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Abstract. Classifiers learnt from data are increasingly being used as
components in systems where safety is a critical concern. In this work,
we present a formal notion of safety for classifiers via constraints called
safe-ordering constraints. These constraints relate requirements on the
order of the classes output by a classifier to conditions on its input, and
are expressive enough to encode various interesting examples of classi-
fier safety specifications from the literature. For classifiers implemented
using neural networks, we also present a run-time mechanism for the
enforcement of safe-ordering constraints. Our approach is based on a
self-correcting layer, which provably yields safe outputs regardless of the
characteristics of the classifier input. We compose this layer with an exist-
ing neural network classifier to construct a self-correcting network (SC-
Net), and show that in addition to providing safe outputs, the SC-Net is
guaranteed to preserve the classification accuracy of the original network
whenever possible. Our approach is independent of the size and architec-
ture of the neural network used for classification, depending only on the
specified property and the dimension of the network’s output; thus it is
scalable to large state-of-the-art networks. We show that our approach
can be optimized for a GPU, introducing run-time overhead of less than
1ms on current hardware—even on large, widely-used networks contain-
ing hundreds of thousands of neurons and millions of parameters. Code
available at github.com/cmu-transparency/self-correcting-networks.
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1 Introduction

Classifiers in the form of neural networks are being deployed as components in
many safety- and security-critical systems, such as autonomous vehicles, bank-
ing systems, and medical diagnostics. A well-studied example is the ACAS Xu
networks [20], which provide guidance to an airborne collision avoidance system
for commercial aircraft. Unfortunately, standard network training approaches
will typically produce models that are accurate but unsafe [29,33]. The ACAS
Xu networks, in particular, have been shown [21] to violate safety properties
formulated by the developers [20].

What are safety properties for classifiers? Classifiers implemented as neural
networks are programs of type Rn → Rm, where typically the index of the
maximum element of the output m-tuple represents the predicted class. Such
classifiers also give an order on the classes, from most likely to least, represented
by the order on indices induced by sorting the elements (also referred to as logits)
of the tuple, and in a variety of domains, systems with classifier components may
use this ordering, in addition to the top predicted class, for downstream decision-
making.

The ACAS Xu classifiers are an example of a domain where ordering matters.
They map sensor readings about the physical state of the aircraft to horizontal
maneuver advisories. The sensor readings are imperfect, and the system only has
access to a distribution function (or, alternatively, a set of samples) that assigns
probability b(s) to being in state s. To issue a maneuver guidance in real time,
at each time-step, the system finds the maneuver that maximizes

∑
s Q(s)ab(s)

where Q(s)a is the value assigned by the neural classifier to maneuver a in state
s. As a consequence, the order of the classes, in addition to the top class, are
relevant when defining safety properties of ACAS Xu networks.

Another example domain is image classification, where popular datasets,
such as CIFAR-100 and ImageNet, have classes with hierarchical structure (e.g.,
CIFAR-100 has 100 classes with 20 superclasses). Consider a client of an image
classifier that averages the logit values over a number of samples for classes that
appear in top-k positions and chooses the class with the highest average logit
value, due to imperfect sensor information. A reasonable safety property is to
require that the chosen class shares its superclass with at least one of the top-1
predictions. This in turn requires reasoning over the order of the classes, and
not just the top class.

More generally, the ordering of the logits conveys information about the
neural classifier’s ‘belief’ in what the true class is. Under this interpretation, it
is natural to express safety constraints on the class order. On the other hand,
the exact logit values may be less meaningful, given the approximate nature of
neural networks and the fact that logit values are not typically calibrated to any
particular value.

Motivated by these observations, we define safety property specifications for
classifiers via constraints that we refer to as safe-ordering constraints. We argue
that these constraints are general enough to encompass the meaningful safety
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specifications defined for the ACAS Xu networks [21], as well as those used
in other safety verification and repair efforts [29,40]. Formally, safe-ordering
constraints can specify non-relational safety properties [8] of the form P =⇒ Q,
where P is a precondition, expressed as a decidable formula over the classifier’s
input, and Q is a postcondition, expressed as a statement over its output in the
theory of totally ordered sets.

We note that many safety specifications provided by experts are undercon-
strained [21]; i.e., they say what the classifier should not do but not what it
should do. As a specific example, one of the ACAS Xu safety properties roughly
states that if an oncoming aircraft is directly ahead and is moving toward our
aircraft, then the clear-of-conflict advisory should not have the maximal output
from the network1. The decision as to what output should have the maximal
value must be determined by learning from the input-output examples in the
training data. Thus, even when safety specifications are provided, one still needs
to perform training based on labeled data to build the classifier, whose perfor-
mance is measured by computing its accuracy on a separate test set.

Enforcing Safe-Ordering Constraints. Standard approaches for learning neural
classifiers will typically produce models that are accurate but unsafe [29,33]. As a
result, considerable work has studied the safety of neural networks in general [3,
11,12,15,19,33,34,39], and the ACAS Xu networks in particular [21,29,33,40,
45].

Some approaches use abstract interpretation [15,39] or SMT solving [21] to
verify safety properties of networks trained using standard techniques. Unfortu-
nately, the scalability of these techniques remains a serious challenge for most
neural-network applications. Furthermore, post-training verification does not
address the problem of constructing safe networks to begin with. Retraining
the network when verification fails is prohibitively expensive for modern net-
works [7,41,42], with no guarantees that the train-verify-train loop will termi-
nate. On the other hand, approaches based on statically repairing the network
can damage its accuracy (i.e., frequency of the top predicted class matching the
‘true’ class) on inputs outside the scope of a given safety specification [40]. An
alternate approach is to change the learning algorithm such that it provably pro-
duces safe networks [29], but such approaches may not converge during training,
thus not being able to provide a safety guarantee for the analyzed networks.

In contrast to these previous works, we propose a lightweight, run-time tech-
nique for ensuring that neural classifiers are guaranteed to satisfy their safe-
ordering specifications and at the same time maintain the network’s accuracy.
Specifically, we describe a program transformer that, given a neural architecture
fθ (parameterized by θ) and a set of safe-ordering constraints Φ, produces a new
architecture fΦ

θ that satisfies the conjunction of Φ for all parameters θ. Viewing
the neural network as a composition of layers, our transformer appends a dif-

1 While [20] used the convention that the index of the minimal element of ACAS Xu
networks is the top predicted advisory, in this paper we will use the more common
convention of the maximal value’s index.
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ferentiable self-correcting layer (SC-Layer) to fθ. This layer encodes a dynamic
check-and-correct mechanism, so that when fθ(x) violates Φ, the SC-Layer modi-
fies the output to ensure safety. Differentiability of the mechanism also opens the
possibility for the training procedure to take self-correction into account during
training so that safer and more accurate models can be built, reducing the need
for the run-time correction.

Consider again the ACAS Xu networks. Ideally, before deploying the sys-
tem, we would like to certify that the trained neural classifiers meet their safety
specifications. Since the training algorithms are not guaranteed to produce safe
classifiers [29,33], and the train-verify-train loop may not terminate, one is likely
to be forced to deploy uncertified classifiers. A run-time mechanism that flags
safety violations can provide some assurance, but for a real-time, unmanned
system like ACAS Xu, throwing exceptions during operation and aborting the
computation is not acceptable. Instead, to ensure safe operation without inter-
ruptions, we propose to correct the outputs of the classifier whenever necessary.

Our approach is similar in spirit to those that dynamically correct errors
in long-running programs caused by traditional software issues like division-by-
zero, null dereference, and others [5,22,30,36–38], as well as dynamic check-
and-correct mechanisms employed by controllers, referred to as shields [2,6,46].
A check-and-correct mechanism may be impractical for arbitrary classifier
safety specifications, as they may require solving arbitrarily complex constraint-
satisfaction problems. We show that this is not the case for safe-ordering con-
straints, and that the solver needed for these constraints can be efficiently embed-
ded in the correction layer.

We note that when correcting the neural network output to enforce safety,
we still need to preserve its accuracy. To address the issue, we define a prop-
erty, transparency, which ensures that the correction mechanism has no negative
impact on the network’s accuracy. Transparency requires that the predicted top
class of the original network fθ be retained whenever it is consistent with at least
one ordering allowed by Φ. However, if Φ is inconsistent with the “correct” class
specified by the data, then it is impossible for the network to be safe without
harming accuracy, and the correction prioritizes safety. We prove that our SC-
Layer guarantees transparency. More generally, our correction mechanism tries
to retain as much of the original class order as possible.

Finally, while the SC-Layer achieves safety without negatively impacting
accuracy, it necessarily adds computational overhead each time the network is
executed. We design the SC-Layer, including the embedded constraint solver,
to be both vectorized and differentiable, allowing the efficient implementation
of our approach within popular neural network frameworks. We also present
experiments that evaluate how the overhead is impacted by several key factors.
We show that the cost of the SC-Layer depends solely on Φ and the length m
of the output vector, and thus, is independent of the size or complexity of the
underlying neural network. On three widely-used benchmark datasets (ACAS
Xu [21], Collision Detection [12], and CIFAR-100 [24]), we show that this over-
head is small in real terms (0.26–0.82 ms), and does not pose an impediment to
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practical adoption. In fact, because the overhead is independent of network size,
its impact is less noticeable on larger networks, where the cost of evaluating the
original classifier may come to dominate that of the correction. To further char-
acterize the role of Φ and m, we use synthetic data and random safe-ordering
constraints to isolate the effects that the postcondition complexity and number
of classes have on network run time. While these structural traits of the speci-
fied safety constraint can impact run time—the satisfiability of general ordering
constraints is NP-complete [16]—our results suggest it will be rare in practice.

