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1. INTRODUCTION
As society rushes to digitize sensitive information and services, it

is imperative to adopt adequate security protections. However, such
protections fundamentally conflict with the benefits we expect from
commodity computers. Consumers and businesses value commodity
computers because they provide good performance and an abundance
of features at relatively low cost, but attempts to construct secure sys-
tems “from the ground up” have proven expensive, time-consuming,
and unable to keep pace with the changing demands of the market-
place [2, 9, 12, 13]. For example, the VAX VMM security kernel
was developed over the course of eight years of considerable effort,
but in the end, the project failed, and the kernel was never deployed.
This failure was due, in part, to the absence of support for Ethernet
– a feature considered critical by the time the kernel was completed,
but not anticipated when it was initially designed [12].

Rather than building secure systems from scratch, we argue that
we can resolve the tension between security and features by extend-
ing the trust a user has in one device to enable her to securely use
another commodity device or service, without sacrificing the perfor-
mance and features expected of commodity systems [22]. Note that
we concentrate on average users and commodity systems, rather than
on advanced users, special-purpose computers, or highly constrained
environments (such as those found within the military).

At a high level, we support this premise by developing techniques
to allow a user to employ a small, trusted, portable device to securely
learn what code is executing on her local computer. Rather than en-
trusting her data to the mountain of buggy code likely running on her
computer, we construct an on-demand secure execution environment
which can perform security-sensitive tasks and handle private data in
complete isolation from all other software (and most hardware) on
the system. Meanwhile, non-security-sensitive software retains the
same abundance of features and performance it enjoys today.

Having established an environment for secure code execution on
an individual computer, we then show how to extend trust in this
environment to network elements in a secure and efficient manner.
This allows us to reexamine the design of network protocols and de-
fenses, since we can now execute code on endhosts and trust the re-
sults within the network. Lastly, we extend the user’s trust one more
step to encompass computations performed on a remote host (e.g., in
the cloud). We design, analyze, and prove the security of a protocol
that allows a user to outsource arbitrary computations to commod-
ity computers run by an untrusted remote party (or parties) who may
subject the computers to both software and hardware attacks. Our
protocol guarantees that the user can both verify that the results re-
turned are indeed the correct results of the specified computations
on the inputs provided, and protect the secrecy of both the inputs
and outputs of the computations. These guarantees are provided in
a non-interactive, asymptotically optimal (with respect to CPU and
bandwidth) manner.

Thus, extending a user’s trust, via software, hardware, and crypto-
graphic techniques, allows us to provide strong security protections
for both local and remote computations on sensitive data, while still
preserving the performance and features of commodity computers.

Below, we provide an overview of technologies we employ (Sec-
tion 2), and define trust extension (Section 3). We then describe how

to extend trust in a special-purpose mobile device to verify the se-
curity hardware in the user’s local machine (Section 4), how to ex-
tend that trust in a meaningful way to software on the local machine
(Section 5), how to extend trust in that software to network elements
(Section 6), and finally how to extend that trust to remote computers
in which neither the software nor the hardware is trusted (Section 7).
Space constraints restrict the amount of related work we can cover
here; for a more detailed comparison with other work in this space,
please see my dissertation [22] or our book on the large body of work
examining the bootstrapping of trust in commodity computers [24].

2. BACKGROUND
While other instantiations are possible, several of the techniques

in this article are described in terms of features of Trusted Platform
Modules (TPMs) and recent CPUs from AMD and Intel; we summa-
rize these features below.

Measurement.
When a TPM-equipped platform first boots, platform hardware

takes a measurement (a SHA-1 hash) of the BIOS and records the
measurement in one of the TPM’s Platform Configuration Registers
(PCR) [28, 31]. The BIOS is then responsible for measuring the next
piece of software (e.g., the bootloader) and any associated data files.
The BIOS records the measurement in a PCR before executing the
software. If each subsequent piece of software performs these steps
(measure, record, execute), then the TPM holds a set of measure-
ments of all code executed on the platform [28].

Attestation.
To securely convey measurements to an external verifier, the TPM

creates attestations: with a verifier-supplied nonce, the TPM uses a
private key that is never accessible outside the TPM to generate a
TPM quote, i.e., a digital signature over the nonce and the contents
of the PCRs. The nonce assures the verifier that the attestation is
fresh and not from a previous boot cycle.

To ensure the attestation comes from a real hardware TPM (rather
than a software emulation), the TPM comes with an endorsement
keypair and an endorsement certificate for the public key from the
platform’s manufacturer declaring that it does indeed belong to a real
TPM. To preserve user privacy, the TPM uses Attestation-Identity
Keys, anonymously bound to the endorsement key, to sign attesta-
tions.

Secure Storage.
The TPM also includes a limited amount of nonvolatile RAM

(NVRAM). Reading and writing to NVRAM can be restricted based
on the contents of the PCRs, so an NVRAM location can be made
accessible only to a particular set of software. The most straight-
forward way to store data securely is to define an NVRAM location
large enough to hold a symmetric key and use the PCR-based restric-
tions to prevent other software from reading or writing the key. The
symmetric key can then be used to encrypt and MAC bulk data.

Dynamic Root of Trust for Measurement.
To protect the launch of a Virtual Machine Monitor (VMM), recent

CPUs from AMD and Intel extend the x86 instruction set to support
a dynamic root of trust for measurement (DRTM) operation [1, 11].



