
How to Delegate and Verify in Public:

Verifiable Computation from

Attribute-based Encryption

Bryan Parno1, Mariana Raykova?2, and Vinod Vaikuntanathan??3

1 Microsoft Research
2 Columbia University
3 University of Toronto

Abstract. The wide variety of small, computationally weak devices,
and the growing number of computationally intensive tasks makes it
appealing to delegate computation to data centers. However, outsourcing
computation is useful only when the returned result can be trusted, which
makes verifiable computation (VC) a must for such scenarios.

In this work we extend the definition of verifiable computation in two im-
portant directions: public delegation and public verifiability, which have
important applications in many practical delegation scenarios. Yet, ex-
isting VC constructions based on standard cryptographic assumptions
fail to achieve these properties.

As the primary contribution of our work, we establish an important
(and somewhat surprising) connection between verifiable computation
and attribute-based encryption (ABE), a primitive that has been widely
studied. Namely, we show how to construct a VC scheme with public del-
egation and public verifiability from any ABE scheme. The VC scheme
verifies any function in the class of functions covered by the permissible
ABE policies (currently Boolean formulas). This scheme enjoys a very
efficient verification algorithm that depends only on the output size. Ef-
ficient delegation, however, requires the ABE encryption algorithm to
be cheaper than the original function computation. Strengthening this
connection, we show a construction of a multi-function verifiable com-
putation scheme from an ABE scheme with outsourced decryption, a
primitive defined recently by Green, Hohenberger and Waters (USENIX
Security 2011). A multi-function VC scheme allows the verifiable evalu-
ation of multiple functions on the same preprocessed input.

In the other direction, we also explore the construction of an ABE scheme
from verifiable computation protocols.

? Research conducted as part of an internship with Microsoft Research.
?? Supported by an NSERC Discovery Grant and by DARPA under Agreement number

FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the author and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

1 Introduction

In the modern age of cloud computing and smartphones, asymmetry in comput-
ing power seems to be the norm. Computationally weak devices such as smart-
phones gather information, and when they need to store the voluminous data
they collect or perform expensive computations on their data, they outsource the
storage and computation to a large and powerful server (a “cloud”, in modern
parlance). Typically, the clients have a pay-per-use arrangement with the cloud,
where the cloud charges the client proportional to the “effort” involved in the
computation.

One of the main security issues that arises in this setting is – how can the
clients trust that the cloud performed the computation correctly? After all, the
cloud has the financial incentive to run (occasionally, perhaps) an extremely
fast but incorrect computation, freeing up valuable compute time for other
transactions. Is there a way to verifiably outsource computations, where the
client can, without much computational effort, check the correctness of the re-
sults provided by the cloud? Furthermore, can this be done without requiring
much interaction between the client and the cloud? This is the problem of non-
interactive verifiable computation, which was considered implicitly in the early
work on efficient arguments by Kilian [18] and computationally sound proofs
(CS proofs) by Micali [20], and which has been the subject of much attention
lately [2–5,10,11,13,14].

The starting point of this paper is that while the recent solutions consider
and solve the bare-bones verifiable computation problem in its simplest form,
there are a number of desirable features that they fail to achieve. We consider
two such properties – namely, public delegatability and public verifiability.

Public Delegatability. In a nutshell, public delegatability says that everyone
should be able to delegate computations to the cloud. In some protocols [2,
4, 10, 11], a client who wishes to delegate computation of a function F is re-
quired to first run an expensive pre-processing phase (wherein her computation
is linear in the size of the circuit for F) to generate a (small) secret key SKF

and a (large) evaluation key EKF . This large initial cost is then amortized over
multiple executions of the protocol to compute F (xi) for different inputs xi, but
the client needs the secret key SKF in order to initiate each such execution. In
other words, clients can delegate computation to the cloud only if they put in a
large initial computational investment. This makes sense only if the client wishes
to run the same computation on many different inputs. Can clients delegate
computation without making such a large initial commitment of resources?

As an example of a scenario where this might come in handy, consider a
clinic with a doctor and a number of lab assistants, which wishes to delegate
the computation of a certain expensive data analysis function F to a cloud
service. Although the doctor determines the structure and specifics of F , it is in
reality the lab assistants who come up with inputs to the function and perform
the delegation. In this scenario, we would like to ask the doctor to run the
(expensive) pre-processing phase once and for all, and generate a (small) public

key PKF and an evaluation key EKF . The public key lets anyone, including the
lab assistants, delegate the computation of F to the cloud and verify the results.
Thus, once the doctor makes the initial investment, any of the lab assistants
can delegate computations to the cloud without the slightest involvement of the
doctor. Needless to say, the cloud should not be able to cheat even given PKF

and EKF .
Goldwasser, Kalai and Rothblum [13] present a publicly delegatable verifiable

computation protocol for functions in the complexity class NC (namely, func-
tions that can be computed by circuits of size poly(n) and depth polylog(n));
indeed, their protocol is stronger in that it does not even require a pre-processing
phase. In contrast, as mentioned above, many of the protocols for verifying
general functions [2, 4, 10, 11] are not publicly delegatable. In concurrent work,
Canetti, Riva, and Rothblum propose a similar notion (though they call it “pub-
lic verifiability”) [9] and construct a protocol, based on collision-resistant hashing
and poly-logarithmic PIR, for general circuits C where the client runs in time
poly(log(|C|), depth(C)); they do not achieve the public verifiability property
we define below. Computationally sound (CS) proofs achieve public delegata-
bility; however the known constructions of CS proofs are either in the random
oracle model [20], or rely on non-standard “knowledge of exponent”-type as-
sumptions [5, 14]. Indeed, this seems to be an inherent limitation of solutions
based on CS proofs since Gentry and Wichs [12] showed recently that CS proofs
cannot be based on any falsifiable cryptographic assumption (using a black-box
security reduction). Here, we are interested in standard model constructions,
based on standard (falsifiable) cryptographic assumptions.

