
Towards Practical, End-to-End Formally Verified
X.509 Certificate Validators with Verdict

Zhengyao Lin† Michael McLoughlin† Pratap Singh† Rory Brennan-Jones‡

Paul Hitchcox† Joshua Gancher§ Bryan Parno†

†Carnegie Mellon University ‡University of Rochester §Northeastern University

Abstract
Validating X.509 certificates is a critical part of Internet

security, but the relevant standards are complex and ambigu-
ous. Most X.509 validators also intentionally deviate from
these standards in idiosyncratic ways, often for security or
backward compatibility. Unsurprisingly, the result is a long
history of security vulnerabilities.

In this work, we present Verdict, the first end-to-end for-
mally verified X.509 certificate validator with customizable
validation policies. Verdict’s formal guarantees cover certifi-
cate parsing, path building, and path validation. To make Ver-
dict practical to both verify and to use, we specify its correct-
ness generically in terms of a user-supplied validation policy
written concisely in first-order logic, with a proof-producing
compiler to efficient Rust code.

To demonstrate Verdict’s expressiveness, we use Verdict’s
policy framework to implement the X.509 validation policies
found in Google Chrome, Mozilla Firefox, and OpenSSL, and
formally prove that they conform to a subset of RFC require-
ments. We instantiate Verdict with each policy and show that
Verdict matches the corresponding baseline’s behavior and
state-of-the-art performance on over ten million certificates
from Certificate Transparency logs.

1 Introduction

The X.509 standard [11] underpins the security of many
ubiquitous PKIs, including those used for HTTPS, Wi-Fi,
IPSec [29], code signing [31], and secure boot [58]. X.509
validators have been described as “the most dangerous code
in the world” [23], since mistakes can lead to far-reaching
security breaches.

Unfortunately, X.509 validation is very complex to imple-
ment. The core English-level specifications span at least five
different, occasionally ambiguous [17] RFCs [8,11,35,55,56].
On top of the RFCs, a web browser’s certificate validator
(arguably one of the most critical users of the X.509 PKI)
must also comply with 159 pages of CA/B Baseline Require-
ments (BRs) [20] which extend and in some cases overrule

the RFCs. As a final complication, each X.509 validator can
and does make its own individual policy decisions, both in
terms of which optional features to support, and also when
to deliberately violate the standards for security or backward
compatibility. For instance, to improve compatibility, Fire-
fox violates RFC 5280 by allowing leaf certificates with a
keyCertSign key usage [32]. Making matters worse, most
modern X.509 validators deeply entangle the code that im-
plements policy logic with code implementing parsing and
cryptographic operations [32].

With all of this complexity, it is unsurprising that the world
of X.509 validation has a long history of security vulnerabili-
ties [4, 12, 62] and outages [2]. Some of these bugs have been
found via fuzzing [4,7,45] and symbolic execution [6]. While
useful, these ad hoc approaches do not rule out the presence
of additional bugs.

In principle, formal software verification can prevent large
classes of bugs by mechanically proving that an X.509 val-
idator’s code correctly implements an abstract specification
of X.509 certificate path validation. In practice, formally ver-
ifying X.509 validation poses unique challenges, and prior
attempts have been both incomplete and impractical. First,
for formal verification results to be meaningful, we typically
expect the spec to be smaller and simpler than the implemen-
tation; otherwise, the spec may be just as buggy (or buggier!).
As discussed above, however, the “obvious” spec found in
the RFCs and BRs is large and complex, and there is effec-
tively no one true spec. As a result, prior work [17,18], which
tried to formalize X.509 validation based only on a subset of
one RFC, is both overly strict (ruling out legitimate policy
choices) and incomplete (missing requirements from the other
RFCs and all of the BRs). Second, prior work made a number
of design decisions that result in impractical performance,
running one [17] to two [18] orders of magnitude slower than
unverified baselines and consuming three orders of magnitude
more memory [18].

With Verdict, we show how to design a practical, end-to-
end formally verified X.509 validator. Our key idea is to
design Verdict as a formally verified policy framework that

decouples the verification of a user-supplied policy from the
rest of the validator. We allow users to specify their own
policies in a high-level, readable domain-specific language
(DSL), which can then be (1) automatically compiled into
provably correct executable code (§4.3), and (2) used for
formal RFC/BR conformance checking (§5.1).

Combined with the formal verification of the rest of the
validator (§4), we are able to specify and prove the end-to-
end correctness of the entire validator generically in terms
of a user-provided policy. This makes our top-level theorem
clean and succinct, abstracting away the complexities of the
RFCs, BRs, and individual policy choices. At the same time,
it acknowledges the reality that there is no one true spec
by allowing different users to choose their own policies and
providing formal guarantees about the policies.

While Verdict provides a clean, end-to-end verification
result, internally it includes a number of interesting compo-
nents. In addition to the policy framework, it includes an
X.509 certificate parser and serializer, with proofs of sound-
ness, completeness, and non-malleability. It also includes a
verified path builder, which constructs candidate paths of is-
suing certificates between the offered leaf and a trusted root,
with proofs of soundness and completeness, ruling out issues
that historically caused large-scale outages [2].

As another step towards practicality, we explicitly design
Verdict with performance in mind. Verdict is implemented
in performant Rust code and verified using Verus [33, 34],
an automated deductive program verifier. From user-defined
policies, we automatically derive efficient Rust code with
generated proofs of correctness in Verus. Our verified X.509
and ASN.1 parser (§4.1) is designed to be mostly zero-copy
and achieves much better performance than prior work [18,
41]. Through careful design and engineering, Verdict adds
little overhead on top of cryptographic providers, achieving
state-of-the-art performance when combined with verified
libraries such as EverCrypt [47] and AWS-LC [57].

We evaluate Verdict’s practicality in §5 and §6. First, to
demonstrate the expressiveness of Verdict’s policy language,
we use it to encode the certificate validation policies used
in Google Chromium [9] (Chrome), Mozilla Firefox [19],
and OpenSSL [44]. We validate their consistency on over ten
million certificates from the wild, as well as an existing test
suite designed to probe gnarly edge cases in X.509 validation.
Second, we show that Verdict’s performance is competitive
with Chrome, Firefox, and OpenSSL, and it outperforms prior
academic work by orders of magnitude. We also integrate
Verdict into an existing TLS library, Rustls [54], and show that
using Verdict in a practical setting incurs negligible overhead.

In summary, we make the following contributions.

1. Verdict, the first end-to-end formally verified X.509 cer-
tificate validator, offering both practical flexibility, and
practical performance.

2. A verified policy framework for expressing (in a succinct,

readable fashion) user-defined X.509 validation policies,
which can be compiled into efficient, provably correct
executable code, and analyzed formally, e.g., to verify
RFC/BR conformance.

3. Formal models of X.509 validation policies in Chrome,
Firefox, and OpenSSL in our policy DSL.

4. An extensive evaluation showing that Verdict’s perfor-
mance compares favorably to unverified real-world im-
plementations, and its policy DSL offers the expressivity
to capture some of the most complex validation policies
used in the wild.

2 Preliminaries

In this section, we provide preliminary background for X.509
certificate validation and the Rust verification language Verus.

2.1 X.509 Certificate Validation
From its humble origins in 1988 [59], the X.509 standard has
grown to span multiple RFCs [11, 35, 55, 56] specifying how
to parse and validate certificates. For the web’s PKI, valida-
tors must also conform to a long list of CA/Browser Forum
Baseline Requirements (CA/B BRs) [20]. In this section, we
primarily focus on the use of X.509 in the web’s PKI, but
other settings are similar.

An X.509 certificate is a data structure containing four main
pieces of information: (1) the issuer’s identity, (2) the sub-
ject’s identity, (3) the subject’s public key, and (4) the issuer’s
signature on the entire certificate. For backward compatibility,
RFC 5280 adds new features to X.509 via a list of exten-
sions attached to the end of the certificate. Most extensions
describe additional information for issuer/subject identities
(e.g., hostnames are usually kept in the Subject Alternative
Name extension), or constraints on how the certificate should
be used (e.g., Key Usage and Name Constraints).

Abstractly, an X.509 certificate is its issuer’s attestation
(via a cryptographic signature) that the subject’s public key
binds to the subject’s identity. Therefore, if one trusts the
issuer, then they can also trust that the subject’s public key
belongs to the subject of the certificate. This trust relation
is transitive: if we have a sequence of certificates C1, . . . ,Cn,
such that each Ci is issued by Ci+1 (i.e., Ci contains a signature
that is verifiable with the subject public key of Ci+1), then if
we trust the issuer of Cn, we can also trust the subject of C1.

Concretely, consider the example of a web client that wants
to determine if it can trust a server. The client locally stores a
set of trusted root certificates, and the server sends a list of cer-
tificates, called a certificate chain, that includes the server’s
leaf certificate (which binds the server’s public key to the
hostname being accessed), and an optional set of intermediate
certificates. The client then tries to find a path (aka path build-
ing or chain building): a sequence C1, . . . ,Cn of certificates

with each issued by the next, such that C1 is the leaf certifi-
cate, and Cn is a root certificate that the client trusts. Then
by the transitivity of trust, the client can trust that the public
key of C1 is legitimate, and further secure communication can
happen using that public key.

Although most X.509 validators follow this high-level path
validation process, the exact rules and checks differ substan-
tially [18, 32]. This can be both due to compatibility and
performance reasons, or ambiguous requirements in the stan-
dard. For example, when comparing the issuer name of a
certificate against the subject name of the parent certificate,
Chrome, Firefox, and OpenSSL use different string compar-
ison procedures. Chrome normalizes strings by removing
leading/trailing ASCII spaces, case lowering, and compress-
ing multiple ASCII spaces into one; Firefox does not perform
any normalization; and OpenSSL is similar to Chrome, except
that it considers more characters as white spaces.

X.509 validators also differ in what fields in an X.509
certificate are considered the subject’s identity. For instance,
Chrome only checks the accessed hostname against the Sub-
ject Alternative Name extension, while Firefox falls back to
the Common Names in the Subject Distinguished Name if the
Subject Alternative Name is empty.

Correctly conforming to the standard is also challenging.
For example, although the specification of path building is
straightforward (i.e., there exists a valid issuing path), various
incorrect implementations have failed to explore all possible
paths (e.g., early versions of OpenSSL [44] and GnuTLS [24]),
which resulted in a large-scale outage in 2020 [2].

