
TRex: Practical Type Reconstruction for Binary Code

Jay Bosamiya
∗1, Maverick Woo2, and Bryan Parno2

1Microsoft Research
2Carnegie Mellon University

Abstract
A lack of high-quality source-level types plagues decompiled
code despite decades of advancement in the science and art
of decompilation. Accurate type information is crucial in
understanding program behavior, and existing decompilers
rely heavily on manual input from human experts to improve
decompiled output. We propose TRex, a tool that performs
automated deductive type reconstruction, using a new perspec-
tive that accounts for the inherent impossibility of recovering
lost source types. Compared with Ghidra, a state-of-the-art
decompiler used by practitioners, TRex shows a noticeable
improvement in the quality of output types on 123 of 125
binaries. By shifting focus away from recovering lost source
types and towards constructing accurate behavior-capturing
types, TRex broadens the possibilities for simpler and more el-
egant decompilation tools, and ultimately reduces the manual
effort needed to analyze and understand binary code.

1 Introduction

Reverse engineering of machine code is useful in many con-
texts: binary hardening [38], malware analysis [40], program
comprehension [7], vulnerability discovery [20], etc. Many
tools have been built to assist reverse engineers, including
disassemblers, debuggers, and decompilers. Decompilers,
such as Ghidra [26], Binary Ninja [36], and Hex-Rays [30],
are popular amongst reverse engineers since they provide a
high-level source-code-like view of low-level machine code.

Unfortunately, despite decades of advances in the science
and art of decompilation, the quality of decompiled output
leaves much to be desired. A particularly persistent, unsolved
problem is providing high-quality source-level type infor-
mation for decompiled code. These types benefit both hu-
man understanding and the decompiler itself in producing
improved output [24]. However, decompilers often struggle
to recover any meaningful types from binaries (§5.1). Instead,
they heavily rely on human experts to manually provide better

∗
Work done while at Carnegie Mellon University.

type information. This is perplexing given the many years
of academic research devoted specifically to producing high-
quality source-level types. We speculate that this gap between
practice and academia may be attributable to factors including:
the unavailability of academic tools, the use of inconsistent
benchmarks, and the inherent complexities of decompilation
not fully captured in research papers.1

To explore this gap in decompilation performance, we
decided to develop a new tool to perform better automated
deductive type inference. We focus on deductive inference,
rather than on approaches based on machine learning [6,7,21],
since the latter can be hard to depend on in scenarios that
differ drastically from their training corpus (§2.1). As a step
towards reversing the unfortunate tendency of closed-source
tools and non-reproducible benchmarks, we open-source our
tool and release reproducible scripts for the benchmarks.2

As a starting point, we analyzed the requirements for au-
tomated initial type inference from the perspective of practi-
tioners in the field. Here, we discovered a crucial mismatch
in expectations—while prior techniques were attempting to
recover source-level types, reverse engineers “merely” desire
output that captures the behavior of the program. Even worse,
type recovery is often impossible due to uncircumventable
reasons (§2.2). Rather than attempting the impossible, we
believe that the goal must shift to the construction of accurate
behavior-capturing types. We call this new perspective Type
Reconstruction3 (§2.3).

We adopt this new perspective in constructing TRex,4 a
tool for automating the inference of source-level types for
binary code. Building from the perspective of Type Recon-
struction has fundamental consequences for the design of type
inference tools, and in TRex’s case, results in a noticeable
quality improvement in the C-like types it produces when

1Indeed for one paper [25], other employees at the same company at-
tempting to reproduce the work stated that “[i]t is a powerful system but
difficult to understand” and the “presentation is very dense and subtle” [12].

2https://github.com/secure-foundations/{trex,trex-usenix25}
(archived at https://doi.org/10.5281/zenodo.15611994)

3Capitalized to distinguish from prior informal usage (§2)
4TRex: Type Reconstruction for executables

https://github.com/secure-foundations/trex
https://github.com/secure-foundations/trex-usenix25
https://doi.org/10.5281/zenodo.15611994

compared to popular state-of-the-art decompilers.
Focusing on Type Reconstruction aids TRex in various

ways. For example, since C is the de facto output language for
decompilers, many existing tools succumb to the temptation
to use C-like types internally during analysis. However, Type
Reconstruction tells us that C-like nominal types are ill-suited
to the task, and instead we must use structural types (meaning
that a type is defined by observable behaviors/features; not to
be confused with struct types) for the analysis even if the
output types are in C, thereby better capturing what reverse
engineers expect to see from their tools (§3.1).

Thus, TRex internally uses and can produce types that are
far more expressive than C; these types can be used for fur-
ther downstream analyses. It also produces human-readable
C-like types projected from the more precise internal machine-
readable types through a separate analysis phase. Phase sepa-
ration is not limited to just this distinction between machine-
readable and human-readable types, but extends further, both
in the internal design of our approach, and also how it inte-
grates with over-arching binary analysis frameworks. TRex
makes only a small number of assumptions on its input and
output, making it easy to adapt to any binary analysis frame-
work without tight coupling to any of them. For our own
reverse engineering projects, and also to improve the broader
open-source binary analysis ecosystem, we build in support
for Ghidra, thereby supporting all architectures supported by
it. That said, our Ghidra-specific code is small, consisting
only of ∼1000 lines of primarily boilerplate code.

In the process of constructing TRex, we have encountered
challenges and discovered insights about binary code type
inference that, to the best of our knowledge, are either novel
or are tacit “oral tradition” in the community and remain
unpublished. These insights help simplify the design and im-
plementation of the tool while still providing expressive, high
quality output. For example, binary analyses must actively
manage conservativeness—a fully conservative tool would be
a surprisingly bad idea (§3.2). Additionally, in exploring the
difficulties of key phases of Type Reconstruction, we have
discovered an algorithmic hardness result for a phase we call
type rounding, which we show to be NP-Hard (§3.3.5).

In §5, we evaluate TRex. Given our insight regarding the
lack of a singular valid ground truth, we evaluate TRex both
qualitatively and quantitatively to better understand its ben-
efits in comparison to other tools available to practitioners.
Our quantitative evaluation uses a new metric that attempts to
capture the expectations of reverse engineers, while working
around the inherent difficulty of objectively evaluating type
reconstruction. TRex outperforms the open-source state-of-
the-art on a collection of benchmark binaries picked by prior
works (that we create reproducible variants of, to facilitate fu-
ture comparisons), achieving an average score that is 23.25%
higher than Ghidra, which itself achieves a 17.68% higher
score than a trivial baseline.

In summary, we make the following contributions.

Type . . . Multi-L
anguage

No GT Assu
mp.

Technique

Inference N/A Deductive
Prediction X Learning
Recovery X Deductive
Reconstruction X X Deductive

Table 1: Our Categorization of Automated Type Inference for
Binary Code. A key metric is whether a technique assumes
the existence of ground truth (GT). See §2.1 and §2.3.

1. We propose Type Reconstruction, a new perspective on au-
tomated type inference from binary code, which accounts
for the impossibility of recovering lost source-level types.

2. We build a new open-source tool, TRex, which takes arbi-
trary disassembly, from any architecture liftable to TRex’s
intermediate representation, and produces C-like types
(covering C primitives, structs, arrays, unions, and recur-
sive types) for human analysts, and more-detailed machine-
readable output for downstream analyses.

3. We discover and document useful insights, such as the
(im)possibility of traditional ground truth for binary code
type inference, algorithmic hardness results, and more.

4. We demonstrate an improvement on 123 of 125 benchmark
binaries when compared to an existing state-of-the-art
decompiler. We also propose a new metric that better cap-
tures output quality from a reverse engineer’s perspective.
Additionally, we demonstrate that TRex outperforms an
existing state-of-the-art learning-based approach.

2 Automated Type Inference for Binary Code

Automated source-like type inference from binary code has
been explored for decades. Caballero and Lin [5] provide a
detailed survey of techniques leading up to 2016, categorizing
approaches along multiple axes: static vs. dynamic, value vs.
flow-based, primitive vs. nested types, etc. In this section, we
propose an alternate categorization, which we summarize in
Table 1. We explore prior approaches and their core underly-
ing flawed assumption of ground truth, finally leading us to
our proposed new perspective—Type Reconstruction.

Note: Prior work’s informal usage of the terms in Table 1
causes unintentional merging of distinct concepts. For in-
stance, the abstract of one paper [25] states that “[t]he problem
of recovering high-level types by performing type inference
over stripped machine code is called type reconstruction”,
which conflates what we distinguish as three separate con-
cepts. To avoid confusion with prior informal usage, we use
the capitalized names for our more precise definitions.

2.1 Prior Approaches

Type Inference, when not qualified with any modifiers (such
as “from binary code”), is well studied for programming lan-
guages, and commonly refers to the single-language task of
automatically inferring types for a source program. While in-
credibly useful in practice for programming, due to its assump-
tion of a single language, techniques from it (e.g., Hindley-
Milner type inference [14,23]) are not (directly) applicable to
decompilation, which focuses on two-language situations.

Some recent techniques [6, 7, 21, 39] for automatically
recovering source-like types from compiled code utilize
learning-based approaches. We call such techniques Type
Prediction. Despite showing increasingly impressive success
at predicting source-level types, it can be hard to depend on
the correctness of predicted output, especially in scenarios
that might differ drastically from their training corpus. Fun-
damentally, such techniques come with no guarantee about
usage on out-of-distribution binaries. If the usage scenario
is similar to the ones they are trained on, then there is some
expectation of good results. Unfortunately, most reverse engi-
neering happens on source-unavailable code where it would
be difficult to make the in-distribution assumption. This prob-
lem perhaps reaches its most extreme for malware, where
malicious actors might be incentivized to create binaries that
are far away from training data.

Thus, we focus on reasoning-based (deductive) techniques
going forward. These techniques derive types through a se-
ries of deductions, often by understanding the semantics
of the program in question. Although deductive type in-
ference approaches may have differences in sensitivity of
analysis, constraint solving techniques, and even choice of
static- or dynamic-analysis, a common theme is a focus on
a balance between the accuracy and conservativeness of the
types produced. While rarely (if ever) explicitly concretized
as such, the results of these approaches can, in theory, be
traced through a series of deduction steps.

We use Type Recovery to specifically denote deductive ap-
proaches that attempt to recover the source-level types in the
program that was compiled to the target binary. This is the
primary focus of almost all the techniques in the aforemen-
tioned survey [5]. A key observation of our work is that all
existing approaches for Type Prediction and Type Recovery
attempt to recover the source-level types from the original
program —we discuss the feasibility of such recovery below.

2.2 On the Impossibility of Type Recovery

Type Prediction and Type Recovery both assume that there
is an objectively correct ground truth. Indeed, it seems ob-
vious that if some initial source code is compiled to a binary,
then that original source code should provide the ground truth
for its compiled machine code. More precisely, the (implicit)
assumption being made is that for an arbitrary source program

S compiled to the binary program [S], the ground-truth ζ

for each variable can be modeled as a perfect recovery tool,
achieving equivalence to source-level types γ modulo naming
(i.e., ∀S,v ∈ vars([S]). ρ(ζ ([S] ,v)) = ρ(γ(S,v)), where ρ(τ)
is the α-normalized representation of source-level type τ).

