
No Root Store Left Behind
James Larisch
Harvard University

Waqar Aqeel
Duke University

Taejoong Chung
Virginia Tech

Eddie Kohler
Harvard University

Dave Levin
University of Maryland

Bruce M. Maggs
Duke University &
Emerald Innovations

Bryan Parno
Carnegie Mellon University

Christo Wilson
Northeastern University

Abstract
When a root certificate authority (CA) in the Web PKI mis-
behaves, primary root-store operators such as Mozilla and
Google respond by distrusting that CA. However, full dis-
trust is often too broad, so root stores often implement partial
distrust of roots, such as only accepting a root for a subset of
domains. Unfortunately, derivative root stores (e.g., Debian
and Android) that mirror decisions made by primary root
stores are often out-of-date and cannot implement partial
distrust, leaving TLS applications vulnerable.
We propose augmenting root stores with per-certificate

programs called General Certificate Constraints (GCCs) that
precisely control the trust of root certificates. We propose
that primary root-store operators write GCCs and distrib-
ute them, along with routine root certificate additions and
removals, to all root stores in the Web PKI. To justify our
arguments, we review specific instances of CA certificate
mis-issuance over the last decade that resulted in partial dis-
trust of roots that derivative root stores were unable to pre-
cisely mirror. We also review prior work that illustrates the
alarming lag between primary and derivative root stores. We
discuss preliminary designs for GCC deployment and how
GCCs could enable pre-emptive restrictions on CA power.

CCS Concepts
• Security and privacy → Web protocol security; Logic
and verification; • Networks→ Transport protocols.

Keywords
SSL/TLS, Web PKI, X.509 certificate, root store
ACM Reference Format:
James Larisch, Waqar Aqeel, Taejoong Chung, Eddie Kohler, Dave
Levin, Bruce M. Maggs, Bryan Parno, and Christo Wilson. 2023. No
Root Store Left Behind. In The 22nd ACM Workshop on Hot Topics
in Networks (HotNets ’23), November 28–29, 2023, Cambridge, MA,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotNets ’23, November 28–29, 2023, Cambridge, MA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0415-4/23/11. . . $15.00
https://doi.org/10.1145/3626111.3630268

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3626111.3630268

1 Introduction
Transport Layer Security (TLS) root certificate stores anchor
the security of theWeb. Before finalizing a TLS connection to
a given server, user-agents (e.g., browsers and TLS libraries)
validate the server’s X.509 certificate chain. Each chain is a
collection of certificates, starting from the server’s end-entity
or leaf certificate and ending with a trusted root certificate
authority (CA) certificate, with zero or more subordinate or
intermediate CA certificates in between. Root certificates1
are distributed as collections called root stores.2 User-agents
use either their own root store (e.g., Firefox) or the root store
managed by the underlying operating system (e.g., Debian
or Android) when validating certificate chains.
Despite the critical importance of root certificate stores

for web security and privacy, most root stores suffer from
critical management and technical challenges. We refer to
these problems as lag and imprecision.
Lag. Most non-browser root stores are out-of-date. Because
primary root stores like Mozilla’s are well-managed and up-
to-date, many platforms (e.g., Debian, Android, and Amazon
Linux) manually mimic Mozilla’s root inclusion and exclu-
sion decisions. Unfortunately, Ma et al. showed that, as of
2021, most of these derivative root stores are often months be-
hind their upstream primaries [44], leading to vulnerability
windows when the primary store removes a root certificate
in response to a CA compromise. domains (e.g., banks or
email services).
Imprecision. The second and more critical problem is that
primary root stores are no longer mere collections of certifi-
cates. A collection of certificates can only express a binary
trust decision: either the root is in the store (and thus trusted),
or it is not. In reality, primary root stores are collections
of certificates augmented with granular, certificate-specific
policies. For instance, in 2018, Firefox implemented partial
distrust of problematic Symantec roots by hard-coding trust

1Technically certificate chains must terminate in a trust anchor, which are often
distributed as X.509 certificates.
2We ignore ‘imported’ roots added by users or private networks, though prior work
has investigated their use and misuse [54].

https://doi.org/10.1145/3626111.3630268
https://doi.org/10.1145/3626111.3630268
https://doi.org/10.1145/3626111.3630268

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA James Larisch et al.

or distrust of particular descendant certificates issued at cer-
tain times and by certain subordinate CAs [13]. Certificate
revocation in the Web Public Key Infrastructure (PKI) [43],
despite recent improvements [39], also remains an all-or-
nothing decision.
Unfortunately, derivative root stores are all-or-nothing

and cannot mimic non-binary decisions made by primary
root stores. A root certificate in a derivative root store is
either fully trusted or not. This disparity can cause secu-
rity problems and operator confusion. For instance, when
Firefox implemented partial distrust of Symantec roots, De-
bian had no choice but to completely remove the affected
roots—a decision they were later forced to revert after user
complaints [15, 44].

Compared with derivative root stores, primary root stores
like Mozilla and Google have a distinct advantage: their op-
erators also distribute popular web browsers that can layer
the partial distrust of roots on top of their simple collections
of root certificates. Debian, in contrast, can only expose a
collection of certificates (/etc/ssl/certs) to applications,
who are in turn responsible for performing full chain valida-
tion. Applications (e.g., curl) or TLS libraries (e.g., OpenSSL)
built atop the platform must either manually replicate the
partial distrust implemented by primaries such as Firefox
or remain subject to the underlying derivative platform’s
limited, binary decisions.
Our proposal. We propose a framework for both describ-
ing precise, root-specific trust policies and for distributing
these policies to all root stores, regardless of platform, in a
timely manner. Primary root stores are already augmented
with small de facto programs that constrain particular root
certificates. We propose that primary root stores encapsu-
late these constraints into portable, per-certificate programs
called General Certificate Constraints (GCCs). We also pro-
pose a standardized mechanism for primary root stores to
quickly push changes (both routine certificate additions/re-
movals and GCCs) to derivatives. These mechanisms will
help minimize the vulnerability window after a root CA is
deprecated, the incompatibility window when a new root
CA becomes trusted [30], and the discrepancy between the
all-or-nothing trust of derivatives and the more nuanced
trust of primary root stores.
Deploying new mechanisms for precise, up-to-date root-

store distribution presents significant challenges. The biggest
challenge is that GCCs must be executed during certificate
validation, which may require changes to the interface be-
tween TLS applications and the platform’s underlying root
store. Another challenge is that subscribe-able root-store
“feeds” require standardization, and must also be considered
critical security infrastructure.