2.2 Formally Verifying Rust Code with Verus

Verdict is implemented in Verus [33, 34], which is an semi-
automated program verifier based on the Rust programming
language [50]. Verus extends Rust with formal verification
capabilities for Hoare-style reasoning [25], allowing users to
prove formal properties about their programs, while utilizing
the native performance and extensive ecosystem of Rust.

In this section, we provide a brief overview of Verus. We
assume some familiarity with the Rust language, and refer
readers to the Rust book [30] for more details.

In Verus, users write their code in (a large subset of) Rust
and then add annotations that provide mathematical specifi-
cations and proof hints to verify properties about their Rust
program. Figure 1 shows a toy example that verifies the func-
tional correctness of an executable function against a spec-
ification. This example has two functions, a specification
function (spec function) called spec_min_index and an exe-
cutable function (exec function) called min_index. The spec
function takes an immutable sequence s of type Seq<u64>
and an unbounded integer index i, and defines when the index
stores a minimum element of the sequence s. A spec func-
tion in Verus cannot be compiled or executed, but it serves
a concise, abstract definition for static reasoning. Therefore,

spec fn spec_min_index(s: Seq<u64>, i: int)
-> bool { 0 ≤ i < s.len() ∧

forall |x| x ∈ s ⇒ s[i] ≤ x }

fn min_index(s: &[u64]) -> (res: usize)
requires s.len() > 0
ensures spec_min_index(s.view(), res)

{ let mut min = 0;
for i in 0..s.len()

invariant spec_min_index(s[..i+1], min)
{ ... }
...

Figure 1: Example Verus code.

one can use mathematical spec types in a spec function, such
as the mathematical, immutable sequence type Seq, and the
unbounded integer type int.

The exec function min_index, on the other hand, is a nor-
mal Rust function that can be compiled. In addition to the
Rust syntax, it is annotated with a precondition (requires)
and a postcondition (ensures), stating a specification for the
exec function: for any non-empty slice s, the function should
correctly output an index with a minimum element. Verus
then semi-automatically verifies that this function conforms
to the specification, with the help of some extra proof hints
such as loop invariants (invariant).

In general, the flavor of verification in Verus is similar to
this simple example: we write concise, trusted, and purely
mathematical specifications of the intended behavior or prop-
erties of a program, and then prove that the executable im-
plementation is either equivalent to, or a refinement of, the
specification. Along the way, Verus also verifies basic safety
properties of the executable code, such as the absence of inte-
ger overflow and panics.

3 Threat Model and TCB

Verdict is a formally verified X.509 certificate validator, which
is expected to handle potentially malicious leaf and interme-
diate certificates sent by the peer, e.g., a web server during
a TLS handshake. However, we assume that there is no ma-
licious actor locally, which includes assuming that the root
certificates provided by the user are issued by trusted CAs.

We verify Verdict against an end-to-end specification (§4)
that can rule out a wide range of vulnerabilities in our
parser/serializer, path builder, and the user-provided policy;
but we do assume that our verification tooling and specifica-
tions are correct. That is, we need to trust the end-to-end spec-
ification itself (including the user-provided policy encoded in
our policy DSL), the Verus program verifier, the Rust com-
piler, and our glue code calling external verified cryptographic
libraries. We only use the safe fragment of Rust (enforced
via the #![forbid(unsafe_code)] attribute), except for the
trusted glue code.

End-to-End Specification

Policy
Framework

X.509
Parser

Path
Builder

Certified
Compilation

Conformance
Verification

Root Store

?

Validation Query

Leaf and
Intermediates

https://host.name
valid at

08/28/2023 01:39?

Third-Party
Crypto

Provider
(EverCrypt, AWS-LC)

Custom
Policy

(e.g., Chrome,
Firefox, OpenSSL)

✔

✘

Trusted

Verified

Trusted Shim

Figure 2: High-level design of Verdict.

1 spec fn spec_valid_x509(query: Query ,
2 policy: Policy , leaf: Seq<u8>,
3 ints: Seq<Seq<u8>>, roots: Seq<Seq<u8>>)
4 -> bool {
5 // Parse input certificates
6 let leaf = spec_parse_x509(leaf);
7 let ints = ints.map(spec_parse_x509);
8 let roots = roots.map(spec_parse_x509);
9 // Exists a valid simple path

10 exists |path: Seq<Certificate >|
11 // The path obeys the issuing relation
12 path[0] == leaf ∧ path.last() ∈ roots
13 ∧ forall |i| 0 < i < path.len() - 1
14 ⇒ path[i] ∈ ints
15 ∧ forall |i| 0 ≤ i < path.len() - 1
16 ⇒ spec_issued(policy ,
17 path[i + 1], path[i])
18 // No cycles
19 ∧ forall |i, j| 0 ≤ i < j < path.len()
20 ⇒ path[i] 6= path[j]
21 // Policy evaluation
22 ∧ policy.valid_path (...) }
23 spec fn spec_issued(policy: Policy ,
24 issuer: Certificate ,
25 subject: Certificate) -> bool {
26 policy.issued(issuer , subject)
27 ∧ verify_signature(issuer , subject) }
28 spec fn spec_parse_x509(Seq<u8>)
29 -> Option<Certificate > { ... }

Figure 3: End-to-end specification of X.509 validation in
Verdict, with some error handling details omitted. Shorthand
xs.map(f) stands for applying f to each element of xs.

1 struct Certificate {
2 version , not_after , not_before: u64,
3 issuer , subject: DistinguishedName ,
4 subject_key: SubjectKey ,
5 subject_alt_name: Option<SubjectAltName >,
6 key_usage: Option<KeyUsage >, ... }

Figure 4: A fragment of the definition of our intermediate
representation of X.509 certificates.

4 A Formally Verified X.509 Validator

In this section, we present the design of Verdict, its end-to-end
specification, and how we verify its main components.

At a high-level (Figure 2), Verdict takes as input a leaf
certificate, intermediate certificates, trusted root certificates,
and a validation query (e.g., hostname, validation time, and
authentication purpose). These certificates are then passed
through a pipeline of three formally verified components.

• The X.509 parser (§4.1) transforms DER [60]-encoded
certificates into an intermediate representation;

• The path builder (§4.2) iterates through all candidate
paths from the leaf certificate to a trusted root certificate,
by verifying signatures of certificates and invoking a
policy-specific definition of the issuing relation.

• The policy framework (§4.3) evaluates a user-defined
validation policy in our policy DSL on candidate paths
from the path builder. The policy itself is trusted, but we
use certified compilation and conformance verification
(§5) for better formal guarantees.

These components are all implemented in Verus, and they
are formally verified to conform to a concise, end-to-end
specification of the entire X.509 validation process.

A simplified version of the end-to-end specifica-
tion is shown in Figure 3. The main specification
(spec_valid_x509) takes in a validation query, a user-
defined policy, and Base64-encoded leaf, intermediate and
root certificates (each certificate is represented as a mathemat-
ical sequence of bytes with type Seq<u8>). It then states that
the query is valid with respect to the given set of certificates,
if and only if there exists a valid path from the leaf certificate
to one of the root certificates. Namely, a valid path should
(1) follow the issuing relation spec_issued, which checks
the signature and a policy-specific name comparison scheme
(policy.issued), (2) have no cycles, and (3) be considered
valid by the user-defined policy (policy.valid_path).

We discuss details of the parser specification
spec_parse_x509 in §4.1. The parsed intermediate
representation of certificates (Certificate) acts as the main
interface throughout the specification and implementation
of Verdict. Figure 4 shows a small fragment of its definition,
which includes fields in an X.509 certificate (e.g., its issuer,
subject, expiration date, etc.), and supported extensions (e.g.,
Subject Alternative Name, Key Usage, etc.).

In addition to proving that our implementation is equiva-
lent to this end-to-end specification, we verify a variety of
other formal properties. First, we ensure basic safety proper-
ties including memory safety and the absence of panics and
integer overflows. Each component is also verified to satisfy
a number of functional-correctness and security properties:

• Parser non-malleability: no two different byte sequences
can parse to the same intermediate representation.

• Parser prefix security: appending bytes to a valid byte
sequence would not produce a valid result.

• Parser soundness and completeness: the parser succeeds
if and only if the input byte sequence is valid according
to a formal specification derived from RFC 5280.

• Path builder soundness and completeness: the path
builder iterates through exactly the simple paths from
the leaf certificates to the root certificates.

• Policy functional correctness: a policy spec in our DSL
is compiled to a provably equivalent executable version.

These properties ensure the correctness of the implementa-
tion and give us more confidence in the correctness of the
specification. For example, parser non-malleability and prefix
security can act as sanity checks for whether we have correctly
translated the text of RFC 5280 and ASN.1 specifications to
to a formal specification, since they claim to be non-malleable
on paper. This formally prevents some actual bugs we found
in popular X.509-related libraries (§6.4).

We now discuss the verification of each component.

4.1 X.509 Parser and Serializer
X.509 syntax is a complex beast by itself. In RFC 5280, the
encoding of an X.509 certificate is specified using ASN.1
DER [60], which is a standard commonly used in networking
and cryptography for the serialization of data structures. RFC
5280 contains over 250 ASN.1 definitions, and the ASN.1
DER specification itself [60] is a 36-page document.

To tackle the complexity of X.509 syntax while achieving
good performance, we utilize two main ideas: (1) modular
parsing via verified parser combinators; (2) automated gener-
ation of verified parsers from concise specification macros.

Verified Parser Combinators. A parser combinator [22], in
general, is a function that takes in various parameters (which
can be parser combinators themselves), and returns a new
parser. In our work, we use a verified parser combinator li-
brary called Vest [5], which is also implemented in Verus and
provides a common interface for parser combinators.

In Vest, every parser combinator implements the
Combinator trait shown in Figure 5. It requires definitions
of parsing and serializing at the spec level (spec_parse
and spec_serialize) as well as at the executable level
(parse and serialize). At the spec level, we use immutable
mathematical objects such as immutable sequences of bytes
(Seq<u8>), and the definitions are concise and functional;
whereas the executable versions are imperative Rust
programs using standard data types, such as slices of bytes.
The post-conditions of parse and serialize state that they
are equivalent to the spec versions.