Yet, this view on type inference (or decompilation, more
generally), is fundamentally flawed. More precisely, even
a single counter-example of two source-programs S1 6= S2
such that [S1] = [S2] and ∃v. ρ(γ(S1,v)) 6= ρ(γ(S2,v)) would
imply the impossibility of binary-level recovery ground truth,
as a trivial consequence of universal quantification, reflexivity,
and substitution of equality.

We demonstrate multiple such counterexamples through
a collection of hand-crafted examples that show how severe
the lossiness of the compilation process can get.5 We empha-
size that we list multiple simple examples to demonstrate that
such scenarios are not a mere one-off pathological case (which
would still be sufficient to prove impossibility), but instead are
caused by pervasive common patterns found in source code.
Furthermore, this lack of a singular ground truth implies that
source recovery (even modulo comments and naming) is im-
possible. We believe that attempting to achieve the impossible
leads one down a rabbit hole of increasingly sophisticated
and complex techniques to recover the specific kinds of types
that appear to be common in specific evaluations. Indeed,
recent work [22,25] on Type Recovery has continued to show
increasing sophistication, both in techniques and the expres-
sivity of types produced. At its extreme, this could effectively
become a collection of idioms hyper-specialized to a partic-
ular (version of a) compiler. Nonetheless, even this recent
work suffers from the same common (implicit) assumption.

Figure 1a demonstrates a pair of functions that differ in
sizes of arguments and return types, yet compile to the exact
same assembly code. Similarly, Figure 1b shows a pair of
functions that differ on their usage of pointers, yet compile to
the same machine code. Colocation of variables on the stack
can be intentional (using a struct) or incidental, as shown in
Figure 1c. Clearly, memory usage of “the” ground-truth can-
not be relied upon. Worse, optimizations can confound oper-
ations performed on variables too—arithmetic operations, or
even entire loops, can be switched out, as shown in Figure 1d.

An obvious caveat is that introducing additional context
outside the analyzed code can aid in disambiguating the types.
For example, since our examples are individual functions
(due to space constraints), an inter-procedural or dynamic
analysis might be able to disambiguate them. However, note
that such analysis introduces external context that was not
mentioned in the counterexample (callers, all program inputs
known, etc.). If we expand the set of potential inputs to the
hypothetical perfect recovery tool (even if such inputs are
more than just the compiled binary code, but as long as they
do not trivialize the analysis), then similar counterexamples

5Tested with GCC 13.2 with -O2 on x86-64, as the compiler.

uint8_t foo(uint8_t x) {
return ~x;

}
int32_t bar(int32_t x) {

return ~x;
}

(a) Confounding sizes

char* foo(
char* x,
size_t i

) {
return &x[i];

}
int64_t bar(

int64_t a,
int64_t b

) {
return a + b;

}

(b) Confounding pointerness

int foo(int x) {
volatile int y = x;
volatile int z = x;
return y + z;

}
struct S{int y; int z;};
int bar(int x) {

volatile struct S s;
s.y = x;
s.z = x;
return s.y + s.z;

}

(c) Confounding stack shape

uint32_t foo(uint32_t n)
{

uint32_t r = n;
while (n-- > 0) {

r++;
}
return r;

}
uint32_t bar(uint32_t n)
{

return n * 2;
}

(d) Confounding operations

Figure 1: Each pair of functions compile to the same assembly code, demonstrating the flaw of assuming a single ground truth

could still be designed at that level.6

With all these examples, it can initially feel like all hope
of type inference is lost. However, reverse engineers often do
not require perfect type recovery.

2.3 Type Reconstruction: Capturing Behavior
Recognizing that recovering the ground truth is impossible,
we turn to understanding what reverse engineers really want
from decompilation. We argue that rather than perfect recov-
ery of source, in practice, reverse engineers desire output that
captures the binary’s observable behavior, i.e., a summary
of observed/allowed operations on each variable. Types are
“merely” an encoding of this information into an easily di-
gestible form. Type inference, even if the produced types are
wildly different from the original types, is still useful when
they are compatible with the observed behavior of the pro-
gram, since this allows the reverse engineer to understand
what is actually being executed, or how to interface with it.

Hence, we propose a new perspective—Type Reconstruc-
tion. Like Prediction and Recovery, Reconstruction takes in
low-level code and produces high-level types. However, in
contrast to the prior approaches, it does not attempt to infer or
recover the ground truth; instead, it focuses on (re)construct-
ing types that are compatible with the observed behavior.

Specifically, the goal of Type Reconstruction is to construct
the “nearest” source-level types that capture observable behav-
iors, using deductive techniques and thereby producing types
that can, at least in theory, be reasoned about. We believe
that adopting this more realistic goal is essential to improving
type inference in practice. This goal naturally accounts for
different compilers’ interpretation of source code and does
not attempt to codify any particular compiler’s behavior(s).
Instead, it focuses on providing useful types.

Recognizing the lack of a singular ground truth does come
with a non-trivial downside—we must redefine what it means
for a Type Reconstruction tool to produce “correct” or “ac-
curate” types, i.e., how should one evaluate the effectiveness

6Notice a similarity with Rice’s theorem [29].

of Type Reconstruction? We detail our specific evaluation
further in §5, but morally, we aim to capture features of types
that reverse engineers would prefer the tool to get correct.

3 TRex: System Design

TRex is the first tool explicitly designed with the goal of Type
Reconstruction. We describe some of our high-level design
decisions, followed by TRex’s architecture below.

3.1 Structural Types Capture Behavior
Since the de facto output language of decompilers is C, it
is quite tempting to use C-like nominal types during Type
Reconstruction. However, we believe that this would be a
mistake, leading to the need for complicated mechanisms,
such as those used in prior works on Type Recovery. As an
example, we might discover that a certain location supports
64-bit integer addition; while this location could be thought of
as an int64_t, uint64_t, or undefined64, if the analysis
were to internally represent this location as any of these, then
it is necessarily introducing inaccuracies; in particular, both
the int_t types imply that the type (without casts) does
not support pointer dereferencing, while the undefined64
(even though it captures the size correctly) does not capture
the observation that the type supports integer addition. This
means that later analyses that use these types cannot rely upon
them and must either rely on side information, or re-analyze
the code that led to the observation of the 64-bit addition.

We argue instead that the types most natural to Type Recon-
struction are behavior-capturing types, i.e., structural types.7

In particular, rather than attempting to match behaviors in
the executable to C-like types, the types themselves need to
capture behaviors precisely, even if the behaviors cannot be
represented as C-like types. Structural types are freed from

7In this paper, we are drawing a contrast with nominal types, where
structural types mean a static version of duck-typing [28]. This usage of
structural types should not be confused with the alternative definition used in
some PL circles to contrast with sub-structural type systems.

StructuralType {
COPY_SIZES {8, 16, 32}
INTEGER_OPS {

Add32, Sub32, Mult32, UDiv32, SDiv32, URem32, SRem32,
And32, Or32, Xor32, Eq32, Neq32, ULt32, SLt32, UCarry32,
... }

POINTER_TO None
COLOCATED_STRUCT_FIELDS None
... }

Figure 2: Example Structural Type. Simplified for presenta-
tion purposes. Equivalent to int in C.

the constraints of human-readability, and working with struc-
tural types as far as possible during type reconstruction allows
us to maintain high precision and conservativeness (§3.2).

Figure 2 shows an example structural type, equivalent to
C’s int type. Clearly, exposing the full precision of structural
types to users is untenable and would detract from understand-
ing. For example, if a type supports 64-bit addition, subtrac-
tion, multiplication, right-shift, and more, then for practical
purposes, it is reasonable to believe that it would support other
operations such as division too, and that it is best shown to
humans as an int64_t. Thus, Type Reconstruction, despite
best conducted with structural types, must still deal with nom-
inal C-like types. Since the structural types are more precise,
we capture this through a phase that performs “type rounding”
(introducing the division operation, in the above example),
followed by projection to C-like types (§3.3.5).

Overall, we make the design decision to stick to structural
types as far as possible, only switching to nominal types
in the last stages of reconstruction. This maintains a high
degree of fidelity with the actual observable behavior of the
machine code as far as possible. The output of our tool can
be consumed either by a downstream tool (which can use the
more accurate structural types) or by a human (who can use
the easier-to-read nominal types).

In addition to using structural types, decisions must still be
made regarding the expressivity of such structural types. We
choose to support both aggregate and recursive types, since
their expressivity better captures machine-code behavior, com-
pared to only supporting primitive types. However, we do not
support polymorphism8 (neither parametric nor ad-hoc). This
is because we have observed outputting polymorphic types to
be useful only in a small number of toy examples—in prac-
tice, compilers monomorphizing and optimizing code leads
to sufficiently different code and types, warranting separate
attention rather than collapsing via polymorphism.

8Polymorphism here has the standard definition of the same function sup-
porting multiple types. For example, malloc would have the more precise
type of ∀τ : size_t→ τ*. C’s type system is insufficiently expressive to rep-
resent this type and instead uses size_t→ void* and casting. Languages
that support polymorphism (e.g., C++) tend to monomorphize.

3.2 Conditional Conservativeness

Binary analysis is difficult, even undecidable in many
cases [17], and Type Reconstruction is no exception.
Tools thus must make tradeoffs between soundness and
completeness—put differently, there must be a balance be-
tween the conservativeness and utility of the output from a
tool. Naïvely, one might wish for a tool that never makes any
non-conservative leaps, so that it cannot mislead (except by
omission). However, a hypothetical fully-conservative analy-
sis would quickly find itself unable to provide anything useful.

For example, even a single call instruction would lead
to the halting problem via “does the callee return?”; thus,
a fully-conservative analysis might not be able to progress
beyond a call. Nonetheless, we would like at least some
guarantees from our tools. Thinking about the composabil-
ity of guarantees from analyses, we realize that conditional
conservativeness appears to be a good tradeoff (especially in
the long run, as various analyses are built and improved). We
define conditional conservativeness to mean conservativeness
only under the condition that the “upstream” analysis pro-
vides true facts. Said differently, a conditionally conservative
analysis will output only true facts within the axiomatic sys-
tem set up by the upstream analysis. Returning to the example
situation of the call instruction, an upstream analysis is in
charge of reachability, and the downstream analysis (such
as Type Reconstruction) only needs to be conservative if the
upstream analysis produced true facts.

Unfortunately, even conditionally conservative analysis is
untenable in practice, since it still completely cuts off “obvi-
ous” inferences that are technically non-conservative, e.g., if
a type is seen to support division, it is reasonable (but non-
conservative) to assume it supports the modulus operation.

In light of these observations, while it might seem tempt-
ing to give up on conservativeness (even conditional), we
believe that there is a better approach—managing the loss
of conservativeness. In particular, tracking (and supporting
the toggling of) the introduction of non-conservativeness in-
troduced by different analyses becomes essential to building
larger analyses and tools. Specifically, tools may make op-
portunistic inferences, but they must also support disabling
those inferences. We believe that this design forms a useful
blueprint for various binary analyses to adopt, in order for
us to improve each component without compromising the
guarantees provided by the overall composition.