Hence, the main contributions of our work are as follows:

– We define safe-ordering constraints, as a generic way of writing safety speci-
fications for neural network classifiers.

– We present a method for transforming feed-forward neural network architec-
tures into safe-by-construction versions that are guaranteed to (i) satisfy a
given set of safe-ordering constraints, and (ii) preserve or improve the empir-
ical accuracy of the original model.

– We show that the SC-Layer can be designed to be both fully-vectorized and
differentiable, which enables hardware acceleration to reduce run-time over-
head, and facilitates its use during training.

– We empirically demonstrate that the overhead introduced by the SC-Layer is
small enough for its deployment in practical settings.

2 Problem Setting

In this section, we formalize the concepts of safe-ordering constraints and self-
correction. We begin by presenting background on neural networks and an illus-
trative application of safe-ordering constraints. We then formally define the
problem we aim to solve, and introduce a set of desired properties for our self-
correcting transformer.

2.1 Background

Neural Networks. A neural network, fθ : Rn → Rm, is a total function defined by
an architecture, or composition of linear and non-linear transformations, and a
set of weights, θ, parameterizing its linear transformations. As neither the details
of a network’s architecture nor the particular valuation of its weights are relevant
to much of this paper, we will by default omit the subscript θ, and treat f as
a black-box function. Neural networks are used as classifiers by extracting class
predictions from the output f(x) : Rm, also called the logits of a network. Given
a neural network f , we use the upper-case F to refer to the corresponding neural
classifier that returns the top class: F = λx. argmaxi{fi(x)}. For our purposes,
we will assume that argmax returns a single index, i∗ ∈ [m]2; ties may be broken
arbitrarily.

2 [m] := {0, . . . ,m − 1}.
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ACAS Xu: An Illustrative Example. We use ACAS Xu [20] as a running example
to illustrate key aspects of the problem that our approach solves. The Airborne
Collision Avoidance System X (ACAS X) [23] is a family of collision avoidance
systems for both manned and unmanned aircraft. ACAS Xu, the variant for
unmanned aircraft, is implemented as a large (2GB) numeric lookup table map-
ping the physical state of the aircraft and a neighboring object (an intruder) to
horizontal maneuver advisories. The lookup table is indexed on the distance (ρ)
between the aircraft and the intruder, the relative angle (θ) from the aircraft to
the intruder, the angle (ψ) from the intruder’s heading to the aircraft’s heading,
the speed of the aircraft (vown), and of the intruder (vint), and the time (τ) until
loss of vertical separation. The possible advisories are either that no change is
needed (or clear-of-conflict, COC), that the aircraft should steer weakly to the
left, weakly to the right, strongly to the left, or strongly to the right.

As the table is too large for many unmanned avionics systems, [20] proposed
the use of neural networks as a compressed, functional representation of the
lookup table. The networks proposed by [20] are functions f : R5 → R5; the
value τ is discretized and 45 different neural networks are constructed, one for
each combination of the previous advisory (aprev) and discretized value of τ .
Note that while the neural representation of the lookup table is an effective
way to encode it on resource-constrained avionics systems, they are necessarily
an approximation of the desired functionality, and may thus introduce unsafe
behavior [21,29,33,40,45]. To address this, [21] proposed 10 safety properties,
which capture requirements such as, “If the intruder is directly ahead and is
moving towards the ownship, the score for COC will not be maximal.” Our goal
is to construct networks that are guaranteed to satisfy specifications like these.

2.2 Problem Definition

Definition 1 presents the safe-ordering constraints that we consider throughout
the rest of the paper. Intuitively, they correspond to constraints on the relative
ordering of a network’s output values (a postcondition) with a predicate on
the corresponding input (a precondition). As we will see in later sections, the
precondition does not need to belong to a particular theory, and need only come
with an effective procedure for deciding new instances.

Definition 1 (Safe ordering constraint). Given a neural network f : Rn →
Rm, a safe-ordering constraint, φ = 〈P,Q〉, is a precondition, P , consisting of
a decidable proposition over Rn, and a postcondition, Q, given as a Boolean
combination of order relations between the real components of Rm.

precondition P := decidable proposition
ordering literal q := yi < yj (0 ≤ i, j < m)
ordering constraint Q := q | Q ∧ Q | Q ∨ Q
safe-ordering constraint φ := 〈P,Q〉
set of constraints Φ := · | φ,Φ
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Assuming a function, evalP:Rn →bool, that decides P given x ∈ Rn, notated
as P (x), and a similar eval function for Q, we say f satisfies safe-ordering
constraint φ at x iff P (x) =⇒ Q(f(x)). We use the shorthand φ(x, f(x))
to denote this; and given a set of constraints Φ, we write Φ(x, f(x)) to denote
∀φ ∈ Φ . φ(x, f(x)) and Φ(x) to denote

∧
〈Pi,Qi〉∈Φ | Pi(x)

Qi.

Two points about our definition of safe-ordering constraints bear mentioning.
First, although postconditions are evaluated using the inequality relation from
real arithmetic, we assume that ∀x . i *= j =⇒ fi(x) *= fj(x), and thus
specifically exclude equality comparisons between the output components. This
is a realistic assumption in nearly all practical settings, and in cases where it does
not hold, can be resolved with arbitrary tie-breaking protocols that perturb f(x)
to remove any equalities. Second, we omit explicit negation from our syntax, as
it can be achieved by swapping the positions of the affected order relations; i.e.,
¬(yi < yj) is just yj < yi, as we exclude the possibility that yi = yj .

Sections 5.3 and 5.4 provide several concrete examples of safe-ordering con-
straints. Example 1 revisits the safety specification for ACAS Xu that was dis-
cussed in the previous section. Notice that this specification is an instance of the
situation where safety need not imply accuracy, since it does not specify what
category should be maximal; that choice must be learned from the training data.

Example 1 (Safety need not imply accuracy). Recall the specification described
earlier: “If the intruder is directly ahead and is moving towards the ownship, the
score for COC will not be maximal.” This is a safe-ordering constraint 〈P,Q〉,
where the precondition P is captured as a linear real arithmetic formula given
by [21]:

P ≡ 1500 ≤ ρ ≤ 1800 ∧ − 0.06 ≤ θ ≤ 0.06 ∧ ψ ≥ 3.10
∧ vown ≥ 980 ∧ vint ≥ 960

Q ≡ y0 < y1 ∨ y0 < y2 ∨ y0 < y3 ∨ y0 < y4

In fact, nine of the ten specifications proposed by [21] are safe-ordering con-
straints. The single exception has a postcondition that places a constant lower-
bound on y0, i.e., a constraint on the logit value. We do not consider such con-
straints because the exact logit values are often less meaningful than the class
order, given the approximate nature of neural networks and the fact that logit
values are not typically calibrated. Moreover, the logit values of the network can
be freely scaled without impacting the network’s behavior as a classifier.

Given a set of safe-ordering constraints, Φ, our goal is to obtain a neural net-
work that satisfies Φ everywhere. In later sections, we show how to accomplish
this by describing the construction of a self-correcting transformer (Definition 2)
that takes an existing, possibly unsafe network, and produces a related model
that satisfies Φ at all points. While in practice, a meaningful, well-defined spec-
ification Φ should be satisfiable for all inputs, our generic formulation of safe-
ordering constraints in Definition 1 does not enforce this restriction; we can, for
instance, let Φ := 〈., y0 < y1〉 , 〈., y1 < y0〉. To account for this, we lift predi-
cates φ to operate on Rm ∪ {⊥}, where φ(x,⊥) is considered valid for all x.
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Definition 2 (Self-correcting transformer). A self-correcting transformer,
SC : Φ → (Rn → Rm) → (Rn → (Rm ∪ {⊥})), is a function that, given a set of
safe-ordering constraints, Φ, and a neural network, f : Rn → Rm, produces a
network, denoted as fΦ : Rn → (Rm ∪ {⊥}), that satisfies the following proper-
ties:

(i) Safety: ∀x . ( ∃y. Φ(x, y) ) =⇒ Φ(x, fΦ(x))
(ii) Forewarning: ∀x . ( fΦ(x) = ⊥ ⇐⇒ ∀y . ¬Φ(x, y) )

In other words, fΦ = SC(Φ)(f) is safe with respect to Φ and produces a non-
⊥ output wherever Φ(x) is satisfiable. We refer to the output of SC, fΦ, as a
self-correcting network (SC-Net).

Definition 2(i) captures the essence of the problem that we aim to solve,
requiring that the self-correcting network make changes to its output according
to Φ. While allowing it to abstain from prediction by outputting ⊥ may appear
to relax the underlying problem, note that this is only allowed in cases where Φ
cannot be satisfied on x: Definition 2(ii) is an equivalence that precludes trivial
solutions such as fΦ := λx.⊥. However, it still allows abstention in exactly the
cases where it is needed for principled reasons. A set of safe-ordering constraints
may be mutually satisfiable almost everywhere, except in some places; for exam-
ple: Φ := 〈x ≤ 0.5, y0 < y1〉 , 〈x ≥ 0.5, y1 < y0〉. In this case, fΦ can abstain at
x = 0.5, and everywhere else must produce outputs in Rm obeying Φ.

While the properties required by Definition 2 are sufficient to ensure a non-
trivial, safe-by-construction neural network, in practice, we aim to apply SC(Φ),
which we will write as SCΦ, to models that already perform well on observed
test cases, but that still require a safety guarantee. Thus, we wish to correct
network outputs without interfering with the existing network behavior when
possible, a property we call transparency (Property 1).