In addition to proving the equivalence, one also needs to
prove two properties: (1) parsing and serializing are partial

trait Combinator { type R;
// Spec parser/serializer
spec fn spec_parse(Seq<u8>) -> Option<R>;
spec fn spec_serialize(R)

-> Option<Seq<u8>>;
// Executable parser/serializer
fn parse(...)

ensures parse = spec_parse;
fn serialize (...)

ensures serialize = spec_serialize;
// Properties required for each combinator
proof fn prop_inverses(r: R, b: Seq<u8>)
ensures

spec_parse(spec_serialize(r)?)? = r,
spec_serialize(spec_parse(b)?)? = b;

proof fn prop_prefix_secure(b: Seq<u8>)
requires spec_parse(b)? 6= None
ensures forall |b2: Seq<u8>|

spec_parse(b + b2) = spec_parse(b); }

Figure 5: The combinator trait in Vest [5], where the associ-
ated type R is the type of the parsing result.

inverses of each other (i.e., prop_inverses, where the ? is
a shorthand denoting that the property only needs to hold
if both parsing and serializing are successful); (2) parsing
is prefix-secure, that is, appending more bytes to the input
would not change a successful parsing result. In particular, (1)
implies that the parser is non-malleable.

Following this parser/serializer specification, we implement
and verify 20 parser combinators for ASN.1 DER, includ-
ing base types (integer, object identifier, various string types,
UTC time, etc.), structures (sequence and union), and tagging
mechanisms, and prove that they satisfy the partial-inverse
and prefix-secure properties. For a more end-to-end guarantee,
we also implement a verified combinator for Base64 [27].

These parser combinators are non-trivial as ASN.1 DER
uses space quite efficiently. For example, an ASN.1 object
identifier is a sequence of integers, and in DER, each such in-
teger is encoded as a variable-length sequence of bytes, with
the lower 7 bits from the integer itself, and the highest bit
indicating whether it is the last byte. In fact, during differen-
tial testing of our verified object identifier parser combinator
against a popular Rust library, we found that their object iden-
tifier encoding is incorrect in certain ranges (§6.4).

A Combinator DSL for ASN.1. Using the ASN.1 primi-
tives, we designed a domain-specification language (DSL) to
conveniently derive more verified ASN.1 combinators. In the
DSL, one only needs to define high-level fields and structures,
similar to an actual ASN.1 schema, and the verified parser
combinators are automatically derived via a Rust macro.

For instance, the main ASN.1 definition in X.509 is
TBSCertificate (i.e., “to-be-signed certificate”), which con-

tains fields for the version, issuer, subject, subject public key,
etc., of a certificate. In RFC 5280, this is defined exactly as:

TBSCertificate ::= SEQUENCE {
version [0] EXPLICIT Integer DEFAULT 0,
serial Integer , ...
sUID [2] IMPLICIT BIT STRING OPTIONAL,
exts [3] EXPLICIT Extensions OPTIONAL }

The keyword SEQUENCE in ASN.1 defines a format similar to
a struct in Rust or C. EXPLICIT and IMPLICIT are tagging
schemes. In ASN.1 DER, all objects are encoded in a tag-
length-value (TLV) tuple, where a tag is a variable-length
integer that indicates the type of the object. In order to unam-
biguously parse optional fields, [n]EXPLICIT indicates that
an extra TLV tuple should be wrapped around the underlying
field with tag n, and [n]IMPLICIT indicates that the tag of
the underlying field should be replaced with n.

In our DSL, TBSCertificate is specified similarly:

asn1!(seq TBSCertificate {
version: Default(0, Explicit(0, Integer)),
serial: Integer, ...
suid: Optional(Implicit(2, BitString)),
exts: Optional(Explicit(3, Extensions)) })

where the highlighted functions are our verified parser combi-
nators for ASN.1 primitives. We use the Rust macro asn1! to
compile our DSL definition into a Verus definition of a new
verified combinator TBSCertificate.

Using this DSL, we implemented 26 combinators for X.509
certificates, including 9 commonly used X.509 extensions:
Authority Key Identifier, Subject Key Identifier, Basic Con-
straints, Certificate Policies, Authority Information Access,
Key Usage, Extended Key Usage, Subject Alternative Name,
and Name Constraints.

Although not required in Verdict, the ASN.1 DER and
X.509 combinators also have verified serializers, and they are
designed to be reusable in other Rust or Verus projects.

Top-Level Specifications and Properties. Using the manu-
ally verified and automatically derived combinators, we imple-
ment an executable parser for X.509 certificates from Base64,
with formally verified properties:

fn parse_x509(b: &[u8])
-> (r: Option<Certificate >)

ensures r matches Ok(r) ⇒ (
// Soundness
spec_parse_x509(b) = Some(r)
// Non-malleability
∧ forall |b2: Seq<u8>|

spec_parse_x509(b2) = Some(r)
⇒ b2 = b

// Prefix Security
∧ forall |b2: Seq<u8>| b2.len() 6= 0

⇒ spec_parse_x509(b + b2) is None),
// Completeness
r is Err ⇒ spec_parse_x509(b) is None;

Here spec_parse_x509 (Line 28 of Figure 3) is the top-level
specification for X.509 parsing, which calls spec_parse of
the top-level combinator for X.509 certificates. The implemen-
tation parse_x509 calls the corresponding executable parse
function of the combinator. Then using the properties of the
Combinator trait, we verify that the parser implementation
is sound, complete, non-malleable, and prefix-secure.

4.2 Path Builder
Path building is a crucial and error-prone process in any X.509
validator. A naive validator simply checks the chain sent by
the server. Unfortunately, such a validator will miss any alter-
native paths (caused by “cross-signing”) from the given leaf
to a trusted root, which may be in place to ensure backwards
compatibility. Therefore, an X.509 validator should search for
all possible paths from the leaf to one trusted root, through
any combination of intermediates, until a valid path is found.
Failure to do so has led to large-scale outages [2].

In many X.509 validators, path building is usually deeply
intertwined with the validation policy [32]. In Verdict, how-
ever, we only check for a minimal set of requirements that
are common in X.509 clients, and defer most of the path
validation to the user-provided validation policy to ensure
flexibility. We specify that a certificate c is likely issued by
another certificate c′ (Line 23 in Figure 3) if and only if: (1)
The validation policy considers c′ an issuer of c (by checking,
e.g., if the issuer Distinguished Name of c matches the subject
Distinguished Name of c′); and (2) the signature of c is valid
with respect to the public key of c′.

In the specification of the path builder (Line 9 in Figure 3),
we state that the valid path should follow this basic issuing re-
lation, from the leaf to a root certificate. In addition, it should
satisfy the user-provided policy, which includes more restric-
tions such as checking if the leaf certificate actually binds
the desired hostname, or if all certificates are marked with
suitable usage flags (e.g., Key Usage). This specification is
then used in the postcondition of the executable path builder:

fn build_path(query: &Query ,
policy: &Policy , leaf: &Certificate ,
ints: &Vec<Certificate >,
roots: &Vec<Certificate >) -> (res: bool)

ensures res ⇐⇒ // See Line 9 of Figure 3
exists |path: Seq<Certificate >| ...

In the implementation, we perform a depth-first traversal
of all simple paths from the leaf to any root certificate. For
signature checking, we invoke existing formally verified cryp-
tographic providers: EverCrypt [47] via libcrux [37] for veri-
fying ECDSA P-256 [43] and RSA PKCS #1 v1.5 [28] sig-
natures; and AWS-LC [57] for verifying ECDSA P-384 [43]
signatures. We formally verify that the build_path is equiv-
alent to the specification, implying that it only considers valid
paths (sound) and always finds a valid path if it exists (com-
plete).

1 struct OpenSSLPolicy;
2

3 valid_path(policy: OpenSSLPolicy ,
4 query: Query , path: Seq<Certificate >)
5 = path.len() ≥ 2
6 ∧ valid_leaf(policy , query , path[0])
7 ∧ forall |i| 1 ≤ i < path.len() - 1
8 ⇒ valid_intermediate(policy , query , path[i])
9 ∧ valid_root(policy , query , path.last())

10 ∧ check_name_constraints(path)
11

12 valid_leaf(policy: OpenSSLPolicy ,
13 query: Query , cert: Certificate)
14 = check_cert_key_level(cert)
15 ∧ check_cert_time(policy , cert)
16 ∧ check_purpose_leaf(cert)
17 ∧ cert.sig_alg_inner.bytes
18 = cert.sig_alg_outer.bytes
19 ...

Figure 6: A snippet of the OpenSSL policy in Verdict’s DSL.

4.3 Policy Framework and DSL

Verdict’s customizability lies in its policy framework, which
allows users to write concise logical specifications of their
validation policy, and then automatically derives an efficient,
verified implementation for execution.

To define a policy in Verdict, one specifies two predicates:

trait Policy {
spec fn issued(self ,

Certificate , Certificate) -> bool;
spec fn valid_path(self ,

Query , Seq<Certificate >) -> bool;
}

The first spec method issued defines the issuing relation
between certificates, which usually includes checking dis-
tinguished names and/or the Authority Key Identifier and
Subject Key Identifier extensions. This method is used in the
path builder (§4.2) to define a candidate path.

The second spec method valid_path defines additional
constraints on the candidate path found by the path builder,
which might include more policy-specific checks such as
hostname validation, expiration check, key usage check, etc.

To define these two predicates, we can use Verdict’s policy
DSL that provides a first-order logic in a Rust-like syntax to
describe high-level constraints imposed by the policy. The pol-
icy DSL supports: (1) basic types, including integers, strings,
sequences, and user-defined structs and enums; (2) basic inte-
ger/Boolean arithmetic, sequence operations, branching, pat-
tern matching; and (3) universal and existential quantifiers
over integers guarded by explicit ranges.

For example, Figure 6 shows a snippet of the OpenSSL pol-
icy formalized in Verdict, defining the valid_path predicate.
At the top-level, the valid_path predicate takes a validation
query (e.g., hostname, validation time, etc.) and a candidate

path (where the first element is the leaf, the last element is the
root, and the others are intermediates). It specifies that a path
is valid if and only if each certificate on the path is valid, and
the Name Constraints extension is satisfied.

At each certificate, the OpenSSL policy also specifies a
number of checks. For example, check_cert_key_level
checks that the public key of the certificate provides a suf-
ficient level of security; check_cert_time checks that the
certificate has not expired; check_purpose_leaf checks that
the certificate can be used as a leaf by checking Basic Con-
straints, Key Usage, and Extended Key Usage extensions. In
total, the OpenSSL policy is formalized in less than 400 lines
of specification (see §5 for more detail).