For TRex, we choose a largely conservative stance
for decisions made by the tool, with some opportunistic
inferences when purely conservative inference would be
incredibly unhelpful. This means it can take advantage
of common patterns, improving the default utility of its
output, while supporting a more conservative analysis when
an analyst (or another analysis) discovers that a particular
opportunistic inference is being unhelpful. For example,
after a call instruction, without a global analysis confirming

Stripped
Binary

SSAIR

Primitive
Structural Types

Constraints Candidate Aggregate
Base Variables

Rounded
Structural Types

Nominal Types

Output
C-like Types

Output
Structural Types

Lifting Primitive
Analysis

Colocation
Analysis

Aggregate
Analysis

Type
Rounding

TRex

Aggregate
Structural Types

Figure 3: Phases in TRex

that no memory corruption vulnerabilities exist, any purely
conservative analysis cannot assume that the stack pointer
is returned back to where it was prior to the call. This clearly
would not be helpful for most executables. Thus, in TRex,
we opportunistically assume that the stack pointer is returned
to the expected value. However, we also recognize that
this introduces non-conservativeness, and this opportunistic
assumption (like all ∼15 other such similar introductions of
non-conservativeness) can be disabled with a CLI flag.

3.3 TRex Architecture and Analysis Phases
TRex, like many prior deductive tools (§6), can be thought of
as a constraint generator and solver, and thus the interesting
aspects of its design derive from the specific phased archi-
tecture, choice of constraints in each phase, and techniques
used to solve them. TRex consists of multiple phases that we
summarize in Figure 3 and describe below. Analysis begins
by lifting from disassembly. It is flow-sensitive, but path- and
context-insensitive. We additionally choose to perform type
reconstruction intra-procedurally—we do not yet propagate
types inter-procedurally (although this could be added
with straightforward, albeit non-trivial, engineering work9).
Similar to prior tools, TRex is not designed for obfuscated
code—handling this is an orthogonal challenge in deobfusca-
tion research.10 The output from TRex is either C-like types

9Note that extending decompilation from intra- to inter-procedural might
be conceptually challenging, but extending Type Reconstruction is not.
Direct calls propagate types; indirect calls introduce controllable non-
conservativeness (manageable by, say, value-set analysis). Multiple paths
through a single void* (e.g., malloc) in source produce precise unions.

10An interesting question for future research: “what should ‘successful
type reconstruction’ even mean for a Church-numeral-obfuscated binary?”

(useful for human analysts; specifically, all C primitives,
arrays, unions, and structs, including recursive types, as well
as common decompilation types like unknownN and code) or
precise-but-verbose structural types (useful for downstream
analyses that can aid in better decompilation [24]).

3.3.1 Input, Lifting, and SSA

An important decision is the choice of input to a Type Recon-
struction tool. A plausible input could be from an existing
decompiler (potentially with type information removed if the
decompiler already does some type inference), since that al-
lows one to take maximum advantage of other analyses that
already exist in the decompiler. Another plausible input is
the disassembly (or somewhat equivalently, an architecture-
independent lifting of it), since that gives the highest level
of detail about what is actually happening at the machine
level. Of the two, we opted for the latter, so as to obtain a
higher degree of assurance in our tool’s output. In practice,
TRex takes disassembly-equivalent lifted code from a binary
analysis framework as input, and lifts it to its own internal in-
termediate representation (IR) that we discuss further in §4.1.
From this IR, to consistently track variables without worrying
about mutation or (immediate) aliasing, we compute the static
single-assignment (SSA) form of the code. Future stages
reconstruct types for all variables produced in this stage.

3.3.2 Primitive Analysis

We begin the type-related analyses in TRex with primitive
analysis, which collects and solves low-level constraints (Ap-
pendix A) required by instruction semantics. The solved con-
straints provide a partial map from SSA variables to members
in a graph of primitive structural types. In practice, integrating
both constraint collection and solving works ergonomically
for primitives. Performing them in lock-step removes the re-
quirement for explicit reification of a bag of constraints, and
thus we describe the imperative view to ease understanding.
During a walk through the SSA IR, we begin assigning types
to each variable (initialized with the empty type at first) by
iteratively adding observed operations to relevant types (such
as “this variable supports 32-bit addition”). This provides us
with the primitive size and operation information about the
variables that will be useful for future phases. Additionally,
certain IR instructions cause the introduction of equality con-
straints, causing types to merge together, either always (for
SSA φ -nodes), or opportunistically (depending on the opera-
tion performed, e.g., comparison operations). An additional
global-value-numbering pass identifies further opportunities
for equality constraints to merge types. Since structural types
are stored as a graph (§4.3), any equality constraints (added
at any stage in the overall pipeline, including this one) might
suddenly cause a recursive type to appear—they do not re-
quire a special “look for recursion” pass.

Naïvely, one might expect a lot of merging, but we note
that most operations do not cause merging. For example, an
instruction like a < b requires both a and b to be the same
type; but a← b+ c does not necessarily mean that a, b, and
c are the same type—the addition operation is as valid for
pointers and offsets as it is for integers.

3.3.3 Colocation Analysis

Having recognized primitive structural types, we begin col-
lecting constraints (Appendix B) that will help us discover
aggregate types. These constraints recognize a dereference of
a variable at an offset from another variable. Unlike the prior
phase, representing the constraints produced by this phase ex-
plicitly, rather than implicitly (combining this phase with the
next), simplifies both implementation and understanding. The
constraints store both a static (constant) or dynamic (symbolic
variable) offset, along with the base and the accessed variables.
Dynamic offsets indicate scanning across memory, and help
identify arrays. Each constraint may be derived either from a
single instruction, multiple instructions, or even a collection
of constraints and instructions. To aid this phase, we also im-
plement an on-demand constant-folding analysis to identify
static offsets that might otherwise be imprecisely considered
dynamic. Alongside the constraints, from this phase we also
obtain the base variables for candidate aggregate types.

3.3.4 Aggregate Analysis

Using the constraints and types from prior analyses, the ag-
gregate analysis recognizes when different types are con-
sistently colocated, and thus can be grouped into the same
struct or array. It finalizes the offsets and sizes of structural
types, including non-aggregate types.11 The structural types
it identifies are analogous to C structs (including support
for flexible array members—unsized arrays at the end of a
struct [15]) and C arrays.

Unfortunately, we find that in the general case, this phase is
impossible to determine precisely, at least with static analysis.
For example, if a function takes a pointer to a struct of
two integers and only touches the first, then it is impossible
to even detect that there was any colocation. Worse, simply
because the compiler places two variables beside one another
consistently, this may not reflect programmer intent. Instead,
colocation of variables is influenced greatly by the compiler’s
interpretation of memory. To accurately tease apart such
variables, one needs to find a contradiction to the colocation
hypothesis. A naïve fix is to instead only consider colocation
when there is an obvious offset operation in play, recognizing
that compilers rarely perform such offsets unless they are
from a single struct. However, this cannot work in practice,
since compilers often over-read bytes, or even cross across

11While TRex does not require variable boundary information, if provided,
it is used during this phase when finalizing sizes.

fields in memcpy-like operations, causing spurious fields of
invalid sizes to appear. Recognizing this inherent difficulty
in aggregate analysis, and that a purely conservative analysis
would be forced to assume non-aggregate always, we instead
opt for a more pragmatic approach that combines careful
speculative-but-safe non-conservativeness and the ability to
turn it off (§3.2).

3.3.5 Type Rounding

Next, we begin the process of connecting the extremely de-
tailed structural types to more human-readable nominal types.
We call this the type rounding phase, to evoke the similarity
to rounding a real number to an integer. For types, this phase
rounds up structural types to their nearest (union of) primitive
types. For example, if a type has been seen to support inte-
ger multiplication, it is relatively natural to assume it would
also support division, since there is no C primitive type that
supports multiplication but not division.

Type rounding can round types up to any collection of
primitive types. However, since C is the lingua franca of
current decompilers, we build in support for C. Note that
our implementation is agnostic to this choice, and other sets
of primitive types could easily be supported. Indeed, one
primitive that we include by default that does not directly
exist in C is code, which allows representing pointers to
executable memory (such as function pointers, or the return
address slot on the stack) as code*, rather than void*. Note
that despite rounding up to C-like types, the output of this
phase is still structural types.

Clearly, this phase necessarily makes opportunistic non-
conservative inferences with respect to the claims of observ-
able behaviors that structural types capture. Nonetheless, we
would like the smallest number of non-conservative infer-
ences possible. More precisely, we define type rounding as an
optimization problem to find the smallest subset of primitives
that, when unioned, form a supertype of the input type. Unfor-
tunately, this problem of type rounding is NP-hard. We show
this by a reduction from Set Cover [16], an NP-hard problem
to find the smallest collection of sets that cover all elements in
the union of those sets. Specifically, if we transform each set
into a primitive type, with a structural type representation that
has the relevant elements represented as observable behaviors,
then finding the Set Cover is equivalent to performing a type
rounding of the structural type that contains all behaviors, and
using the resultant union type to recover the relevant primi-
tives, and thus sets. This inherent theoretical complexity of
type rounding implies that, in the general case, this phase is
difficult to perform.

Nonetheless, for the purposes of decompiling to C-like
types, we observe that our greedy approximation algorithm
(Appendix C) is both performant and produces sufficiently
good results. Our algorithm for type rounding starts by rep-
resenting the types using vectors and matrices, reducing the

problem of rounding to that of finding the smallest x such that
Ax≥ b, where b is the vector of indicator variables for each
component of a structural type (e.g., Add32, Add64, . . . , would
have separate rows), A is the matrix consisting of similar
vectors for the allowed primitive types, and x selects which
primitives are to be unioned. Starting x at all 1s (representing
a union of all primitives), we repeatedly flip the most expen-
sive-but-unnecessary primitive to 0, until we cannot anymore,
returning the union of all remaining primitives. A primitive
is considered unnecessary iff its removal from the union does
not prevent the union from being a supertype (i.e., flipping its
element in x to 0 does not negate the inequality Ax≥ b); cost
is computed as the number of enabled indicator variables in
A for that type.

3.3.6 Nominal-Type Reconstruction

This phase converts the large and complex structural types to
human-readable C-like types. This both identifies and pro-
vides names to all structs and unions. A recursive walk
through the graph of all structural types helps identify all C
primitives, structs, unions, pointers, and arrays. An in-
teresting case that requires careful management during the
graph walk is that of structs, since they can be easily con-
fused with their 0th offset. We handle this by maintaining two
names for each type, which are identical for all types other
than structs, where one refers to the 0th field and the other
refers to the struct itself. This graph walk approach works
well even for recursive types, including struct-of-structs,
with the minor caveat that generally speaking, a struct that
contains a struct as its 0th field is indistinguishable from the
flattened struct; thus the flattened version is picked during
reconstruction. However, all non-zero offset fields can be
distinguished and are handled as expected.

4 Implementation

TRex is implemented in Rust, consists of∼9,600 source lines
of code, and took approximately 2 person-years of effort to
build. It is agnostic to the choice of binary analysis framework
to plug into; for this paper, we use Ghidra. This involves a
tiny script in the binary analysis framework (∼100 SLoC of
Java for Ghidra) that outputs lifted code (P-Code for Ghidra)
into a file that can then be ingested by TRex’s lifter (∼900
SLoC of boilerplate Rust) into its own internal intermediate
representation. Following this, the analysis proceeds in a
series of phases (§3.3) that work on a graph representation
of structural types, finally outputting either human-readable
C-like types for reverse engineers, or machine-readable rep-
resentation for downstream analyses. We describe important
components in more detail below.