2 Background & Motivation
Before proposing new mechanisms for deploying certificate
distrust to all root stores, we review the problems with how
root stores are managed in the Web PKI today.

2.1 Root Stores in the Web PKI
The Web PKI has a fundamental weakness: CA certificates
(both intermediate and root) are allowed to sign virtually
any certificate. A compromised or rogue root CA can launch
monster-in-the-middle (MITM) attacks by masquerading as
the target website using a fraudulent certificate valid for the
website’s domain. Certificates have been fraudulently issued
in the wild—in 2011, a Comodo CA partner was compromised
and nine fraudulent certificates were issued for domains
including google.com and addons.mozilla.com [5, 20].
Root-store operators like Mozilla monitor CA issuance

for fraudulant or negligent behavior. When a root CA mis-
issues certificates, Mozilla may respond by removing the root
certificate from their store altogether. For instance, in 2016
Mozilla performed an in-depth investigation into compliance
violations of WoSign, a root CA, eventually leading to the re-
moval of WoSign’s root certificate [12]. Historically, Mozilla
has been the most responsive root-store operator [44], with
stringent requirements on CA behavior [48]. Mozilla’s root
store is stored in their Network Security Services (NSS) [7]
library, which is included in Mozilla Firefox.

However, most root stores do notmonitor CAmis-issuance.
Instead, they mimic decisions made by historically respon-
sive root-store operators like Mozilla. In 2021, Ma et al. found
that many systems (e.g., Debian/Ubuntu, Android, Alpine
Linux, Amazon Linux, and NodeJS) base their root stores
off NSS due to Mozilla’s comprehensive due diligence [44].
These platforms periodically (andmanually) mirror decisions
made by NSS (removals and additions) via software updates.
Ma et al. classify such root stores as derivative root stores
and classify upstream sources like Mozilla’s NSS as primary
root stores. We reuse their terminology.

2.2 Root Trust is Not All-or-Nothing
However, primary root stores sometimes deploy partial dis-
trust of certificates to limit the Web’s exposure if a root is
compromised, or to avoid the collateral impact of complete
removal after a root is compromised. Mozilla uses two mech-
anisms for systematic partial distrust: date-usage constraints
and EV constraints. First, NSS attaches a date-usage pair to
each root that signifies the last date a leaf certificate transi-
tively signed by that root can be used for the given usage
(either TLS or S/MIME). Second, Firefox records whether
each root can issue Extended Validation (EV) certificates.3
However, Mozilla often implements additional, ad hoc

partial distrust of root certificates by hard-coding certificate-
specific logic directly into Firefox or the NSS library that
Firefox includes. Below we list root certificate incidents from
the last decade, as well as the resulting ad hoc distrust imple-
mented byMozilla (or by Google, which did not manage their
own root store at the time, but still hard-coded restrictions
for known roots).

3EV certificates were certificates for which the issuing CA performed additional
validation checks on domain ownership, and are currently being phased out by Chrome
and Firefox [27].

No Root Store Left Behind HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

TurkTrust. In January of 2013, Google discovered that the
Turkish government root CA TURKTRUST misissued two
intermediate CA certificates, one of which issued a leaf cer-
tificate for *.google.com [36]. In response, Google revoked
the intermediates via CRLSet [8] and updated Chrome to
disallow EV certificates from TURKTRUST. Mozilla later
followed suit [47]. Later (and perhaps unrelatedly), when
another Turkish government root CA (TUBITAK) applied for
root inclusion, Mozilla added a hard-coded name constraint
to NSS that allows the new root to issue leaf certificates for
Turkish government top-level domains (TLDs) only [11].
ANSSI. In December of 2013, Google discovered that the root
certificate of French government agency ANSSI misissued
an intermediate CA certificate that issued at least one leaf
certificate for Google domains [28]. In response, Google and
Mozilla revoked the intermediate and later name-constrained
the ANSSI root to French government TLDs [6, 37].
India CCA. In July of 2014, Google detected misissued leaf
certificates for several Google domains and a Yahoo domain
issued by intermediate CA certificates signed by the India
Controller of Certifying Authorities (CCA) [17]. The India
CCA certificate was included in the Microsoft root store (and
thus Firefox was unaffected). In response, Google revoked
the misissued leaves via CRLSet and later revoked the of-
fending intermediates. Chrome later name-constrained the
India CCA root to Indian TLDs.
MCS/CNNIC. In 2015, Mozilla and Google were notified that
an intermediate signed by the China Network Information
Center (CNNIC) was being used to MITM traffic. In response,
CNNIC revoked the offending intermediate, which was held
byMCSHoldings. Mozilla and Google revoked theMCS inter-
mediate via OneCRL and CRLSet, respectively [9, 18]. Later,
they partially distrusted the CNNIC root with an allowlist
of exempted subordinate certificates [9].
WoSign/Smartcom. In October 2016, Mozilla discovered
that the WoSign CA backdated 62 SHA-1 certificates to cir-
cumvent the new CA/B Baseline Requirements that forbid
the use of SHA-1 after 2015 [12]. They also discovered that
WoSign had covertly acquired the CA Smartcom and failed
to disclose the acquisition, in violation of Mozilla’s root-store
policy.4 In response, Mozilla distrusted all new leaf certifi-
cates chaining up to the offending roots [10] (maintaining
existing leaves). They also revoked all backdated leaf certifi-
cates via OneCRL. Google followed suit [19].
Symantec. In early 2018, Google [23] andMozilla [14] (among
others) implemented a plan for the gradual distrust of one
of the oldest and largest CAs at the time, Symantec (and
subsidiary CAs GeoTrust, RapidSSL, and Thawte), due to a
number of compliance issues [2]. As of May 2018, Firefox
distrusted leaf certificates issued after June 1st, 2016 that
chained up to the affected roots. As of October 2018, Fire-
fox distrusted all leaf certificates chaining up to the affected

4Tracking CA ownership in the Web PKI is a challenge unto itself [45].

roots except for a few allowlisted intermediate CA certifi-
cates issued by Symantec roots but controlled by Apple and
Google. Chrome followed suit with different dates.