All predicates defined in the policy DSL are automatically
compiled (via a procedural macro [30]) to two pieces of code:
(1) a spec function in Verus, and (2) an executable function
with a Verus proof that it is equivalent to the spec function. For
example, the valid_path predicate in Figure 6 is compiled
to an executable function with the following specification:

fn exec_valid_path(env: &OpenSSLPolicy ,
path: &Vec<Certificate >, ...) -> (r: bool)

ensures r = valid_path(env, path , ...)

In the body of the function, all spec operations are compiled
to the corresponding executable operations, and all bounded
universal and existential quantifiers are compiled to loops with
suitable invariants and proofs. At compilation time, Verus
verifies the functional correctness of the executable function,
i.e., equivalence to the original high-level specification.

5 Case Study: Chrome, Firefox, and OpenSSL

Using the Verdict policy framework, we formalized the X.509
validation policies used in Google Chrome [9], Mozilla Fire-
fox [19], and OpenSSL [44].1 In this section, we discuss how
we formalize them, key advantages of using Verdict, and the
results of proving the RFC conformance of these policies.

For Chrome and Firefox, we based our policies on those
from Hammurabi [32], which defined Chrome and Firefox
policies in Prolog [10]. In the first iteration, we translated
Hammurabi’s Prolog policies to our policy DSL. The trans-
lation is straightforward, as the Prolog versions do not use
any backtracking other than during the path building pro-
cess. We subsequently fixed a number of inconsistencies we
found during differential testing against the original Chrome
and Firefox implementations. For OpenSSL, we modeled our
policy directly on the source code (with strict mode enabled).

Since a policy definition is part of the TCB of an X.509
validator, it needs to be high-level and easy to understand.

1For Chrome, we are modeling CertVerifyProc::Verify in
netcertcert_verify_proc.cc at commit 0590dcf (Aug, 2020);
for Firefox, we are using CertVerifier::VerifySSLServerCert in
security/certverifier/CertVerifier.cpp at (Mercurial) changeset
dbd5ee7 (Aug, 2020); for OpenSSL, we are using X509_verify_cert in
crypto/x509/x509_vfy.c at commit 5c5b8d2 (Nov, 2024).

Our policy DSL allows a concise encoding comparable to
the Prolog formulation in Hammurabi, with additional ad-
vantages such as type safety and performance (§6.1). In our
policy DSL, the Chrome/Firefox/OpenSSL policies are en-
coded in respectively 405/400/372 lines of code, in addition
to 325 lines of common definitions (e.g., the definition of
Certificate). In comparison, Hammurabi’s Prolog encod-
ings have 343 lines of code for Chrome, 418 lines for Firefox,
and 58 lines of common utilities.

Our formulation is also significantly more concise than the
original implementations. Comparing lines of code directly is
difficult, as the original implementations include additional
features such as telemetry and error handling that are not
formalized in Verdict (see §6.1). However, as some coarse
measures, for their main path building and validation logic,
Chrome has 1,628 lines of C++,2 Firefox has 2,348 lines of
C++,3 and OpenSSL has 2,429 lines of C.4

5.1 Verifying RFC Conformance

Our policy framework provides a great deal of freedom in
defining the validation policy, as users can write their policy as
an arbitrary first-order predicate in our policy DSL. In many
cases, however, the user may want to ensure that the policy
they have defined conforms to various X.509 standards, such
as the RFC 5280 [11] and CA/B BRs [20]. Therefore, Verdict
also includes a lightweight, semi-automated mechanism to
prove that a policy satisfies a set of RFC requirements.

By carefully translating the text of the RFC 5280 and CA/B
BRs, we defined a number of conformance properties as addi-
tional traits on a Policy (§4.3), such as the following.

trait NonLeafMustBeCA: Policy {
proof fn conformance(self , query , path)

requires self.valid_path(query , path)
ensures forall |i| 1 ≤ i < path.len()
⇒ path[i].basic_constraints.is_ca; }

This particular rule states that in a valid path, the policy should
ensure that all intermediate and root certificates have a “CA”
flag in the Basic Constraints extension (i.e., only certificates
marked as belonging to a CA can issue certificates). Then to
prove this RFC requirement on a concrete policy specified in
Verdict, such as the OpenSSL policy, we can state:

impl NonLeafMustBeCA for OpenSSLPolicy {
proof fn conformance(self , query , path) {}

}

This verifies the postcondition in NonLeafMustBeCA against
the concrete definition of OpenSSLPolicy::valid_path in
our DSL (Figure 6). In this case, Verus is able to automatically

2net/cert/{cert_verify_proc,cert_verify_proc_builtin}.cc,
net/cert/internal/path_builder.cc

3security/.../{CertVerifier,NSSCertDBTrustDomain}.cpp
4crypto/x509/x509_vfy.c

discharge the proof obligations; but in general, users may need
to add some additional proof hints to prove the conformance.

In Verdict, we encode a total of 20 requirements from RFC
5280 and CA/B BRs. We attempted to verify the require-
ments against our Chrome, Firefox, and OpenSSL policies,
and found that they conform to 8, 10, and 11 of these re-
quirements, respectively. All of the conforming properties are
verified by Verus automatically without requiring proof hints.

Below, we discuss some of the differences and non-
conformance we found in these policies. While most of them
are not security-critical, they demonstrate a wide range of
different policy choices and show the necessity of allowing
user-defined policies. Furthermore, they also show that formal
verification has a beneficial side effect of uncovering these
nuances in the specification.

Expiration Check. One may think that at least the expira-
tion check should be a universally agreed upon policy among
all X.509 implementations. However, we found that Chrome
does not check the expiration of a trusted root certificate,
while Firefox and OpenSSL do. We discovered this difference
when attempting to verify the following property:

pub trait NoExpiration: Policy {
proof fn conformance(self , query , path)

requires self.valid_path(query , path)
ensures forall |i| 0 ≤ i < path.len()
⇒ path[i].not_before
≤ query.validation_time
≤ path[i].not_after; }

Skipping the expiration check may either be done for per-
formance, or as a result of the ambiguity in the suggested path
validation algorithm in RFC 5280 Section 6.1: it only checks
that “the certificate validity period includes the current time”
for all certificates not including the trusted anchor. Chrome’s
path builder seems to closely follow this algorithm.

Another minor detail in RFC 5280 is that the expira-
tion check is inclusive; i.e., the certificate is valid only
if notBefore ≤ t ≤ notAfter, where notBefore and
notAfter are two fields in an X.509 certificate. We found
that Chrome and Firefox conform to this requirement, but
OpenSSL checks notBefore≤ t < notAfter instead.

Root CA Flag. For the same reason as the previous differ-
ence, Chrome does not require that a root certificate has the
CA flag in the Basic Constraints extension. We found this dis-
crepancy when attempting to verify the NonLeafMustBeCA
property above. On the other hand, Firefox and OpenSSL
policies do satisfy this property.

Extended Key Usage. According to CA/B BRs, a leaf cer-
tificate must contain the Extended Key Usage extension with
purposes including server authentication, and a root certificate
must not have the Extended Key Usage extension. However,

we found that none of Chrome, Firefox, and OpenSSL enforce
these two requirements.

Deprecated DSA Signatures. DSA signatures are not sup-
ported by CA/B BRs. While Chrome and Firefox both reject
certificates with DSA signatures (and leaf certificates with a
DSA public key), OpenSSL does not enforce this policy by
default, and requires extra compiler flags to disable DSA.

Root Authority Key Identifier. CA/B BRs require that
if a root certificate contains the Authority Key Identi-
fier extension, it must only have the keyIdentifier field,
but not the optional fields of authorityCertIssuer and
authorityCertSerialNumber. None of Chrome, Firefox,
and OpenSSL conform to this requirement. Firefox and
OpenSSL do not check for the absence of the latter two fields;
Chrome only imposes the RFC 5280 requirement that the
latter two fields must be both present or both absent.

6 Evaluation

In this section, we compare Verdict against existing imple-
mentations of X.509 validation in the wild, to answer the
following three questions:

Q1 Does Verdict have competitive performance against other
X.509 implementations? (§6.1)

Q2 Do the formalized Chrome, Firefox, and OpenSSL poli-
cies match the original implementations? (§6.2)

Q3 Can Verdict be easily integrated in third-party tools and
used in practical application settings? (§6.3)

In addition to answering these three questions, we also
discuss (§6.4) some of the security issues that Verdict’s ver-
ification categorically eliminates but that frequently occur
in existing validators (indeed we found new examples while
developing Verdict!). Finally, we summarize key verification
challenges we encountered and our lessons learned (§6.5).

Our implementation of Verdict contains about 13,000 lines
of verified proof/code (written in Verus) and 3,200 lines of
unverified Rust code, of which 79% does not need to be trusted
(the policy DSL compiler and testing infrastructure), and the
rest (glue code for the crypto providers) is trusted.

6.1 Performance
Performance is extremely important for X.509 validation im-
plementations. It affects the usability of browsers, since cer-
tificate validation is an unavoidable process of every new TLS
connection, and it affects security, as slow X.509 validation
might lead to denial-of-service attacks.

In this section, we show that Verdict, in addition to its
benefits of formal verification and customizability, also has

performance competitive with highly optimized implementa-
tions in browsers and TLS libraries.

Our main test suite for performance is a collection of
10,627,993 certificate chains derived from Certificate Trans-
parency (CT) logs around 2020, which was collected by pre-
vious work, Hammurabi [32].

We developed benchmarking harnesses for X.509 valida-
tion implementations in Chrome, Firefox, and OpenSSL, as
well as three related projects (discussed in more detail in §8):
ARMOR [18], CERES [17], and Hammurabi [32]. In Figure 8,
we summarize the performance statistics. In Figure 7, we
show a more detailed performance comparison between our
formalized Chrome, Firefox, and OpenSSL policies against
their original implementations.

As we discuss in the benchmarking setup below, devel-
oping a perfectly fair benchmark for certificate validators
is challenging, so the differences presented in these figures
should be interpreted as estimates. However, they do show
that the performance of Verdict is comparable to that of hand-
optimized, production-level implementations. In our bench-
marking setup, Verdict, on average, outperforms ARMOR
by over 370×, CERES by over 1,300×, and Hammurabi by
over 64×. Our Firefox policy is 6% faster than the original
implementation in Firefox, and our Chrome and OpenSSL
policies are only 2× and 1.8× slower than the original imple-
mentations.