Property 1 (Transparency). Let SC : Φ → (Rn → Rm) →
(Rn → (Rm ∪ {⊥})) be a self-correcting transformer. We say that SC satisfies
transparency if

∀Φ . ∀f : Rn → Rm . ∀x ∈ Rn .
(

∃y. Φ(x, y) ∧ argmax
i

{yi} = F (x)
)

=⇒ FΦ(x) = F (x)

where FΦ(x) := ⊥ if fΦ(x) = ⊥ else argmaxi{fΦ
i (x)}. In other words, SC

always produces an SC-Net, fΦ, for which the top class derived from the safe
output vectors of fΦ agrees with the top class of the original model whenever
possible.

Property 1 leads to a useful result, namely that whenever Φ is consistent
with accurate predictions, then the classifier obtained from SCΦ(f) is at least
as accurate as F (Theorem2). Formally, we characterize accuracy in terms of
agreement with an oracle classifier FO that “knows” the correct class for each
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input, so that F is accurate on x if and only if F (x) = FO(x). We note that
accuracy is often defined with respect to a distribution of labeled points rather
than an oracle; however our formulation captures the key fact that Theorem2
holds regardless of how the data are distributed.

Theorem 2 (Accuracy Preservation). Given a neural network, f : Rn →
Rm, and set of constraints, Φ, let fΦ := SCΦ(f) and let FO : Rn → [m] be the
oracle classifier. Assume that SC satisfies transparency. Further, assume that
accuracy is consistent with safety, i.e.,

∀x ∈ Rn . ∃y . Φ(x, y) ∧ argmax
i

{yi} = FO(x).

Then,
∀x ∈ Rn . F (x) = FO(x) =⇒ FΦ(x) = FO(x)

One subtle point to note is that even when Φ is consistent with accurate
predictions, it is possible for a network to be accurate yet unsafe at an input.
Example 2 describes such a situation. Our formulation of Property 1 is carefully
designed to ensure accuracy preservation even in such scenarios.

Example 2 (Accuracy need not imply safety). Consider the property φ2 proposed
for ACAS Xu by [21] which says: “If the intruder is distant and is significantly
slower than the ownship, the score of the COC advisory should never be mini-
mal.” This safe-ordering constraint is applicable for all networks that correspond
to aprev *= COC and is concretely written as follows:

P ≡ ρ ≥ 55947.691 ∧ vown ≥ 1145 ∧ vint ≤ 60
Q ≡ y1 < y0 ∨ y2 < y0 ∨ y3 < y0 ∨ y4 < y0

For some x such that P (x) is true, let us assume that FO(x) = 1 and for a
network f , f(x) = [100, 900, 300, 140, 500], so that F (x) = 1. Then, f is accurate
at x, but the COC advisory receives the minimal score, meaning f is unsafe at x
with respect to φ2. If the transformer SR satisfies Property 1, then by Theorem2,
fφ2 is guaranteed to be accurate as well as safe at x, since φ2 is consistent with
accuracy here (as φ2 does not preclude class 1 from being maximal).

3 Self-correcting Transformer

We describe our self-correcting transformer, SC. We begin with a high-level
overview of the approach (Sect. 3.1), and provide algorithmic details in Sect. 3.2.
We then provide proofs (Sect. 3.3) and complexity analysis (Sect. 3.4).

3.1 Overview

Our self-correcting transformer, SC, leverages the fact that whenever a safe-
ordering constraint is satisfiable at a point, it is possible to bring the network into
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compliance. Neural networks are typically constructed by composing a sequence
of layers; we thus compose an additional self-correction layer that operates on
the original network’s output, and produces a result that will serve as the trans-
formed network’s new output. This is reflected in the SC routine in Algorithm3.1.
The original network, f , executes normally, and the self-correction layer subse-
quently takes both the input x (to facilitate checking the preconditions of Φ)
and y := f(x), from which it either abstains (outputs ⊥) or produces an output
that is guaranteed to satisfy Φ.

The high-level workflow of the self-correction layer, SC-Layer, proceeds as
follows. The layer starts by checking the input x against each of the precondi-
tions, and derives an active postcondition. This is then passed to a solver, which
attempts to find the set of orderings that are consistent with the active postcon-
dition. If no such ordering exists, i.e., if the active postcondition is unsatisfiable,
then the layer abstains with ⊥. Otherwise, the layer minimally permutes the
indices of the original output vector in order to satisfy the active postcondition
while ensuring transparency (Property 1).

3.2 Algorithmic Details of SC-Layer

The core logic of our approach is handled by a self-correction layer, or SC-Layer,
that is appended to the original model, and dynamically ensures its outputs
satisfy the requisite safety specifications. The procedure followed by this layer,
SC-Layer (shown in Algorithm3.1), first checks if the input x and output y of
the base network already satisfy Φ (line 5). If they do, no correction is necessary
and the repaired network fΦ can safely return y. Otherwise, SC-Layer attempts
to find a satisfiable ordering constraint that entails the relevant postconditions
in Φ (line 8). FindSatConstraint either returns such a term q that consists of a
conjunction of ordering literals yi < yj , or returns ⊥ whenever no such q exists.
When FindSatConstraint returns ⊥, then SC-Layer does as well (lines 9–10).
Otherwise, the constraint identified by FindSatConstraint is used to correct
the network’s output (line 12), where Correct permutes the logit values in y to
arrive at a vector that satisfies q. Note that because q is satisfiable, it is always
possible to find a satisfying solution by simply permuting y, because the specific
real values are irrelevant, and only their order matters (see Sect. 3.3).

Finding Satisfiable Constraints. Algorithm3.2 illustrates the
FindSatConstraint procedure. Recall that the goal is to identify a conjunc-
tion of ordering literals q that implies the relevant postconditions in Φ at the
given input x. More precisely, this means that for each precondition Pi satisfied
by x, the corresponding postcondition Qi is implied by q. This is sufficient to
ensure that any model y′ of q will satisfy Φ at x; i.e., q(y′) =⇒ Φ(x, y′).

To accomplish this, FindSatConstraint first evaluates each precondition,
and obtains (line 9) a disjunctive normal form (DNF), Qx, of the active postcon-
dition, defined by Filter(Φ, x) :=

∧
〈Pi,Qi〉∈Φ | Pi(x)

Qi. In practice, we imple-
ment a lazy version of ToDNF that generates disjuncts as needed (see Sect. 4),
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Algorithm 3.1: Self-correcting transformer

Inputs: A set of safety properties, Φ and a network, f : Rn → Rm

Output: A network, fΦ : Rn → Rm ∪ {⊥}

1 SC(Φ , f):
2 fΦ := λ x.SC-Layer(Φ, x, f(x))

3 return fΦ

4 SC-Layer(Φ , x , y):
5 if Φ(x, y) then
6 return y

7 else
8 q := FindSatConstraint(Φ, x, y)
9 if q = ⊥ then

10 return ⊥
11 else
12 y′ := Correct(q, y)
13 return y′

as this step may be a bottleneck, and we only need to process each clause indi-
vidually. At this point, FindSatConstraint could proceed directly, checking
the satisfiability of each disjunct in Qx, and returning the first satisfiable one
it encounters. This would be correct, but as we wish to satisfy transparency
(Property 1), we first construct an ordered list of the terms in Qx which priori-
tizes constraints that maintain the maximal position of the original prediction,
argmax(y) (Prioritize, line 10). Property 3 formalizes the behavior required of
Prioritize.

Property 3 (Prioritize). Given y ∈ Rm and a list of conjunctive ordering
constraints Q, the result of Prioritize(Q, y) is a reordered list Q′ = [. . . , qi, . . .]
such that:

∀ 0 ≤ i, j < |Q| . argmax
i

{yi} ∈ Roots(OrderGraph(qi))

∧ argmax
i

{yi} *∈ Roots(OrderGraph(qj)) =⇒ i < j

where Roots(G) denotes the root nodes of the directed graph G.

The IsSat procedure (invoked on line 12, also shown in Algorithm 3.2) checks
the satisfiability of a conjunctive ordering constraint. It is based on an encod-
ing of q as a directed graph, embodied in OrderGraph (lines 1–4), where each
component index of y corresponds to a node, and there is a directed edge from
i to j if the literal yj < yi appears in q. A constraint q is satisfiable if and
only if OrderGraph(q) contains no cycles (lines 5–7) [35]. Informally, acyclicity
is necessary and sufficient for satisfiability because the directed edges encode
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Algorithm 3.2: Finding a satisfiable ordering constraint from safe-
ordering constraints Φ

Inputs: A set of safe-ordering constraints, Φ, a vector x : Rn, and a vector
y : Rm

Output: Satisfiable ordering constraint, q

1 OrderGraph(q):
2 V := [m]
3 E := {(i, j) : yj < yi ∈ q}
4 return (V,E)

5 IsSat(q):
6 g := OrderGraph(q)
7 return ¬ContainsCycle(V,E)

8 FindSatConstraint(Φ , x , y):
9 Qx := ToDNF(Filter(Φ, x))

10 Qp := Prioritize(Qx, y)
11 foreach qi ∈ Qp do
12 if IsSat(qi) then
13 return qi

14 return ⊥

Algorithm 3.3: Correction procedure for safe-ordering constraints

Inputs: Satisfiable ordering constraint q, a vector y : Rm

Output: A vector y′ : Rm

1 Correct(q , y):
2 π := TopologicalSort(OrderGraph(q), y)
3 ys := SortDescending(y)
4 ∀ j ∈ [m] . y′

j := ys
π(j)

5 return y′

immediate ordering requirements, and by transitivity, a cycle involving i entails
that yi < yi.