Public Verifiability. In a similar vein, the delegator should be able to produce a
(public) “verification key” that enables anyone to check the cloud’s work. In the
context of the example above, when the lab assistants delegate a computation on
input x, they can also produce a verification key V Kx that will let the patients,
for example, obtain the answer from the cloud and check its correctness. Neither
the lab assistants nor the doctor need to be involved in the verification process.
Needless to say, the cloud cannot cheat even if it knows the verification key V Kx.

Papamanthou, Tamassia, and Triandopoulos [23] present a verifiable compu-
tation protocol for set operations that allows anyone who receives the result of
the set operation to verify its correctness. In concurrent work, Papamanthou,
Shi, and Tamassia [22] propose a similar notion, but they achieve it only for
multivariate polynomial evaluation and differentiation, and the setup and eval-
uation run in time exponential in the degree; they do not consider the notion
of public delegation. Neither the Goldwasser-Kalai-Rothblum protocol [13] nor
any of the later works [2, 4, 10,11] seem to be publicly verifiable.

Put together, we call a verifiable computation protocol that is both publicly
delegatable and publicly verifiable a public verifiable computation protocol. We
are not aware of any such protocol (for a general class of functions) that is
non-interactive and secure in the standard model. Note that we still require the
party who performs the initial function preprocessing (the doctor in the example
above) to be trusted by those delegating inputs and verifying outputs.

As a bonus, a public verifiable computation protocol is immune to the “rejec-
tion problem” that affects several previous constructions [2, 10, 11]. Essentially,
the problem is that these protocols do not provide reusable soundness; i.e., a
malicious cloud that is able to observe the result of the verification procedure
(namely, the accept/reject decision) on polynomially many inputs can eventually
break the soundness of the protocol. It is an easy observation that public veri-
fiable computation protocols do not suffer from the rejection problem. Roughly
speaking, verification in such protocols depends only on the public key and some
(instance-specific) randomness generated by the delegator, and not on any long-
term secret state. Thus, obtaining the result of the verification procedure on one
instance does not help break the soundness on a different instance.1

This paper is concerned with the design of public (non-interactive) verifiable
computation protocols.

1.1 Our Results and Techniques

Our main result is a (somewhat surprising) connection between the notions of
attribute-based encryption (ABE) and verifiable computation (VC). In a nut-
shell, we show that a public verifiable computation protocol for a class of func-
tions F can be constructed from any attribute-based encryption scheme for a
related class of functions – namely, F∪F . Recall that attribute-based encryption
(ABE) [15,25] is a rich class of encryption schemes where secret keys ABE.SKF

are associated with functions F , and can decrypt ciphertexts that encrypt a
message m under an “attribute” x if and only if F (x) = 1.

For simplicity, we state all our results for the case of Boolean functions,
namely functions with one-bit output. For functions with many output bits, we
simply run independent copies of the verifiable computation protocol for each
output bit.

Theorem 1 (Main Theorem, Informal). Let F be a class of Boolean func-
tions, and let F = {F | F ∈ F} where F̄ denotes the complement of the function
F . If there is a key-policy ABE scheme for F∪F , then there is a public verifiable
computation protocol for F .

Some remarks about this theorem are in order.

1. First, our construction is in the pre-processing model, where we aim to out-
source the computation of the same function F on polynomially many inputs
xi with the goal of achieving an amortized notion of efficiency. This is the
same as the notion considered in [10,11], and different from the one in [13].
See Definition 1.

2. Secondly, since the motivation for verifiable computation is outsourcing com-
putational effort, efficiency for the client is obviously a key concern. Our pro-
tocol will be efficient for the client, as long as computing an ABE encryption

1 In fact, this observation applies also to any protocol that is publicly delegatable and
not necessarily publicly verifiable.

(on input a message m and attribute x) takes less time than evaluating the
function F on x. We will further address the efficiency issue in the context
of concrete instantiations below (as well as in Section 3.2).

3. Third, we only need a weak form of security for attribute-based encryption
which we will refer to as one-key security. Roughly speaking, this requires
that an adversary, given a single key ABE.SKF for any function F of its
choice, cannot break the semantic security of a ciphertext under any attribute
x such that F (x) = 0. Much research effort on ABE has been dedicated to
achieving the much stronger form of security against collusion, namely when
the adversary obtains secret keys for not just one function, but polynomially
many functions of its choice. We will not require the strength of these re-
sults for our purposes. On the same note, constructing one-key secure ABE
schemes is likely to be much easier than full-fledged ABE schemes.

Note on Terminology: Attribute-based Encryption versus Predicate Encryption.
In this paper, we consider attribute-based encryption (ABE) schemes to be ones
in which each secret key ABE.SKF is associated with a function F , and can de-
crypt ciphertexts that encrypt a message m under an “attribute” x if and only
if F (x) = 1. This formulation is implicit in the early definitions of ABE intro-
duced by Goyal, Pandey, Sahai and Waters [15, 25]. However, their work refers
to F as an access structure, and existing ABE instantiations are restricted to
functions (or access structures) that can be represented as polynomial-size span
programs (a generalization of Boolean formulas) [15, 19, 21]. While such restric-
tions are not inherent in the definition of ABE, the fully general formulation
we use above was first explicitly introduced by Katz, Sahai, and Waters, who
dubbed it predicate encryption [17]. Note that we do not require attribute-hiding
or policy/function-hiding, properties often associated with predicate encryption
schemes (there appears to be some confusion in the literature as to whether
attribute-hiding is inherent in the definition of predicate encryption [8, 17, 19],
but the original formulation [17] does not seem to require it).