2.3 Derivative Stores Lack Partial Distrust
Unfortunately, there is no way for derivative root stores to
mimic the above partial distrust decisions because derivative
stores are simply collections of certificates—each root is ei-
ther completely in the store or completely not. If a derivative
store includes a root but not the associated hard-coded name
or date constraints, dependent clients may accept fraudu-
lent or mis-issued chains that the primary would not. On
the other hand, if a derivative store completely excludes a
partially distrusted root, clients may experience denial of
service. In 2018, Debian imprecisely mimicked Mozilla’s par-
tial distrust of Symantec roots by simply removing them
from their store, resulting in collateral service disruption
that forced them to completely restore the roots [15, 44].

3 General Certificate Constraints
To bring precise root trust to the entire Web PKI, we propose
that primary root-store operators translate their root-specific
constraints into standardized programs called General Cer-
tificate Constraints. A GCC is a simple program attached to
a specific root certificate (by SHA-256 hash) that returns a
Boolean true or false. If the GCC returns false, the certificate
chain in question must be rejected. Each GCC should be
distributed by primary root stores to derivative root stores
and executed during the construction of certificate chains
that include the associated root.

The PKI could use any programming language to express
GCCs, but we find that logic programming languages, specif-
ically stratified Datalog [16, 52], fit well for many reasons.
First, Datalog has been used extensively for both express-
ing [22, 26, 33, 35, 49, 53] and reasoning about [21, 25, 40–42]
authorization languages. Second, Datalog is declarative and
based on first-order logic, making its semantics easy to rea-
son about. Finally, Datalog termination is guaranteed, and
it lacks I/O capabilities—these properties help minimize the
threat of evaluating arbitrary code.

GCC execution happens during certificate chain construc-
tion and validation: a constructed chain is valid if and only
if all GCCs attached to the candidate root are valid. A GCC
operates over the fields of all certificates in the candidate
chain. To execute a GCC, the chain in question is first con-
verted into a form the GCC program can read. For stratified
Datalog, this means converting each X.509 certificate field
into a Datalog statement. Further, relationships between cer-
tificates (i.e., that a particular certificate signs another) must
also be codified as Datalog statements. Next, the converted
statements are fed, along with the GCC in question, into the
Datalog interpreter. To execute, the validator performs the
following Datalog query: valid(Chain, Usage)?, which
checks whether the required GCC valid rule holds for the

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA James Larisch et al.

nov30th2022(1669784400). % Unix timestamp
valid(Chain, "S/MIME") :- % Valid rule for S/MIME usage
leaf(Chain, Cert), % Get the chain's leaf certificate
nov30th2022(T), % Get November 30th, 2022
notBefore(Cert, NB), % Get the leaf's notBefore date
NB < T. % Holds if notBefore before November 30th, 2022

valid(Chain, "TLS") :- % Valid rule for TLS usage
leaf(Chain, Cert), % Get the chain's leaf certificate
\+EV(Cert), % Assert that leaf is not EV
nov30th2022(T), % Get November 30th, 2022
notBefore(Cert, NB), % Get the leaf's notBefore date
NB < T. % Holds if notBefore before November 30th, 2022

Listing 1: Example constraints based on those found
on the TrustCor root in NSS. Note that \+ is the ‘not’
operator in Datalog.

june1st2016(1464753600). % Unix timestamp
exempt(...).
valid(Chain, _) :-

leaf(Chain, Cert), % Get the chain's leaf
notBefore(Cert, NB), % Get the leaf's notBefore date
june1st2016(T), % Get June 1st, 2016 date
NB < T. % Holds if notBefore date is before June 1st, 2016

valid(Chain, _) :-
root(Chain, Root), % Get the chain's root
signs(Root, Int), % Get the intermediate signed by root
hash(Int, H), % Get the intermediate's SHA-256 hash
exempt(H). % Holds if hash is one of exempt hashes

Listing 2: NSS constraints on Symantec roots as of May
2018 expressed as a GCC. A chain terminating in a
Symantec root is valid if the leaf is issued before 2016
or the first intermediate is exempt.

given converted chain of certificates under the given usage
(“TLS” or “S/MIME”).

All of the systematic constraints that Mozilla places on
root certificates can be expressed using GCCs. Listing 1
shows an example GCC that mimics the constraints on a
TrustCor root [46, 50] currently found in NSS. Once attached
to the TrustCor root certificate, this GCC signifies that for
“S/MIME” usage, the certificate chain is only valid if the leaf
certificate was issued before November 30th, 2022. For “TLS”,
the constraint is the same except the certificate must also
not be EV. Mozilla could write a similar GCC for every root
in NSS that has a date/usage constraint.
GCCs can also be used to express the more ad hoc root

constraints implemented in response to incidents. For in-
stance, Listing 2 shows NSS’s constraints on Symantec roots
as of May 2018. A chain including a Symantec root is valid
if either (1) the leaf was issued before June 1st, 2016, or
(2) if the first intermediate (signed by the root) is one of the
exempt intermediates (identified by SHA-256 hash).