Essentially, DRTM provides many of the security benefits of reboot-
ing the computer (e.g., starting from a clean-slate), while bypassing
the overhead of a full reboot, i.e., devices remain enabled, the BIOS
and bootloader are not invoked, memory contents remain intact, etc.
DRTM is implemented via a new SKINIT instruction on AMD (or
GETSEC[SENTER] on Intel), which can launch a VMM at an arbi-
trary time (hence the colloquialism late launch) with built-in protec-
tion against software-based attacks. When a DRTM is invoked, the
CPU’s state is reset, and direct memory access (DMA) protections
for a region of memory are enabled. The CPU hashes the contents
(e.g., data and executable code) of the memory region, extends the
measurement into the TPM’s PCR 17 (and 18 on Intel), and begins
executing the code.

Trust Assumptions.
Relying on a TPM’s guarantees requires trusting the TPM manu-

facturer, the platform vendor, and the PKI linking them to the TPM’s
keys. The CPU, RAM, and chipset must be trusted as well. The
TPM is designed to withstand software based attacks, and limited
hardware attacks, such as rebooting the machine. It is not expected
to resist sophisticated physical attacks. TPM-based systems also do
not typically aim to prevent attacks on the machine’s availability.

3. WHAT IS TRUST EXTENSION?
Creating trustworthy systems requires advances on many fronts:

better programming languages, better operating systems, better net-
work protocols, and better definitions of security. More fundamen-
tally, however, we must enable both computers and users to make
accurate, informed trust decisions. After all, even if software does
improve, we must be able to determine which systems employ the
new and improved software! In particular, it is critical that a user
be able to judge whether a system (either local or remote) should be
trusted before she hands over her sensitive data. Similarly, if a net-
work element (e.g., a router) can trust information from an endhost,
then numerous protocol optimizations become possible.

As a result, this article describes techniques that provide firm ev-
idence on which to base such trust decisions. In particular, once the
user decides to trust a particular device (e.g., her cellphone), we show
how to use that device to verify, on her behalf, the trustworthiness of
other devices and services (e.g., her laptop or a cloud-based compu-
tation). The user’s trust in the original device allows her to trust its
assessment of the new device or service. If the assessment is pos-
itive, then the user has essentially extended the trust she has in her
first device to include the new device or service.

Informally speaking, we use the following definition of trust: to
trust an entity X with her private data (or with a security-sensitive
task), a user must believe that at no point in the future will she have
cause to regret having given her data (or entrusted her task) to X .

4. BOOTSTRAPPING TRUST IN A
COMMODITY COMPUTER

Initially, we focus on the problem of allowing a user to bootstrap
trust in her own personal computer. This problem is fundamental,
and should be easier than other potential scenarios: if we cannot es-
tablish trust in the user’s computer, we are unlikely to be able to
establish trust in a remote computer. When working with her own
computer, the user can at least be reasonably certain that the com-
puter is physically secure; i.e., an attacker has not tampered with
the computer’s hardware configuration. Such an assumption aligns
quite naturally with standard human intuition about security: a re-
source (e.g., a physical key) that an individual physically controls is
typically more secure than a resource she gives to someone else. For-
tunately, the physical protection of valuable items has been a major
focus of human ingenuity over the past several millennia.

If the user’s computer is physically secure, then we can make use

of special-purpose secure hardware to monitor and report on the soft-
ware state of the platform. Given the software state, the user (or an
agent acting on the user’s behalf) can decide whether the platform
should be trusted. While a full-blown secure coprocessor, such as
the IBM 4758 [30], might be appealing, cost considerations limit de-
ployment. However, for the last few years, over 350 million [34]
commodity computers have been sold with a special-purpose secu-
rity chip called the TPM [31]. With appropriate software support,
the TPM can be used to report information about the software ex-
ecuting on the computer (see Section 2). The resulting attestation
can be verified by a user’s trusted device, such as a cellphone or a
special-purpose USB fob [33]. Thus, the user’s trust in her device
can be extended, via the TPM, to establish trust in the software on a
machine. For example, Garriss et al. use a cellphone to verify a vir-
tual machine monitor on a kiosk computer [6], though a kiosk may
not satisfy the hardware security assumptions discussed above.

However, even given a TPM-equipped machine, the question re-
mains: How do we bootstrap trust in the TPM itself? Surprisingly,
neither the TPM specifications nor the academic literature considered
this problem. Instead, it was assumed that the user magically pos-
sesses the TPM’s public key. Unfortunately, any straightforward ap-
proach to trusting the TPM falls victim to a cuckoo attack1 [21, 22].
In this attack, the adversary convinces the user that a TPM the ad-
versary physically controls in fact resides in the user’s own local
computer. Figure 1(a) illustrates one possible implementation of
the cuckoo attack. Malware on the user’s local machine proxies
the user’s TPM-related messages to a remote, TPM-enabled machine
controlled by the attacker. Any credential the user requests from her
local TPM (e.g., an Endorsement Certificate) can also be provided by
the attacker’s TPM and relayed to the malware on the user’s machine.

To analyze the cuckoo attack formally, we develop a model [21,
22], using predicate logic, for bootstrapping trust in a local computer
equipped with secure hardware. The model defines a set of predicates
that describe the trustworthiness of people, computers, and secure
hardware (e.g., TPMs), and a set of trust axioms. For example, if
a trusted person P says computer C is secure, then we can conclude
that C is physically secure; this encodes our previous assumption that
people are reasonably effective at assessing and maintaining physical
security.