4.1 Intermediate Representation in TRex

Choosing an intermediate representation (IR) for code is crit-
ical for expressivity and ease of building any static analysis
tool. For TRex, we design a custom IR that is inspired by, but
distinct from, Ghidra’s P-Code IR. We pick this custom IR
since P-Code has idiosyncrasies specific to Ghidra, and we
have somewhat different goals that are better served by a cus-
tom IR. For example, Ghidra conflates various kinds of call
and branch instructions into a fairly small set of instructions
(some with implicit overloaded semantics), which we break
up into separate instructions. Also, Ghidra mixes constants,
addresses, and registers into a single kind of type called a
varnode (distinguished by magic constants picking an ad-
dress space for each); since we implement TRex in Rust, we
use algebraic types to handle these more cleanly. Also, Ghidra
has (what we believe to be) shortcomings in its lifting that we
fix up during the lifting to our IR, such as using an explicit
NOP instruction in the IR (which Ghidra does not have), which
is useful for maintaining alignment between the real machine
instruction-pointer (e.g., rip) and the IR-internal program
counter, rather than relying upon implicit fallthroughs at a
jump target if there is a lack of instructions. We also explicitly
support (a small number of) vector instructions, which Ghidra
instead handles as architecture-specific magic constants in its
catch-all CALLOTHER instruction. Additionally, we support
an explicit HAVOC instruction that denotes a conservatively-
under-specified clobbering of its output (used, for example,
when lifting rare vector operations when we have not yet
found the need for more precise semantics).

The in-memory representation of our IR uses a Rust vector
(Vec) of the (lifted) program instructions and properties such
as maps between IR addresses and machine addresses (since
a single machine instruction might expand to multiple IR
instructions), and maps to maintain basic-block and function
information. A special FunctionStart and FunctionEnd
instruction denotes the singular start and end of a function,
rather than allowing multiple entries and exits from functions.

Our static single-static assignment (SSA) IR is imple-
mented as a view on the core IR that assigns SSA variable
names to it. Unlike textbook SSA, we maintain φ -nodes in
a separate list, thereby allowing a convenient map between
instructions in both forms.

4.2 Representing Types in TRex

Each structural type is a precise representation of observable
behaviors for a particular variable. The structural type con-
sists of information about size, colocation, dereferencing, and
operations observed upon it, represented as sets, booleans,
and indices. Figure 2 shows an example structural type.

The set of operations within a type precisely captures ob-
servable behavior; each is roughly analogous to a machine
operation—for example, each of the following is an entirely

distinct operation that could exist in a structural type: Add32,
Add64, Sub32, Copy32. Note how the existence of 32-bit ad-
dition (Add32) does not (immediately) indicate that the type
supports 32-bit subtraction (Sub32). We also note that while
it might seem superfluous to maintain size information with
the operations (instead of maintaining size information about
the whole type), this is crucial to handle situations such as the
union(u32,f64) being distinct from union(u64,f32).

We represent dereferencing via a points-to relation on the
type by maintaining an Index into the graph of all structural
types (§4.3). This graph of all types supports encoding recur-
sive types that may be introduced by solving constraints in
any of TRex’s stages. Aggregate types (e.g., structs) main-
tain colocation information as a map from non-zero offsets
to Indexes into the graph. The offsets are non-zero, since
the operations for the first field of a struct are the same as the
struct itself, modulo colocation; thus offset 0 always refers
to the “current” type. Finally, we do not represent struct
padding in the structural type explicitly; this allows us to
distinguish between a struct padding byte (unused) and
an undefined1 (used single byte, but nothing more known;
cannot be a char, uint8_t, etc.).

4.3 Joinable Containers

Since the design of TRex requires directly dealing with
possibly-recursive types, we must represent the structural (and
later, C-like) types in some graph structure. Rust’s type sys-
tem is famously known to be graph-unfriendly (although good
graph libraries exist). Additionally, we require the ability to
merge separate, partially-specified structural types together
when we recognize them as equal (for example, two differ-
ent instructions might help us learn that some location X’s
type supports 64-bit integer addition, and Y ’s type supports
dereferencing, and then a third operation might show that X
and Y have the same type; here, we need to merge the types
of X and Y). Furthermore, while in the process of merging
two types, we might further discover other types that require
merging (for example, pX and pY might point to X and Y ;
once we find that pX and pY must have the same type, we
must also merge the types of X and Y).

Hence, we not only need a graph structure, it must also
support this (potentially recursive, and deep) join/merge op-
eration. To solve this, we implemented a custom graph data
structure that supports safe access to graph members by stor-
ing members into an arena with strongly-typed Indexes. This
structure is parametric in its objects, only requiring that the
objects support some join operation. Inspired by the Disjoint-
Set (aka Union-Find) data structure, we maintain a canonical
internal index for each external Index, so that merge opera-
tions do not require a global scan to update all indices.

During any join operation, we maintain a queue to sched-
ule further join operations during the process of each join,
repeatedly processing each join until it terminates. We guar-

antee termination by explicitly checking for repeats (which
can happen when joining two recursive structural types), and
noticing that, modulo loops, each join operation decreases the
total number of distinct structural types available.

The arena itself behaves (as expected) as an arena alloca-
tor, handing out new strongly-typed Indexes upon allocation
request; freeing is performed en masse, deallocating the en-
tire arena at once. However, this is not the only possible
deallocation operation, since the arena also supports garbage-
collection and compaction, which can be explicitly invoked
by providing it with a series of roots to keep alive. By main-
taining a globally-unique arena identifier, indices into one
arena are checked to not be accidentally used with another
arena, and sentinels confirm that no use-after-free can occur
with these Indexes after invoking a garbage-collection pass.

5 Evaluation

We answer the following research questions, through both a
qualitative and a quantitative evaluation of TRex.

RQ 1. Are there certain aspects of types where the state
of the art fails, while TRex succeeds?

RQ 2. Does TRex significantly improve upon the state of
the practice on prior real-world benchmarks?

RQ 3. Do compiler optimizations affect reconstruction?
RQ 4. How does TRex compare to state-of-the-art Type

Prediction (i.e., machine-learning based tech-
niques)?

Comparison to Prior Work. As described in §1, most
tools from prior work on deductive type inference are unavail-
able. Thus, the majority of our comparisons are done against
Ghidra [26], a popular open-source decompiler. Where feasi-
ble, we include other comparisons as well, such as comparison
against other popular decompilers [30,36] used in practice by
reverse engineers. Unfortunately, despite reaching out to the
authors, we were unable to obtain the deductive tools in prior
published work (§6). Thus in the following sections, we do
our best to include comparative details, within the constraints
of what we could get access to. TIE [18] is unavailable for
comparison (as also discovered by other prior work [42]),
but it is superseded by improvements made in more recent
work. Retypd [25] appears to be a highly capable system
on paper, but it is unavailable. The first author did point
us at a public open-source reproduction (BTIGhidra [35]);
unfortunately, the reproduction suffers major flaws (failing
entirely even on small trivial examples; we have filed issues
on their issue tracker detailing shortcomings) that prevent a
valid comparison against the theoretical performance of the
system described in the paper. The authors of the more re-
cent OSPREY [42] were unable to share their code “due to
some commercial and patent concerns”, but graciously shared
their output on a version of GNU Coreutils (detailed in §5.2),

which we base our comparison to OSPREY upon. Finally, as
we explain in §2.1, our work focuses on reverse-engineering
scenarios where we cannot assume the binaries are in distri-
bution; nonetheless, we include a comparison to the most
recent Type Prediction work (ReSym [39]). The publicly
available artifact for ReSym is unfortunately incomplete, and
the authors of ReSym were unable to share parts of their code
“due to some property concerns”; thus we implement missing
components and fix issues in the available portion (detailed
in §5.3), and base our comparison to ReSym upon this fixed
version.

5.1 Qualitative Evaluation
To help answer RQ 1, we use a simple example of a singly-
linked list. Using the Decompiler Explorer [37], we compare
TRex against the outputs of popular decompilers, namely
(i) Binary Ninja 3.5.4526 [36], (ii) Ghidra 11.0 [26], and
(iii) Hex-Rays (IDA Pro) 8.3.0.230608 [30]. We compile the
C code in Figure 4 to an x86-64 ELF object file with GCC
11.4.0, strip away debugging information, and pass it to all of
the evaluated tools, including TRex.

struct Node { int data; struct Node* next; };
int getlast(struct Node* n) {

struct Node* nxt = n->next;
while(nxt != 0) { n = nxt; nxt = n->next; }
return n->data;

}

Figure 4: Source Code for the Singly-Linked List Example

Focusing on the type of the parameter, all three decompil-
ers successfully recognize that it is a pointer but fail to detect
the struct. Instead, they identify it as a primitive type—
int32_t* for Binary Ninja, undefined4* for Ghidra, and
unsigned int* for Hex-Rays. A reverse engineer can re-
quest further automated analysis for particular variables in
Ghidra and Hex-Rays if they manually decide it could be
a struct. For example, if they invoke Ghidra’s “Auto Fill
in Structure”, then Ghidra updates the type to be a struct
with six fields: an undefined4, four undefineds (indicating
padding, distinct from undefined1), and an undefined4*.
Notice that despite explicitly requesting structure analysis,
Ghidra is unable to detect the recursive nature of the type.

As discussed earlier in §5, we were unable to obtain the
deductive tools in prior published work for a fair comparison,
but here we include our best interpretation on how they would
perform on the same simple example. TIE [18] explicitly
states that it does not support recursive types. In contrast,
at least on paper, Retypd [25] should be able to handle the
simple singly-linked list example; in practice, the public re-
production pointed to by the authors (BTIGhidra [35]) is
unable to improve upon Ghidra’s types (above) even on this
small example. Based on the output provided by the authors
of OSPREY [42], its output schema supports only size infor-

mation for struct fields; so even in an ideal case, OSPREY
can only output Struct<4,4,8> and cannot express the re-
cursion or the unused padding. We defer comparison against
non-deductive Type Prediction to §5.3.

// TRex's structural type for n : t31
t31 { UPPER_BOUND_SIZE 8

COPY_SIZES {8}
POINTER_TO t33
INTEGER_OPS {Add_8, Sub_8, ULt_8, SBorrow_8} }

t33 { COPY_SIZES {4}
INTEGER_OPS {ZeroExtendSrc_4}
COLOCATED_STRUCT_FIELDS 8 t31 }

// TRex's C type for n : t1*
struct t1 { uint32_t field_0; t1* field_8; };

Figure 5: TRex output on Singly-Linked List Example

In contrast, TRex produces the output in Figure 5. The
structural type for the parameter is t31. For human consump-
tion, TRex rounds this to the C type t1*, which successfully
captures the correct struct shape, including the recursion
and padding (field_N denotes the field at byte offset N). The
only part of the type where TRex does not perfectly match the
source is the first field, where the signedness differs. However,
notice that the code itself does not interact with this value,
and thus either signedness would be consistent. TRex picks
uint32_t since that is the most precise primitive available
that is consistent with the only observed operation on the vari-
able from the disassembly, namely the zero-extension. Note
that C programmers often use int (which means signed
rather than unsigned) when the signedness might not matter;
thus, TRex also supports a CLI flag (§3.2) that makes it prefer
the signed variant in such ambiguous-signedness situations.