3.1 Chain-Validation Must Change
Unfortunately, GCCs require changes to TLS certificate-chain
construction and validation algorithms: whenever a candi-
date root is found with a GCC, the validator must execute
the GCC to determine whether to accept the chain or con-
tinue building. For instance, if OpenSSL on Debian validates
a certificate chain that chains up to a Symantec root, it must

validate the root’s GCC to check for the specific circum-
stances under which the Symantec root should be accepted.

While GCCs can be deployed on a per-certificate basis, the
critical question of who should execute GCCs (user-agent or
platform) remains open. We consider three options:
User-agent execution. The first option is to push GCC-
execution responsibility to TLS user-agents. In this scheme,
when user-agents pull root certificates from the underlying
platform, they must also pull all associated GCCs (which
the platform exposes). During chain validation, the user-
agent must convert all certificates into Datalog statements
and evaluate any attached GCCs. We performed a prelimi-
nary performance analysis in which we measured the time
taken to convert ∼100K certificates to their respective sets of
Datalog statements and found that the mean (unoptimized)
conversion time was ∼2.4ms. To evaluate GCCs, each user-
agent must include a Datalog interpreter to interpret the
Datalog certificate statements and execute the query.

While user-agent execution may seem like the most chal-
lenging road to widespread GCC deployment, consider that
(1) incremental client deployment is acceptable because in-
compatible clients are no worse off than they are today, and
(2) while there may appear to be many user-agents, we sus-
pect that most use a small set of libraries e.g., OpenSSL. Only
these libraries (and the platforms) would need to support
GCCs. We leave measuring how common various TLS li-
braries are across all platforms to future work.
Platform execution. The second option is for platforms to
deploy a new system daemon responsible for executing GCCs
or augment an existing system daemon like MacOS’s trustd.
This system daemon must expose an IPC interface that ac-
cepts certificates and returns a Boolean (valid or not). In
this scheme, during chain construction TLS user-agents pass
the candidate chain and the selected root to the platform’s
system daemon. The system daemon converts the chain into
Datalog statements and executes all GCCs attached to the
selected root, then returns the result to the user-agent, which
proceeds with chain construction (building a new chain if
the daemon responded false).

Platform execution requires major platform changes and
minor user-agent changes. The platform must support Data-
log execution and expose an IPC interface. The user-agent
must be changed to contact the system daemon during TLS
certificate validation, though again, if most user-agents use
a small set of TLS libraries, this change may be easier.
Complete validation redesign. GCCs may be easier to
deploy given a radical redesign of certificate chain validation.
For instance, in Hammurabi [38], the entire TLS certificate
validation algorithm is expressed as a Prolog program. A
Hammurabi-enabled platform could perform the complete
chain validation procedure—user-agents would simply pass
certificate and the chosen Hammurabi policy (e.g., authored
by Mozilla or Google) to the platform’s trust daemon, which
would perform chain construction and return true or false.

No Root Store Left Behind HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

The trust daemon could easily execute GCCs since it would
already include a logic program engine.

4 Distributing Roots & GCCs
GCCs, like routine root additions and removals, must be dis-
tributed to derivative root stores in a timely, secure fashion.
Unfortunately, most derivative root stores today are out of
date: Ma et al. found that many derivative root stores are
months behind their respective primary stores [44]. They
quantified the staleness of derivative root stores by finding
the closest primary-derivative match (since derivative root
stores often change primary stores slightly) and compar-
ing release dates. They found no derivative root stores that
matched NSS’s update schedule. Amazon Linux, for instance,
“exhibits an average staleness of more than four substantial
versions”. They also found that “Android is always several
months behind”. They did find, however, that a few deriva-
tives have responded in a timely fashion to certain major root
breaches—though a more in-depth analysis of how quickly,
and to which breaches, may still be warranted.
Public root-store feeds. To combat derivative root store
staleness, we propose a new mechanism for pushing routine
root store changes (certificate additions and removals) as well
as GCCs from primary root stores to derivative root stores.
We call this mechanism root-store feeds (RSFs): a RSF is a
sequence of root-store snapshots where, between snapshots,
both certificates and GCCs may be added or removed. Each
snapshot may be annotated with justifications of particular
decisions and links to public discussions like Mozilla’s PKI
security message board [3] or Bugzilla [1].

We propose that RSF clients be included as core operating
system daemons. For instance, under this new scheme De-
bian/Ubuntu should write a core RSF systemd service that
periodically (hourly) polls the primary RSF of their choice
(e.g., NSS) and updates the root certificates exposed to ap-
plications as needed. Fortunately, ignoring GCCs, derivative
root stores need not change their application interfaces. De-
bian, for instance, can continue to expose root certificates
in /etc/ssl/certs and add/remove roots as dictated by
Mozilla’s RSF updates. Users can still add imported roots—
self-signed certificates not part of the Web PKI—by adding
these roots to the platform’s directory.

RSFs can be distributed using conventional protocols (e.g.,
HTTPS); however, we highlight three factors that should be
taken into account when designing and deploying RSFs.
Negative inclusion. When a root-store operator explicitly
removes a root, that certificate should have a different status
(distrusted) from a certificate that was simply never added
(untrusted). We propose that root stores be composed of
two sets of certificates: those that are explicitly trusted and
those that are explicitly distrusted. This negative root inclu-
sion subsumes root certificate revocation, for which certain
browsers have satisfactory solutions [8, 29, 39] but many
TLS user-agents lack [43].

RSF merging. Maintaining a distrusted set is important
because derivative root stores sometimes augment their pri-
mary root stores. For example, Ma et al. found that Amazon
Linux re-added 16 root certificates after they had been ex-
plicitly removed by NSS [44].

