type>)
41 ensures
42 r matches Ok((n, v)) =⇒
43 self@.s_parse(input@) == Ok((n, v@)),
44 r is Err =⇒ self@.s_parse(input@) is Err
45 ;
46
47 exec fn serialize(&self, v: Self::Type, buf: &mut O,
48 pos: usize)→ (r: SResult<usize>)
49 ensures
50 buf@.len() == old(buf)@.len(),
51 r matches Ok(n) =⇒ self@.s_serialize(v@).len() == n &&
52 buf@ == splice(old(buf)@, pos, self@.s_serialize(v@))
53 ;
54 }

Figure 12: The definitions for the Combinator, SpecCombinator,
and SecureCombinator traits in VestLib (simplified). matches is a
Verus keyword in spec-mode that checks if a pattern matches
a value. @ is a sugar for .view(). splice is a spec-mode function
that inserts a byte sequence into another byte sequence at a
given position.

1 trait VestInput: {
2 fn len(&self)→ (res: usize);
3 fn subrange(&self, i: usize, j: usize)→ (res: Self);
4 }
5
6 trait VestOutput<I> {
7 fn len(&self)→ (res: usize);
8 fn set_range(&mut self, i: usize, input: &I);
9 }

10
11 trait VestPublicInput: VestInput {
12 fn as_byte_slice(&self)→ (res: &[u8]);
13 }
14
15 trait VestPublicOutput<I>: VestOutput<I> {
16 fn set_byte_range(&mut self, i: usize, input: &[u8]);
17 }
18
19 /// Implementations for common buffer types
20 impl<’a> VestInput for &’a [u8] {
21 fn len(&self)→usize {
22 <[u8]>::len(self)
23 }
24 fn subrange(&self, i: usize, j: usize)→&’a [u8] {
25 slice_subrange(*self, i, j) /// Verus primitive
26 }
27 }
28 impl<’a> VestPublicInput for &’a [u8] {
29 fn as_byte_slice(&self)→&[u8] {
30 *self
31 }
32 }
33 impl<I: VestPublicInput> VestOutput<I> for Vec<u8> {
34 fn len(&self)→usize {
35 Vec::len(self)
36 }
37 fn set_range(&mut self, i: usize, input: &I) {
38 /// Verus primitive on slices
39 set_range(self, i, input.as_byte_slice());
40 }
41 }
42 impl<I: VestPublicInput> VestPublicOutput<I> for Vec<u8> {
43 fn set_byte(&mut self, i: usize, value: u8) {
44 self.set(i, value); /// Equivalent to self[i] = value
45 }
46 fn set_byte_range(&mut self, i: usize, input: &[u8]) {
47 /// Derived function, loops over indices
48 set_range(self, i, input);
49 }
50 }

Figure 13: Definitions of the VestInput, VestOutput,
VestPublicInput, and VestPublicOutput traits. Details, includ-
ing Verus specifications that enforce correct implementations,
are elided.

	1 Introduction
	2 A Developer's View of Vest
	2.1 VestDSL: Formal Definitions of Binary Formats
	2.2 VestLib: Verified Parsers & Serializers
	2.3 Integration with Larger Projects

	3 Vest's Design
	3.1 A Language for Defining Binary Formats
	3.2 A Compositional Combinator Library

	4 Vest's Correctness & Security
	4.1 Formal Correctness of Binary Formats
	4.2 Side-channel Security

	5 Vest's Implementation
	6 Case Studies
	6.1 Bitcoin Block and Transaction Formats
	6.2 TLS 1.3 Handshake Messages
	6.3 WebAssembly Binary Format

	7 Evaluation
	7.1 Runtime Performance
	7.2 Verification Performance

	8 Related Work
	9 Discussion and Future Work
	A Detailed Trait Definitions