Correcting Violations. Algorithm3.3 describes the Correct procedure, used
to ensure the outputs of the SC-Layer satisfy safety. The inputs to Correct
are a satisfiable ordering constraint q, and the output of the original network
y := f(x). The goal is to permute y such that the result y′ satisfies q, without
violating transparency. Our approach is based on OrderGraph, the same directed-
graph encoding used by IsSat. It uses a stable topological sort of the graph
encoding of q to construct a total order over the indices of y that is consistent
with the partial ordering implied by q (line 2). TopologicalSort returns a
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permutation π, a function that maps indices in y to their rank (or position) in the
total order. Formally, TopologicalSort takes as argument a graph G = (V,E),
and returns π such that Eq. 1 holds.

∀i, j ∈ V . (i, j) ∈ E =⇒ π(i) < π(j) (1)

Informally, if the edge (i, j) is in the graph, then i occurs before j in the
ordering. In general, many total orderings may be consistent, but in order to
guarantee transparency, TopologicalSort also needs to ensure the following
invariant (Property 4), capturing that the maximal index is listed first in the
total order if possible.

Property 4. Given a graph, G = (V,E), and y ∈ Rm, the result π of
TopologicalSort(G, y) satisfies

argmax
i

{yi} ∈ Roots(G) =⇒ π

(
argmax

i
{yi}

)
= 0

where Roots(G) denotes the root nodes of the directed graph G.

In other words, the topological sort preserves the network’s original predic-
tion when doing so is consistent with q. Then, by sorting y in descending order,
the sorted vector ys can be used to construct the final output of Correct, y′.
For any index i, we simply set y′

i to the π(i)th component of ys, since π(i) gives
the desired rank of the ith logit value and components in ys are sorted according
to the component values (line 4). Example 3 shows an example of the complete
Correct procedure.

Example 3 (Self-correct). We refer again to the safety properties introduced for
ACAS Xu [21]. The postcondition of property φ2 states that the logit score for
class 0 (COC) is not minimal, which can be written as the following ordering
constraint:

Q ≡ y1 < y0 ∨ y2 < y0 ∨ y3 < y0 ∨ y4 < y0

Suppose that for some input x ∈ Rn, the active postcondition is equivalent to Q,
and that y = [100, 900, 300, 140, 500]. Further, suppose that FindSatConstraint
has returned q := y2 < y0, corresponding to the second disjunct of Q (satisfying
q =⇒ Q). We then take the following steps according to Correct(q, y):
– First we let π := TopologicalSort(OrderGraph(q), y). We note that all ver-
tices of the graph representation of q are roots except for j = 2, which has
j = 0 as its parent. We observe that argmaxi{yi} = 1, which corresponds to a
root node; thus by Property 4, π(1) = 0. Moreover, by our ordering constraint,
we also have that π(0) < π(2). Thus, the ordering π where π(0) = 2, π(1) = 0,
π(2) = 3, π(3) = 4, and π(4) = 1 is a possible result of TopologicalSort,
which we will assume for this example.

– Next we obtain by a descending sort that ys = [900, 500, 300, 140, 100].
– Finally we obtain y′ by indexing ys by the inverse of π, i.e., y′

j = ysπ(j). This
gives us y′

0 = ys2 = 300, y′
1 = ys0 = 900, y′

2 = ys3 = 140, y′
3 = ys4 = 100, and

y′
4 = ys1 = 500, resulting in a final output of y′ = [300, 900, 140, 100, 500],
which (i) satisfies Q, and (ii) preserves the prediction of class 1.
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3.3 Key Properties

We now provide a brief argument that our SC procedure satisfies two key proper-
ties; namely (1) SC is a self-correcting transformer (Definition 2)—i.e., it guaran-
tees that the corrected output will always satisfy the requisite safety properties,
unless they are unsatisfiable, in which case it returns ⊥—and (2) SC is trans-
parent (Property 1)—i.e., it does not modify the predicted class (the class with
the maximal logit value) unless it is absolutely necessary for safety. Full proofs
appear in AppendixA.

Theorem 5 (SC is a self-correcting transformer). SC (Algorithm3.1) sat-
isfies conditions (i) and (ii) of Definition 2.

This follows from the construction of SC, and relies on a few key properties of
FindSatConstraint and Correct. First, whenever FindSatConstraint returns
⊥, the set of safety constraints, Φ, is unsatisfiable on the given input. Second,
whenever FindSatConstraint returns some q *= ⊥, then q is satisfiable on the
given input. Finally, when q is satisfiable, Correct always modifies the output
such that it satisfies q. Together, these imply Theorem5.

In addition to ensuring safe-ordering, SC is transparent (Theorem6), which
recall is a precondition for the accuracy preservation property stated in Theo-
rem2.

Theorem 6 (Transparency of SC). SC, the self-correcting transformer
described in Algorithm3.1, satisfies Property 1.

Clearly, on points where the model naturally satisfies the safety properties, no
changes to the output are made and SC is transparent. Otherwise, we rely on a
few key details of our construction to achieve transparency.

We begin with the observation that whenever the network’s predicted top
class is a root of the graph encoding of a satisfiable postcondition, q, there exists
an output that satisfies q while preserving the predicted top class. Intuitively,
this follows because the partial ordering admits any of the root nodes to appear
first in the total ordering.

With this in mind, we recall that FindSatConstraint searches potential solu-
tions according to Prioritize, which prefers all solutions in which the predicted
top class appears as a root node over any in which it does not. Thus, Prioritize
will return a solution that is consistent with preserving the network’s original
predicted top class whenever possible.

Finally, we design our topological sort to be “stable,” such that, among other
things, the network’s original top prediction will appear first in the total order-
ing whenever it appears as a root node. More details on our topological sort
algorithm and the properties it possesses are given in Sect. B.1.

3.4 Complexity

Given a neural network f : Rn → Rm, we define the input size as n and out-
put size as m. Also, assuming that the postconditions Qi for all 〈Pi, Qi〉 ∈ Φ
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are expressed in DNF, we define the size pi of a constraint as the number of
disjuncts in Qi and define α := |Φ|, i.e., the number of properties in Φ. Then,
the worst-case computational complexity of SC-Layer is given by Eq. 2, where
O(log(m)) is the complexity of ContainsCycle, O(mlog(m)) is the complexity
of TopologicalSort, and

∏α
i=1 pi is the maximum number of disjuncts possible

in Qx if the postconditions Qi are in DNF.

O

(
log(m)

α∏

i=1

pi +mlog(m)

)
(2)

The complexity given by Eq. 2 is with respect to a cost model that
treats matrix operations—e.g., matrix multiplication, associative row/column
reductions—as constant-time primitives. Crucially, note that the complexity
does not depend on the size of the neural network f .

3.5 Differentiability of SC-Layer

One interesting facet of our approach that remains largely unexplored is the dif-
ferentiability of the SC-Layer. In principle, this opens the door to benefits that
could be obtained by training against the corrections made by the SC-Layer.
Though we found that a “vanilla” attempt to train with the SC-Layer did not
provide clear advantages over appending it to a model post-learning, we believe
this remains an interesting future direction to explore. It is conceivable that
a careful approach to training SC-Nets could lead to safer and more accurate
models, reducing the need for the run-time correction, as the network could
learn to use the modifications made by the SC-Layer to its advantage. Further-
more, aspects of the algorithm, including, e.g., the heuristic used to prioritize
the search for a satisfiable graph (see Finding Satisfiable Constraints in
Sect. 3.2), could be parameterized and learned, potentially leading to both accu-
racy and performance benefits.

4 Vectorizing Self-correction

Widely-used machine learning libraries, such as TensorFlow [1], simplify the
implementation of parallelized, hardware-accelerated code by providing a collec-
tion of operations on multi-dimensional arrays of uniform type, called tensors.
One can view such libraries as domain-specific languages that operate primarily
over tensors, providing embarrassingly parallel operations like matrix multipli-
cation and associative reduction, as well as non-parallel operations like iterative
loops and sorting routines. We use matrix-based algorithms implementing the
core procedures used by SC-Layer described in Sect. 3. As we will later see
in Sect. 5, taking advantage of these frameworks allows our implementation to
introduce minimal overhead, typically fractions of milliseconds. Additionally, it
means that SC-Layer can be automatically differentiated, making it fully com-
patible with training and fine-tuning. One may use an SMT solver like Z3 to
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implement the procedures used by SC-Layer but we found that making calls
to an SMT solver significantly restricts the efficient use of GPUs. Moreover, it
is a useful heuristic for the corrected logits to prioritize the original ordering
relationships. Encoding this heuristic would require an optimization variant of
SMT (Max-SMT). In contrast, our matrix-based algorithms efficiently calculate
the corrected output while prioritizing the original class order. We present the
algorithmic details in AppendixB.

5 Evaluation

We have shown that self-correcting networks (SC-Nets) provide safety to an
existing network without affecting accuracy, as long as safety and accuracy are
mutually consistent. This comes with no additional training cost, suggesting that
the only potential downside of SC-Nets is the run-time overhead introduced by
the SC-Layer. In this section, we present an empirical evaluation of our approach
to demonstrate its scalability, and find that the run-time performance is not an
issue in practice—overheads range from 0.2–0.8ms, and scale favorably with the
size and complexity of constraints.