If we try to use this model to reason about the security of the
user’s local machine, we arrive at a logical contradiction, namely
that the local machine is both trusted and untrusted. This contradic-
tion captures the essence of the cuckoo attack: the user cannot decide
whether to trust the local machine.

From Figure 1(a), it may seem that we can prevent the cuckoo
attack by severing the connection between the local malware and
the adversary’s remote PC. The assumption is that, without a remote
TPM to provide the correct responses, the infected machine must
either refuse to respond or allow the true TPM to communicate with
the user’s device (thus, revealing the presence of the malware).

However, regardless of the implementation, cutting off network
access fundamentally fails to prevent the cuckoo attack. As shown
in Figure 1(b), the cuckoo attack is possible because the malware on
the local machine has access to a “TPM oracle” that provides TPM-
like answers without providing TPM security guarantees. If the local
malware can access this oracle without network access, then cutting
off network access is insufficient to prevent the cuckoo attack. In
particular, since the adversary has physical possession of TPMM, he
can extract its private keys and credentials and include this data with
the malware. Thus provisioned, the malware on the local machine
can emulate TPMM, even without network access.

Instead, we argue that the right way to prevent the cuckoo attack

1 The cuckoo replaces other birds’ eggs with its own. The victims
are tricked into feeding the cuckoo chick as if it were their own.
Similarly, the attacker “replaces” the user’s trusted TPM with his
own TPM, leading the user to treat the attacker’s TPM as her own.



(a) Example Implementation (b) Logical Equivalent

Figure 1: The Cuckoo Attack. In one implementation of the cuckoo attack (a), malware on the user’s local machine sends messages intended for the local
TPM (TPML) to a remote attacker who feeds the messages to a TPM (TPMM) inside a machine the attacker physically controls. Given physical control of
TPMM, the attacker can violate its security guarantees via hardware attacks. Thus, at a logical level (b), the attacker controls all communication between the
verifier and the local TPM, while having access to an oracle that provides all of the answers a normal TPM would, without providing the security properties
expected of a TPM.

is to introduce a secure channel to the TPM. This channel can be
instantiated either via a physically hardwired channel allowing the
user to connect directly to the TPM on the local machine, or via an
approach that allows the user to learn some authentic cryptographic
information about the local TPM and hence establish a cryptographic
secure channel.

Using both our formal model and a usability assessment, we an-
alyze a dozen instantiations of these various approaches [21, 22],
including adding a special-purpose port or button to the computer,
reusing existing interfaces (e.g., USB or Firewire), employing software-
only attestation, and encoding cryptographic material as a 2-D bar-
code or serial number printed on the computer. Each has its share of
advantages and disadvantages. In the short term, placing an alphanu-
meric hash of the TPM’s public key on the exterior of the computer
seems to offer the best tradeoff between security, usability, and de-
ployability. In the long term, the strongest security would come from
a special-purpose hardware interface directly wired to the machine’s
secure hardware (e.g., the TPM) and designed so that the user can-
not inadvertently connect the verifying device to another interface.
This solution removes almost every opportunity for user error, does
not require the preservation of secrets, and does not require software
updates.

5. SECURELY EXECUTING CODE ON A COM-
MODITY COMPUTER

Unfortunately, merely establishing a secure connection between
the user and the security hardware on her computer does not suffice
to provide a full-featured, trustworthy execution environment. Se-
curity hardware tends to be either resource-impoverished or special-
purpose (or both). Hence, we need to extend the user’s trust in the
security hardware to trust in the user’s entire computer.

However, establishing truly secure functionality on a general-purpose
computer raises a fundamental question: How can secure code exe-
cution coexist with the untrustworthy mountain of buggy yet feature-
rich software that is common on modern computers? For example,
how can we keep a user’s keystrokes private if the operating system,
the most privileged software on the computer, cannot be trusted to be
free of vulnerabilities? This is made all the more challenging by the
need to preserve the system’s existing functionality and performance.

Previous work attempted to deal with this problem by running a
persistent security layer in the computer’s most privileged mode [5,
9, 12, 13, 29]. This layer has been variously dubbed a security kernel,
a virtual machine monitor (VMM), or a hypervisor. This layer is re-
sponsible for creating isolation domains for ordinary, untrusted code
and for the security-sensitive code. Unfortunately, this approach has
a number of inherent drawbacks. The security layer’s need to inter-
pose on hardware accesses leads to performance degradation for or-
dinary code, and often requires eliminating access to devices that are
too complicated to emulate (e.g., a 3D graphics card) [4]. Further-

more, the need to run both untrusted and trusted code simultaneously
can lead to security vulnerabilities (e.g., side-channel attacks [26]),
as well as code bloat in the security layer; the initial implementation
of the Xen VMM required 42K lines of code [4] and within a few
years almost doubled to 83K lines [14].

To avoid these drawbacks, we develop the Flicker architecture [15,
17–19, 22], which is designed to satisfy the need for features and se-
curity. Indeed, Flicker shows that these conflicting needs can both be
satisfied by constructing a secure execution environment on demand.
When invoked for secure code execution (e.g., signing a certificate
or authenticating to a website), Flicker creates an isolated environ-
ment such that none of the software executing before Flicker begins
can monitor or interfere with Flicker code execution, and all traces
of Flicker code execution can be eliminated before regular software
execution resumes. For example, a Certificate Authority (CA) could
sign certificates with its private key and keep the key secret, even
from an adversary who controls the BIOS, OS, and DMA-enabled
devices.