Thus, in a nutshell, our work can be seen as using ABE schemes for general
functions, or equivalently, predicate encryption schemes that do not hide the
attributes or policy, in order to construct verifiable computation protocols.

Let us now describe an outline of our construction. The core idea of our con-
struction is simple: attribute-based encryption schemes naturally provide a way
to “prove” that F (x) = 1. Say the server is given the secret key ABE.SKF for
a function F , and a ciphertext that encrypts a random message m under the
attribute x. The server will succeed in decrypting the ciphertext and recovering
m if and only if F (x) = 1. If F (x) = 0, he fares no better at finding the message
than a random guess. The server can then prove that F (x) = 1 by returning the
decrypted message.

More precisely, this gives an effective way for the server to convince the client
that F (x) = 1. The pre-processing phase for the function F generates a master
public key ABE.MPK for the ABE scheme (which acts as the public key for the
verifiable computation protocol) and the secret key ABE.SKF for the function F

(which acts as the evaluation key for the verifiable computation protocol). Given
the public key and an input x, the delegator encrypts a random message m under
the attribute x and sends it to the server. If F (x) = 1, the server manages to
decrypt and return m, but otherwise, he returns ⊥. Now,

– If the client gets back the same message that she encrypted, she is convinced
beyond doubt that F (x) = 1. This is because, if F (x) were 0, the server
could not have found m (except with negligible probability, assuming the
message is long enough).

– However, if she receives no answer from the server, it could have been because
F (x) = 0 and the server is truly unable to decrypt, or because F (x) = 1 but
the server intentionally refuses to decrypt.

Thus, we have a protocol with one-sided error – if F (x) = 0, the server can
never cheat, but if F (x) = 1, he can.

A verifiable computation protocol with no error can be obtained from this
by two independent repetitions of the above protocol – once for the function F
and once for its complement F̄ . A verifiable computation protocol for functions
with many output bits can be obtained by repeating the one-bit protocol above
for each of the output bits. Intuitively, since the preprocessing phase does not
create any secret state, the protocol provides public verifiable computation. Fur-
thermore, the verifier performs as much computation as is required to compute
two ABE encryptions.

Perspective: Signatures on Computation. Just as digital signatures authenticate
messages, the server’s proof in a non-interactive verifiable computation protocol
can be viewed as a “signature on computation”, namely a way to authenti-
cate that the computation was performed correctly. Moni Naor has observed
that identity-based encryption schemes give us digital signature schemes, rather
directly [7]. Given our perspective, one way to view our result is as a logical
extension of Naor’s observation to say that just as IBE schemes give us digital
signatures, ABE schemes give us signatures on computation or, in other words,
non-interactive verifiable computation schemes.

Instantiations. Instantiating our protocol with existing ABE schemes creates
challenges with regard to functionality, security, and efficiency. We discuss this
issues briefly below and defer a detailed discussion to Section 3.2.

As mentioned earlier, existing ABE schemes only support span programs or
polynomial-size Boolean formulas [15, 19, 21], which restricts us to this class of
functions as well. In particular, the more recent ABE schemes, such as that
of Ostrovsky, Sahai, and Waters [21], support the class of all (not necessarily
monotone) formulas.

Another challenge is that most ABE schemes [15, 21, 25] are proven secure
only in a selective-security model. As a result, instantiating the protocol above
with such a scheme would inherit this limitation. If we instantiate our protocol
with the scheme of Ostrovsky, Sahai, and Waters [21], we achieve a VC pro-
tocol for the class of polynomial-size Boolean formulas, which has delegation
and verification algorithms whose combined complexity is more efficient than

the function evaluation. Essentially, the complexity gain arises because the del-
egation algorithm is essentially running the ABE encryption algorithm whose
complexity is a fixed polynomial in |x|, the size of the input to the function, as
well as the security parameter. The verification algorithm is very simple, involv-
ing just a one-way function computation. The resulting verifiable computation
protocol is selectively secure.

Unfortunately, removing the “selective restriction” seems to be a challenge
with existing ABE schemes. Although there have recently been constructions of
adaptively secure ABE schemes, starting from the work of Lewko et al. [19], all
these schemes work for bounded polynomial-size Boolean formulas. The up-shot
is that the amount of work required to generate an encryption is proportional to
the size of the formula, which makes the delegation as expensive as the function
evaluation (and thus, completely useless)!

Much work in the ABE literature has been devoted to constructing ABE
schemes that are secure against collusion. Namely, the requirement is that even
if an adversary obtains secret keys for polynomially many functions, the scheme
still retains security (in a precise sense). However, for our constructions, we re-
quire much less from the ABE scheme! In particular, we only need the scheme
to be secure against adversaries that obtain the secret key for a single func-
tion. This points to instantiating our general construction with a one-key se-
cure ABE scheme from the work of Sahai and Seyalioglu [24] for the class of
bounded polynomial-size circuits. Unfortunately, because their scheme only sup-
ports bounded-size circuits, it suffers from the same limitation as that of Lewko
et al. [19]. However, we can still use their construction to obtain a VC protocol
where the parallel complexity of the verifier is significantly less than that required
to compute the function.

We also note that when we instantiate our VC protocol with existing ABE
schemes, the computation done by both the client and the worker is significantly
cheaper than in any previous VC scheme, since we avoid the overhead of PCPs
and FHE. However, existing ABE schemes restrict us to either formulas or a less
attractive notion of parallel efficiency. It remains to be seen whether this effi-
ciency can be retained while expanding the security offered and the class of func-
tions supported. Fortunately, given the amount of interest in and effort devoted
to new ABE schemes, we expect further improvements in both the efficiency and
security of these schemes. Our result demonstrates that such improvements, as
well as improvements in the classes of functions supported, will benefit verifiable
computation as well.