To further acommodate root store augmentation, we pro-
pose that derivative root stores publish their own RSFs and
that the two RSFs be merged before deployment. This way,
if a primary RSF explicitly distrusts a root certificate and
a derivative RSF later adds that certificate, the attempted
merge flags an issue to the operator: the root in question is
in the primary’s distrusted set but the derivative’s trusted
set. We leave more in-depth discussion, including how to pri-
oritize RSFs and whether RSFs should be merged manually
or automatically, to future work.
Security. RSFs will be an attractive target for attackers be-
cause compromised RSFs can distribute malicious roots that
can issue arbitrary leaves. RSFs must thus be treated as criti-
cal infrastructure (like browser software update channels).
We recommend that RSF updates be signed with a separate
key that should itself be signed by a coordinating body like
ICANN. We leave the full exploration of RSF security, includ-
ing the potential use of immutable logs, to future work.

RSFs can be consumed by both derivative root-store plat-
forms and browsers. While prior work has shown that deriv-
ative root stores are perhaps most in-need of RSFs, a browser
may choose to subscribe to its own RSF to ensure fresh-
ness. Indeed, browser operators already push some certifi-
cate information (revocations) outside of software updates
(via CRLSet [8] and OneCRL [29]).

5 Towards Pre-emptive Constraints
So far, we have discussed how, using GCCs and RSFs, pri-
mary root stores can push precise and timely updates to the
entire Web PKI. In this section, we consider how the security
posture of primary operators is largely defensive, and how
GCCs may help shift the PKI towards pro-active measures.

5.1 The Lack of Pre-emptive Constraints
Certificate authorities today can, in theory, pre-emptively
constrain their certificates to minimize the impact of attacks
before they happen. First, CA certificates can include a path-
length constraint, which limits the number of certificates
allowed in a descending chain—this can be used to prevent a
compromised certificate from issuing another intermediate.
Second, CA certificates can include name constraints [31],
which limit the domains for which descendant leaf certifi-
cates may be issued. For instance, a root CA may specify that
all descendant leaves, regardless of intermediate, may only
be issued for domains matching *.gov. If an attacker com-
promises the root CA, it cannot issue certificates (either di-
rectly or via a new, malicious intermediate) for example.com.
For instance, the Hellenic Academic and Research Institu-
tions [4] root CA has 23 name-constrained subordinate CA
certificates, many constrained to Greek domains (*.gr).

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA James Larisch et al.

oneMonthInSeconds(2630000).
lifetimeValid(Leaf) :-

notBefore(Leaf, NB), % Get the leaf's notBefore date
notAfter(Leaf, NA), % Get the leaf's notAfter date
Lifetime = NA - NB, % Calculate leaf's lifetime
oneMonthInSeconds(Limit), % Get one month (in seconds)
Lifetime <= Limit. % Holds if leaf lifetime is < one month

validUsage(Leaf) :-
extendedKeyUsage(Leaf, "id-kp-serverAuth"),

keyUsage(Leaf, "digitalSignature").

valid(Chain, "TLS") :- % Valid TLS usage only
leaf(Chain, Cert), % Get the chain's leaf certificate
lifetimeValid(Leaf), % Holds if leaf lifetime is valid
validUsage(Leaf).

Listing 3: Example pre-emptive constraint on a hy-
pothetical root. All leaves under the root will be
constrained to TLS serverAuth extended key usage,
digitalSignaturekey usage, and a onemonth lifetime.

Unfortunately, CA-driven certificate constraints suffer
from a number of issues. First, it is the responsibility of
TLS user-agents to honor name constraints specified by CAs,
and it took roughly two decades for the name constraints
to be widely supported by major user-agents [32]. Indeed,
Firefox and OpenSSL have disagreed on the semantics of
leading dot characters in name constraints [24].

Second, the majority of CAs today do not name constrain
their certificates. We conducted a preliminary measurement
of constraints in the PKI today by examining the NSS root
store as of July 19th, 2022 and intermediate CA certificates
in the Nimbus2022, Argon2022, Argon2023, and Xenon2023
Certificate Transparency [51] logs that were non-expired as
of August 2nd, 2022.We found that out of 140 root certificates,
zero used name constraints and only five used path-length
constraints. Out of 776 intermediate CA certificates, 701 used
path-length constraints but only 31 used name constraints.
Only six (out of 140) roots were included in at least one chain
where an intermediate included a name constraint.

5.2 Pre-emptive GCCs
Rather than waiting for CAs to use the name constraints ex-
tension, which is limited to names, browsers could leverage
Certificate Transparency and GCCs to constrain all fields of
certificates before compromise. We propose browsers and/or
root stores pre-emptively construct, for each root, a GCC that
limits that root’s scope of issuance, i.e., the names, lifetimes,
key usages, and other fields that it may issue certificates
for. This minimizes the damage of a root compromise, since
issuing power has already been checked.

Pre-emptive GCCs expand upon the 2013 work, CAge, by
Kasten et al. which proposed pre-emptively constraining the
names of CA certificates based on their issuance patterns [34].
CAge was built on the observation that most CAs only issue
certificates for a small set of top-level domains: 90% of CAs
sign certificates for ≤ 10 different TLDs. Using CAge, if a CA
issued a certificate for a new TLD for which it has not issued
a certificate before, browsers would reject that certificate.

Pre-emptive GCCs have two advantages over CAge. First,
CAge limited itself to name constraints, while GCCs allow

operators to constrain any (e.g., X.509 field) of certificates
chains. Listing 3 shows an example of a pre-emptive GCC.
Second, GCCs would be built on RSFs, which can system-
atically distribute pre-emptive constraints to browsers and
other TLS user-agents. We also note that both CAge and
GCCs benefit from Certificate Transparency: operators can
more easily examine scopes of issuance because all certifi-
cates must be publicly logged to be trusted by Chrome.
Determining to what extent PKI stakeholders could con-

strain CA certificates, both root and intermediate, requires
further study. Starting from a given set of roots (i.e., NSS),
the study should construct all certificate paths and then de-
termine each CA certificate’s scope of issuance. Operators
could then construct a GCC for each CA certificate that lim-
its future issuance to its current scope—e.g., if the CA tries
to issue a certificate for a key usage it has never used before,
the GCC would cause the certificate to be rejected.
A more in-depth study could discover opportunities for

splitting CA certificate responsibility across multiple new,
limited certificates. For instance, if a CA exhibits a bi-modal
scope of issuance, the CA could potentially be split into
two root certificates, each more tightly constrained to its de
facto scope. GCCs could encourage CAs to issue more tightly
constrained roots, each with a narrower issuing purpose.