The specific order of the Node fields in Figure 4 makes
this example challenging, since recursion and colocation in-
fluence one another. Nonetheless, when we try the easier
ordering (with recursive pointer being at offset 0), none of
the three existing decompilers does any better at recogniz-
ing either the struct or the recursion (producing int64_t*,
undefined8*, and _QWORD**, for Binary Ninja, Ghidra, and
Hex-Rays, respectively). TRex produces the expected type.

To understand the impact of colocation and aggregate anal-
ysis in TRex, we perform an ablation study by disabling
these particular phases—this produces the parameter type
uint32_t* for n in Figure 4, similar to the evaluated decom-
pilers. However, in the easier case where recursion and coloca-
tion are independent, TRex successfully detects the recursion,
warns about the infinitely dereferenceable pointer, and outputs
the closest C-like type that captures this, namely void*.

5.2 Quantitative Evaluation
To explore how successful TRex is on benchmarks commonly
used by prior work and help answer RQ 2, we perform a
quantitative evaluation against 125 binaries from prior work.

As discussed in §1, prior work rarely makes reproducible
benchmarks available for comparison. Thus, we develop a
set of reproducible benchmarks that can be used to compare
against state-of-the-practice and future tools.

The benchmarks themselves consist of GNU Coreutils 9.3
and SPEC CPU® 2006 [34] (hereafter, COREUTILS and SPEC,
respectively). We compile each benchmark program with de-
bug symbols to obtain ground truth variables and types. Then,
by stripping the debug symbols, we obtain a stripped exe-
cutable. The tools have access to only this stripped executable
and the ground-truth variable information (location and size
of each variable). They are expected to output type informa-
tion, which is then scored against the ground truth types. We
use all 108 binaries from COREUTILS. For SPEC, of the 29,
we skip all 10 Fortran binaries because their DWARF debug
symbols appear to be invalid, producing either empty or non-
sensical sets of ground truth variables and types. In addition,
we are also forced to skip two of the C++ binaries because
Ghidra could not analyze them correctly.

As discussed earlier in §5, we were unable to obtain any
of the deductive tools in prior published work for a fair
comparison. However, the authors of OSPREY [42], despite
being unable to share their code, were kind enough to share
their output on their pre-compiled version of GNU Coreutils.
Unfortunately, this output covers only approximately 31.8%
of the variables in the ground truth, and it is missing one
of the binaries (the authors could not locate their build
scripts). Due to the missing 68.2% of variables, their output
underperforms even against a trivial baseline (described
below). This means a direct comparison is infeasible, and
any measurement taken on the subset would be skewed [11]
(in addition to other variables, all register-based variables,
and thus all function parameters, are omitted in their output).
Thus, we are forced to limit ourselves to our earlier qualitative
comparison against OSPREY.

Amongst practically available tools, we compare against
Ghidra, since both IDA and Binary Ninja require commer-
cial licenses to perform batch analysis,12 and our practical
anecdotal evidence have neither doing particularly better than
Ghidra at type inference. We additionally compare against
a trivial baseline (that outputs an undefinedN of the correct
size on each variable) to provide context on the quality of
existing state-of-the-art tools. Again, we defer quantitative
comparison against non-deductive Type Prediction to §5.3.

As discussed in §2.2, it is impossible to define any single
ground truth for binary type inference, assuming no additional
external context. Any quantitative evaluation is thus neces-
sarily an approximation of the quality of the output types.
Indeed, we hypothesize that this underlying phenomenon is
the cause of the largely mutually-incompatible evaluation
methodologies appearing in prior work. Nonetheless, one
commonality in prior evaluation methodologies is a notion of

12Additionally, IDA’s EULA explicitly disallows using IDA for “publish-
ing data or analysis relating to the performance of the Software” [13].

COREUTILS SPEC
Tool Prec. Recall F1 Prec. Recall F1

Trivial Baseline 0.00 0.00 0.00 0.00 0.00 0.00
Ghidra [26] 0.09 0.98 0.16 0.13 0.48 0.21
ReSym [39] (§5.3) 0.42 0.20 0.27 0.29 0.19 0.23
TRex 0.21 0.92 0.35 0.25 0.99 0.40

Table 2: Standard summary metrics. A type is considered
“correct” if its C representation (with names normalized) is
identical to the source type. See §5.2 and §5.3.

true positives, and the use of precision and recall (sometimes
summarized via an F1 score).

Unfortunately, prior work rarely specifies what it means
to have a correct type, and sometimes chooses a generous
definition of correctness. As an example, OSPREY [42]
reports using an otherwise underspecified homomorphism
to determine true positives, implying that a projection of the
C types was taken before being compared; from the output
data provided to us by the authors, we can surmise that
their projection considers a type to be correctly recovered
if the tool reports a Primitive4, independent of whether
original type was a float, int, or unsigned int, whereas
a typical reverse engineer would hope for more precision
from a “correct” type. Since their output is not more precise
than this, we cannot explore their output itself, but note that
using the more typical notion of correctness (matching the
C type) expected from a reverse engineer, we find that the
F1 scores for Ghidra on their binaries are approximately
an order of magnitude lower than that reported in their
paper. Worse, some other prior work rarely mentions that a
projection is taken, let alone what the projection is. Without
access to the specific projection taken, comparison against
reported numbers in various papers via precision/recall/F1
scores is impossible, and uninstructive. Nonetheless, as a
brief comparison, if we compute F1 scores (Table 2), TRex
appears to do quite well—we are however skeptical of its
predictive value since it is trying to measure performance on
a goal that we know may be impossible (§2.2).

Instead, we propose a new metric that we believe to be
a more accurate measure of output quality, even though it
reduces our perceived gain. Importantly, rather than the blunt
hammer of “standard” metrics in prior works (which consider,
for example, both int* and char to be identically “incorrect”
with respect to a float*), our proposed metric introduces
much-needed nuance. Relying on our own experience as
reverse engineers (and anecdotes from others), we define
a best-effort prioritized ordering of frustrations (each repre-
sented by an indicator variable pi) with incorrectly inferred
aspects of types. Using this ordering, we define our scoring
function to be: f (p1, p2, . . .)= (p1× (1+ p2× (1+ . . .))) for
measuring the agreement between the computed and the orig-
inal type. Figure 6 illustrates our preferred instantiation
of this function. For example, we find it incredibly frus-

YesDefined?

Is C Pointer?

Pointer Level?

Halt

Is C Struct?

Sign Ignored C Primitive?

C Primitive?

Is C Pointer?

Recurse

No

Disagree

Disagree

Disagree

Disagree

Disagree

Both agree

Both agree

Both agree

Both agree

Both agree

Both are pointersAt least one non-pointer

Figure 6: Illustrating Our Scoring Function for Evaluating
Type Reconstruction. Traversing solid lines increments the
score by 1, while dotted lines do not update the score.

Scoring Regular Generous (§5.3)
Tool COREUTILS SPEC COREUTILS SPEC

Trivial Baseline 2.583 2.710 2.583 2.710
Ghidra [26] 3.019 3.321 3.023 3.600
ReSym [39] (§5.3) 2.064 2.475 3.675 3.985
TRex 3.745 3.940 3.821 3.952

Table 3: Mean scores achieved by each tool. “Regular” uses
the exact scores computed by our scoring function (Figure 6).
“Generous” (see §5.3) assigns any unassigned variables to
types equivalent to Trivial Baseline’s. Higher is better.

trating if a pointer is not detected as such (or vice versa),
since it can lead to incorrect reasoning about memory, and
thus getting this wrong leads to a large score penalty; the
pointer level (e.g., int* vs. int**) is slightly less crucial,
but still highly important; etc. We explicitly distinguish be-
tween sign-ignored and regular C primitive agreement, since
we deem it more important to get size and behavior (e.g.,
double vs. int32_t) correct, compared to sign. To make
this concrete, compared to an expected (i.e., original source)
type of uint64_t, the types char*, struct{...}, double,
int64_t and uint64_t would achieve the scores of 1, 3, 4,
5, and 6 respectively.

We do not claim that our metric is ideal, but merely that
our evaluation attempts to capture frustrations from our own
experience as reverse engineers (and anecdotes from others).
Nevertheless, we also note that our tool consistently outper-
forms its baselines even when we simulate alternate metrics.
Specifically, the relative order of performance of the tools
remained unchanged when we evaluated five other random
permutations of the pi’s (to simulate reverse engineers with
potentially different orderings of priorities). Additionally, to
help with future research, we release our evaluation scripts (in
addition to our tool, and benchmark reproduction scripts), so
that experiments can be re-run with newly proposed metrics.

We describe more detail in the upcoming paragraphs (and
in §5.3 for the ML-based ReSym, along with the “Generous”

File
0

1

2

3

4

5

M
ea

n
Sc

or
e

TRex
Ghidra
Baseline

(a) Mean scores, sorted by
score on TRex. Higher is bet-
ter.

0 2 4 6 8
Score

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 V

ar
ia

bl
es

TRex
Ghidra
Baseline

(b) Cumulative distribution
function (CDF) of scores.
Lower is better.

Figure 7: Comparing tools across executables in COREUTILS.

File
0

1

2

3

4

5

M
ea

n
Sc

or
e

TRex
Ghidra
Baseline

(a) Mean scores.

0 2 4 6 8
Score

0%

20%

40%

60%

80%

100%

Fr
ac

tio
n

of
 V

ar
ia

bl
es

TRex
Ghidra
Baseline

(b) CDF of scores.

Figure 8: Comparing tools across executables in SPEC.

evaluation necessary for ReSym), but as seen in Table 3, on
average TRex outperforms the others.

Figure 7a shows the mean score achieved by each tool
across all variables in each of the 108 COREUTILS executa-
bles (compiled on x86-64), sorted by the scores for TRex.
On all executables, TRex consistently achieves better scores
than Ghidra, which itself beats the trivial baseline. TRex
is able to outperform Ghidra despite TRex not yet imple-
menting interprocedural type propagation, which Ghidra
uses (in addition to external functions it knows, such as
those in libc) to obtain better types. Interestingly, on the
three executables where TRex and Ghidra are closest (od,
sha384sum, and sha512sum), some preliminary analysis of
the root causes point towards conservatively underspecified
vector instructions (whose semantics one could improve with
straightforward-if-non-trivial engineering effort).

To better understand the scores across the entirety of the
dataset, in Figure 7b we also plot the cumulative distribution
function (CDF) of scores across all 104,953 variables. We
notice that TRex moves into higher scores sooner than Ghidra,
which in turn moves into higher scores sooner than the base-
line. Note that the graph appears step-like since the scoring
function of any particular variable evaluates to an integer.

We plot similar graphs for SPEC, which covers a larger
variety of executables (although it is compiled on x86 32-bit,
which is not what we have optimized TRex for yet). Figure 8a
shows a less stark difference between the tools, compared to
the situation in COREUTILS. Nonetheless, TRex outperforms
Ghidra on 15 of the 17 executables. The CDF of scores across
all 63,600 variables in Figure 8b shows a similar behavior

as with COREUTILS, where TRex moves into higher scores
sooner than Ghidra, which in turn moves into higher scores
sooner than the baseline.