5.1 Secure Code Execution
We describe Flicker, as implemented on an AMD CPU, in more

detail; the sequence, shown in Figure 2, is similar on Intel.
To employ Flicker, application developers must provide the security-

sensitive code (known as the Piece of Application Logic or PAL) se-
lected for Flicker protection as an x86 binary and define its interface
with the remainder of their application; we have developed tools that
aid in automating this process. To create an SLB (the Secure Loader
Block supplied as an argument to the DRTM instruction, SKINIT),
the application developer links her PAL against a code module we
have developed that performs the steps necessary to set up and tear
down the Flicker session.

Since SKINIT is a privileged instruction, to execute the resulting
SLB, the application passes it to a kernel module we have developed.
It allocates memory, initializes various values in the SLB, and han-
dles untrusted setup and tear-down operations. The kernel module is
not included in the Trusted Computing Base (TCB) of the applica-
tion, since its actions are verified.

Flicker achieves its properties using the DRTM capabilities sum-
marized in Section 2. Instead of launching a VMM, Flicker pauses
the current execution environment (e.g., the untrusted OS). In par-
ticular, Flicker saves information about the kernel’s page tables to
memory, along with the contents of key registers, e.g., CR0, CR3,
GDTR, IDTR, and TR. On a multi-core machine, execution must be
halted on all but the Boot Strap Processor, and the other cores must
be sent an INIT Inter-Processor Interrupt (IPI) so that they respond
correctly to a handshaking synchronization step performed during
the execution of SKINIT .

The actual Flicker session begins with the execution of the SKINIT
instruction, which receives the SLB selected for Flicker protection



Figure 2: PAL Execution. Timeline showing the steps necessary to
execute a PAL. The Secure Loader Block (SLB) includes the PAL and the
code necessary to initialize and terminate the Flicker session. The gap in
the time axis indicates that the Flicker kernel module is loaded only once.

as an argument. As described in Section 2, SKINIT resets CPU
state, adds entries to the Device Exclusion Vector to disable Di-
rect Memory Access (DMA) to the memory region containing the
SLB, disables interrupts (including System Management Interrupts)
to prevent the previously executing code from regaining control, dis-
ables debugging support, even for hardware debuggers, and extends
a hash of the SLB into a PCR in the TPM. Finally, it hands con-
trol to Flicker’s initialization routine. To simplify execution of PAL
code, Flicker (i) loads the Global Descriptor Table (GDT), (ii) loads
the CS, DS, and SS registers, (iii) transitions to ring 3 (user space)
execution, and (iv) calls the PAL, providing the address of PAL in-
puts as a parameter. When PAL execution terminates, Flicker cleans
up any traces of the security-sensitive code’s execution by clearing
out memory and register contents. Finally, it resumes the previous
execution environment. This entails returning to ring 0 (kernel) ex-
ecution, restoring the saved OS state, reenabling paging, reenabling
interrupts, and jumping back to kernel code.

Since we only deploy Flicker’s protections on demand, Flicker
induces no performance overhead or feature reduction during reg-
ular computer use. Limiting Flicker’s persistence also strengthens
Flicker’s security guarantees, since it avoids the complexity (and
hence potential vulnerability) of solutions based on a VMM or a se-
curity kernel. Hence, we were able to implement the core Flicker
system with a tiny TCB of 250 lines of code.

Naturally, however, non-persistence poses its own set of challenges.
For instance, to enable more complex applications, we must lever-
age TPM-based secure storage (Section 2) to maintain state across
Flicker sessions. For example, a Flicker-based application may wish
to interact with a remote entity over the network. Rather than include
an entire network stack and device driver in the PAL (and hence the
TCB), we can invoke Flicker upon the arrival of each message, using
secure storage to protect sensitive state between invocations. Pre-
venting a variety of subtle attacks on this saved state requires devel-
oping additional protocols [23].

A platform using Flicker can convince remote parties that a Flicker
session executed with a particular PAL. Our approach builds on the
TPM attestation process described in Section 2. As part of Flicker’s
execution, the SKINIT instruction resets the value of PCR 17 to 0
and then extends it with the hash of the SLB (which contains the
application-specific PAL). Thus, PCR 17 will take on the value
SHA(0x0020||SHA(P)), where P represents the SLB’s code. The
properties of the TPM, chipset, and CPU guarantee that no other op-
eration can cause PCR 17 to take on this value. Thus, an attestation
of the value of PCR 17 will convince a remote party that the PAL
was executed using Flicker’s protection.

To provide result integrity, after PAL execution terminates, Flicker
extends PCR 17 with hashes of the PAL’s input and output param-
eters. As another important security procedure, after extending the
PAL’s results into PCR 17, Flicker extends PCR 17 with a fixed pub-
lic constant. This provides two powerful security properties: (i) it
prevents any other software from extending values into PCR 17 and
attributing them to the PAL (the fact that SKINIT resets PCR 17 to 0
prevents malicious software from extending values before the Flicker
session); and (ii) it revokes access to any secrets kept in the TPM’s
secure storage which may have been available during PAL execution;

specifically, the TPM’s secure storage facilities (see Section 2) only
allow access to the PAL’s state when the value in PCR 17 matches
that after the SKINIT operation. Hence, extending data into PCR 17
will cause subsequent attempts to access the secure storage to fail.