6 Concluding Discussion
GCCs and RSFs aim to standardize and distribute precise root
certificate controls—which major stakeholders in the Web
PKI already exert over roots—to all stakeholders. We believe
that such mechanisms should exist because many root stores
may be out-of-date and insecure. We hope that this work
inspires measurement studies (e.g., examining how insecure
derivative root stores are, how many user-agents would re-
quire RSF/GCC support, and how tightly CAs could be con-
strained) and design work (e.g., how to securely distribute
RSF updates and how to design GCC execution interfaces).

However, GCCs—especially pre-emptive GCCs—highlight
important questions about how power is distributed among
stakeholders in the PKI. Nominally, CAs have the power
to issue any certificate they wish. In response, browsers
like Firefox and Chrome enforce stringent policies that all
roots and CAs must follow in order to be accepted by these
browsers. They reserve the right to take action if a CA is
compromised or violates their policies; should they also have
the power to restrict a CA’s power before a violation occurs?

Acknowledgments
We thank the anonymous reviewers for their helpful com-
ments. This research was supported in part by a gift from
VMware and also NSF grants CNS-1900996, CNS-1901325,
CNS-2053363, CNS-2247306, CNS-1901047, andCNS-1900879.
We thank Zachary Newman for his helpful feedback on early
drafts.

No Root Store Left Behind HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

References
[1] [n. d.]. Bugzilla. ([n. d.]). https://bugzilla.mozilla.org/home.
[2] [n. d.]. CA/Symantec Issues. ([n. d.]). https://wiki.mozilla.org/CA/Symantec_

Issues.
[3] [n. d.]. dev-security-policy@mozilla.org. ([n. d.]). https://groups.google.com/a/

mozilla.org/g/dev-security-policy.
[4] [n. d.]. Harica is a member of the PKI Consortium. ([n. d.]). https://pkic.org/

members/harica/.
[5] 2011. Comodo Certificate Issue – Follow Up. (March 2011). https://blog.mozilla.

org/security/2011/03/25/comodo-certificate-issue-follow-up/.
[6] 2013. Hard code ANSSI(DCISS) to french gov dns space. (2013). https://bugzilla.

mozilla.org/show_bug.cgi?id=952572#c2.
[7] 2014. Network Security Services. Mozilla Developer Network. (2014). http:

//mzl.la/1DRKqGZ.
[8] 2015. CRLSets. The Chromium Projects. (2015). http://bit.ly/1JPsUeC.
[9] 2015. Revoking Trust in one CNNIC Intermediate Certificate . (March

2015). https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-
intermediate-certificate/.

[10] 2016. Distrusting New WoSign and StartCom Certificates . (October
2016). https://blog.mozilla.org/security/2016/10/24/distrusting-new-wosign-
and-startcom-certificates/.

[11] 2016. TUBITAK Kamu Sertifikasyon Merkezi - New Root Certificate. (2016).
https://bugzilla.mozilla.org/show_bug.cgi?id=1262809#c33.

[12] 2016. WoSign and StartCom. (2016). https://docs.google.com/document/d/
1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit.

[13] 2017. Mozilla’s Plan for Symantec Roots. (October 2017). https://groups.google.
com/g/mozilla.dev.security.policy/c/FLHRT79e3XE.

[14] 2018. Distrust of Symantec TLS Certificates . (March 2018). https://blog.mozilla.
org/security/2018/03/12/distrust-symantec-tls-certificates/.

[15] 2020. ca-certificates: Removal of GeoTrust Global CA requires investigation.
(2020). https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=962596.

[16] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.
Vol. 8. Addison-Wesley Reading.

[17] Adam Langley. 2014. Maintaining digital certificate security. (July 2014). https://
security.googleblog.com/2014/07/maintaining-digital-certificate-security.html.

[18] Adam Langley. 2015. Maintaining digital certificate security . (March
2015). https://security.googleblog.com/2015/03/maintaining-digital-certificate-
security.html.

[19] Andrew Whalley. 2016. Distrusting WoSign and StartCom Certificates. (Oc-
tober 2016). https://security.googleblog.com/2016/10/distrusting-wosign-and-
startcom.html.

[20] Ars Technica. 2011. State-sponsored hackers in China compromise certificate
authority. (September 2011). https://arstechnica.com/information-technology/
2011/09/comodo-hacker-i-hacked-diginotar-too-other-cas-breached/.

[21] Moritz Becker, Cédric Fournet, and Andrew Gordon. 2007. Design and seman-
tics of a decentralized authorization language. In 20th IEEE Computer Security
Foundations Symposium (CSF’07). IEEE, 3–15.

[22] John DeTreville. 2002. Binder, a logic-based security language. In Proceedings
2002 IEEE Symposium on Security and Privacy. IEEE, 105–113.

[23] Devon O’Brien, Ryan Sleevi, Andrew Whalley. 2017. Chrome’s Plan to Distrust
Symantec Certificates. (September 2017). https://security.googleblog.com/2017/
09/chromes-plan-to-distrust-symantec.html.

[24] Differences in openssl and nss interpretations of the leading dot [n. d.].
mozilla/gecko-dev. Github. ([n. d.]). https://github.com/mozilla/gecko-
dev/blob/f8087305eb1ebea329b838924627008713c5f56c/security/nss/lib/
mozpkix/lib/pkixnames.cpp#L997.

[25] Daniel J Dougherty, Kathi Fisler, and ShriramKrishnamurthi. 2006. Specifying and
reasoning about dynamic access-control policies. In International Joint Conference
on Automated Reasoning. Springer, 632–646.

[26] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and
Peter Druschel. 2016. Thoth: Comprehensive Policy Compliance in Data Retrieval
Systems. In 25th USENIX Security Symposium (USENIX Security 16). 637–654.