To help answer RQ 3 (impact of compiler optimizations),
we perform a cross-optimization evaluation by compiling
COREUTILS with GCC’s -O0 (default, no optimizations),
-O1, -O2 and -O3 optimization levels. The mean scores
achieved by TRex on each are 3.499, 3.292, 3.374, and 3.530,
respectively, showing that the optimization level has relatively
little impact on TRex’s performance. In contrast, Ghidra’s
mean scores are 2.992, 2.236, 2.174, and 2.190, respectively,
showing a sharp drop in performance when optimizations
are enabled. Note that TRex has no special support for higher
optimization levels, other than basic semantics in our IR for
the small handful of vector instructions that are introduced
at higher optimization levels—many of which we model as
the conservative HAVOC in our IR (§4.1). We hypothesize that
the relative consistency of TRex’s score across optimization
levels derives from the fact that compiler optimizations
preserve semantics, and that structural types successfully
capture higher-level semantic behaviors in the code.

Finally, we end this subsection with a brief discussion on
performance. For our use cases, exact performance num-
bers are not particularly relevant, since we can afford to let
an analysis run overnight or longer if it produces better out-
put than something that finishes instantly. Nonetheless, we
note that TRex takes only a mean time of 56.32s (min=1.60s,
max=1385.15s) across the entirety of COREUTILS and SPEC;
in contrast, Ghidra takes a mean time of 77.16s (min=7.91s,
max=1606.45s) on the same hardware. Some caveats to these
numbers include the following: (i) there is no easy way to
separate type-reconstruction time from total decompilation
time in Ghidra, thus the numbers for Ghidra are over-esti-
mates, and (ii) TRex spends the majority (∼ 85%) of its time
on SSA construction; optimizing the current naïve algorithm
may significantly improve TRex’s performance [9].

5.3 Comparison to ML-based Type Prediction
While our work focuses on scenarios where we cannot assume
the binaries are in distribution (§2.1), to add context and an-
swer RQ 4, we compare against ReSym [39], a learning-based
Type Prediction technique. ReSym is the most recent work
in the area (Distinguished Paper Award at CCS’24), and its
evaluation demonstrates that it dominates prior approaches.

Challenges in reproducibility. We appreciate that the
ReSym authors have released a public artifact, including their
model weights. Unfortunately, this artifact is incomplete for
reproducing their results. When contacted, the authors were
unable to share the code for their post-processing pipeline,
which is a significant component of their approach. Further-
more, we discovered multiple bugs in the pre-processing code
as well as the code that runs the trained model to perform

inference. For example, the inference code assumes access
to not only the code, but also the expected output types; we
patched this to only take reasonable inputs that are accessi-
ble from knowing the decompilation. Overall, our changes
to get ReSym working account for ∼400 LoC added for
pre-processing, single-digit LoC modified for inference, and
∼500 LoC added to implement basic post-processing (that
takes the possibly-conflicting free-form output and produces
C-like types). These were not simple updates, and required
∼2 person-weeks just to get ReSym running. We also note
that despite the claim [39, §5.2] of 3.4s per-binary execution
time (on COREUTILS), even on equivalent hardware (four
A100 GPUs), the mean inference execution time we observed
was 656.81s (min=85.61s, max=1978.29s). We note all this
not to criticize ReSym, but to highlight the context within
which the comparison to their technique is possible.

Qualitative comparison. ReSym, unlike many deductive
approaches which take machine code (or equivalent low-level
code) as input, takes decompilation output (i.e., C-like high-
level code) as its input. This means that its output can be
impacted by other decisions made by the decompiler (which
itself includes a deductive type inference pipeline), for better
or worse. For example, if the decompiler has a large function
and type-signature database, which it applies to preemptively
match types (e.g., knowing that fopen returns a FILE*), or
if the user already marks some names or types from hav-
ing recognized them through their experience and intuition,
then ReSym is able to successfully exploit such data, since it
reinforces its own learned beliefs. Unfortunately, using high-
level decompilation as input can impact output negatively too,
where seemingly innocuous changes can lead it astray.

Focusing on the singly-linked list example from §5.1,
ReSym’s outputs range all the way from perfect to problem-
atic, simply by varying the input parameter name. As context,
it is not uncommon in the reverse engineering process to
rename variables (away from the automatically-generated
param_1/var_a2c4, to more human-readable, but out-of-
domain, names—apple/banana/etc.); such α-conversion is
semantics-preserving and aids in improved readability un-
til finalized names are picked. To explore this, we consider
100 randomly generated renamings of the identifiers in the
exact same code, for each of the field orderings (recursion
in the first/second field is easier/harder respectively, see
§5.1), and look at ReSym’s outputs. On 32% (easier) and 2%
(harder) of these renamings, ReSym did produce output equiv-
alent to the expected type—struct t{t*;int}/struct
t{int;t*}. However, 30% (easier) and 62% (harder) of out-
puts do not have any reasonable equivalent C type (for exam-
ple, nearest equivalent would be the clearly-broken struct
t{t;t}—note the absence of any pointers or differentiation
between the fields). The remaining (38% and 36%, respec-
tively) were valid C types, but incorrect in differing ways.
Importantly, by design, ReSym additionally takes the field

File
0

1

2

3

4

5

M
ea

n
Sc

or
e

TRex
Ghidra
Baseline
ReSym

(a) Regular scoring
File

0

1

2

3

4

5

M
ea

n
Sc

or
e

TRex
Ghidra
Baseline
ReSym

(b) Generous scoring

Figure 9: Mean scores on executables in COREUTILS, sorted
by score on TRex. Higher is better.

File
0

1

2

3

4

5

M
ea

n
Sc

or
e

TRex
Ghidra
Baseline
ReSym

(a) Regular scoring
File

0

1

2

3

4

5

M
ea

n
Sc

or
e

TRex
Ghidra
Baseline
ReSym

(b) Generous scoring

Figure 10: Mean scores on executables in SPEC, sorted by
score on TRex. Higher is better.

offsets of the struct as input (for which we provide correct
values), thus it cannot get those incorrect under any situation;
if field offsets are not provided, ReSym is unable to provide
details of such a struct. In contrast, TRex, by design, can-
not be impacted by semantics-preserving changes that reverse
engineers commonly perform (again, for better or worse), and
does not require prior knowledge of correct field offsets. We
also note that TRex deterministically produces the correct
results for both orderings of fields.

Quantitative comparison. For the quantitative evaluation,
in the interest of fairness, we leave all variables with the
names as auto-generated by the decompiler. On standard
metrics, ReSym’s F1 scores are included in Table 2, where
it does indeed perform better than Ghidra; however, TRex
outperforms it. Further discussion below focuses on the more
nuanced metric we have introduced in §5.2, and the results of
which are summarized in Table 3. Figure 9a shows the initial
results on COREUTILS, where ReSym appears to perform
worse than even the baseline. We did some investigating and
determined that this was due to a failure in the “alignment”
process between low-level variable references (which talks
about actual memory regions) and decompilation variables
(pseudo memory regions, which may or may not correspond
to a real memory region). To account for this, we additionally
include Figure 9b (corresponding to “Generous” in Table 3),
where we mark any variable without an assigned type as
equivalent to the baseline’s output. We stress that while this
is optimistic and generous to all tools, this is especially gen-

erous to ReSym, since it affects multiple orders of magnitude
more variables for ReSym. In this generous comparison, we
note that TRex and ReSym are put into a similar range, where
each beats the other on some binaries (although TRex still
achieves a higher average score). We additionally note that,
as seen with our qualitative evaluation above, it is hard to
know when ReSym’s output can be trusted. For complete-
ness, we include a similar quantitative comparison on SPEC,
in Figure 10, briefly noting that the results do not change
significantly (TRex beats ReSym on Regular scoring, while
each beat the other on some binaries on Generous scoring).

Takeaway. The main takeaway from this subsection’s eval-
uation is not that any one approach is strictly superior to
the other, but that there are pros and cons of each. Some
combination of the (largely orthogonal) techniques of Type
Prediction and Type Reconstruction might be interesting for
future exploration.

6 Related Work

Research on decompilation is vast and decades long [8], fo-
cusing on different aspects like disassembly [4,10,19], control
flow recovery [3, 31, 41], function identification [1, 2], etc.
Here, we focus in particular on the sizable literature related
to the problem of computing high-level types from binaries.

Caballero and Lin [5] conducted an authoritative survey of
38 prior papers in this area up to 2015, observing that existing
tools vary widely both in their approaches and the set of types
that they can compute. Due to space, we discuss only more
recent and/or highly relevant projects and refer interested
readers to the survey for a more comprehensive overview.

On the deductive side, TIE (2011) by Lee et al. [18] was an
early tool that popularized the constraint-solving approach,
which TRex also uses. At a high level, TIE collects usage con-
straints about identified variables from a binary (static TIE)
or a trace (dynamic TIE) and outputs a solution that satisfies
all collected constraints. Compared to TIE, TRex is designed
to support a more expressive type system, notably including
recursive types due to their prevalence in real-world programs.

Retypd (2016) by Noonan et al. [25] is a recent prior work
that also uses the constraint-solving approach. As far as we
know, the type system supported by Retypd is the most expres-
sive among the tools in the literature, and it even exceeds that
of TRex in one aspect: Retypd supports polymorphic types,
e.g., ∀τ : size_t→ τ∗ (§3.1). Regrettably, it is infeasible to
know how Retypd actually performs in practice (§5).

OSPREY (2021) by Zhang et al. [42] is one of the latest
tools based on constraint solving. Compared to prior tools,
OSPREY introduced an interesting and powerful extension—
the use of probabilistic constraints. While this enables
OSPREY to potentially cope with the inherent uncertainty in
variables and types due to information lost during compila-

tion, the design of OSPREY was tuned for Type Recovery.
In particular, while OSPREY uses probabilities to model un-
certainty and emits nominal types deemed most likely in the
final phase, TRex uses structural types to preserve complete
information about program behavior until the final phases.

Unfortunately, we cannot obtain any of the above tools (§5)
and so we cannot directly evaluate them against TRex. On
the other hand, during the final preparation of this manuscript,
a new and concurrent work appeared in the literature. Specif-
ically, BinSub (2024) by Smith [33] focuses on replicating
Retypd in a simpler, more efficient manner by leveraging
the framework of algebraic subtyping. We are delighted to
learn that the author of BinSub has made both the system and
the dataset publicly available. Naturally, we look forward to
seeing future evaluations with both BinSub and TRex.

While our work focuses on scenarios where dependability
of output is crucial, there are definitely scenarios where one
either has binaries “in the distribution” or can forgo explain-
ability. Thus, on the learning side, there has been a surge of
new proposals in the area, leveraging the latest advances in
machine learning. Remarkably, StateFormer (2021) by Pei et
al. [27] has demonstrated the power of a clever use of neural
networks for this domain. It starts with a fully self-supervised
pre-training step where the model is taught to statistically
approximate the operational semantics of instructions in both
forward and backward directions using a very small number
of execution states. Then, it fine-tunes the model to use the
learned operational semantics to infer types. Compared to
TRex, StateFormer is able to output only a fixed set of 35
types. However, a key strength of StateFormer’s approach is
its explicit learning of instruction semantics, which can be
extremely valuable when new instructions are introduced by
CPU vendors or when dealing with binaries for a new ISA.