In both figures, we show an additional set of results for
Verdict that uses more performant but unverified implemen-
tations of RSA and ECDSA P-256 signature checking from
AWS-LC [57] (marked with ?), instead of using the verified
versions from libcrux [37]. All other parts of Verdict are the
same in both sets of results. This shows that Verdict’s slower
performance primarily comes from the cryptographic prim-
itives, rather than our verified components (e.g., the parser,
path builder, and policies). With this change, Verdict’s mean
performance exceeds Firefox (69 µs vs 167 µs) and OpenSSL
(78 µs vs 97 µs), and it is on par with Chrome (86 µs vs 84 µs).

We now expand on our benchmarking setup, and discuss
the results in more detail.

Benchmarking Setup. Benchmarking X.509 implementa-
tions in a fair way is challenging. Although the high-level goal
of X.509 chain validation is the same, implementations can
differ substantially in the exact validation tasks they perform.
For example, Chrome and Firefox perform additional checks
for Extended Validation (EV) certificates [21] and different
certificate revocation checks.

We did our best to reduce the effect of these differences.
For Chrome and Firefox, we disabled the following compo-
nents in their X.509 validation code that differ or that are
not yet modeled in Verdict: Extended Validation (EV); re-
vocation checking; all logging and telemetry functionality;
fallback checks for SHA1 signatures; all networking opera-
tions (e.g. Authority Information Access (AIA) [11] fetching

Chrome V/Chrome V/Chrome? Firefox V/Firefox V/Firefox? OpenSSL V/OpenSSL V/OpenSSL?0

100

200

300

Pe
rf

or
m

an
ce

(m
ic

ro
se

co
nd

s)

Result
Accept
Reject

Figure 7: Performance (in microseconds) comparison between Verdict’s Chrome, Firefox, and OpenSSL policies (prefixed with
“V”) and the original implementations, on a set of 10M certificates from CT logs. In each column, the left bar shows the validation
time on accepted certificates, and the right bar shows that on rejected certificates. Each bar has five horizontal lines, representing
the maximum, 75th quantile, median, 25th quantile, and minimum of each data set. Outliers (more than 1.5× the interquantile
range above the 75th quantile or below the 25th quantile) are excluded for clarity. The notation of ? is the same as Figure 8.

Impl. Mean Median Min Max
V/Firefox? 69 54 8 756
V/OpenSSL? 78 65 8 731
Chrome 84 64 20 553
V/Chrome? 86 73 8 791
OpenSSL 97 85 35 969
V/Firefox 157 126 8 2,498
V/OpenSSL 167 140 8 1,182
Firefox 167 126 20 1,860
V/Chrome 174 147 8 1,183
HM/Chrome 11,219 11,215 271 18,882
HM/Firefox 12,156 12,131 272 20,159
ARMOR 65,747 64,549 32,510 132,328
CERES 238,188 248,406 1,830 342,755

Figure 8: Performance statistics (in microseconds) of Ver-
dict’s instantiations on Chrome, Firefox, and OpenSSL poli-
cies (prefixed with “V”), along with other tested implemen-
tations, on 10M certificates from CT logs. HM/Chrome and
HM/Firefox are Hammurabi’s Chrome and Firefox policies,
respectively. For Verdict, we show an additional set of results
using more performant but unverified RSA and ECDSA P-
256 implementations from AWS-LC [57] (marked with ?).

or OCSP [56]); and Signed Certificate Timestamp (SCT) [35]
validation. We do not model some of these features in Verdict
because they are declining in both browser support and usage
in the wild (e.g., EV, SHA1, and OCSP).

With these changes, there are still some differences in the
tested implementations that are difficult to remove but might
affect performance. ARMOR and CERES do not support host-
name validation nor the Name Constraints extension (so they
perform fewer checks than the other tested implementations),
while Firefox, Chrome, and OpenSSL have additional logic
for error handling and reporting that are not modeled in the
other implementations.

In all of the tested implementations, we only measure the
time for (1) parsing the leaf and intermediate certificates (from
Base64 or PEM), and (2) building and validating the certifi-
cate chain (including signature checking). In particular, pars-
ing of the trusted root certificates is not included, and the
root parsing results are cached for all tested implementations.
Exclusion of root certificate parsing time significantly bene-
fits some implementations, such as ARMOR, for which our
profiling shows that root certificate parsing takes about 89%
of the total time in ARMOR’s original benchmarking setup.

To facilitate the benchmarking of these components, each
benchmarking harness is written as a server in the native
language of each implementation (i.e., C++ for Chrome and
Firefox, C for OpenSSL, Python/Agda for ARMOR, Python
for CERES, and Rust for Hammurabi). Each benchmarking
server (1) initializes with a fixed set of root certificates, (2)
loops to accept benchmarking requests consisting of the val-
idation query (leaf and intermediate certificates, hostname,
etc.) and the number of repetitions to perform, and then (3)
repeats and times the validation of the request, using the most
accurate wall-clock time available in the native language of
each implementation.

We ran all experiments on a single machine with an Intel
Core i9-13950HX CPU and 32 GiB of RAM. To reduce noise,
for each certificate chain, we collected 10 wall-clock time
measurements for each implementation, and then we used the
minimum sample as the final time for that chain. We disabled
hyper-threading and isolated the benchmark process to four
performance cores pinned to the highest frequency.

For ARMOR, CERES, and Hammurabi, we were unable to
finish testing for all 10M certificates due to time constraints,
so we randomly sampled 100K (1%) of all 10M certificates
for Hammurabi, and 10K (0.1%) for ARMOR and CERES.

All of the test harnesses and modified source code are
available in our artifact [38].

Test Impl. A/A A/R R/A R/R

CT
Chrome 10,600,892 0 0 27,101
Firefox 10,600,919 0 0 27,074
OpenSSL 10,600,836 0 7 27,150

Limbo
Chrome 541 3 3 4,739
Firefox 569 2 2 4,713
OpenSSL 572 10 26 4,678

Figure 9: Differential testing results. “CT” is the test suite
of 10,627,993 certificate chains from Certificate Trans-
parency logs. “Limbo” represents 5,286 tests from the x509-
limbo [61] test suite. The column name “A/A” means both
the original and Verdict versions accept; “A/R” means the
original accepts but Verdict rejects; “R/A” means the original
rejects but Verdict accepts; “R/R” means both reject.

Discussion. We attribute Verdict’s good performance to sev-
eral factors. First, Rust is a mature and performant language,
and the verification tool Verus adds little overhead to its na-
tive performance. By implementing Verdict entirely in Verus,
we can both state end-to-end correctness specifications, and
avoid the overhead of inter-process communication (e.g., in
the case of ARMOR, CERES, and Hammurabi).

Second, signature checking takes the majority of validation
time in most X.509 implementations. In Verdict, we use a
number of caches to avoid recomputing heavy cryptographic
operations. For instance, RSA is the most common signature
scheme in our test cases (92.7% of the 10M CT log chains
use RSA + SHA-256 signatures). We cache the RSA public
keys of the root certificates (including certain precomputa-
tion required for signature checking), which results in a 19%
speedup in our experiments. Optimizations such as this are
verified and cause no change to the end-to-end specification.

Compared to ARMOR, Verdict also has a much more per-
formant parser, which we have designed such that most parser
combinators are zero-copy.

There is still more room for performance improvements in
Verdict in practice. For example, Chrome and Firefox may
cache computation (e.g., signature checking of a common in-
termediate certificate) across multiple validation runs, which
we do not yet implement in Verdict.

6.2 Differential Testing

Besides good performance, Verdict is also expressive enough
to model complex policies in Chrome, Firefox, and OpenSSL.

We demonstrate this by performing differential testing be-
tween our formalized policies and their original implemen-
tations, on two test suites: (1) the 10M CT log chains from
§6.1, and (2) a third-party synthetic test suite called x509-
limbo [61] (Limbo), which is designed to catch inconsisten-
cies on edge cases of X.509 validation. In Limbo, we use
5,286 out of 9,741 test cases, excluding tests that require

either IP validation or client authentication, which are not
currently supported by Verdict.

The differential testing results are shown in Figure 9. On
common certificates from the CT logs, our formalized Chrome
and Firefox policies agree completely with the original im-
plementations, and our OpenSSL policy only disagrees with
OpenSSL on 7 certificate chains, which are actually caused
by a path builder bug in baseline OpenSSL (§6.4).

The Limbo test suite is much more challenging, and our
formalizations diverge more from the original implementa-
tions. We took effort to fix inconsistencies between all the
policies and their original implementations, and at the time of
writing, the Chrome, Firefox, and OpenSSL policies are only
inconsistent on 0.1%, 0.08%, and 0.7% of the Limbo tests.
We attribute these differences to two types of issues:

• Unsupported features: A few tests require features that
Verdict does not yet support, e.g., unsupported signa-
ture schemes of DSA, ECDSA P-192, and ECDSA with
SHA-1. Verdict also does not check for intermediate
self-issued certificates yet, and one test checks that an
X.509 validator should not count self-issued intermedi-
ates when checking the path length limit.

• Chrome test harness issue: We use libfaketime [26] to
set the system clock to a specific timestamp when the
Chrome test harness starts, since Chrome does not have
a direct interface to set the validation time. However,
Limbo has tests where the validation time is exactly the
same as the certificate’s expiration time. In these cases,
when Chrome’s validator obtains the current time, the
system clock has already advanced from the previously
set timestamp, resulting in a validation timestamp that is
not the value desired by the test harness.

Due to these minor inconsistencies, we do not claim that our
formalizations of Chrome/Firefox/OpenSSL policies behave
exactly the same as the original implementations. Nonethe-
less, our differential testing shows that Verdict is expres-
sive enough for most if not all validation logic in complex,
production-level X.509 validators.

We also tested ARMOR, CERES, and Hammurabi on
Limbo and revealed a large number of issues, despite their
focus on high assurance (§8). ARMOR’s parser rejects all
of the root certificates in the test suite, which is similar to
their own results of testing on Frankencerts [4]. CERES fails
490 (9.2%) of the tests compared to the expected test results
in Limbo, including 18 out of 75 manually written tests for
RFC conformance. This shows that ARMOR and CERES’s
emphasis on strict RFC compliance (§8) is difficult to achieve
and creates practical issues.