[27] Dennis Fisher. 2019. Chrome and Firefox Removing EV Certificate Indicators.
(August 2019). https://duo.com/decipher/chrome-and-firefox-removing-ev-
certificate-indicators.

[28] French gov used fake Google certificate to read its workers’ traffic 2013. French
gov used fake Google certificate to read its workers’ traffic. (December
2013). https://www.theregister.co.uk/2013/12/10/french_gov_dodgy_ssl_cert_
reprimand/.

[29] Mark Goodwin. 2015. Revoking Intermediate Certificates: Introducing OneCRL.
Mozilla Security Blog. (March 2015). http://mzl.la/1zLFp7M.

[30] Jacob Hoffman-Andrews. 2020. (November 2020). https://letsencrypt.org/2020/
11/06/own-two-feet.html.

[31] Russ Housley, Dr. Warwick S. Ford, and Dave Solo. 1996. Internet Public Key
Infrastructure. Part I: X.509 Certificate and CRL Profile. RFC 2459. (June 1996).
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-02

[32] Ian Haken. 2017. (April 2017). https://netflixtechblog.com/bettertls-
c9915cd255c0.

[33] Trevor Jim. 2000. SD3: A trust management system with certified evaluation.
In Proceedings 2001 IEEE Symposium on Security and Privacy. S&P 2001. IEEE,
106–115.

[34] James Kasten, Eric Wustrow, and J Alex Halderman. 2013. CAge: Taming Certifi-
cate Authorities by Inferring Restricted Scopes. In Financial Cryptography and
Data Security: 17th International Conference, FC 2013, Okinawa, Japan, April 1-5,
2013, Revised Selected Papers 17. Springer, 329–337.

[35] Robert Krahn, Bohdan Trach, Anjo Vahldiek-Oberwagner, Thomas Knauth,
Pramod Bhatotia, and Christof Fetzer. 2018. Pesos: Policy Enhanced Secure
Object Store. In Proceedings of the Thirteenth EuroSys Conference. 1–17.

[36] Adam Langley. 2013. Enhancing digital certificate security. (2013). https:
//security.googleblog.com/2013/01/enhancing-digital-certificate-security.html.

[37] Adam Langley. 2013. Further improving digital certificate security. (2013). https:
//security.googleblog.com/2013/12/further-improving-digital-certificate.html.

[38] James Larisch, Waqar Aqeel, Michael Lum, Yaelle Goldschlag, Kasra Torshizi,
Leah Kannan, Yujie Wang, Taejoong Chung, Dave Levin, Bruce M. Maggs, Alan
Mislove, Bryan Parno, and Christo Wilson. 2022. Hammurabi: A Framework for
Pluggable, Logic-Based X.509 Certificate Validation Policies. In Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications Security.

[39] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. 2017. CRLite: A Scalable System for Pushing all TLS Revocations
to All Browsers. In Proc. of IEEE Symposium on Security and Privacy.

[40] Ninghui Li, Benjamin N Grosof, and Joan Feigenbaum. 2003. Delegation logic: A
logic-based approach to distributed authorization. ACM Transactions on Informa-
tion and System Security (TISSEC) 6, 1 (2003), 128–171.

[41] Ninghui Li and John C Mitchell. 2006. Understanding SPKI/SDSI Using First-
Order Logic. International Journal of Information Security 5, 1 (2006), 48–64.

[42] Ninghui Li, John C Mitchell, and William H Winsborough. 2002. Design of a
Role-based Trust-management Framework. In Proceedings 2002 IEEE Symposium
on Security and Privacy. IEEE, 114–130.

[43] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. 2015. An End-to-end Mea-
surement Of Certificate Revocation In The Web’s PKI. In ACM Internet Measure-
ment Conference.

[44] Zane Ma, James Austgen, Joshua Mason, Zakir Durumeric, and Michael Bai-
ley. 2021. Tracing Your Roots: Exploring the TLS Trust Anchor Ecosystem. In
Proceedings of the 21st ACM Internet Measurement Conference (IMC ’21). As-
sociation for Computing Machinery, New York, NY, USA, 179–194. https:
//doi.org/10.1145/3487552.3487813

[45] Zane Ma, Joshua Mason, Manos Antonakakis, Zakir Durumeric, and Michael
Bailey. 2021. What’s in a Name? Exploring CA Certificate Control. In 30th USENIX
Security Symposium (USENIX Security 21). 4383–4400.

[46] JosephMenn. 2022. Web browsers drop mysterious company with ties to U.S. mili-
tary contractor. (November 2022). https://www.washingtonpost.com/technology/
2022/11/30/trustcor-internet-authority-mozilla/.

[47] Mozilla. [n. d.]. Revoking Trust in Two TurkTrust Certificates. ([n.
d.]). https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-
turktrust-certficates/.

[48] Mozilla Root Store Policy [n. d.]. Mozilla Root Store Policy. ([n. d.]). https://www.
mozilla.org/en-US/about/governance/policies/security-group/certs/policy/.

[49] Xinming Ou, Sudhakar Govindavajhala, Andrew W Appel, et al. 2005. MulVAL:
A Logic-based Network Security Analyzer.. In USENIX security symposium, Vol. 8.
Baltimore, MD, 113–128.

[50] Joel Reardon. 2022. concerns about Trustcor. (November 2022). https:
//groups.google.com/a/mozilla.org/g/dev-security-policy/c/oxX69KFvsm4/m/
PKpJf5W6AQAJ.