We explore the capability of our approach on a variety of domains, demon-
strating its ability to solve previously studied safety-verification problems
(Sects. 5.1 and 5.2), and its ability to efficiently scale both (i) to large convolu-
tional networks (Sect. 5.3) and (ii) to arbitrary, complex safe-ordering constraints
containing disjunctions and overlapping preconditions (Sect. 5.4).

We implemented our approach in Python, using TensorFlow to vectorize our
SC-Layer (Sect. 4). All experiments were run on an NVIDIA TITAN RTX GPU
with 24GB of RAM, and a 4.2GHz Intel Core i7-7700K with 32GB of RAM.

5.1 ACAS Xu

ACAS Xu [23] is a collision avoidance system that has been frequently studied in
the context of neural classifier safety verification [20,21,29,39]. Typically consid-
ered for this problem is a family of 45 networks proposed by [20]. [21] proposed
10 safety specifications for this family of networks, which have become standard
for research on this problem. We consider 9 of these specifications, which can be
expressed as safe-ordering constraints (Sect. 2.2).

Each of the 45 networks consists of six hidden dense layers of 50 neurons
each. Each network needs to satisfy some subset of the 10 safety constraints;
that is, more than one safety constraints may apply to each model, but not all
safety constraints apply to each model. A network is considered safe if it satisfies
all of the relevant safety constraints. Among the 45 networks, [21] reported
that 9 networks were already safe after standard training, while 36 were unsafe,
exhibiting safety constraint violations.

The data used to train the 45 networks is not publicly available; however, [29]
provide a synthetic test set for each network, consisting of 5,000 points uniformly
sampled from the specified state space and labeled using the respective network
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Table 1. Safety certification results on the (a) ACAS Xu [20] and (b) Collision Detec-
tion [12] datasets. We compare the success rate and accuracy to that of ART [29], a
recent safe-by-construction approach. The original network is provided as a baseline.
Best results are shown in bold. (c) Absolute overhead introduced by the SC-Layer per
input.

Acas Xu

method
safe mean

networks accuracy(%)

36 unsafe nets

original 0 / 36 100.0

ART 36 / 36 94.4

SC-Net 36 / 36 100.0

9 safe nets

original 9 / 9 100.0

ART 9 / 9 94.3

SC-Net 9 / 9 100.0

(a)

Collision Detection

method
constraints

accuracy (%)
certified

original 328 / 500 99.9

ART 481 / 500 96.8

SC-Net 500 / 500 99.9

(b)

dataset overhead (ms)

ACAS Xu 0.26

Collision Detection 0.58

CIFAR-100 (small CNN) 0.77

CIFAR-100 (ResNet-50) 0.82

Synthetic 0.27

(c)

as an oracle. We note that because this test set is labeled using the original
models, the accuracy of each original model on this test set is necessarily 100%.

Table 1a presents the results of applying our SC transformer to each of the 45
provided networks. In particular, we consider the number of networks for which
safety can be guaranteed, and the accuracy of the resulting SC-Net. We compare
our results to those using ART [29], a recent approach to safe-by-construction
learning. ART aims to learn neural networks that satisfy safety specifications
expressed using linear real arithmetic constraints. It updates the loss function
to be minimized during learning by adding a term, referred to as the correctness
loss, that measures the degree to which a neural network satisfies or violates
the safety specification. A value of zero for the correctness loss ensures that the
network is safe. However, there is no guarantee that learning will converge to
zero correctness loss, and the resulting model may not be as accurate as one
trained with conventional methods.
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Because the safety constraints for each network are satisfiable on all points,
Definition 2 tells us that safety is guaranteed for all 45 SC-Nets. In this case, we
see that ART also manages to produce 45 safe networks after training; however
we see that it comes at a cost of nearly 6% points in accuracy, even on the
networks that were already safe. Meanwhile, transparency (Property 1) tells us
that SC-Nets will only see a decrease in accuracy relative to the original network
when accuracy is in direct conflict with safety. On the 9 original networks that
were reported as safe, clearly no such conflict exists, and accordingly, we see that
the corresponding SC-Nets achieve the same accuracy as the original networks
(100%). On the 36 unsafe networks, we find again that the SC-Nets achieved
100% accuracy. In this case, it would have been possible that the SC-Nets would
have achieved lower accuracy than the original networks, as some of the safety
properties have the potential to conflict with accuracy. For example, the post-
condition of the property φ8 requires that the predicted maneuver advisory is
either to continue straight (COC) or to turn weakly to the left. Thus, correct-
ing φ8 on inputs for which it is violated would necessarily change the network’s
prediction on those inputs; and, since the labels are derived from the original
networks’ predictions, this would lead to a drop in accuracy. However, we find
that none of the test points include violations of such constraints (even though
such violations exist in the space generally [21]), as evidenced by the fact that
the SC-Net accuracy remained unchanged.

Table 1c shows the average overhead introduced by applying SC to each of
the ACAS Xu networks. We see that the absolute overhead is only ∼0.25ms
per instance on average, accounting for less than an 8× increase in prediction
time. Note, however, that while our implementation of SC-Layer is optimized
for and evaluated using a GPU, the Acas Xu system is expected to be deployed
on resource-constrained hardware without access to GPUs [20] which is likely to
result in larger overheads.

5.2 Collision Detection

The Collision Detection dataset [12] provides another instance of a safety ver-
ification task that has been studied in the prior literature. In this setting, a
neural network controller is trained to predict whether two vehicles following
curved paths at different speeds will collide. As this is a binary decision task,
the network contains two outputs, corresponding to the case of a collision and
the case of no collision. [12] proposes 500 safety properties for this task, corre-
sponding to *∞ robustness regions around 500 particular inputs; i.e., property
φi for i ∈ {1, . . . , 500} corresponds to a point, xi, and radius, εi, and is defined
according to Eq. 3.

φi(x, y) := ||xi − x||∞ ≤ εi =⇒ y = F (xi) (3)

Such specifications of local robustness at fixed inputs can be represented as
safe-ordering constraints, where the postcondition of φi is defined to be y0 > y1
if F (xi) = 0 and y0 < y1 if F (xi) = 1.



114 K. Leino et al.

Table 1b presents the results of applying our SC transformer to the original
network provided by [12]. Similarly to before, we consider the number of con-
straints with respect to which safety can be guaranteed, and the accuracy of the
resulting SC-Net, comparing our results to those of ART.

We see in this case that ART was unable to guarantee safety for all 500
specifications. Meanwhile, it resulted in a drop in accuracy of approximately
3% points. On the other hand, it is simple to check that the conjunction of all
500 safety constraints is satisfiable for all inputs; thus, Definition 2 tells us that
safety is guaranteed with respect to all properties. Meanwhile SC-Nets impose
no penalty on accuracy, as none of the test points violate the constraints.

Table 1c shows the overhead introduced by applying SC to the collision detec-
tion model. In absolute terms, we see the overhead is approximately half a mil-
lisecond per instance, accounting for under a 3× increase in prediction time.

5.3 Scaling to Larger Domains

One major challenge for many approaches that attempt to verify network
safety—particularly post-learning methods—is scalability to very large neural
networks. Such networks pose a problem for several reasons. Many approaches
analyze the parameters or intermediate neuron activations using algorithms that
do not scale polynomially with the network size. This is a practical problem, as
large networks in use today contain hundreds of millions of parameters. Fur-
thermore, abstractions of the behavior of large networks may see compounding
imprecision in large, deep networks.

Our approach, on the other hand, treats the network as a black-box and is
therefore not sensitive to its specifics. In this section we demonstrate that this is
borne out in practice; namely the absolute overhead introduced by our SC-Layer
remains relatively stable even on very large networks.

For this, we consider a novel set of safety specifications for the CIFAR-100
image dataset [24], a standard benchmark for object recognition tasks. The
CIFAR-100 dataset is comprised of 60,000 32 × 32 RGB images categorized
into 100 different classes of objects, which are grouped into 20 superclasses of 5
classes each. We propose a set of safe-ordering constraints that are reminiscent of
a variant of top-k accuracy restricted to members of the same superclass, which
has been studied recently in the context of certifying relational safety properties
of neural networks [25]. More specifically, we require that if the network’s predic-
tion belongs to superclass Ck then the top 5 logit outputs of the network must all
belong to Ck. Formally, there are 20 constraints, one for each superclass, where
the constraint, φk for superclass Ck, for k ∈ {1, . . . , 20}, is defined according to
Eq. 4. Notice that with respect to these constraints, a standard trained network
can be accurate, yet unsafe, even without accuracy and safety being mutually
inconsistent.

φk(x, y) := F (x) ∈ Ck =⇒
∧

i,j | i∈Ck, j /∈Ck

yj < yi (4)
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As an example application requiring this specification, consider a client of
the classifier that averages the logit values over a number of samples for classes
appearing in top-5 positions and chooses the class with the highest average logit
value (due to imperfect sensor information - a scenario similar to the ACAS Xu
example). A reasonable specification is to require that the chosen class shares
its superclass with at least one of the top-1 predictions. We can ensure that this
specification is satisfied by enforcing Eq. 4.

Table 1c shows the overhead introduced by applying SC, with respect to these
properties, to two different networks trained on CIFAR-100. The first is a con-
volutional neural network (CNN) that is much smaller than is typically used
for vision tasks, containing approximately 1 million parameters. The second is a
standard residual network architecture, ResNet-50 [18], with approximately 24
million parameters.