Hammurabi’s Chrome and Firefox policies differ from the
original implementations on 534 (10.1%) and 559 (10.6%)
test cases, respectively. Among these inconsistencies, 407
are due to the incorrect handling of Name Constraints. For

Impl. Mean Max Min ≈ + −
V/Chrome 0.29% 1.89% -3.19% 39 7 54
V/Firefox 0.22% 1.56% -1.17% 48 5 47
V/OpenSSL 0.27% 1.61% -1.5% 39 11 50
V/Chrome? 0.11% 1.11% -1.57% 59 2 39
V/Firefox? 0.06% 2.45% -1.4% 71 5 24
V/OpenSSL? 0.05% 1.09% -2.85% 60 3 37

Figure 10: Performance overhead (relative to the baseline)
of making HTTPS requests to 100 popular websites [36] us-
ing Verdict-integrated Rustls. The Mean/Max/Min columns
show the geometric mean, maximum, and minimum of the
relative differences in HTTPS request time across all web-
sites. The last three columns show the numbers of websites
where sample mean differences have no statistical significance
(≈, p≥ 0.05), Verdict is faster (+, p < 0.05), and Verdict is
slower (−, p < 0.05). The ? notation is the same as Figure 8.

example, Hammurabi applies Name Constraints only to the
leaf certificate, but not intermediate certificates.

6.3 Performance in Rustls
To demonstrate that Verdict can be easily used in existing
TLS libraries, we integrated Verdict into a popular Rust TLS
library called Rustls [54]. The integration is added directly
through Cargo (Rust’s package manager) and only involves
107 lines of additional Rust code in Rustls.

The performance overhead of using Verdict in Rustls in
practical settings is minuscule. We measured the client-side
performance of making HTTPS requests to the 100 most
popular websites according to Tranco [36]. We used both
the baseline version of Rustls, and our version that integrates
Verdict. We found that on average, the overhead of using
Verdict in Rustls is around 0.05–0.29% (Figure 10).

To set up this experiment, we first fetch certificate chains
and HTTP responses from the first 100 most visited domains
from the Tranco list [36]. We then replace public keys in these
chains with freshly generated keys to mimic the public server
locally, and use Rustls to make HTTPS requests to the local
server, with a fixed, simulated network delay of 5 ms (using
the tc command on Linux). We collected 100 samples for
each domain and policy, after discarding warm-up rounds.

In Figure 10, we show that on almost half of the websites,
there is no statistically significant difference between Verdict
and the baseline, and in a few cases, Verdict outperforms the
baseline. In general, the difference is very small (less than
0.3% on average), which is expected as the request time is
dominated by network delay.

6.4 Security Issues Preventable by Verdict
In this section, we discuss several broad classes of security
bugs that have plagued X.509 validators for years. These is-

sues are eliminated through the formal verification of Verdict,
where the correctness and security of the complex implemen-
tation is reduced to a human-readable, high-level specifica-
tion.

We also mention a few bugs we found in popular X.509-
related libraries while developing Verdict. Although not all
of these bugs are immediately exploitable, Verdict’s focus is
not finding individual bugs, but on ruling out entire classes of
bugs.

Malleable ASN.1 Object Identifier Encoding. When test-
ing our parser against a popular Rust DER encoding/decod-
ing library called der [53] (with over 80M downloads and
used by popular cryptographic libraries in the Rust Crypto
project [52]), we found that their encoding of ASN.1 object
identifiers is incorrect and malleable in certain ranges. For
example, “1.2.128” and “1.2.0” are both encoded to the same
byte sequence. This issue has been confirmed by the author of
der and has since been fixed. In §4.1, we show that Verdict’s
X.509 parser is formally verified to be non-malleable, thus
ruling out any issue of this kind.

Path Building Incompleteness. During differential testing
(§6.2), we found that OpenSSL sometimes fails to explore an
alternative path when the first candidate fails, which is similar
to an issue that caused a wide outage in 2020 [2]. In particu-
lar, if the first candidate path has a root missing the Subject
Key Identifier extension, OpenSSL fails prematurely without
searching for an alternative valid path. We have reported this
issue to the OpenSSL developers.

Similarly, when studying Hammurabi’s implementa-
tion [32], we found that it has another kind of incompleteness:
it assumes that the input certificates are ordered such that
any issuer certificate always appears after its subject certifi-
cate. For example, if two certificates in a chain are swapped,
Hammurabi fails to find a valid path.

In Verdict, we formally prove that such incompleteness
issues cannot happen.

Memory Safety Issues. X.509 implementations written
in C have been riddled with memory issues such as buffer
overflows, including some very recent CVEs [13–15]. These
issues can be exploited to cause denial-of-service or even
remote code execution attacks using adversarial certificates.
Verdict’s verified portion is free of invalid memory accesses
(by using Rust), and it is also formally verified to be free of
crashes caused by panics or integer overflows.

6.5 Verification Challenges and Takeaways

We summarize the main challenges we face during the verifi-
ation effort of Verdict and how our design overcomes them.

End-to-End Specification. Existing X.509 validators, e.g.,
in Chrome/Firefox/OpenSSL, intermingle intricate policies
with path building, cryptographic operations, and parsing.
This makes it difficult to write a concise and end-to-end val-
idator specification, as evidenced in part by ARMOR’s lack
thereof.

In Verdict, the separation of user-defined policy from the
rest of the validator is an important factor that makes our verifi-
cation effort tractable and easy to scale to existing production-
level X.509 validators. We factor out the common part of their
behavior (parsing and path building), and provide a policy
DSL so that we can have a clean and customizable end-to-end
specification (Figure 3).

Modeling Complex Policies. Modeling and verifying
X.509 policies in a naïve way can easily lead to spec/code
duplication, which is hard to maintain. This is because these
policies are mostly mechanical checks on certificates, and so
the complexity of their spec is almost the same as the com-
plexity of the implementation. For example, in ARMOR [18],
one must specify a predicate and an implementation for each
RFC rule, even though they mostly express the same logic.

By using a policy DSL in Verdict and automatically com-
piling policy specs to verified executable code, we do not
compromise on formal guarantees and, at the same time, im-
prove the readability and maintainability of the policies.

The Verus community also has a more general need for
executable specs, so we are working on upstreaming a gener-
alized version of our policy compiler to Verus, with support
for more primitives and robust generation of functional cor-
rectness proofs.

X.509/ASN.1 Parsing. The ASN.1 DER [60] format
involves sophisticated bit-level rules for ensuring non-
malleability and compactness. Prior work on formally verify-
ing ASN.1 parsing, such as ARMOR [18] and ASN1? [41],
has compromised on performance due to this complexity.

To achieve both performance and formal verification in our
work, we use a modular and extensible design to first formal-
ize ASN.1 primitives, and then use the ASN.1 DSL (§4.1) to
easily express and verify complex X.509 formats in ASN.1.
This allows us to build an X.509 parser that matches the
performance of hand-written, unverified parsers in Chrome,
Firefox, and OpenSSL, while providing strong guarantees of
non-malleability and prefix security.

Verus vs. Agda. Although verifying imperative Rust code
in Verus gives us much better control over performance, it
also arguably increases the difficulty of the proofs as there is
a larger gap between the pure functional specifications and
the imperative code with mutable objects.

Verus’s SMT-based automated verification paradigm helps
alleviate this burden. A key benefit of using Verus is its fast

verification time, which means that we can quickly learn
whether a proof attempt fails and then iterate on it. As a
rough comparison, on the machine we use for evaluation, it
takes 57 seconds to verify the entire Verdict project with Verus
(using a single thread), which includes 38 s for the parser, and
15 s for the path builder and policies. In comparison, ARMOR,
which is written in Agda [42], takes 1,186 seconds to type
check/verify.

7 Limitations

Given the complexity of the X.509 standards and implemen-
tations, Verdict still has some limitations.

Support for Revocation. In Verdict’s Chrome and Fire-
fox policies, we inherit some revocation mechanisms from
Hammurabi by checking the certificate in question against a
known list of revoked certificates (e.g. derived from Chrome’s
CRLSets [46]). However, more complex revocation mecha-
nisms such as OCSP are not modeled in our policies, partially
because they are undergoing active changes (e.g., OCSP is
being phased out [1]). In general, to implement revocation
in Verdict, one can fetch revocation information prior to pol-
icy evaluation, and then make the policy parametric in the
revocation information, in the same style as Hammurabi.

Error Reporting. Accurately reporting suitable error mes-
sages for a rejected certificate is useful for debugging, and
also has security implications when the user needs to see the
error [4]. Currently, all policies in Verdict are defined as a
Boolean predicate on a candidate certificate path. Our policy
DSL does support custom enum types, so we leave better
error reporting as future engineering work.

Trusted Computing Base. Besides the major tooling com-
ponents we trust (e.g., the Rust compiler, Verus, LLVM), there
are also some low-level utility functions not formally verified
in Verdict. These include string manipulating functions in
the Rust standard library (e.g., prefix/suffix checking, UTF-
8 encoding and case folding), and the conversion from the
ASN.1 [60] representations of time to UNIX timestamps (for
which we use an unverified Rust library chrono [51]). We
believe that verification of these components are orthogonal
to our goal of formally verifying X.509 validation.

8 Related Work

The ubiquity and complexity of X.509 validation have led
to abundant work in applying formal methods and testing
techniques to X.509 validators to make them more trustworthy.
We discuss related work in the following three categories.

Bug Finding Fuzzing [40] is commonly applied to test ex-
isting X.509 implementations. The Frankencerts work [4] ran-
domly mutates existing certificates, and uses them to perform
differential testing between different X.509 implementations.
Multiple follow-up projects try to improve the coverage of
Frankencerts [7, 45, 48]. Symbolic execution tools [6] have
also been applied to X.509 validators for better coverage.
While helpful for bug finding, these techniques do not provide
the same level of guarantees as formal verification.

Separating Policy From Mechanism Larisch et al. disen-
tangle X.509 validation policy from mechanism by expressing
the policy as a Prolog program, which is then executed by the
Hammurabi engine [32]. They make a compelling case for
customization, on the grounds that in practice, there is no one
true standard for X.509 certificate validation. Their approach
inspired Verdict’s support for custom validation policies.

Our contribution compared to Hammurabi is in the orthog-
onal direction of formal verification. Hammurabi is entirely
unverified. It uses OpenSSL’s parser, while we verify a per-
formant parser for the complex X.509 format. We also find
(§6.4) that its path builder is incomplete (i.e., there could be
unexplored paths), while Verdict’s path builder is provably
complete. Verdict’s policy framework also provides much
stronger guarantees about policies than Hammurabi. From
specifications written in Verdict’s policy DSL, we automati-
cally derive provably correct executable policies, verify their
formal properties (e.g., RFC/BR conformance), and integrate
policies directly into our end-to-end spec.