1.2 Other Results

Multi-Function Verifiability and ABE with Outsourcing. The definition of veri-
fiable computation focuses on the evaluation of a single function over multiple
inputs. In many constructions [4, 10, 11] the evaluated function is embedded in
the parameters for the VC scheme that are used for the input processing for the
computation. Thus evaluations of multiple functions on the same input would
require repeated invocation for the ProbGen algorithm. A notable difference are

approaches based on PCPs [5, 13, 14] that may require a single offline stage for
input processing and then allow multiple function evaluations. However, such
approaches inherently require verification work proportional to the depth of the
circuit, which is at least logarithmic in the size of the function and for some
functions can be also proportional to the size of the circuit. Further these ap-
proaches employ either fully homomorphic encryption or private information
retrieval schemes to achieve their security properties.

Using the recently introduced definition of ABE with outsourcing [16], we
achieve a multi-function verifiable computation scheme that decouples the eval-
uated function from the parameters of the scheme necessary for the input prepa-
ration. This VC scheme provides separate algorithms for input and function
preparation, which subsequently can be combined for multiple evaluations. When
instantiated with an existing ABE scheme with outsourcing [16], the verification
algorithm for the scheme is very efficient: its complexity is linear in the output
size but independent of the input length and the complexity of the computation.
Multi-function VC provides significant efficiency improvements whenever mul-
tiple functions are evaluated on the same input, since a traditional VC scheme
would need to invoke ProbGen for every function.

Attribute-Based Encryption from Verifiable Computation. We also consider the
opposite direction of the ABE-VC relation: can we construct an ABE scheme
from a VC scheme? We are able to show how to construct an ABE scheme from
a very special class of VC schemes with a particular structure. Unfortunately,
this does not seem to result in any new ABE constructions.

Due to space constraints, we defer the details to the full version of this paper.

2 Definitions

2.1 Public Verifiable Computation

We propose two new properties of verifiable computation schemes, namely

– Public Delegation, which allows arbitrary parties to submit inputs for dele-
gation, and

– Public Verifiability, which allows arbitrary parties (and not just the delega-
tor) to verify the correctness of the results returned by the worker.

Together, a verifiable computation protocol that satisfies both properties is
called a public verifiable computation protocol. The following definition captures
these two properties.

Definition 1 (Public Verifiable Computation). A public verifiable compu-
tation scheme (with preprocessing) VC is a four-tuple of polynomial-time algo-
rithms (KeyGen,ProbGen,Compute,Verify) which work as follows:

– (PKF , EKF) ← KeyGen(F, 1λ): The randomized key generation algorithm
takes as input a security parameter λ and the function F , and outputs a
public key PKF and an evaluation key EKF .

– (σx, V Kx) ← ProbGen(PKF , x): The randomized problem generation algo-
rithm uses the public key PKF to encode an input x into public values σx

and V Kx. The value σx is given to the worker to compute with, whereas
V Kx is made public, and later used for verification.

– σout ← Compute(EKF , σx): The deterministic worker algorithm uses the
evaluation key EKF together with the value σx to compute a value σout.

– y ← Verify(V Kx, σout): The deterministic verification algorithm uses the ver-
ification key V Kx and the worker’s output σout to compute a string y ∈
{0, 1}∗ ∪ {⊥}. Here, the special symbol ⊥ signifies that the verification algo-
rithm rejects the worker’s answer σout.

A number of remarks on the definition are in order.
First, in some instantiations, the size of the public key (but not the evaluation

key) will be independent of the function F , whereas in others, both the public
key and the evaluation key will be as long as the description length of F . For
full generality, we refrain from making the length of the public key a part of the
syntactic requirement of a verifiable computation protocol, and instead rely on
the definition of efficiency to enforce this (see Definition 4 below).

Secondly, our definition can be viewed as a “public-key version” of the ear-
lier VC definition [10, 11]. In the earlier definition, KeyGen produces a secret
key that was used as an input to ProbGen and, in turn, ProbGen produces a
secret verification value needed for Verify (neither of these can be shared with
the worker without losing security). Indeed, the “secret-key” nature of these
definitions means that the schemes could be attacked given just oracle access
to the verification function (and indeed, there are concrete attacks of this na-
ture against the schemes in [2, 10, 11]). Our definition, in contrast, is stronger
in that it allows any party holding the public key PKF to delegate and verify
computation of the function F on any input x, even if the party who originally
ran ProbGen is no longer online. This, in turn, automatically protects against
attacks that use the verification oracle.

Definition 2 (Correctness). A verifiable computation protocol VC is correct
for a class of functions F if for any F ∈ F , any pair of keys (PKF , EKF) ←
KeyGen(F, 1λ), any x ∈ Domain(F), any (σx, V Kx) ← ProbGen(PKF , x), and
any σout ← Compute(EKF , σx), the verification algorithm Verify on input V Kx

and σout outputs y = F (x).

Providing public delegation and verification introduces a new threat model in
which the worker knows both the public key PKF (which allows him to delegate
computations) and the verification key V Kx for the challenge input x (which
allows him to check whether his answers will pass the verification).

Definition 3 (Security). Let VC be a public verifiable computation scheme
for a class of functions F , and let A = (A1, A2) be any pair of probabilistic

polynomial time machines. Consider the experiment ExpPubV erif
A [VC, F, λ] for

any F ∈ F below:

Experiment ExpPubV erif
A [VC, F, λ]

(PKF , EKF)← KeyGen(F, 1λ);
(x∗, state)← A1(PKF , EKF);

(σx∗ , V Kx∗)← ProbGen(PKF , x
∗);

σ∗

out
← A2(state, σx∗ , V Kx∗);

y∗ ← Verify(V Kx∗ , σ∗

out
)

If y∗ 6=⊥ and y∗ 6= F (x∗), output ‘1’, else output ‘0’;

A public verifiable computation scheme VC is secure for a class of functions F ,
if for every function F ∈ F and every p.p.t. adversary A = (A1, A2):

Pr[ExpPubV erif
A [VC, F, λ] = 1] ≤ negl(λ). (1)

where negl denotes a negligible function of its input.