In absolute terms, we see that both networks incur less than 1ms of overhead
per instance relative to the original model (0.77ms and 0.82ms, respectively),
making SC a practical option for providing safety in both networks. Moreover,
the absolute overhead varies only by about 5% between the two networks, sug-
gesting that the overhead is not sensitive to the size of the network. This over-
head accounts for approximately a 12× increase in prediction time on the CNN.
Meanwhile, the overhead on the ResNet-50 accounts for only a 6× increase in
prediction time relative to the original model. The ResNet-50 is a much larger
and deeper network; thus its baseline prediction time is longer, so the overhead
introduced by the SC-Layer accounts for a smaller fraction of the total compu-
tation time. In this sense, our SC transformer becomes relatively less expensive
on larger networks.

Interestingly, we found that the original network violated the safety con-
straints on approximately 98% of its inputs, suggesting that obtaining a
violation-free network without SC might prove particularly challenging. Mean-
while, the SC-Net eliminated all violations, with no cost to accuracy, and less
than 1ms in overhead per instance.

5.4 Handling Arbitrary, Complex Constraints

Safe ordering constraints are capable of expressing a wide range of compelling
safety specifications. Moreover, our SC transformer is a powerful, general tool
for ensuring safety with respect to arbitrarily complex safe-ordering constraints,
comprised of many conjunctive and disjunctive clauses. Notwithstanding, the
properties presented in our evaluation thus far have been relatively simple. In
this section we explore more complex safe-ordering constraints, and describe
experiments that lend insight as to which factors most impact the scalability of
our approach.

To this end, we designed a family of synthetic datasets with associated safety
constraints that are randomly generated according to several specified param-
eters, allowing us to assess how aspects such as the number of properties (α),
the number of disjunctions per property (β), and the dimension of the output
vector (m) impact the run-time overhead. In our experiments, we fix the input
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Fig. 1. Absolute overhead in milliseconds introduced by the SC-Layer as either the
number of properties, i.e., safe-ordering constraints (α), the number of disjuncts per
property (β), the number of classes (m), or the network depth (δ) are varied. In each
plot, the respective parameter varies according to the values on the x-axis, and all other
parameters take a default value of α = 4, β = 4, m = 8, and δ = 6. As the depth of the
network varies, the number of neurons in each layer remains fixed at 1,000 neurons.
Reported overheads are averaged over 5 trials.

dimension, n, to be 10. Each dataset is parameterized by α, β, and m, and
denoted by D(α,β,m); the procedure for generating these datasets is provided
in AppendixC.

We use a dense network with six hidden layers of 1,000 neurons each as a base-
line, trained on D(4, 4, 8). Table 1c shows the overhead introduced by applying
SC to our baseline network. We see that the average overhead is approximately a
quarter of a millisecond per instance, accounting for a 10× increase in prediction
time. Figure 1 provides a more complete picture of the overhead as we vary the
number of safe-ordering constraints (α), the number of disjuncts per constraint
(β), the number of classes (m), or the depth of the network (δ).

We observe that among these parameters, the overhead is sensitive only
to the number of classes. This is to be expected, as the complexity of the
SC-Layer scales directly with m (see Sect. 3.4), requiring a topological sort of
the m elements of the network’s output vector. On the other hand, perhaps
surprisingly, increasing the complexity of the safety constraints through either
additional safe-ordering constraints or larger disjunctive clauses in the order-
ing constraints had little effect on the overhead. While in the worst case the
complexity of the SC-Layer is also dependent on these parameters (Sect. 3.4),
if FindSatConstraint finds a satisfiable disjunct quickly, it will short-circuit.
The average-case complexity of FindSatConstraint is therefore more nuanced,
depending to a greater extent on the specifics of the constraints rather than
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simply their size. Altogether, these observations suggest that the topological
sort in SC-Layer tends to account for the majority of the overhead.

Finally, the results in Fig. 1 concur with what we observed in Sect. 5.3; namely
that the overhead is independent of the size of the network.

6 Related Work

Static Verification and Repair of Neural Networks. A number of approaches for
verification of already-trained neural networks have been presented in recent
years. They have focused on verifying safety properties similar to our safe-
ordering constraints. Abstract interpretation approaches [15,39] verify properties
that associate polyhedra with pre- and postconditions. Reluplex [21] encodes
a network’s semantics as a system of constraints, and poses verification as
constraint satisfiability. These approaches can encode safe-ordering constraints,
which are a special case of polyhedral postconditions, but they do not provide an
effective means to construct safe networks. Other verification approaches [19,44]
do not address safe ordering.

Many of the above approaches can provide counterexamples when the net-
work is unsafe, but none of them are capable of repairing the network. A recent
repair approach [40] can provably repair neural networks that have piecewise-
linear activations with respect to safety specifications expressed using polyhedral
pre- and postconditions. In contrast to our transparency guarantee, they rely on
heuristics to favor accuracy preservation.

Safe-by-Construction Learning. Recent efforts seek to learn neural networks that
are correct by construction. Some approaches [14,28,31] modify the learning
objective by adding a penalty for unsafe or incorrect behavior, but they do not
provide a safety guarantee for the learned network. Balancing accuracy against
the modified learning objective is also a concern. In our work we focus on tech-
niques that provide guarantees without requiring external verifiers.

As discussed in Sect. 5.1, ART [29] aims to learn networks that satisfy safety
specifications by updating the loss function used in training. Learning is not
guaranteed to converge to zero correctness loss, and the resulting model may
not be as accurate as one trained with conventional methods. In contrast, our
program transformer is guaranteed to produce a safe network that preserves
accuracy.

A similar approach is presented in [33] to enforce local robustness for all
input samples in the training dataset. This technique also updates the learning
objective and uses a differentiable abstract interpreter for over-approximating
the set of reachable outputs. For both this approach and that of [29], the run
time of the differentiable abstract interpreter depends heavily on the size and
complexity of the network, and it may be difficult or expensive to scale them to
realistic architectures.

An alternative way to achieve correct-by-construction learning is to mod-
ify the architecture of the neural model. This approach has been employed to
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construct networks that have a fixed Lipschitz constant [4,27,43], a relational
property that is useful for certifying local robustness and ensuring good train-
ing behavior. Recent work [25,26] shows how to construct models that achieve
relaxed notions of global robustness, where the network is allowed to selectively
abstain from prediction at inputs where local robustness cannot be certified.
[10] use optimization layers to enforce stability properties of neural network
controllers. These techniques are closest to ours in spirit, although we focus on
safety specifications, and more specifically safe-ordering constraints, which have
not been addressed previously in the literature.

Shielding Control Systems. Recent approaches have proposed ensuring safety
of control systems by constructing run-time check-and-correct mechanisms, also
referred to as shields [2,6,46]. Shields check at run time if the system is headed
towards an unsafe state and provide corrections for potentially unsafe actions
when necessary. To conduct these run-time checks, shields need access to a model
of the environment that describes the environment dynamics, i.e., the effect
of controller actions on environment states. Though shields and our proposed
SC-Layer share the run-time check-and-correct philosophy, they are designed for
different problem settings.

Recovering from Program Errors. Embedding run-time checks into a program
to ensure safety is a familiar technique in the program verification literature.
Contract checking [13,32], run-time verification [17], and dynamic type checking
are all instances of such run-time checks. If a run-time check fails, the program
terminates before violating the property. A large body of work also exists on
gracefully recovering from errors caused by software issues such as divide-by-zero,
null-dereference, memory corruption, and divergent loops [5,22,30,36–38]. These
approaches are particularly relevant in the context of long-running programs,
when aiming to repair state just enough so that computation can continue.

7 Conclusion and Future Directions

We presented a method for transforming a neural network into a safe-by-
construction self-correcting network, termed SC-Net, without harming the accu-
racy of the original network. This serves as a practical tool for providing safety
with respect to a broad class of safety specifications, namely, safe-ordering con-
straints, that we characterize in this work.

Unlike prior approaches, our technique guarantees safety without further
training or modifications to the network’s parameters. Furthermore, the scala-
bility of our approach is not limited by the size or architecture of the model being
repaired. This allows it to be applied to large, state-of-the-art models, which is
impractical for most other existing approaches.

A potential downside to our approach is the run-time overhead introduced by
the SC-Layer. We demonstrate in our evaluation that our approach maintains
small overheads (less than one millisecond per instance), due to our vectorized
implementation, which leverages GPUs for large-scale parallelism.
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In future work, we plan to leverage the differentiability of the SC-Layer to
further explore training against the repairs made by the SC-Layer, as this can
potentially lead to both accuracy and safety improvements.
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A Appendix 1: Proofs

Theorem 2 (Accuracy Preservation). Given a neural network, f : Rn → Rm,
and set of constraints, Φ, let fΦ := SCΦ(f) and let FO : Rn → [m] be the oracle
classifier. Assume that SC satisfies transparency. Further, assume that accuracy
is consistent with safety, i.e.,

∀x ∈ Rn . ∃y . Φ(x, y) ∧ argmax
i

{yi} = FO(x).

Then,
∀x ∈ Rn . F (x) = FO(x) =⇒ FΦ(x) = FO(x)

Proof. Let x ∈ Rn such that F (x) = FO(x). By hypothesis, we have that
∃y . Φ(x, y) ∧ argmaxi{yi} = FO(x), hence we can apply Property 1 to con-
clude that FΦ(x) = F (x) = FO(x).

We now prove that the transformer presented in Algorithm3.1, SC, is indeed
self-correcting; i.e., it satisfies Properties 2(i) and 2(ii). Recall that this means
that fΦ will either return safe outputs vectors, or in the event that Φ is incon-
sistent at a point, and only in that event, return ⊥.