DIRTY (2022) by Chen et al. [7] features a transformer
neural network (trained on a large corpus of open-source
C projects mined from GitHub) that recommends variable
names and types as a post-processor of decompilation outputs.
In total, DIRTY supports the 48,888 types that were encoun-
tered in its corpus. While the set of types is much larger than
that of StateFormer, it is still limited to previously-seen types
when compared to TRex. As such, Chen et al. suggest the
use of Byte Pair Encoding [32] to extend DIRTY to support
computing previously-unseen struct types as future work.

ReSym (2024) by Xie et al. [39] uses fine-tuned large lan-
guage models with a Prolog-based reasoning system for vari-
able and type recovery. While experiments show it can out-
perform the prior work in name, type, and structure recovery,
the authors also reported an approximate halving of accuracy
when it is run on functions outside their training set. In ad-
dition, our evaluation (§5.3) also shows that the output of
ReSym is hard to depend upon.

7 Concluding Remarks

Lack of high-quality source-level types has plagued decom-
piled code for decades despite advances in the art and science
of decompilation. In this paper, we presented TRex, a new
tool that performs automated deductive type inference for
binaries using a new perspective, Type Reconstruction. This
perspective accounts for the inherent impossibility of recov-
ering lost source types, and guides us to perform analyses
using structural types that capture the behavior of the pro-
gram. Since human reverse engineers are more familiar with
C-like output from decompilers, we then round these precise-
but-verbose structural types to C-like nominal types. Overall,
TRex shows a noticeable improvement in the quality of output
types compared with Ghidra, an actively developed state-of-
the-art decompiler used by practitioners. We also document
insights derived while building TRex, such as showing that
type rounding is an NP-hard problem and yet our greedy
algorithm works reasonably well in practice.

More broadly, we hypothesize that the field of decompila-
tion’s focus on the impossible goal of recovering lost source
code has contributed to the increasing complexity of tools and
techniques in the academic literature. To the extent that this
complexity “overfits” to a particular compilation technique or
even a particular compiler, this may also explain why these
techniques are not used in practical decompilers. In contrast,
we show that by shifting our focus away from the impossible
and instead towards what reverse engineers desire—output
that captures behavior, we can design and implement sim-
pler and more elegant decompilation tools that help reverse
engineers with their actual requirements.

Our work does lead to some natural questions for future
work. Inter-procedural type propagation appears to be a sig-
nificant contributor to Ghidra’s output; at present, TRex does
not implement this, but it would be interesting to understand
how much this factors into quality of output in a Type Re-
construction setting in contrast to the older Type Recovery
setting. Furthermore, TRex focuses on high-quality auto-
mated initial types; and it does not currently take types from
users as input. It would be interesting to explore Type Re-
construction with additional input types. Along a different
direction, TRex could be augmented to propose better names
for the rounded C-like aggregate types, rather than the current
auto-generated identifiers, possibly using recent advances in
machine learning; indeed, this might be a fertile ground for
learning-based Type Prediction approaches to connect with
Type Reconstruction, with the former contributing its strength
of human readability on in-distribution binaries and the latter
its guarantees of reasonable output for all binaries. Finally,
we speculate that our shift in perspective from Type Recovery
to Type Reconstruction might more broadly be applicable to
other components of the decompilation pipeline, providing
more avenues for exploration.

Acknowledgments

We thank the anonymous shepherd and reviewers for their
helpful feedback. This work was supported in part by the
Office of Naval Research (under ONR Award No. N00014-
17-1-2892), and a gift from VMware. While at Carnegie
Mellon University, Jay Bosamiya was also supported by the
CyLab Presidential Fellowship. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the organizations that supported this work.

Ethical Considerations

To the best of our knowledge, the research presented here
does not present any significant negative ethical concerns.
Our work does not involve human subjects or personal data,
focusing solely on automating the reconstruction of type in-
formation from binary code. This work does not introduce
any new risks of harm to individuals or systems, nor does it
facilitate new attacks or privacy violations. We mention the
Menlo Report here only to note that it has no direct relation to
the work presented in this paper: there are no human subjects,
this work introduces no additional harms to human subjects,
selection of subjects is vacuously fair because there are no
human subjects, and all methods and results as part of this
research are legal to the best of our knowledge.

Open-Science

As described in §1, as a step towards reversing the unfortunate
tendency of closed-source tools and non-reproducible bench-
marks, we open-source our tool, evaluation framework, and re-
producible scripts for the benchmarks. These can be found at
https://github.com/secure-foundations/{trex,trex-usenix25}

(archived at https://doi.org/10.5281/zenodo.15611994).

References

[1] Dennis Andriesse, Asia Slowinska, and Herbert Bos.
Compiler-agnostic function detection in binaries. In
2017 IEEE European Symposium on Security and Pri-
vacy (EuroS&P), pages 177–189, 2017.

[2] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael
Turner, and David Brumley. BYTEWEIGHT: Learning
to recognize functions in binary code. In 23rd USENIX
Security Symposium (USENIX Security 14), pages 845–
860, 2014.

[3] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs,
Jude O’Kain, Derron Miao, Tiffany Bao, Adam Doupé,
Yan Shoshitaishvili, and Ruoyu Wang. Ahoy SAILR!
there is no need to DREAM of c: A Compiler-Aware

structuring algorithm for binary decompilation. In
33rd USENIX Security Symposium (USENIX Security
24), pages 361–378, Philadelphia, PA, August 2024.
USENIX Association.

[4] Erick Bauman, Zhiqiang Lin, and Kevin W. Hamlen.
Superset disassembly: Statically rewriting x86 binaries
without heuristics. In 25th Annual Network and Dis-
tributed System Security Symposium, NDSS 2018, San
Diego, California, USA, February 18-21, 2018. The
Internet Society, 2018.

[5] Juan Caballero and Zhiqiang Lin. Type inference on
executables. ACM Computing Surveys, 48(4):65:1–
65:35, May 2016.

[6] Ligeng Chen, Zhongling He, and Bing Mao. CATI:
Context-assisted type inference from stripped binaries.
In 2020 50th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
pages 88–98, 2020.

[7] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz,
Claire Le Goues, Graham Neubig, and Bogdan
Vasilescu. Augmenting decompiler output with learned
variable names and types. In 31st USENIX Security
Symposium (USENIX Security 22), pages 4327–4343,
Boston, MA, August 2022. USENIX Association.

[8] Cristina Cifuentes. Reverse Compilation Techniques.
PhD thesis, Queensland University of Technology, 1994.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N.
Wegman, and F. Kenneth Zadeck. An efficient method
of computing static single assignment form. In Confer-
ence Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages, pages 25–35.
ACM Press, January 1989.

[10] Antonio Flores-Montoya and Eric Schulte. Datalog
disassembly. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1075–1092. USENIX
Association, August 2020.

[11] Gernot Heiser. Systems Benchmarking Crimes.
https://gernot-heiser.org/benchmarking-
crimes.html#subset. Archived: https:
//archive.is/BgUCl#subset.

[12] GrammaTech. Type inference (in
the style of retypd). https://
github.com/GrammaTech/retypd/blob/
f8dd231478c3e1722d0d160c3cf99c628a25/
reference/type-recovery.rst. Archived:
https://archive.is/GbsUB, July 2021.

https://github.com/secure-foundations/trex
https://github.com/secure-foundations/trex-usenix25
https://doi.org/10.5281/zenodo.15611994
https://gernot-heiser.org/benchmarking-crimes.html#subset
https://gernot-heiser.org/benchmarking-crimes.html#subset
https://archive.is/BgUCl#subset
https://archive.is/BgUCl#subset
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst
https://github.com/GrammaTech/retypd/blob/f8dd231478c3e1722d0d160c3cf99c628a25/reference/type-recovery.rst
https://archive.is/GbsUB

[13] Hex-Rays. Hex-Rays End User License Agree-
ment. https://hex-rays.com/eula.pdf.
Archived: https://web.archive.org/web/
20240810083425/https://hex-rays.com/eula.
pdf.

[14] Roger Hindley. The principal type-scheme of an object
in combinatory logic. Transactions of the American
Mathematical Society, 146:29–60, 1969.

[15] ISO. ISO C standard 1999. https://www.open-std.
org/jtc1/sc22/WG14/www/docs/n1256.pdf, 1999.
Section 6.7.2.1, Item 16, Page 103.

[16] Richard M. Karp. Reducibility among combinatorial
problems. In Proceedings of a symposium on the Com-
plexity of Computer Computations, The IBM Research
Symposia Series, pages 85–103. Plenum Press, New
York, 1972.

[17] William Landi. Undecidability of static analysis. ACM
Letters on Programming Languages and Systems (LO-
PLAS), 1(4):323–337, 1992.

[18] JongHyup Lee, Thanassis Avgerinos, and David Brum-
ley. Tie: Principled reverse engineering of types in
binary programs. In Proceedings of the Network and
Distributed System Security (NDSS) Symposium, 2011.

[19] Kaiyuan Li, Maverick Woo, and Limin Jia. On the
generation of disassembly ground truth and the evalua-
tion of disassemblers. In Kevin W. Hamlen and Long
Lu, editors, Proceedings of the 2020 ACM Workshop on
Forming an Ecosystem Around Software Transformation,
FEAST2020, Virtual Event, USA, 13 November 2020,
pages 9–14. ACM, 2020.

[20] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Auto-
matic reverse engineering of data structures from binary
execution. In Proceedings of the Network and Dis-
tributed System Security Symposium 2010, pages 1–18.
The Internet Society, 2010.

[21] Alwin Maier, Hugo Gascon, Christian Wressnegger, and
Konrad Rieck. TypeMiner: Recovering types in binary
programs using machine learning. In Roberto Perdisci,
Clémentine Maurice, Giorgio Giacinto, and Magnus
Almgren, editors, Detection of Intrusions and Malware,
and Vulnerability Assessment, pages 288–308, Cham,
2019. Springer International Publishing.

[22] Matthew Maurer. Holmes: Binary Analysis Integra-
tion Through Datalog. PhD thesis, Carnegie Mellon
University, Oct 2018.

[23] Robin Milner. A theory of type polymorphism in pro-
gramming. Journal of Computer and System Sciences,
17(3):348–375, 1978.

[24] Alan Mycroft. Type-based decompilation (or program
reconstruction via type reconstruction). In Proceedings
of the 8th European Symposium on Programming Lan-
guages and Systems, ESOP ’99, page 208–223, Berlin,
Heidelberg, 1999. Springer-Verlag.

[25] Matt Noonan, Alexey Loginov, and David Cok. Poly-
morphic type inference for machine code. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI
’16, page 27–41. Association for Computing Machinery,
Jun 2016.

[26] National Security Agency (NSA). Ghidra. https:
//www.nsa.gov/ghidra.

[27] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian
Chen, Songchen Yao, David Williams-King, Vikas Um-
madisetty, Junfeng Yang, Baishakhi Ray, and Suman
Jana. Stateformer: fine-grained type recovery from bi-
naries using generative state modeling. In Proceedings
of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, pages 690–702. ACM,
8 2021.