Using Prolog to express policies is often natural, but in
some places leads to contortions. For instance, Hammurabi
flattens the subject/issuer Distinguished Names (DNs) of a cer-
tificate for a more natural Prolog encoding, whereas in reality,
DNs should be considered as a nested sequence of object-
identifier-tagged strings. As a result, Hammurabi conflates
names such as [[CN=a], [OU=b]] and [[CN=a, OU=b]],
which is not the case in common implementations.

Relying on Prolog also leads to poor performance (as
shown in §6.1) and security risks. Because Hammurabi is
unverified, all of its code, including the Prolog engine, must
be trusted. In Hammurabi, potentially adversarial inputs (e.g.,
strings in a certificate) are directly translated into Prolog facts
and mixed together with the policy program for execution.
Since Prolog is untyped and has a flexible syntax, this opens
up the risk of code injection.

CERES [17] models the validation rules from RFC 5280
separately in quantifier-free first-order logic (QFFOL). At
runtime, it uses the CVC4 SMT solver [3] to check these
rules against the given certificate chain. Compared to Ver-
dict, CERES does not have any formally verified components,
although one could consider the QFFOL rules as a policy
specification. Even in that case, the lack of quantifiers im-
poses significant limitations on their expressiveness: they do
not support any X.509 extensions that require the theory of ar-

rays (e.g., Name Constraints), nor can they handle arbitrarily
long chains (their SMT encoding is parametric in a constant
maximum chain length). Adding quantifiers in CERES is
not feasible, since SMT solvers cannot guarantee termination
in most quantified theories. Using SMT solvers at runtime
also leads to poor performance and security concerns, as both
CVC4 and Z3 [16] are complex pieces of software written in
a non-memory-safe language (C++).

Verified Implementations The ARMOR [18] project for-
mally verifies parsing, chain building, and 27 required checks
from RFC 5280 in the theorem prover Agda [42], making
ARMOR a significant step towards a reference implemen-
tation of the RFC 5280 standard. However, their approach
has several limitations compared to Verdict. First, they do
not provide a clean, end-to-end specification for their entire
pipeline, and there are multiple important components that
live outside of the verified Agda code base, such as signature
checking and the main Python driver that orchestrates the
different modules. The goal of strictly conforming to RFC
5280 also has downsides. In particular, they do not model
hostname validation or any rules from CA/B BRs [20], nor
are their current RFC 5280 rules complete. They do not allow
easy customization of the policy, and authors of most TLS
libraries they tested against do not consider the discrepancies
between ARMOR and their libraries to be bugs. The use of
Agda also has practical limitations. As shown in §6.1, there
is a large performance gap between ARMOR and Verdict. It
also makes it difficult to maintain and integrate ARMOR into
existing projects.

While ARMOR is the only prior work that focuses on full
verification of X.509 validation, there is prior work that tack-
les X.509/ASN.1 DER parsing or serializing. In DICE? [58],
authors verify a DICE-specific X.509 certificate serialization
library without parsing or validation. The ASN1? library [41]
formalizes a subset of the DER parsing specification in the
EverParse framework [49], and verifies that the parser is non-
malleable. Performance-wise, their parsers are extracted to
slow OCaml code, and in some preliminary evaluation we
conducted, on 1000 certificates from CT logs, our parser took
0.024 s, while ASN1? took 9.32 s, i.e., 388× slower.

9 Conclusion

In this work, we present Verdict, the first end-to-end formally
verified X.509 certificate validator with practical performance
and flexibility. In Verdict’s policy DSL, we formalize three
complex, production-level X.509 policies from Chrome, Fire-
fox, and OpenSSL, and show that our versions are competitive
against the original implementations. We believe our work is
an important step towards applying practical formal verifica-
tion to establish more secure and trustworthy X.509 PKIs.

Acknowledgments

We thank Samvid Dharanikota for his help in prototyping
an early version of Verdict; James Larisch for his assistance
with the Hammurabi code base and for providing feedback on
an early draft of this paper; and Dana Keeler, Matt Mueller,
and Lily Chen for their help with profiling X.509 validators
in Firefox and Chromium. This work was supported in part
by National Science Foundation (NSF) Grant No. 2224279,
funding from AFRL and DARPA under Agreement FA8750-
24-9-1000, and the Future Enterprise Security initiative at
Carnegie Mellon CyLab (FutureEnterprise@CyLab). Pratap
Singh was also funded by the NSF Graduate Research Fel-
lowship Program under Grant No. DGE2140739.

Ethical Considerations

This work uses formal verification to construct X.509 val-
idators free of security vulnerabilities for the benefit of the
broader computing community. As part of our research, we
have discovered a few (minor) issues in public X.509-related
projects which have all been responsibly disclosed to their
maintainers in a timely manner.

Open Science

The source code of Verdict and benchmarking harnesses for
each X.509 implementation tested in §6 are available in our
artifact [38] and GitHub repository [39].

References

[1] Josh Aas. Intent to end OCSP service.
https://letsencrypt.org/2024/07/23/
replacing-ocsp-with-crls/, 2024.

[2] Andrew Ayer. Fixing the breakage from
the AddTrust external CA root expiration.
https://www.agwa.name/blog/post/fixing_
the_addtrust_root_expiration, 2020.

[3] Clark W. Barrett, Christopher L. Conway, Morgan De-
ters, Liana Hadarean, Dejan Jovanovic, Tim King, An-
drew Reynolds, and Cesare Tinelli. CVC4. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Computer
Aided Verification - 23rd International Conference, CAV
2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-
ings, volume 6806 of Lecture Notes in Computer Sci-
ence, pages 171–177. Springer, 2011.

[4] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz
Khurshid, and Vitaly Shmatikov. Using Frankencerts
for automated adversarial testing of certificate validation
in SSL/TLS implementations. In 2014 IEEE Symposium
on Security and Privacy, pages 114–129, 2014.

[5] Yi Cai, Pratap Singh, Zhengyao Lin, Jay Bosamiya,
Joshua Gancher, Milijana Surbatovich, and Bryan Parno.
Vest: Verified, secure, high-performance parsing and
serialization for Rust. In Proceedings of the USENIX
Security Symposium, August 2025.

[6] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque,
Huangyi Ge, Aniket Kate, Cristina Nita-Rotaru, and
Ninghui Li. Symcerts: Practical symbolic execution
for exposing noncompliance in X.509 certificate vali-
dation implementations. In 2017 IEEE Symposium on
Security and Privacy (SP), pages 503–520, 2017.

[7] Yuting Chen and Zhendong Su. Guided differential
testing of certificate validation in SSL/TLS implementa-
tions. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015,
page 793–804, New York, NY, USA, 2015. Association
for Computing Machinery.

[8] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu.
RFC 3647: Internet X.509 public key infrastructure
certificate policy and certification practices framework,
2003.

[9] The Chromium projects. https://www.chromium.
org/, 2024.

[10] William F Clocksin and Christopher S Mellish. Pro-
gramming in PROLOG. Springer Science & Business
Media, 2003.

[11] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Hous-
ley, and W. Polk. RFC 5280: Internet X.509 public key
infrastructure certificate and certificate revocation list
(CRL) profile, 2008.

[12] CVE-2014-1266. https://www.cve.org/
CVERecord?id=CVE-2014-1266, 2014.

[13] CVE-2024-22041. https://www.cve.org/
CVERecord?id=CVE-2024-22041, 2024.

[14] CVE-2024-28835. https://www.cve.org/
CVERecord?id=CVE-2024-28835, 2024.

[15] CVE-2024-6119. https://www.cve.org/
CVERecord?id=CVE-2024-6119, 2024.

[16] Leonardo De Moura and Nikolaj Bjørner. Z3: An ef-
ficient SMT solver. In Proceedings of the Theory and
Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analy-
sis of Systems, TACAS’08/ETAPS’08, page 337–340,
Berlin, Heidelberg, 2008. Springer-Verlag.

https://letsencrypt.org/2024/07/23/replacing-ocsp-with-crls/
https://letsencrypt.org/2024/07/23/replacing-ocsp-with-crls/
https://www.agwa.name/blog/post/fixing_the_addtrust_root_expiration
https://www.agwa.name/blog/post/fixing_the_addtrust_root_expiration
https://www.chromium.org/
https://www.chromium.org/
https://www.cve.org/CVERecord?id=CVE-2014-1266
https://www.cve.org/CVERecord?id=CVE-2014-1266
https://www.cve.org/CVERecord?id=CVE-2024-22041
https://www.cve.org/CVERecord?id=CVE-2024-22041
https://www.cve.org/CVERecord?id=CVE-2024-28835
https://www.cve.org/CVERecord?id=CVE-2024-28835
https://www.cve.org/CVERecord?id=CVE-2024-6119
https://www.cve.org/CVERecord?id=CVE-2024-6119

[17] Joyanta Debnath, Sze Yiu Chau, and Omar Chowdhury.
On re-engineering the X.509 PKI with executable spec-
ification for better implementation guarantees. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’21, page
1388–1404, New York, NY, USA, 2021. Association
for Computing Machinery.

[18] Joyanta Debnath, Christa Jenkins, Yuteng Sun, Sze Yiu
Chau, and Omar Chowdhury. ARMOR: A formally veri-
fied implementation of X.509 certificate chain validation.
In 2024 IEEE Symposium on Security and Privacy (SP),
pages 1462–1480, Los Alamitos, CA, USA, May 2024.
IEEE Computer Society.

[19] Mozilla Firefox. https://www.mozilla.org/
firefox/, 2024.

[20] CA/Browser Forum. Baseline require-
ments for the issuance and management
of publicly-trusted TLS server certificates.
https://cabforum.org/working-groups/
server/baseline-requirements/documents/
CA-Browser-Forum-TLS-BR-2.1.2.pdf, 2024.

[21] CA/Browser Forum. EV TLS server certificate guide-
lines. https://cabforum.org/working-groups/
server/extended-validation/documents/, 2024.

[22] R. Frost and J. Launchbury. Constructing natural lan-
guage interpreters in a lazy functional language. Comput.
J., 32(2):108–121, April 1989.

[23] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov. The most
dangerous code in the world: Validating SSL certificates
in non-browser software. In Proceedings of the 2012
ACM Conference on Computer and Communications
Security, CCS ’12, page 38–49, New York, NY, USA,
2012. Association for Computing Machinery.