Let x : Rn be an arbitrary vector. If Φ(x, f(x)) is initially satisfied, the
SC-Layer does not modify the original output y = f(x), and Properties 2(i)
and 2(ii) are trivially satisfied. If Φ(x, f(x)) does not hold, we will rely on two
key properties of FindSatConstraint and Correct to establish that SC is self-
correcting. The first, Property 7, requires that FindSatConstraint either return
⊥, or else return ordering constraints that are sufficient to establish Φ.

Property 7 (FindSatConstraint). Let Φ be a set of safe-ordering constraints,
x : Rn and y : Rm two vectors.
Then q = FindSatConstraint(Φ, x, y) satisfies the following properties:

(i) q = ⊥ ⇐⇒ ∀y′ . ¬Φ(x, y′)
(ii) q *= ⊥ =⇒ ( ∀y′ . q(y′) =⇒ Φ(x, y′) )

Proof. The first observation is that the list of ordering constraints in Qp :=
Prioritize(Qx, y) accurately models the initial set of safety constraints Φ, i.e.,

∀y′ . Φ(x, y′) ⇐⇒ ( ∃q ∈ Qp . q(y′) ) (5)
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This stems from the definition of the disjunctive normal form, and from the fact
that Prioritize only performs a permutation of the disjuncts.

We also rely on the following loop invariant, stating that all disjuncts con-
sidered so far, when iterating over Prioritize(Qx, y), were unsatisfiable:

∀q ∈ Qp . idx(q,Qp) < idx(qi, Qp) =⇒ ( ∀y . ¬q(y) ) (6)

Here, idx(q,Qp) returns the index of constraint q in the listQp. This invariant
is trivially true when entering the loop, since the current qi is the first element
of the list. Its preservation relies on IsSat(q) correctly determining whether q is
satisfiable, i.e., IsSat(q) ⇐⇒ ∃y . q(y) [35].

Combining these two facts, we can now establish that FindSatConstraint
satisfies 7(i) and 7(ii). By definition, FindSatConstraint(Φ, x, y) outputs ⊥
if and only if it traverses the entire list Qp, never returning a qi. From loop
invariant 6, this is equivalent to ∀q ∈ Qp. ∀y′. ¬q(y′), which finally yields Prop-
erty 7(i) from Eq. 5. Conversely, if FindSatConstraint(Φ, x, y) outputs q *= ⊥,
then q ∈ Qp. We directly obtain Property 7(ii) as, for any y′ : Rm, q(y′) implies
that Φ(x, y′) by application of Eq. 5

Next, Property 8 states that Correct correctly permutes the output of the
network to satisfy the constraint that it is given. Combined with Property 7, this
is sufficient to show that SC is a self-correcting transformer (Theorem5).

Property 8 (Correct). Let q be a satisfiable ordering constraint, and y : Rm

a vector. Then Correct(q, y) satisfies q.

Proof. Let yi < yj be an atom in q. Reusing notation from Algo-
rithm3.3, let y′ = Correct(q, y), ys := SortDescending(y), and π :=
TopologicalSort(OrderGraph(q), y). We have that (j, i) is an edge in
OrderGraph(q), which implies that π(j) < π(i) by Eq. 1. Because the elements
of y are sorted in descending order, and assumed to be distinct (Definition 1),
we obtain that ysπ(i) < ysπ(j), i.e., that y

′
i < y′

j .

Theorem 5 (SC is a self-correcting transformer). SC (Algorithm3.1) satisfies
conditions (i) and (ii) of Definition 2.

Proof. By definition of Algorithm3.1, FindSatConstraint(Φ, x, y) = ⊥ if
and only if fΦ(x) = SC(Φ)(f)(x) outputs ⊥. We derive from Property 7(i)
that this is equivalent to ∀y′. ¬Φ(x, y′), which corresponds exactly to Prop-
erty 2(ii). Conversely, if Φ is satisfiable for input x, i.e., ∃y′. Φ(x, y′), then
FindSatConstraint(Φ, x, y) outputs q *= ⊥. By definition, we have fΦ(x) =
Correct(q, y), which satisfies q by application of Property 8, which in turn
implies that Φ(x, fΦ(x)) by application of Property 7(ii).
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Now that we have demonstrated that our approach produces safe-by-
construction networks, we next prove that it also preserves the top predicted
class when possible, i.e., that SC satisfies transparency, as formalized in Prop-
erty 1.

Let x : Rn be an arbitrary vector. As in the previous section, if Φ(x, f(x))
is initially satisfied, transparency trivially holds, as the correction layer does
not modify the original output f(x). When Φ(x, f(x)) does not hold, we
will rely on several additional properties about FindSatConstraint, Correct,
and OrderGraph. The first, Property 9, states that whenever the index of
the network’s top prediction is a root of the graph encoding of q used by
FindSatConstraint and Correct, then there exists an output which satisfies q
that preserves that top prediction.

Property 9 (OrderGraph). Let q be a satisfiable, disjunction-free ordering con-
straint, and y : Rm a vector. Then,

argmax
i

{yi} ∈ Roots(OrderGraph(q)) ⇐⇒

∃y′. q(y′) ∧ argmax
i

{yi} = argmax
i

{y′
i}

The intuition behind this property is that i∗ := argmaxi{yi} belongs to the
roots of OrderGraph(q) if and only if there is no yi∗ < yj constraint in q; hence
since q is satisfiable, we can always permute indices in a solution y′ to have
argmaxi{y′

i} = i∗. Formally, Lemma1 in Sect. B.1 entails this property, as it
shows that the permutation returned by TopologicalSort satisfies it.

Next, Property 10 formalizes the requirement that whenever
FindSatConstraint returns a constraint (rather than ⊥), then that constraint
will not eliminate any top-prediction-preserving solutions that would otherwise
have been compatible with the full set of safe-ordering constraints Φ.

Property 10 (FindSatConstraint). Let Φ be a set of safe-ordering con-
straints, x : Rn and y : Rm two vectors, and q = FindSatConstraint(Φ, x, y).
Then,

q *= ⊥ ∧
(

∃y′. Φ(x, y′) ∧ argmax
i

{yi} = argmax
i

{y′
i}

)
=⇒

∃y′. q(y′) ∧ argmax
i

{yi} = argmax
i

{y′
i}

Proof. Let us assume that q *= ⊥, and that ∃y′. Φ(x, y′) ∧ argmaxi{yi} =
argmaxi{y′

i}. We will proceed by contradiction, assuming that there does not
exist y′′ such that q(y′′) and argmaxi{yi} = argmaxi{y′′

i }, which entails that
argmaxi{yi} *∈ Roots(OrderGraph(q)) by application of Property 9. In combi-
nation with the specification of Prioritize (Property 3), this implies that any
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q′ ∈ Qp such that ∃y′. q′(y′) ∧ argmaxi{yi} = argmaxi{y′
i} occurs before q in

Prioritize(Qx, y), i.e., idx(q′, Qp) < idx(q,Qp). From loop invariant 6, we
therefore conclude that there does not exist such a q′ ∈ Qp, which contradicts
the hypothesis Φ(x, y′) by application of Eq. 5.

Lastly, Property 11 states that Correct (Algorithm3.3) will always find
an output that preserves the original top prediction, whenever the constraint
returned by FindSatConstraint allows it. This is the final piece needed to
prove Theorem6, the desired result about the self-correcting transformer.

Property 11 (Correct). Let q be a satisfiable term, and y : Rm a vector.
Then,

( ∃y′. q(y′) ∧ argmax
i

{yi} = argmax
i

{y′
i} )

=⇒ argmax
i

{Correct(q, y)i} = argmax
i

{yi}

Proof. Assume that there exists y′ such that q(y′) and argmaxi{yi} =
argmaxi{y′

i}. This entails that argmaxi(yi) ∈ Roots(OrderGraph(q)) (Prop-
erty 9), which in turn implies that π(argmaxi{yi}) is 0 (Property 4). By defi-
nition of a descending sort, we have that argmaxi{Correct(q, y)i} = j, such
that π(j) = 0, hence concluding that j = argmaxi{yi} by injectivity of π.

Theorem 6 (Transparency of SC). SC, the self-correcting transformer described
in Algorithm3.1 satisfies Property 1.

Proof. That the SC transformer satisfies transparency is straightforward given
Properties 9–11. Let us assume that there exists y′ such that Φ(x, y′) and
argmaxi{y′

i} = F (x). By application of Property 7(i), this implies that
FindSatConstraint(Φ, x, f(x)) outputs q *= ⊥, and therefore that there exists
y′ such that q(y′) and argmax{y′

i} = F (x) by application of Property 10, since
F (x) is defined as argmaxi{fi(x)}. Composing this fact with Property 11, we
obtain that FΦ(x) = F (x), since FΦ(x) = argmaxi{fΦ

i (x)} by definition.

B Appendix 2: Vectorizing Self-Correction

Several of the subroutines of FindSatConstraint and Correct (Algorithms 3.2
and 3.3 presented in Sect. 3) operate on an OrderGraph, which represents a
conjunction of ordering literals, q. An OrderGraph contains a vertex set, V , and
edge set, E, where V contains a vertex, i, for each class in {0, . . . ,m−1}, and E
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Algorithm B.1: Stable Topological Sort

Inputs: A graph, G, represented as an m × m adjacency matrix, and a vector,
y : Rm

Result: A permutation, π : [m] → [m]

1 TopologicalSort(G , y):

2 P := all pairs longest paths(G)

3 ∀ i, j ∈ [m] . P ′
ij :=

{
yi if Pij ≥ 0

∞ otherwise

4 ∀ j ∈ [m] . vj := mini

{
P ′
ij

}

// set the value of each vertex to the
// smallest value among its ancestors

5 ∀ j ∈ [m] . dj := maxi { Pij }
// calculate the depth of each vertex

6 return argsort([ ∀j ∈ [m] . (−vj , dj) ])
// break ties in favor of minimum depth

contains an edge, (i, j), from vertex i to vertex j if the literal yj < yi is in q. We
represent an OrderGraph as an m × m adjacency matrix, M , defined according
to Eq. 7.