Later, we will also briefly consider a weaker notion of “selective security” which
requires the adversary to declare the challenge input x∗ before it sees PKF .

For verifiable outsourcing of a function to make sense, the client must use
“less resources” than what is required to compute the function. “Resources” here
could mean the running time, the randomness complexity, space, or the depth
of the computation. We retain the earlier efficiency requirements [11] – namely,
we require the complexity of ProbGen and Verify combined to be less than that
of F . However, for KeyGen, we ask only that the complexity be poly(|F |). Thus,
we employ an amortized complexity model, in which the client invests a larger
amount of computational work in an “offline” phase in order to obtain efficiency
during the “online” phase. We provide two strong definitions of efficiency – one
that talks about the running time and a second that talks about computation
depth.

Definition 4 (Efficiency). A verifiable computation protocol VC is efficient for
a class of functions F that act on n = n(λ) bits if there is a polynomial p s.t.: 2

– the running time of ProbGen and Verify together is at most p(n, λ), the rest
of the algorithms are probabilistic polynomial-time, and

– there exists a function F ∈ F whose running time is ω(p(n, λ)). 3

In a similar vein, VC is depth-efficient if the computation depth of ProbGen and
Verify combined (written as Boolean circuits) is at most p(n, λ), whereas there is
a function F ∈ F whose computation depth is ω(p(n, λ)).

We now define the notion of unbounded circuit families which will be helpful
in quantifying the efficiency of our verifiable computation protocols.

Definition 5. We define a family of circuits {Cn}n∈N to be unbounded if for
every polynomial p and all but finitely many n, there is a circuit C ∈ Cn of size
at least p(n). We call the family depth-unbounded if for every polynomial p and
all but finitely many n, there is a circuit C ∈ Cn of depth at least p(n).

2 To be completely precise, one has to talk about a family F = {Fn}n∈N parameterized
by the input length n. We simply speak of F to implicitly mean Fn whenever there
is no cause for confusion.

3 This condition is to rule out trivial protocols, e.g., for a class of functions that can
be computed in time less than p(λ).

2.2 Key-Policy Attribute-Based Encryption

Introduced by Goyal, Pandey, Sahai and Waters [15], Key-Policy Attribute-
Based Encryption (KP-ABE) is a special type of encryption scheme where a
Boolean function F is associated with each user’s key, and a set of attributes
(denoted as a string x ∈ {0, 1}n) with each ciphertext. A key SKF for a function
F will decrypt a ciphertext corresponding to attributes x if and only if F (x) = 1.
KP-ABE can be thought of as a special-case of predicate encryption [17] or func-
tional encryption [8], although we note that a KP-ABE ciphertext need not hide
the associated policy or attributes. We will refer to KP-ABE simply as ABE
from now on. We state the formal definition below, adapted from [15,19].

Definition 6 (Attribute-Based Encryption). An attribute-based encryption
scheme ABE for a class of functions F = {Fn}n∈N (where functions in Fn take
n bits as input) is a tuple of algorithms (Setup,Enc,KeyGen,Dec) that work as
follows:

– (PK,MSK) ← Setup(1λ, 1n) : Given a security parameter λ and an index
n for the family Fn, output a public key PK and a master secret key MSK.

– C ← Enc(PK,M, x): Given a public key PK, a message M in the message
space MsgSp, and attributes x ∈ {0, 1}n, output a ciphertext C.

– SKF ← KeyGen(MSK,F): Given a function F and the master secret key
MSK, output a decryption key SKF associated with F .

– µ← Dec(SKF , C): Given a ciphertext C ∈ Enc(PK,M, x) and a secret key
SKF for function F , output a message µ ∈ MsgSp or µ =⊥.

Definition 7 (ABE Correctness). Correctness of the ABE scheme requires
that for all (PK,MSK) ← Setup(1λ, 1n), all M ∈ MsgSp, x ∈ {0, 1}n, all
ciphertexts C ← Enc(PK,M, x) and all secret keys SKF ← KeyGen(MSK,F),
the decryption algorithm Dec(SKF , C) outputs M if F (x) = 1 and ⊥ if F (x) =
0. (This definition could be relaxed to hold with high probability over the keys
(PK,MSK), which suffices for our purposes).

We define a natural, yet relaxed, notion of security for ABE schemes which
we refer to as “one-key security”. Roughly speaking, we require that adversaries
who obtain a single secret key SKF for any function F of their choice and
a ciphertext C ← Enc(PK,M, x) associated with any attributes x such that
F (x) = 0 should not be able to violate the semantic security of C. We note
that much work in the ABE literature has been devoted to achieving a strong
form of security against collusion, where the adversary obtains not just a single
secret key, but polynomially many of them for functions of its choice. We do not
require such a strong notion for our purposes.

Definition 8 (One-Key Security for ABE). Let ABE be a key-policy attribute-
based encryption scheme for a class of functions F = {Fn}n∈N, and let A =
(A0, A1, A2) be a three-tuple of probabilistic polynomial-time machines. We de-
fine security via the following experiment.

Experiment ExpABE
A [ABE , n, λ]

(PK,MSK)← Setup(1λ, 1n);
(F, state1)← A0(PK);

SKF ← KeyGen(MSK,F);
(M0,M1, x

∗, state2)← A1(state1, SKF);
b← {0, 1}; C ← Enc(PK,Mb, x

∗);

b̂← A2(state2, C);

If b = b̂, output ‘1’, else ‘0’;

The experiment is valid if M0,M1 ∈ MsgSp and |M0| = |M1|. We define the
advantage of the adversary in all valid experiments as

AdvA(ABE , n, λ) = |Pr[b = b′]− 1/2|.