Combining the techniques above, a PAL can communicate se-
curely (i.e., with both secrecy and integrity protections) with a re-
mote party, via a cryptographic secure channel. Specifically, the PAL
generates an asymmetric keypair {KPAL,K−1

PAL}within its secure exe-
cution environment. It securely stores the private key K−1

PAL under the
value of PCR 17 so that only the identical PAL invoked in the secure
execution environment can access it. As with all output parameters,
the public key KPAL is extended into PCR 17 before it is output to
the application running on the untrusted host. The application gener-
ates a TPM quote over PCR 17 based on the nonce from the remote
party. The quote allows the remote party to determine that the public
key KPAL was generated by a PAL running in the secure execution
environment. The remote party uses the public key to create a secure
channel to future invocations of the PAL.

We implement Flicker for both 32-bit Windows and Linux running
on AMD and Intel CPUs. The implementation includes a number of
useful code modules that PALs can choose to include, such as mod-
ules for memory management, TPM operations, cryptographic oper-
ations, and secure channels. Using these tools, we applied Flicker
to several broad classes of applications. To illustrate stateless appli-
cations, we use Flicker to provide verifiable isolated execution of a
kernel rootkit detector on a remote machine. To illustrate applica-
tions for which integrity protection of application state suffices, we
use Flicker to verify the execution of a distributed computing appli-
cation based on the BOINC framework [3]. BOINC allows scien-
tists to develop computational modules that operate on public data;
hence, we can run the module inside Flicker to provide stronger guar-
antees about the integrity of the results clients return. Finally, to il-
lustrate applications whose state requires secrecy and integrity, we
use Flicker to protect computations performed with: the private key
for a Certificate Authority, the passwords for an SSH server and for a
full-disk encryption utility, and the contents of a differentially private
database.

To summarize our evaluation, with various optimizations, invok-
ing the SKINIT instruction requires ∼48 ms, while secure storage
operations take ∼22 ms, meaning that a typical Flicker session re-
quires∼70 ms, plus the time needed for the application-specific PAL
to execute. Generating a TPM quote for the Flicker session is by
far the slowest operation; depending on the TPM, it can take ∼362-
756 ms. Fortunately, the quote can be computed in parallel with
untrusted code, since it is performed outside of the Flicker environ-
ment. In general, Flicker has little impact on the performance of
untrusted code, and the OS remains stable. Frequent, brief Flicker
sessions have a negligible effect on system performance. Longer
running Flicker sessions may produce input lag or dropped network
packets, but our experiments indicate that Flicker does not corrupt
data transfers (e.g., between USB and disk).

5.2 Suggested Architectural Improvements
Overall, our experiments reveal two significant performance bot-

tlenecks for minimal TCB execution on current CPU architectures:
(i) the inability to execute PALs and untrusted code simultaneously
on different cores of a multi-core machine, and (ii) the use of slow
TPM operations to protect PAL state during a context switch between
secure and insecure execution.

To alleviate these issues, we make a number of hardware rec-
ommendations [15, 19, 22] to support an execution model like that
shown in Figure 3. The key recommendations are for (1) a hardware
mechanism for memory isolation that isolates the memory pages be-
longing to a PAL from all other code, and (2) a hardware context
switch mechanism that can efficiently suspend and resume PALs,
without exposing a PAL’s execution state to other code.



Figure 3: Goal of Our Architectural Recommendations. Physical plat-
form running a legacy OS and applications along with some number of
PALs.

Figure 4: Life Cycle of a PAL. MF stands for Measured Flag. Note
that these states are for illustrative purposes and need not be represented
explicitly in the system.

We define a Secure Execution Control Block (SECB) as a structure
that holds PAL state and resource allocations, both for the purposes
of launching a PAL and for storing the state of a PAL when it is
not executing. The PAL and SECB should be contiguous in mem-
ory to facilitate memory isolation mechanisms. The SECB entry for
allocated memory should consist of a list of physical memory pages
allocated to the PAL.

Figure 4 illustrates the new life cycle of a PAL. To begin execu-
tion of a PAL described by a newly allocated SECB, we propose the
addition of a new CPU instruction, Secure Launch (SLAUNCH), that
takes as its argument the starting physical address of an SECB. This
launch mechanism combines the hardware virtual machine manage-
ment data structures on AMD and Intel with the security functional-
ity of a DRTM operation.

To isolate memory and facilitate rapid context switches, we pro-
pose that the memory controller maintain an access control table with
one entry per physical page, where each entry specifies which CPUs
(if any) have access to the physical page. Memory pages are by de-
fault marked ALL to indicate that they are accessible by all CPUs
and DMA-capable devices.

When PAL execution is started using SLAUNCH, the memory con-
troller updates its access control table so that each page allocated to
the PAL (as specified by the list of memory pages in the SECB) is
accessible only to the CPU executing the PAL. When the PAL is
subsequently suspended, the state of its memory pages transitions to
NONE, indicating that nothing currently executing on the platform is
allowed to read or write to those pages. Note that the memory allo-
cated to a PAL includes space for data, and is a superset of the pages
containing the PAL binary. Since this data is ephemeral, the PAL
must take steps, such as utilizing the TPM’s secure storage facilities,
to ensure that its data persists across reboots [23].

When PAL execution terminates, a well-behaved PAL calls SFREE,
which clears the memory allocated to the PAL, as well as any mi-
croarchitectural state that might contain sensitive data, and marks the
memory pages with ALL. Similarly, the untrusted OS may kill a PAL
via SKILL, which clears the PAL’s state before freeing the associated
memory pages.