Mij :=

{
1 if (i, j) ∈ E; i.e., yj < yi ∈ q

0 otherwise
(7)

SectionB.1 describes the matrix-based algorithm that we use to conduct the
stable topological sort that Correct (Algorithm3.3) depends on. It is based
on a classic parallel algorithm due to [9], which we modify to ensure that SC
satisfies transparency (Property 1). SectionB.2 describes our approach to cycle
detection, which is able to share much of its work with the topological sort.
Finally, Sect. B.3 discusses efficiently prioritizing ordering constraints, needed to
ensure that SC satisfies transparency.

B.1 Stable Topological Sort

Our approach builds on a parallel topological sort algorithm given by [9], which
is based on constructing an all pairs longest paths (APLP) matrix. However,
this algorithm is not stable in the sense that the resulting order depends only
on the graph, and not on the original order of the sequence, even when multiple
orderings are possible. While for our purposes this is sufficient for ensuring safety,
it is not for transparency. We begin with background on constructing the APLP
matrix, showing that it is compatible with a vectorized implementation, and
then describe how it is used to perform a stable topological sort.



124 K. Leino et al.

All Pairs Longest Paths. The primary foundation underpinning many of the
graph algorithms in this section is the all pairs longest paths (APLP) matrix,
which we will denote by P . On acyclic graphs, Pij for i, j ∈ [m] is defined to be
the length of the longest path from vertex i to vertex j. Absent the presence of
cycles, the distance from a vertex to itself, Pii, is defined to be 0. For vertices i
and j for which there is no path from i to j, we let Pij = −∞.

We compute P from M using a matrix-based algorithm from [9], which
requires taking O(logm) matrix max-distance products, where the max-distance
product is equivalent to a matrix multiplication where element-wise multi-
plications have been replaced by additions and element-wise additions have
been replaced by the pairwise maximum. That is, a matrix product can be
abstractly written with respect to operations ⊗ and ⊕ according to Eq. 8, and
the max-distance product corresponds to the case where x ⊗ y := x + y and
x ⊕ y := max{x, y}.

(AB)ij := (Ai1 ⊗ B1j) ⊕ . . . ⊕ (Aik ⊗ Bkj) (8)

Using this matrix product, P = P 2"log2(m)#
can be computed recursively from

M by performing a fast matrix exponentiation, as described in Eq. 9.

P k = P
k/2P

k/2 P 1
ij =






1 if Mij = 1
0 if Mij = 0 ∧ i = j

−∞ otherwise
(9)

Stable Sort. We propose a stable variant of the [9] topological sort, shown
in AlgorithmB.1. Crucially, this variant satisfies Property 4 (Lemma 1), which
Sect. 3.2 identifies as sufficient for ensuring transparency. Essentially, the value
of each logit yj is adjusted so that it is at least as small as the smallest logit
value corresponding to vertices that are parents of vertex j, including j itself.
A vertex, i, is a parent of vertex j if Pij ≥ 0, meaning that there is some path
from vertex i to vertex j or i = j. The logits are then sorted in descending order,
with ties being broken in favor of minimum depth in the dependency graph. The
depth of vertex j is the maximum of the jth column of Pij , i.e., the length of the
longest path from any vertex to j. An example trace of AlgorithmB.1 is given
in Fig. 2. By adjusting yj into vj such that for all ancestors, i, of j, vi ≥ vj ,
we ensure each child vertex appears after each of its parents in the returned
ordering–once ties have been broken by depth—as the child’s depth will always
be strictly larger than that of any of its parents since a path of length d to an
immediate parent of vertex j implies the existence of a path of length d + 1 to
vertex j.

Lemma 1. TopologicalSort satisfies Property 4.

Proof. Note that the adjusted logit values, v, are chosen according to Eq. 10.

vj := min
i | i is an ancestor of j ∨ i=j

{
yi

}
(10)
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2
(1,2)

3
(3,1)

4
(2,1)

(b)

Fig. 2. Example trace of AlgorithmB.1. (a): The dependency graph and original logit
values, y. The values of each logit are provided; the non-bracketed number indicates the
logit index and the number in brackets is the logit value, e.g., y0 = 2. Arrows indicate
a directed edge in the dependency graph; e.g., we require y4 < y0. (b): updated values
passed into argsort as a tuple. For example, y4 is assigned (2, 1), as its smallest ancestor
(y0) has logit value 2 in (a) and its depth is 1; and y2 is assigned value (1, 2) because
its logit value in (a), 1, is already smaller than that any of its parents, and its depth is
2. The values are sorted by decreasing value and increasing depth, thus the final order
is 〈y1, y3, y0, y4, y2〉, corresponding to the permutation π, where π(0) = 2, π(1) = 0,
π(2) = 4, π(3) = 1, and π(4) = 3.

We observe that (i) for all root vertices, i, vi = yi, and (ii) the root vertex with
the highest original logit value will appear first in the topological ordering. The
former follows from the fact that the root vertices have no ancestors. The latter
subsequently follows from the fact that the first element in a valid topological
ordering must correspond to a root vertex. Thus if argmaxi{yi} = i∗ ∈ Roots(g),
then i∗ is the vertex with the highest logit value, and so by (ii), it will appear
first in the topological ordering produced by TopologicalSort, establishing
Property 4.

B.2 Cycle Detection

IsSat, a subroutine of FindSatConstraint (Algorithm3.2) checks to see if an
ordering constraint, q, is satisfiable by looking for any cycles in the corresponding
dependency graph, OrderGraph(q). Here we observe that the existence of a cycle
can easily be decided from examining P , by checking if Pii > 0 for some i ∈ [m];
i.e., if there exists a non-zero-length path from any vertex to itself. Since Pii ≥ 0,
this is equivalent to Trace(P ) > 0. While strictly speaking, Pij , as constructed by
[9], only reflects the longest path from i to j in acyclic graphs, it can nonetheless
be used to detect cycles in this way, as for any k ≤ m, Pij is guaranteed to be
at least k if there exists a path of length k from i to j, and any cycle will have
length at most m.
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B.3 Prioritizing Root Vertices

As specified in Property 3, in order to satisfy transparency, the search for a
satisfiable ordering constraint performed by FindSatConstraint must prioritize
constraints, q, in which the original predicted class, F (x), is a root vertex in q’s
corresponding dependency graph. We observe that root vertices can be easily
identified using the dependency matrix M . The in-degree, dinj , of vertex j is
simply the sum of the jth column of M , given by Eq. 11. Meanwhile, the root
vertices are precisely those vertices with no ancestors, that is, those vertices j
satisfying Eq. 11.

dinj =
∑

i∈[m]

Mij = 0 (11)

In the context of FindSatConstraint, the subroutine Prioritize lists ordering
constraints q for which dinF (x) = 0 in OrderGraph(q) before any other ordering
constraints. To save memory, we do not explicitly list and sort all the disjuncts of
Qx (the DNF form of the active postconditions for x); rather we iterate through
them one at a time. This can be done by, e.g., iterating through each disjunct
twice, initially skipping any disjunct in which F (x) is not a root vertex, and
subsequently skipping those in which F (x) is a root vertex.

C Appendix 3: Generation of Synthetic Data

In Sect. 5.4, we utilize a family of synthetic datasets with associated safe-ordering
constraints that are randomly generated according to several specified parame-
ters, allowing us to assess how aspects such as the number of constraints (α),
the number of disjunctions per constraint (β), and the dimension of the output
vector (m) impact the run-time overhead. In our experiments, we fix the input
dimension, n, to be 10. The synthetic data, which we will denote by D(α,β,m),
are generated according to the following procedure.

(i) First, we generate α random safe-ordering constraints. The preconditions
take the form b& ≤ x ≤ bu, where b& is drawn uniformly at random from
[0.0, 1.0 − ε] and bu := b& + ε. We choose ε = 0.4 in our experiments; as a
result, the probability that any two preconditions overlap is approximately
30%. The ordering constraints are disjunctions of β randomly-generated
cycle-free ordering graphs of m vertices, i.e., β disjuncts. Specifically, in
each graph, we include each edge, (i, j), for i *= j with equal probability,
and require further that at least one edge is included, and the expected
number of edges is γ (we use γ = 3 in all of our experiments). Graphs with
cycles are resampled until a graph with no cycles is drawn.

(ii) Next, for each safe-ordering constraint, φ, we sample N/α random inputs,
x, uniformly from the range specified by the precondition of φ. In all of our
experiments we let N = 2,000. For each x, we select a random disjunct from
the postcondition of φ, and find the roots of the corresponding ordering
graph. We select a label, y∗ for x uniformly at random from this set of
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roots, i.e., we pick a random label for each point that is consistent with the
property for that point.

(iii) Finally, we generate N random points that do not satisfy any of the pre-
conditions of the α safe-ordering constraints. We label these points via a
classifier trained on the N labeled points already generated in (ii). This
results in a dataset of 2N labeled points, where 50% of the points are cap-
tured by at least one safe-ordering constraint.
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