We say that ABE is a one-key secure ABE scheme if AdvA(ABE , n, λ) ≤ negl(λ).

3 Verifiable Computation from ABE

In Section 3.1, we present our main construction and proof, while Section 3.2
contains the various instantiations of our main construction and the concrete
verifiable computation protocols that we obtain as a result.

3.1 Main Construction

Theorem 2. Let F be a class of Boolean functions (implemented by a family
of circuits C), and let F = {F | F ∈ F} where F̄ denotes the complement of the
function F . Let ABE be an attribute-based encryption scheme that is one-key
secure (see Definition 8) for F ∪ F , and let g be any one-way function.

Then, there is a verifiable computation protocol VC (secure under Defini-
tion 3) for F . If the circuit family C is unbounded (resp. depth-unbounded), then
the protocol VC is efficient (resp. depth-efficient) in the sense of Definition 4.

We first present our verifiable computation protocol.

Let ABE = (ABE.Setup,ABE.KeyGen,ABE.Enc,ABE.Dec) be an attribute-
based encryption scheme for the class of functions F ∪ F . Then, the verifiable
computation protocol VC = (VC.KeyGen,ProbGen,Compute,Verify) for F works
as follows.4 We assume, without loss of generality, that the message spaceM of
the ABE scheme has size 2λ.

Key Generation VC.KeyGen: The client, on input a function F ∈ F with in-
put length n, runs the ABE setup algorithm twice, to generate two indepen-
dent key-pairs

(msk0,mpk0)← ABE.Setup(1n, 1λ) and (msk1,mpk1)← ABE.Setup(1n, 1λ)

4 We denote the VC key generation algorithm as VC.KeyGen in order to avoid confusion
with the ABE key generation algorithm.

Generate two secret keys skF ← ABE.KeyGen(msk0, F) (corresponding to F)
and skF ← ABE.KeyGen(msk1, F) (corresponding to F).

Output the pair (skF , skF) as the evaluation key and (mpk0,mpk1) as the
public key.

Delegation ProbGen: The client, on input x and the public key PKF , samples

two uniformly random messages m0,m1
R
←M, computes the ciphertexts

CT0 ← ABE.Enc(mpk0,m0) and CT1 ← ABE.Enc(mpk1,m1)

Output the message σx = (CT0,CT1) (to be sent to the server), and the
verification key V Kx = (g(m0), g(m1)), where g is the one-way function.

Computation Compute: The server, on receiving the ciphertexts (CT0,CT1)
and the evaluation key EKF = (skF , skF) computes

µ0 ← ABE.Dec(skF ,CT0) and µ1 ← ABE.Dec(skF ,CT1)

and send σout = (µ0, µ1) to the client.

Verification Verify: On receiving V Kx = (v0, v1) and σout = (µ0, µ1), output
5

y =

0 if g(µ0) = v0 and g(µ1) 6= v1
1 if g(µ1) = v1 and g(µ0) 6= v0
⊥ otherwise

Remark 1. Whereas our main construction requires only an ABE scheme, using
an attribute-hiding ABE scheme (a notion often associated with predicate en-
cryption schemes [8, 17]) would also give us input privacy, since we encode the
function’s input in the attribute corresponding to a ciphertext.

Remark 2. To obtain a VC protocol for functions with multi-bit output, we re-
peat this protocol (including the key generation algorithm) independently for
every output bit. To achieve better efficiency, if the ABE scheme supports at-
tribute hiding for a class of functions that includes message authentication codes
(MAC), then we can define F ′(x) = MACK(F (x)) and verify F ′ instead, simi-
lar to the constructions suggested by Applebaum, Ishai, and Kushilevitz [2], and
Barbosa and Farshim [3].

Remark 3. The construction above requires the verifier to trust the party that
ran ProbGen. This can be remedied by having ProbGen produce a non-interactive
zero-knowledge proof of correctness [6] of the verification key V Kx. While the-
oretically efficient, the practicality of this approach depends on the particular
ABE scheme and the NP language in question.

Proof of Correctness: The correctness of the VC scheme above follows from:

– If F (x) = 0, then F (x) = 1 and thus, the algorithm Compute outputs µ0 =
m0 and µ1 =⊥. The algorithm Verify outputs y = 0 since g(µ0) = g(m0) but
g(µ1) =⊥6= g(m1), as expected.

5 As a convention, we assume that g(⊥) =⊥.

– Similarly, if F (x) = 1, then F (x) = 0 and thus, the algorithm Compute

outputs µ1 = m1 and µ0 =⊥. The algorithm Verify outputs y = 1 since
g(µ1) = g(m1) but g(µ0) =⊥6= g(m0), as expected.

We now consider the relation between the efficiency of the algorithms for the
underlying ABE scheme and the efficiency for the resulting VC scheme. Since the
algorithms Compute and Verify can potentially be executed by different parties,
we consider their efficiency separately. It is easily seen that:

– The running time of the VC key generation algorithm VC.KeyGen is twice
that of ABE.Setup plus ABE.KeyGen.

– The running time of Compute is twice that of ABE.Dec.

– The running time of ProbGen is twice that of ABE.Enc, and the running time
of Verify is the same as that of computing the one-way function.

In short, the combined running times of ProbGen and Verify is polynomial in
their input lengths, namely p(n, λ), where p is a fixed polynomial, n is the length
of the input to the functions, and λ is the security parameter. Assuming that F is
an unbounded class of functions (according to Definition 5), it contains functions
that take longer than p(n, λ) to compute, and thus our VC scheme is efficient in
the sense of Definition 4. (Similar considerations apply to depth-efficiency).