[51] Quirin Scheitle, Oliver Gasser, Theodor Nolte, Johanna Amann, Lexi Brent, Georg
Carle, Ralph Holz, Thomas C. Schmidt, and Matthias Wählisch. 2018. The Rise
of Certificate Transparency and Its Implications on the Internet Ecosystem. In
Proceedings of the Internet Measurement Conference 2018 (IMC ’18). Association
for Computing Machinery, 343–349. https://doi.org/10.1145/3278532.3278562

[52] Jeffrey D Ullman. 1988. Database and knowledge-base systems. (1988).
[53] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Aastha Mehta, Deepak Garg, Peter

Druschel, Rodrigo Rodrigues, Johannes Gehrke, and Ansley Post. 2015. Guardat:
Enforcing data policies at the storage layer. In Proceedings of the Tenth European
Conference on Computer Systems. 1–16.

[54] Yiming Zhang, Baojun Liu, Chaoyi Lu, Zhou Li, Haixin Duan, Jiachen Li, and
Zaifeng Zhang. 2021. Rusted Anchors: A National Client-Side View of Hidden
Root CAs in the Web PKI Ecosystem. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. 1373–1387.

https://bugzilla.mozilla.org/home
https://wiki.mozilla.org/CA/Symantec_Issues
https://wiki.mozilla.org/CA/Symantec_Issues
https://groups.google.com/a/mozilla.org/g/dev-security-policy
https://groups.google.com/a/mozilla.org/g/dev-security-policy
https://pkic.org/members/harica/
https://pkic.org/members/harica/
https://blog.mozilla.org/security/2011/03/25/comodo-certificate-issue-follow-up/
https://blog.mozilla.org/security/2011/03/25/comodo-certificate-issue-follow-up/
https://bugzilla.mozilla.org/show_bug.cgi?id=952572#c2
https://bugzilla.mozilla.org/show_bug.cgi?id=952572#c2
http://mzl.la/1DRKqGZ
http://mzl.la/1DRKqGZ
http://bit.ly/1JPsUeC
https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/
https://blog.mozilla.org/security/2015/03/23/revoking-trust-in-one-cnnic-intermediate-certificate/
https://blog.mozilla.org/security/2016/10/24/distrusting-new-wosign-and-startcom-certificates/
https://blog.mozilla.org/security/2016/10/24/distrusting-new-wosign-and-startcom-certificates/
https://bugzilla.mozilla.org/show_bug.cgi?id=1262809#c33
https://docs.google.com/document/d/1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit
https://docs.google.com/document/d/1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ/edit
https://groups.google.com/g/mozilla.dev.security.policy/c/FLHRT79e3XE
https://groups.google.com/g/mozilla.dev.security.policy/c/FLHRT79e3XE
https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-certificates/
https://blog.mozilla.org/security/2018/03/12/distrust-symantec-tls-certificates/
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=962596
https://security.googleblog.com/2014/07/maintaining-digital-certificate-security.html
https://security.googleblog.com/2014/07/maintaining-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://security.googleblog.com/2015/03/maintaining-digital-certificate-security.html
https://security.googleblog.com/2016/10/distrusting-wosign-and-startcom.html
https://security.googleblog.com/2016/10/distrusting-wosign-and-startcom.html
https://arstechnica.com/information-technology/2011/09/comodo-hacker-i-hacked-diginotar-too-other-cas-breached/
https://arstechnica.com/information-technology/2011/09/comodo-hacker-i-hacked-diginotar-too-other-cas-breached/
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-symantec.html
https://github.com/mozilla/gecko-dev/blob/f8087305eb1ebea329b838924627008713c5f56c/security/nss/lib/mozpkix/lib/pkixnames.cpp#L997
https://github.com/mozilla/gecko-dev/blob/f8087305eb1ebea329b838924627008713c5f56c/security/nss/lib/mozpkix/lib/pkixnames.cpp#L997
https://github.com/mozilla/gecko-dev/blob/f8087305eb1ebea329b838924627008713c5f56c/security/nss/lib/mozpkix/lib/pkixnames.cpp#L997
https://duo.com/decipher/chrome-and-firefox-removing-ev-certificate-indicators
https://duo.com/decipher/chrome-and-firefox-removing-ev-certificate-indicators
https://www.theregister.co.uk/2013/12/10/french_gov_dodgy_ssl_cert_reprimand/
https://www.theregister.co.uk/2013/12/10/french_gov_dodgy_ssl_cert_reprimand/
http://mzl.la/1zLFp7M
https://letsencrypt.org/2020/11/06/own-two-feet.html
https://letsencrypt.org/2020/11/06/own-two-feet.html
https://datatracker.ietf.org/doc/html/draft-ietf-pkix-ipki-part1-02
https://netflixtechblog.com/bettertls-c9915cd255c0
https://netflixtechblog.com/bettertls-c9915cd255c0
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.html
https://security.googleblog.com/2013/01/enhancing-digital-certificate-security.html
https://security.googleblog.com/2013/12/further-improving-digital-certificate.html
https://security.googleblog.com/2013/12/further-improving-digital-certificate.html
https://doi.org/10.1145/3487552.3487813
https://doi.org/10.1145/3487552.3487813
https://www.washingtonpost.com/technology/2022/11/30/trustcor-internet-authority-mozilla/
https://www.washingtonpost.com/technology/2022/11/30/trustcor-internet-authority-mozilla/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://blog.mozilla.org/security/2013/01/03/revoking-trust-in-two-turktrust-certficates/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://www.mozilla.org/en-US/about/governance/policies/security-group/certs/policy/
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/oxX69KFvsm4/m/PKpJf5W6AQAJ
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/oxX69KFvsm4/m/PKpJf5W6AQAJ
https://groups.google.com/a/mozilla.org/g/dev-security-policy/c/oxX69KFvsm4/m/PKpJf5W6AQAJ
https://doi.org/10.1145/3278532.3278562

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Root Stores in the Web PKI
	2.2 Root Trust is Not All-or-Nothing
	2.3 Derivative Stores Lack Partial Distrust

	3 General Certificate Constraints
	3.1 Chain-Validation Must Change

	4 Distributing Roots & GCCs
	5 Towards Pre-emptive Constraints
	5.1 The Lack of Pre-emptive Constraints
	5.2 Pre-emptive GCCs

	6 Concluding Discussion
	References