We also recommend the inclusion of a PAL preemption timer in
the CPU that can be configured by the untrusted OS. When the timer
expires, or a PAL voluntarily yields, the PAL’s CPU state should
be automatically and securely written to its SECB by hardware, and
control should be transferred to an appropriate handler in the un-
trusted OS. To enable a PAL to voluntarily yield, we propose the
addition of a new CPU instruction, Secure Yield (SYIELD). Part of

writing the PAL’s state to its SECB includes signaling the memory
controller that the PAL and its state should be inaccessible to all en-
tities on the system. Note that any microarchitectural state that may
persist long enough to leak the secrets of a PAL must be cleared upon
PAL yield.

The untrusted OS can resume a PAL by executing an SLAUNCH
on the desired CPU, parameterized with the physical address of the
PAL’s SECB. The PAL’s Measured Flag indicates to the CPU that
the PAL has already been measured and is only being resumed, not
started for the first time. Note that the Measured Flag is honored
only if the SECB’s memory page is set to NONE. This prevents the
untrusted OS from invoking a PAL unless it has been measured by
SLAUNCH. During PAL resume, the SLAUNCH instruction will sig-
nal the memory controller that the PAL’s state should be accessible
to the CPU on which the PAL is now executing. Note that the PAL
may execute on a different CPU each time it is resumed. To enable
multi-core PALs, if a CPU attempts to resume an already executing
PAL, that CPU will be added to the pool of CPUs available to the
PAL.

With our recommendations, we eliminate the use of TPM opera-
tions during context switches and only require that the TPM measure
the PAL once (instead of on every context switch). We expect that
an implementation of our recommendations can achieve PAL context
switch times on the order of those possible today using hardware vir-
tualization support, i.e., 0.6 µs on current hardware. This reduces
the overhead of context switches by orders of magnitude and hence
makes it significantly more practical to switch in and out of a PAL.

In summary, Flicker provides a solid foundation for constructing
secure systems that operate in conjunction with standard software;
the developer of a security-sensitive code module need only trust her
own code, plus as few as 250 lines of Flicker code, for the secrecy
and integrity of her code’s execution. Flicker guarantees these prop-
erties even if the BIOS, OS, and DMA-enabled devices are all ma-
licious. Our current implementation offers reasonable performance
for many applications, and our hardware recommendations would
enable many more.

6. LEVERAGING SECURE CODE EXECU-
TION IN NETWORK PROTOCOLS

If we can provide secure code execution on endhosts, the next
frontier is to examine how such trust can be extended into the net-
work in order to improve the performance and efficiency of network
applications. In other words, if endhosts (or at least portions of each
endhost) can be trusted, then network infrastructure no longer needs
to arduously and imprecisely reconstruct data already known by the
endhosts.

For instance, suppose a mail server wants to improve the accu-
racy of its spam identification using host-based information. A re-
cent study indicates that the average and standard deviation of the
size of emails sent in the last 24 hours are two of the best indicators
of whether any given email is spam [10]. This data is easy for an
endhost to collect, but hard for any single mail recipient to obtain.

Thus, as an initial exploration of how endhost hardware security
features can be used to improve the network, we design a general ar-
chitecture named Assayer [22, 25]. While Assayer may not represent
the optimal way to convey this information, we see it as a valuable
first step to highlight the various issues involved. For example, can
we provide useful host-based information while also protecting user
privacy? Which cryptographic primitives are needed to verify this
information in a secure and efficient manner? Our initial findings
suggest that improved endhost security can improve the security and
efficiency of the network, while simultaneously reducing the com-
plexity of in-network elements.

Naively, we might simply use hardware-based attestation (Sec-
tion 2) for each piece of information sent to the network. Return-
ing to our earlier example, the mail server might ask each client to
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Figure 5: Assayer Components. The relying party (e.g., a mail server
or an ISP) delegates the task of inspecting clients to one or more verifiers.
It also configures one or more filters with information about the verifiers.
The filters check the client’s annotation and act on the information in the
annotation. For example, a filter might drop the message or forward it at a
higher priority to the relying party.

include an attestation in every email. The mail server’s spam filter
could verify the attestation and then incorporate the host-provided
information into its classification algorithm. Any legacy traffic arriv-
ing without an attestation could simply be processed by the existing
algorithms. Unfortunately, checking attestations is time-consuming
and requires interaction with the client. Even if this were feasible for
an email filter, it would be unacceptable for other applications, such
as Distributed Denial-of-Service (DDoS) mitigation, which require
per-packet checks at line rates.

Similarly, labeling outbound traffic with mandatory access control
labels, as proposed by McCune et al. [16], works well in tightly con-
trolled enterprise networks, but is unsuited to the heterogeneity of
the Internet.

Thus, the question becomes: how can we make the average case
fast and non-interactive in the midst of the Internet’s diversity? The
natural approach is to cryptographically extend the trust established
by a single hardware-based attestation over multiple outbound mes-
sages. Thus, the cost of the initial verification is amortized over sub-
sequent messages.

As a result, the Assayer architecture employs two distinct phases:
an infrequent setup phase in which the relying party (e.g., the mail
server) establishes trust in the client, and the more frequent usage
phase in which the client generates authenticated annotations on out-
bound messages (Figure 5).

The relying party delegates the task of inspecting clients to one or
more off-path verifier machines. Every T days, the client convinces
a verifier that it has securely installed a trustworthy code module that
will keep track of network-relevant information, such as the number
of emails recently sent, or the amount of bandwidth recently used.