We now turn to showing the security of the VC scheme under Definition 3. We
show that an attacker against the VC protocol must either break the security of
the one-way function g or the one-key security of the ABE scheme.

Proof of Security: Let A = (A1, A2) be an adversary against the VC scheme
for a function F ∈ F . We construct an adversary B = (B0, B1, B2) that breaks
the one-key security of the ABE, working as follows. (For notational simplicity,
given a function F , we let F0 = F , and F1 = F .)

1. B0 first tosses a coin to obtain a bit b ∈ {0, 1}. (Informally, the bit b corre-
sponds to B’s guess of whether the adversary A will cheat by producing an
input x such that F (x) = 1 or F (x) = 0, respectively.)

B0 outputs the function Fb, as well as the bit b as part of the state.

2. B1 obtains the master public key mpk of the ABE scheme and the secret key
skFb

for the function Fb. Set mpkb = mpk.

Run the ABE setup and key generation algorithms to generate a master
public key mpk′ and a secret key skF1−b

for the function F1−b under mpk′.
Set mpk1−b = mpk′.

Let (mpk0,mpk1) be the public key for the VC scheme and (skF0
, skF1

) be
the evaluation key. Run the algorithm A1 on input the public and evaluation
keys and obtain a challenge input x∗ as a result.

If F (x∗) = b, output a uniformly random bit and stop. Otherwise, B1 now
chooses two uniformly randommessagesM (b), ρ←M and outputs (M (b), ρ, x∗)
together with its internal state.

3. B2 obtains a ciphertext C(b) (which is an encryption of either M (b) or ρ
under the public key mpkb and attribute x∗).

B2 constructs an encryption C(1−b) of a uniformly random message M (1−b)

under the public key mpk1−b and attribute x∗.

Run A2 on input σx∗ = (C(0), C(1)) and V Kx∗ = (g(M (0)), g(M (1)), where
g is the one-way function. As a result, A2 returns σout.

If Verify(V Kx∗ , σout) = b, output 0 and stop.

We now claim the algorithms (B0, B1, B2) described above distinguish be-
tween the encryption of M (b) and the encryption of ρ in the ABE security game
with non-negligible advantage.

We consider two cases.

Case 1: C(b) is an encryption of M (b). In this case, B presents to A a perfect
view of the execution of the VC protocol, meaning that A will cheat with
probability 1/p(λ) for some polynomial p.

Cheating means one of two things. Either F (x∗) = b and the adversary
produced an inverse of g(M (1−b)) (causing the Verify algorithm to output
1 − b), or F (x∗) = 1 − b and the adversary produced an inverse of g(M (b))
(causing the Verify algorithm to output b).

In the former case, B outputs a uniformly random bit, and in the latter case,
it outputs 0, the correct guess as to which message was encrypted. Thus, the
overall probability that B outputs 0 is 1/2 + 1/p(λ).

Case 2: C(b) is an encryption of the message ρ. In this case, as above, B out-
puts a random bit if F (x∗) = b. Otherwise, the adversary A has to pro-
duce σout that makes the verifier output b, namely a string σout such that
g(σout) = g(M (b)), while given only g(M (b)) (and some other information
that is independent of M (b)).

This amounts to inverting the one-way function which A can only do with
a negligible probability. (Formally, if the adversary wins in this game with
non-negligible probability, then we can construct an inverter for the one-way
function g).

The bottom line is that the adversary outputs 0 in this case with probability
1/2 + negl(λ).

This shows that B breaks the one-key security of the ABE scheme with a
non-negligible advantage 1/p(λ)− negl(λ).

Remark 4. If we employ an ABE scheme that is selectively secure, then the
construction and proof above still go through if we adopt a notion of “selectively-
secure” verifiable computation in which the VC adversary commits in advance
to the input on which he plans to cheat.

3.2 Instantiations

We describe two different instantiations of our main construction.

Efficient Selectively Secure VC Scheme for Formulas. The first instantiation uses
the (selectively secure) ABE scheme of Ostrovsky, Sahai and Waters [21] for the

class of (not necessarily monotone) polynomial-size Boolean formulas (which
itself is an adaptation of the scheme of Goyal et al. [15] which only supports
monotone formulas6). This results in a selectively secure public VC scheme for
the same class of functions, by invoking Theorem 2. Recall that selective security
in the context of verifiable computation means that the adversary has to declare
the input on which she cheats at the outset, before she sees the public key and
the evaluation key.

The efficiency of the resulting VC scheme for Boolean formulas is as follows:
for a boolean formula C, KeyGen runs in time |C| ·poly(λ); ProbGen runs in time
|x| ·poly(λ), where |x| is the length of the input to the formula; Compute runs in
time |C| · poly(λ); and Verify runs in time O(λ). In other words, the total work
for delegation and verification is |x| · poly(λ) which is, in general, more efficient
than the work required to evaluate the circuit C. Thus, the scheme is efficient
in the sense of Definition 4. The drawback of this instantiation is that it is only
selectively secure.

Recently, there have been constructions of fully secure ABE for formulas
starting from the work of Lewko et al. [19] which, one might hope, leads to a
fully secure VC scheme. Unfortunately, all known constructions of fully secure
ABE work for bounded classes of functions. For example, in the construction of
Lewko et al., once a bound B is fixed, one can design the parameters of the
scheme so that it works for any formula of size at most B. Furthermore, implicit
in the work of Sahai and Seyalioglu [24] is a construction of an (attribute-hiding,
one-key secure) ABE scheme for bounded polynomial-size circuits (as opposed to
formulas).

These constructions, unfortunately, do not give us efficient VC protocols.
The reason is simply this: the encryption algorithm in these schemes run in time
polynomial (certainly, at least linear) in B. Translated to a VC protocol using
Theorem 2, this results in the worker running for time Ω(B) which is useless,
since given that much time, he could have computed any circuit of size at most
B by himself!