[24] GnuTLS. https://gnutls.org/, 2024.

[25] C. A. R. Hoare. An axiomatic basis for computer pro-
gramming. Commun. ACM, 12(10):576–580, October
1969.

[26] Wolfgang Hommel. libfaketime. https://github.
com/wolfcw/libfaketime, 2024.

[27] S. Josefsson. RFC 4648: The Base16, Base32, and
Base64 data encodings, 2006.

[28] B. Kaliski. RFC 2313: PKCS #1: RSA encryption ver-
sion 1.5, 1998.

[29] S. Kent and K. Seo. RFC 4301: Security architecture
for the internet protocol, 2005.

[30] Steve Klabnik and Carol Nichols. The Rust pro-
gramming language. https://doc.rust-lang.org/
book/, 2024.

[31] Platon Kotzias, Srdjan Matic, Richard Rivera, and Juan
Caballero. Certified PUP: Abuse in Authenticode code
signing. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’15, page 465–478, New York, NY, USA, 2015.
Association for Computing Machinery.

[32] James Larisch, Waqar Aqeel, Michael Lum, Yaelle Gold-
schlag, Leah Kannan, Kasra Torshizi, Yujie Wang, Tae-
joong Chung, Dave Levin, Bruce Maggs, Alan Mislove,
Bryan Parno, and Christo Wilson. Hammurabi: A frame-
work for pluggable, logic-based X.509 certificate valida-
tion policies. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), Novem-
ber 2022.

[33] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias
Brun, Chanhee Cho, Hayley LeBlanc, Pranav Srinivasan,
Reto Achermann, Tej Chajed, Chris Hawblitzel, Jon
Howell, Jacob R. Lorch, Oded Padon, and Bryan Parno.
Verus: A practical foundation for systems verification.
In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, SOSP ’24, page 438–454,
New York, NY, USA, 2024. Association for Computing
Machinery.

[34] Andrea Lattuada, Travis Hance, Chanhee Cho, Matthias
Brun, Isitha Subasinghe, Yi Zhou, Jon Howell, Bryan
Parno, and Chris Hawblitzel. Verus: Verifying Rust
programs using linear ghost types. Proc. ACM Program.
Lang., 7(OOPSLA1), April 2023.

[35] B. Laurie, A. Langley, and E. Kasper. RFC 6962: Cer-
tificate transparency, 2013.

[36] Victor Le Pochat, Tom Van Goethem, Samaneh Tajal-
izadehkhoob, Maciej Korczyński, and Wouter Joosen.
Tranco: A research-oriented top sites ranking hardened
against manipulation. In Proceedings of the 26th Annual
Network and Distributed System Security Symposium,
NDSS 2019, February 2019.

[37] libcrux: The formally verified crypto library for Rust.
https://github.com/cryspen/libcrux, 2024.

[38] Zhengyao Lin, Michael McLoughlin, Pratap Singh, Rory
Brennan-Jones, Paul Hitchcox, Joshua Gancher, and
Bryan Parno. Towards practical, end-to-end formally
verified X.509 certificate validators with Verdict. https:
//doi.org/10.5281/zenodo.15468400, May 2025.

[39] Zhengyao Lin, Michael McLoughlin, Pratap Singh, Rory
Brennan-Jones, Paul Hitchcox, Joshua Gancher, and

https://www.mozilla.org/firefox/
https://www.mozilla.org/firefox/
https://cabforum.org/working-groups/server/baseline-requirements/documents/CA-Browser-Forum-TLS-BR-2.1.2.pdf
https://cabforum.org/working-groups/server/baseline-requirements/documents/CA-Browser-Forum-TLS-BR-2.1.2.pdf
https://cabforum.org/working-groups/server/baseline-requirements/documents/CA-Browser-Forum-TLS-BR-2.1.2.pdf
https://cabforum.org/working-groups/server/extended-validation/documents/
https://cabforum.org/working-groups/server/extended-validation/documents/
https://gnutls.org/
https://github.com/wolfcw/libfaketime
https://github.com/wolfcw/libfaketime
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/
https://github.com/cryspen/libcrux
https://doi.org/10.5281/zenodo.15468400
https://doi.org/10.5281/zenodo.15468400

Bryan Parno. Verdict: Verified X.509 certificate valida-
tion. https://github.com/secure-foundations/
verdict, 2025.

[40] Valentin J.M. Manès, HyungSeok Han, Choongwoo
Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz,
and Maverick Woo. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering, 47(11):2312–2331, 2021.

[41] Haobin Ni, Antoine Delignat-Lavaud, Cédric Fournet,
Tahina Ramananandro, and Nikhil Swamy. ASN1*:
Provably correct, non-malleable parsing for ASN.1 DER.
In Proceedings of the 12th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs,
CPP 2023, page 275–289, New York, NY, USA, 2023.
Association for Computing Machinery.

[42] Ulf Norell. Dependently typed programming in Agda.
In Proceedings of the 4th International Workshop on
Types in Language Design and Implementation, TLDI
’09, page 1–2, New York, NY, USA, 2009. Association
for Computing Machinery.

[43] National Institute of Standards and Technology. Digital
signature standard (DSS). https://csrc.nist.gov/
pubs/fips/186-4/final, 2013.

[44] OpenSSL. https://www.openssl.org/, 2024.

[45] Theofilos Petsios, Adrian Tang, Salvatore Stolfo, Ange-
los D. Keromytis, and Suman Jana. Nezha: Efficient
domain-independent differential testing. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 615–
632, 2017.

[46] Chromium Project. CRLSets. https:
//www.chromium.org/Home/chromium-security/
crlsets/, 2024.

[47] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz,
Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhar-
gavan, Benjamin Beurdouche, Joonwon Choi, Antoine
Delignat-Lavaud, Cédric Fournet, Natalia Kulatova,
Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy,
Christoph M. Wintersteiger, and Santiago Zanella-
Beguelin. EverCrypt: A fast, verified, cross-platform
cryptographic provider. In 2020 IEEE Symposium on
Security and Privacy (SP), pages 983–1002, 2020.

[48] Lili Quan, Qianyu Guo, Hongxu Chen, Xiaofei Xie, Xi-
aohong Li, Yang Liu, and Jing Hu. SADT: Syntax-aware
differential testing of certificate validation in SSL/TLS
implementations. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engi-
neering, ASE ’20, page 524–535, New York, NY, USA,
2021. Association for Computing Machinery.

[49] Tahina Ramananandro, Antoine Delignat-Lavaud, Cé-
dric Fournet, Nikhil Swamy, Tej Chajed, Nadim
Kobeissi, and Jonathan Protzenko. EverParse: Veri-
fied secure zero-copy parsers for authenticated message
formats. In Proceedings of the USENIX Security Sym-
posium, August 2019.

[50] The Rust programming language. https://www.
rust-lang.org/, 2024.

[51] Chrono: Date and time library for Rust. https://
github.com/chronotope/chrono, 2024.

[52] Rust Crypto. https://github.com/rustcrypto,
2024.

[53] Rust Crypto: ASN.1 DER. https://github.com/
RustCrypto/formats/tree/master/der, 2024.

[54] Rustls: A modern TLS library in Rust. https://
github.com/rustls/rustls, 2024.

[55] P. Saint-Andre and J. Hodges. RFC 6125: Representa-
tion and verification of domain-based application ser-
vice identity within internet public key infrastructure
using X.509 (PKIX) certificates in the context of trans-
port layer security (TLS), 2011.

[56] S. Santesson, M. Myers, R. Ankney, A. Malpani,
S. Galperin, and C. Adams. RFC 6960: X.509 inter-
net public key infrastructure online certificate status
protocol - OCSP, 2013.

[57] Amazon Web Services. AWS libcrypto. https://
github.com/aws/aws-lc, 2024.

[58] Zhe Tao, Aseem Rastogi, Naman Gupta, Kapil Vaswani,
and Aditya V. Thakur. DICE*: A formally verified im-
plementation of DICE measured boot. In 30th USENIX
Security Symposium (USENIX Security 21), pages 1091–
1107. USENIX Association, August 2021.

[59] International Telecommunications Union. The directory:
Authentication framework, 1988.

[60] International Telecommunications Union. Information
technology - ASN.1 encoding rules: Specification of
basic encoding rules (BER), canonical encoding rules
(CER) and distinguished encoding rules (DER). https:
//www.itu.int/rec/T-REC-X.690/en, 2002.

[61] x509-limbo. https://x509-limbo.com/, 2024.

[62] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon En-
right, and Stefan Savage. When private keys are public:
Results from the 2008 Debian OpenSSL vulnerability.
In Proceedings of the 9th ACM SIGCOMM Conference
on Internet Measurement, IMC ’09, page 15–27, New
York, NY, USA, 2009. Association for Computing Ma-
chinery.

https://github.com/secure-foundations/verdict
https://github.com/secure-foundations/verdict
https://csrc.nist.gov/pubs/fips/186-4/final
https://csrc.nist.gov/pubs/fips/186-4/final
https://www.openssl.org/
https://www.chromium.org/Home/chromium-security/crlsets/
https://www.chromium.org/Home/chromium-security/crlsets/
https://www.chromium.org/Home/chromium-security/crlsets/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://github.com/chronotope/chrono
https://github.com/chronotope/chrono
https://github.com/rustcrypto
https://github.com/RustCrypto/formats/tree/master/der
https://github.com/RustCrypto/formats/tree/master/der
https://github.com/rustls/rustls
https://github.com/rustls/rustls
https://github.com/aws/aws-lc
https://github.com/aws/aws-lc
https://www.itu.int/rec/T-REC-X.690/en
https://www.itu.int/rec/T-REC-X.690/en
https://x509-limbo.com/

	1 Introduction
	2 Preliminaries
	2.1 X.509 Certificate Validation
	2.2 Formally Verifying Rust Code with Verus

	3 Threat Model and TCB
	4 A Formally Verified X.509 Validator
	4.1 X.509 Parser and Serializer
	4.2 Path Builder
	4.3 Policy Framework and DSL

	5 Case Study: Chrome, Firefox, and OpenSSL
	5.1 Verifying RFC Conformance

	6 Evaluation
	6.1 Performance
	6.2 Differential Testing
	6.3 Performance in Rustls
	6.4 Security Issues Preventable by Verdict
	6.5 Verification Challenges and Takeaways

	7 Limitations
	8 Related Work
	9 Conclusion