The various code modules execute atop a minimal hypervisor that
implements Flicker-like functionality with performance closer to what
Flicker would provide with the hardware changes suggested in Sec-
tion 5.2. To protect user privacy, code modules do not have visibility
into the client’s software state (e.g., a client module for web brows-
ing cannot determine which web browser the client is using). Instead,
we employ application-specific incentives (e.g., by giving priority to
traffic carrying annotations) to convince the commodity software to
submit outbound traffic to the client modules.

Having established the trustworthiness of the client, the verifier
issues a limited-duration Sender Token that is bound to the client’s
code module. During the usage phase, the client submits outbound
messages to its code module, which uses the Sender Token to au-
thenticate the message annotations it generates. These annotations
are then checked by one or more fast-path filter middleboxes, which
verify the annotations and react accordingly. For instance, a relying
party trying to identify spam might feed the authenticated informa-

tion from the filter into its existing spam classification algorithms.
Alternatively, a web service might contract with its ISP to deploy
filters on its ingress links to mitigate DDoS attacks by prioritizing
legitimate traffic. If the traffic does not contain annotations, then
the filter treats it as legacy traffic (e.g., DDoS filters give annotated
traffic priority over legacy traffic). To instantiate the sender tokens
and message annotations, we designed two protocols: an efficient
symmetric-key-based protocol, and a less efficient asymmetric-key-
based protocol that offers additional security properties.

To evaluate the usefulness of trustworthy host-based information,
we consider the application of Assayer to three case studies: spam
identification, DDoS mitigation, and super-spreader worm detection.
We find that Assayer is well-suited to aid in combating spam and
can mitigate many (though certainly not all) network-level DDoS at-
tacks. In these two applications, Assayer can be deployed incremen-
tally, since victims (e.g., email hosts or DDoS victims) can deploy
Assayer filters in conjunction with existing defenses. Legitimate
senders who install Assayer will then see improved performance
(e.g., fewer emails marked as spam, or higher success in reaching
a server under DDoS attack). Legacy traffic is not dropped but is
processed at a lower priority, encouraging, but not requiring, addi-
tional legitimate senders to install Assayer. Surprisingly, we find
that while it is technically feasible to use Assayer to combat super-
spreader worms, such use would face challenges when it comes to
deployment incentives. Specifically, non-annotated traffic must be
significantly delayed or dropped to have a credible chance of slowing
or stopping worm propagation. However, in a legacy environment,
ISPs cannot slow or drop legacy traffic until most users have started
annotating their traffic, but users will not annotate their traffic unless
motivated to do so by the ISPs. A non-technical approach would be
to hold users liable for any damage done by non-annotated packets,
thus incentivizing legitimate users to annotate their packets. This
obviously raises both legal and technical issues.

To better understand the performance implications of conveying
host-based information to the network, we implement a full Assayer
prototype, including multiple protocol implementations. The size of
the protection layer on the client that protects code modules from the
endhost (and vice versa) is minuscule (it requires 841 lines of code),
and the individual modules are even smaller. Our verifier prototype
can sustain 3300 client verifications per second and can handle bursts
of up to 5700 clients/second. Generating and verifying annotations
for outbound traffic requires only a few microseconds for our most
efficient scheme, and these annotations can be checked efficiently.
Even on a gigabit link, we can check the annotations with a reason-
able throughput cost of 3.7-18.3%, depending on packet size.

7. SECURE CODE EXECUTION DESPITE UN-
TRUSTED SOFTWARE & HARDWARE

With Flicker, we assume that the user’s computer is physically se-
cure. To generalize Flicker’s results, we need techniques to establish
trust in code execution when even the hardware is completely un-
trustworthy. This scenario is particularly compelling as the growth
of “cloud computing” and the proliferation of mobile devices con-
tribute to the desire to outsource computing from a client device to
an online service. In these applications, how can the client be assured
that the secrecy of her data will be protected? Equally importantly,
how can the client verify that the result returned is correct, without
redoing the computation?

While various forms of homomorphic encryption can provide data
secrecy [8, 32], we demonstrate that we can efficiently verify the re-
sults of arbitrary tasks (abstracted as function evaluations) on a com-
putational service (e.g., in the cloud) without trusting any hardware
or software on that system [7, 22]. This contrasts with previous ap-
proaches that were inefficient or that could only verify the results of
restricted function families.

To formalize secure computational outsourcing, we introduce the



notion of verifiable computing [7, 22]. Abstractly, a client wishes to
evaluate a function F (e.g., sign a document or manipulate a photo-
graph) over various, dynamically selected inputs x1, . . . ,xk on one or
more untrusted computers, and then verify that the values returned
are indeed the result of applying F to the given inputs. The critical
requirement, which precludes the use of previous solutions, is that
the client’s effort to generate and verify work instances must be sub-
stantially less than that required to perform the computation on her
own.

Our definition is non-interactive: the client sends a single message
to the worker and vice versa. Our definition also uses an amortized
notion of complexity for the client: she can perform some expen-
sive pre-processing, but after this stage, she is required to run very
efficiently. By introducing a one-time preprocessing stage (and the
resulting amortized notion of complexity), we circumvent the result
of Rothblum and Vadhan [27], which indicated that efficient ver-
ifiable computation requires the use of probabilistically checkable
proof (PCP) constructions. In other words, unless a substantial im-
provement in the efficiency of PCP constructions is achieved, our
model allows much simpler and more efficient constructions.

Drawing on techniques from multi-party secure computation, we
present the first protocol for verifiable computing. It provably pro-
vides computational integrity for work done by an untrusted party;
it also provides provable secrecy for the computation’s inputs and
outputs. This privacy feature is bundled into the protocol and comes
at no additional cost. This is a critical feature for many real-life
outsourcing scenarios in which a function is computed over highly
sensitive data (e.g., medical records or trade secrets).