Essentially, the VC protocol that emerges from Theorem 2 is non-trivial if
the encryption algorithm of the ABE scheme for the function family F is (in
general) more efficient than computing functions in F .

Depth-Efficient Adaptively Secure VC Scheme for Arbitrary Functions. Although
the (attribute-hiding, one-key secure) ABE construction of Sahai and Seyali-
oglu [24] mentioned above does not give us an efficient VC scheme, it does result
in a depth-efficient VC scheme for the class of polynomial-size circuits. Roughly
speaking, the construction is based on Yao’s Garbled Circuits, and involves an
ABE encryption algorithm that constructs a garbled circuit for the function F

6 Goyal et al.’s scheme [15] can also be made to work if we use DeMorgan’s law to
transform f and f̄ into equivalent monotone formulas in which some variables may
be negated. We then double the number of variables, so that for each variable v, we
have one variable representing v and one representing its negation v̄. Given an input
x, we choose an attribute such that all of these variables are set correctly.

in question. Even though this computation takes at least as much time as com-
puting the circuit for F , the key observation is that it can be done in parallel.
In short, going through the VC construction in Theorem 2, one can see that
both the Compute and Verify algorithms can be implemented in constant depth
(for appropriate encryption schemes and one-way functions, e.g., the ones that
result from the AIK transformation [1]), which is much faster in parallel than
computing F , in general.

Interestingly, the VC protocol thus derived is very similar to the protocol of
Applebaum, Ishai and Kushilevitz [2]. We refer the reader to [2, 24] for details.

We believe that this scheme also illuminates an interesting point: unlike other
ABE schemes [15,19,21], this ABE scheme is only one-key secure, which suffices
for verifiable computation. This relaxation may point the way towards an ABE-
based VC construction that achieves generality, efficiency, and adaptive security.

4 Conclusions and Future Work

In this work, we introduced new notions for verifiable computation: public dele-
gatability and public verifiability. We demonstrated a somewhat surprising con-
struction of a public verifiable computation protocol from any (one-key secure)
attribute-based encryption (ABE) scheme.

Our work leaves open several interesting problems. Perhaps the main open
question is the design of one-key secure ABE schemes for general, unbounded
classes of functions. Is it possible to come up with such a scheme for the class
of all polynomial-size circuits (as opposed to circuits with an a-priori bound on
the size, as in [24])? Given the enormous research effort in the ABE literature
devoted to achieving the strong notion of security against collusion, our work
points out that achieving even security against the compromise of a single key
is a rather interesting question to investigate!

Acknowledgements. We wish to thank Seny Kamara and David Molnar for joint
work in the early stages of this project, and Melissa Chase for her useful com-
ments on this work. Our gratitude also goes to Daniel Wichs and the anonymous
TCC reviewers whose comments helped improve the exposition of this paper.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In Proceedings
of the IEEE Symposium on Foundations of Computer Science (FOCS), 2004.

2. B. Applebaum, Y. Ishai, and E. Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In Proceedings of the International Colloquium
on Automata, Languages and Programming (ICALP), 2010.

3. M. Barbosa and P. Farshim. Delegatable homomorphic encryption with applica-
tions to secure outsourcing of computation. Cryptology ePrint Archive, Report
2011/215, 2011.

4. S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation over
large datasets. In Proceedings of CRYPTO, 2011.

5. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again.
Cryptology ePrint Archive, Report 2011/443, 2011.

6. M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its ap-
plications (extended abstract). In Proceedings of the ACM Symposium on Theory
of Computing (STOC), 1988.

7. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586–615, 2003.

8. D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Proceedings of the Theory of Cryptography Conference (TCC), 2011.

9. R. Canetti, B. Riva, and G. N. Rothblum. Two 1-round protocols for delegation
of computation. Cryptology ePrint Archive, Report 2011/518, 2011.

10. K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of computation using
fully homomorphic encryption. In Proceedings of CRYPTO, 2010.

11. R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computation:
Outsourcing computation to untrusted workers. In Proceedings of CRYPTO, 2010.

12. C. Gentry and D. Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), 2011.

13. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: inter-
active proofs for muggles. In Proceedings of the ACM Symposium on the Theory
of Computing (STOC), 2008.

14. S. Goldwasser, H. Lin, and A. Rubinstein. Delegation of computation without
rejection problem from designated verifier CS-proofs. Cryptology ePrint Archive,
Report 2011/456, 2011.

15. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-
grained access control of encrypted data. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), 2006.

16. M. Green, S. Hohenberger, and B. Waters. Outsourcing the decryption of ABE
ciphertexts. In Proceedings of the USENIX Security Symposium, 2011.

17. J. Katz, A. Sahai, and B. Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Proceedings of EuroCrypt, 2008.

18. J. Kilian. Improved efficient arguments (preliminary version). In Proceedings of
CRYPTO, 1995.

19. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters. Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In Proceedings of EuroCrypt, 2010.

20. S. Micali. CS proofs (extended abstract). In Proceedings of the IEEE Symposium
on Foundations of Computer Science (FOCS), 1994.

21. R. Ostrovsky, A. Sahai, and B. Waters. Attribute-based encryption with non-
monotonic access structures. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2007.

22. C. Papamanthou, E. Shi, and R. Tamassia. Publicly verifiable delegation of com-
putation. Cryptology ePrint Archive, Report 2011/587, 2011.

23. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of
operations on dynamic sets. In Proceedings of CRYPTO, 2011.

24. A. Sahai and H. Seyalioglu. Worry-free encryption: functional encryption with pub-
lic keys. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), 2010.

25. A. Sahai and B. Waters. Fuzzy identity-based encryption. In Proceedings of Eu-
roCrypt, 2005.