[28] Python 3. Glossary: Duck typing. https://
docs.python.org/3/glossary.html#term-duck-
typing. Archived: https://archive.is/qvZGc.

[29] H. G. Rice. Classes of recursively enumerable sets and
their decision problems. Transactions of the American
Mathematical Society, 74(2):358–366, 1953.

[30] Hex-Rays SA. Hex-Rays Decompiler. https://hex-
rays.com/decompiler/.

[31] Edward J. Schwartz, JongHyup Lee, Maverick Woo,
and David Brumley. Native ×86 decompilation using
semantics-preserving structural analysis and iterative
control-flow structuring. In Proceedings of the 22nd
USENIX Conference on Security, pages 353–368, USA,
2013. USENIX Association.

[32] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics, pages
1715–1725. Association for Computational Linguistics,
2016.

[33] Ian Smith. Binsub: The simple essence of polymorphic
type inference for machine code. In Proceedings of
the 31st International Static Analysis Symposium, page
425–450, Berlin, Heidelberg, 2024. Springer-Verlag.

[34] SPEC. SPEC CPU2006. https://www.spec.org/
cpu2006/.

https://hex-rays.com/eula.pdf
https://web.archive.org/web/20240810083425/https://hex-rays.com/eula.pdf
https://web.archive.org/web/20240810083425/https://hex-rays.com/eula.pdf
https://web.archive.org/web/20240810083425/https://hex-rays.com/eula.pdf
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
https://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
https://www.nsa.gov/ghidra
https://www.nsa.gov/ghidra
https://docs.python.org/3/glossary.html#term-duck-typing
https://docs.python.org/3/glossary.html#term-duck-typing
https://docs.python.org/3/glossary.html#term-duck-typing
https://archive.is/qvZGc
https://hex-rays.com/decompiler/
https://hex-rays.com/decompiler/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/

[35] Trail of Bits. Binary type inference in Ghidra.
https://blog.trailofbits.com/2024/02/07/
binary-type-inference-in-ghidra/. Archived:
https://archive.is/VPwgD, February 2024.

[36] Vector 35. Binary Ninja. https://binary.ninja/.

[37] Vector 35. Decompiler explorer. https://dogbolt.
org/.

[38] David Williams-King, Hidenori Kobayashi, Kent
Williams-King, Graham Patterson, Frank Spano, Yu Jian
Wu, Junfeng Yang, and Vasileios P. Kemerlis. Egal-
ito: Layout-agnostic binary recompilation. In Proceed-
ings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 133–147. Association for
Computing Machinery, 3 2020.

[39] Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu,
Lin Tan, and Xiangyu Zhang. ReSym: Harnessing
LLMs to recover variable and data structure symbols
from stripped binaries. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’24, pages 4554–4568, New York, NY,
USA, 2024. Association for Computing Machinery.

[40] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-
Padilla, and Matthew Smith. Helping johnny to an-
alyze malware: A usability-optimized decompiler and
malware analysis user study. In Proceedings of the
2016 IEEE Symposium on Security and Privacy, pages
158–177. IEEE, 5 2016.

[41] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-
Padilla, and Matthew Smith. No more gotos: Decom-
pilation using pattern-independent control-flow struc-
turing and semantic-preserving transformations. In
22nd Annual Network and Distributed System Security
Symposium, NDSS 2015, San Diego, California, USA,
February 8-11, 2015. The Internet Society, 2015.

[42] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen
chuan Lee, Yonghwi Kwon, Yousra Aafer, and Xiangyu
Zhang. OSPREY: Recovery of variable and data struc-
ture via probabilistic analysis for stripped binary. In
Proceedings of the IEEE Symposium on Security and
Privacy, May 2021.

Appendix A Primitive Analysis Constraints

Here, we list the constraints from TRex’s primitive analysis

phase (§3.3.2) in the form of inference rules
P1 P2 . . .

Q
,

which means that the presence of the antecedents Pi’s leads
one to learn the consequent Q. We use the trivial consequent
(>) to imply that nothing new is learnt from the antecedents.

An equality constraint (τu = τv) in the consequent refers to a
full recursive merge (§4.3), which implicitly allows the intro-
duction of recursive types. Any italicized symbol (such as o,
i1, . . .) is a meta-variable, universally quantified over its natu-
ral domain. The type of an SSA variable v is represented as τv.
Most instructions are written in the form o← Foo(i1, . . .) to
mean that the SSA-variable o is assigned the result of execut-
ing the instruction Foo. Where an instruction has no output
(e.g., Nop), the left-arrow symbol is elided. The shorthand |v|
is used to refer to the size (in bytes) of the variable v.

o← φ(i1, i2, . . .)
τo = τi1 ∧ τo = τi2 ∧·· ·

GVN(v1) = GVN(v2)
τv1 = τv2

Nop
>

ProcException
>

o← Havoc(i1, i2, . . .)
>

FunctionStart
>

FunctionEnd
>

Call(f)
>

Return(p)
Pointer(τp)∧Code(Pointee(τp))

Branch(t) t : variable
Pointer(τt)∧Code(Pointee(τt))

Branch(t) t : constant
>

CondBranch(c, t)
ZeroComparable(c)∧Supports(τc, IntEq|c|)

o← Copy(i)
τo = τi∧Supports(τo,Copy|o|)

o← Piece(i1, i2)
>

o← SubPiece(i,s) s 6= 0
>

o← SubPiece(i,0)
τo = τi

o← Load(i)
Supports(τo,Copy|o|)∧Pointer(τi)∧ τo = Pointee(τi)

Store(p,v)
Supports(τv,Copy|v|)∧Pointer(τp)∧ τv = Pointee(τp)

o← F(i) F ∈ {BoolNeg, IntNeg,FloatNeg,OnesComp, . . .}
Supports(τo,F|o|)∧Supports(τi,F|o|)

o← F(i) F ∈ {Int2Float,Float2Int, . . .}
Supports(τo,Out(F)|o|)∧Supports(τi, In(F)|i|)

o← F(i1, i2) F ∈ {BoolOr, IntMul,FloatDiv, . . . }
∀v ∈ {o, i1, i2}. Supports(τv,F|o|)

o← F(i1, i2) F ∈ {IntEq, IntLt,FloatEq, IntCarry, . . . }
Bool(o)∧ τi1 = τi2 ∧Supports(τi1 ,F|i1|)

o← F(i1, i2) F ∈ {IntShl, IntUShR, IntLShR}
Supports(τo,F|o|)∧Supports(τi1 ,F|i1|)∧Supports(τi2 ,ShAmt)

https://blog.trailofbits.com/2024/02/07/binary-type-inference-in-ghidra/
https://blog.trailofbits.com/2024/02/07/binary-type-inference-in-ghidra/
https://archive.is/VPwgD
https://binary.ninja/
https://dogbolt.org/
https://dogbolt.org/

o← F(i) F ∈ {IntZExt, IntSExt}
Supports(τo,Tgt(F)|o|)∧Supports(τi,Src(F)|i|)

o← F(i1, i2) F : packed/lower vector op f over size s
∀v ∈ {o, i1, i2}. Supports(τv, fs)

o← F(i1, i2) F : upper vector op f over size s
>

Appendix B Colocation Analysis Constraints

Here, we list the constraints from TRex’s colocation analysis
phase (§3.3.3) in the form of inference rules (described in
Appendix A).

o← Load(i)
ζ (i,o)∧ConstOffDeref0(o, i)

Store(p,v)

ζ (p,v)∧ConstOffDeref0(v, p)

o← F(i1, i2, . . .)
o ↼ F(i1, i2, . . .)

o← φ(i1, i2, . . .) i1 ↼ F1(I11, I12, . . .) i2 ↼ F2(I21, I22, . . .) . . .

o ↼ F1(I11, I12, . . .)∧o ↼ F2(I21, I22, . . .)∧ . . .

IsConst(v)
ξ (v)

o← F(i1, i2, . . .) ξ (i1) ξ (i2) . . .

ξ (o)

ζ (p,v) p ↼ IntAdd(i1, i2) ξ (i1) Pointer(i2)
ConstOffDerefConstVal(i1)(v, i2)∧ζ (i2,v)

ζ (p,v) p ↼ IntAdd(i1, i2) ξ (i2) Pointer(i1)
ConstOffDerefConstVal(i2)(v, i1)∧ζ (i1,v)

ζ (p,v) p ↼ IntSub(i1, i2) ξ (i2) Pointer(i1)
ConstOffDeref−ConstVal(i2)(v, i1)∧ζ (i1,v)

ζ (p,v) p ↼ IntAdd(i1, i2) ξ (i1) ¬Pointer(i2)
NonConstOffDerefi2(v,ConstVal(i1))

ζ (p,v) p ↼ IntAdd(i1, i2) ξ (i2) ¬Pointer(i1)
NonConstOffDerefi1(v,ConstVal(i2))

ζ (p,v) p ↼ IntAdd(i1, i2) ¬ξ (i1) ¬ξ (i2) Pointer(i1)
NonConstOffDerefi2(v, i1)∧ζ (i1,v)

ζ (p,v) p ↼ IntAdd(i2, i1) ¬ξ (i2) ¬ξ (i1) Pointer(i2)
NonConstOffDerefi1(v, i2)∧ζ (i2,v)

ζ (p,v) p ↼ IntSub(i1, i2) ¬ξ (i1) ¬ξ (i2) Pointer(i1)
NonConstOffDeref−i2(v, i1)∧ζ (i1,v)

ConstOffDerefo(v, p) o 6= 0
BaseVar(p)

NonConstOffDerefo(v, p)
BaseVar(p)

Appendix C Algorithm for Type Rounding

Algorithm 1 Greedy algorithm for Type Rounding (§3.3.5).

1: function ROUNDUP(type,primitives)
2: for all pi ∈ primitives do
3: Ai← COMPONENTS(pi)

. indicator vector for pi’s components
4: end for
5: A← [A1; A2; . . .]
6: b← COMPONENTS(type)
7: x← column vector of all 1s
8: repeat
9: for all i ∈ indices of x where xi = 1 do

10: x′← x; x′i← 0
11: if Ax′ ≥ b then
12: costi← number of 1s in row Ai
13: else
14: costi← ∞

15: end if
16: end for
17: if all costi = ∞ then
18: break
19: end if
20: j← argmaxi costi

. skipping any costi = ∞

21: x j← 0
22: until no further reduction is possible
23: return

⋃
{pi | xi = 1}

24: end function

	Introduction
	Automated Type Inference for Binary Code
	Prior Approaches
	On the Impossibility of Type Recovery
	Type Reconstruction: Capturing Behavior

	TRex: System Design
	Structural Types Capture Behavior
	Conditional Conservativeness
	TRex Architecture and Analysis Phases
	Input, Lifting, and SSA
	Primitive Analysis
	Colocation Analysis
	Aggregate Analysis
	Type Rounding
	Nominal-Type Reconstruction

	Implementation
	Intermediate Representation in TRex
	Representing Types in TRex
	Joinable Containers

	Evaluation
	Qualitative Evaluation
	Quantitative Evaluation
	Comparison to ML-based Type Prediction

	Related Work
	Concluding Remarks
	Primitive Analysis Constraints
	Colocation Analysis Constraints
	Algorithm for Type Rounding