Moreover, the protocol provides asymptotically optimal perfor-
mance (amortized over multiple inputs). Specifically, the protocol
requires a one-time pre-processing stage which takes O(|C|) time,
where C is the smallest known Boolean circuit computing F . For
each work instance, the client performs O(|m|) work to prepare an
m-bit input, the worker performs O(|C|) work to compute the results,
and the client performs O(|n|) work to verify the n-bit result.

This result shows that we can outsource arbitrary computations to
untrusted workers, preserve the secrecy of the data, and efficiently
verify that the computations were done correctly. Thus, verifiable
computing could be used, for instance, to outsource work to a cloud-
based service, or in a distributed computing project like Folding@home
[20], which outsources protein-folding simulations to millions of In-
ternet users. To prevent cheating, these projects often assign the
same work unit to multiple clients and compare the results; verifi-
able computing would eliminate these redundant computations and
provide strong cryptographic protections against colluding workers,
though there are some subtleties involved when workers are caught
cheating [7, 22].

Our construction is based on the crucial (and somewhat surprising)
observation that Yao’s Garbled Circuit Construction [35], in addition
to providing secure two-party computation, also provides a “one-
time” verifiable computation. In other words, we can adapt Yao’s
construction to allow a client to outsource the computation of a func-
tion on a single input. Figure 6 shows an example with a single gate,
but the construction extends naturally to circuit sizes polynomial in
the security parameter.

At a high level, in the preprocessing stage the client garbles the
circuit C according to Yao’s construction. Then in the “input prepa-
ration” stage, the client reveals the random labels associated with the
input bits of x in the garbling. This allows the worker to compute
the random labels associated with the output bits, and from them the
client will reconstruct F(x). If the bit labels are sufficiently long and
random, the worker will not be able to guess the labels for an incor-
rect output, and therefore the client is assured that F(x) is the correct
output.

Unfortunately, reusing the circuit for a second input x′ is insecure,
since once the output labels of F(x) are revealed, nothing can stop the
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Figure 6: Yao’s Garbled Circuits for Verifiable Computation. The orig-
inal binary gate (a) can be represented by a standard truth table (b). We
then replace the 0 and 1 values with the corresponding randomly chosen
λ-bit values (c). Finally, we use the values for wa and wb to encrypt the
values for the output wire wz (d). The random permutation of these cipher-
texts is the garbled representation of gate g, which will be shipped to the
worker. To compute g(10), the client sends the worker (k1
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tries to use these values to decrypt all four ciphertexts. This will succeed
only for the third ciphertext, yielding ŷ← kg(1,0)

z , which the worker returns
to the client. If ẑ = k0

z , the client concludes the output is z = 0, else if ẑ = k1
z ,

z = 1. Otherwise, if ẑ 6= k0
z and ẑ 6= k1

z , then the client concludes the worker
is cheating.

worker from presenting those labels as correct for F(x′). Creating a
new garbled circuit requires as much work as if the client computed
the function itself, so on its own, Yao’s Circuits do not provide an
efficient method for outsourcing computation.

The second crucial idea is to combine Yao’s Garbled Circuit with
a fully homomorphic encryption system (e.g., Gentry’s recent pro-
posal [8]) to be able to safely reuse the garbled circuit for multiple
inputs. More specifically, instead of revealing the labels associated
with the bits of input x, the client will encrypt those labels under the
public key of a fully homomorphic scheme. A new public key is
generated for every input in order to prevent information from one
execution from being useful for later executions. The worker then
uses the homomorphic property to compute an encryption of the out-
put labels and provide them to the client, who decrypts them and
reconstructs F(x).

Thus, even without secure hardware, these results demonstrate that
we can leverage a user’s trust in one device to verify (and hence
trust) the results of computations performed by an arbitrary number
of remote, untrusted commodity computers.

8. CONCLUSION
Motivated by the trend of entrusting sensitive data and services

to insecure computers, we develop techniques that allow a user to
extend her trust in one device to another device or service. Thus,
starting from trust in a simple USB device, we enable a user to trust
the reports from secure hardware on her computer, and then securely
execute code on that computer, despite the presence of a mountain
of untrustworthy code; the untrusted code continues to enjoy the per-
formance and features it does today. Efficiently extending the trust in
this secure environment into the network improves the security of a



range of network protocols, including spam detection and DDoS mit-
igation. Finally, we extend the user’s trust to the verification of com-
putations performed by remote computers, even though they may be
arbitrarily malicious.

Building on these techniques, we aim to enable average computer
users to easily and securely use their computers to perform sensi-
tive tasks (e.g., paying bills, shopping online, or accessing medi-
cal records), while still retaining the flexibility and performance ex-
pected of modern computers. For example, we are currently design-
ing systems that use Flicker-like protections to provide personalized
online services, such as location-based services, targeted advertis-
ing, or personalized search, while still preserving user privacy. We
are also developing new application security models, so that opening
an email attachment or clicking on a web link will not endanger the
user’s computer; as part of this design, applications will have only
the minimum amount of access to data and resources necessary to
act on user requests, without relying on the manifests and prompts
used on modern smartphones.

In short, today many people who use computers and online ser-
vices operate under the illusion that their data and privacy will be
protected. In the long run, the ability to bootstrap trust in these
computers and services will help replace this illusion with the actual
foundation of security that users expect and deserve.
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