
FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 103

Pinocchio: Nearly Practical
Verifiable Computation
By Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova

Abstract
To instill greater confidence in computations outsourced to
the cloud, clients should be able to verify the correctness of
the results returned. To this end, we introduce Pinocchio,
a built system for efficiently verifying general computa-
tions while relying only on cryptographic assumptions.
With Pinocchio, the client creates a public evaluation key to
describe her computation; this setup is proportional to eval-
uating the computation once. The worker then evaluates
the computation on a particular input and uses the evalua-
tion key to produce a proof of correctness. The proof is only
288 bytes, regardless of the computation performed or the
size of the IO. Anyone can check the proof using a public
verification key.

Crucially, our evaluation on seven applications demon-
strates that Pinocchio is efficient in practice too. Pinocchio’s
verification time is a fixed 10 ms plus 0.4–15 µs per IO
element: 5–7 orders of magnitude less than previous work23;
indeed Pinocchio is the first general-purpose system to
demonstrate verification cheaper than native execution (for
some apps). The worker’s proof effort is still expensive, but
Pinocchio reduces it by 19×–60× relative to prior work. As an
additional feature, Pinocchio allows the worker to include
private inputs in the computation and prove that she per-
formed the computation correctly without revealing any
information about the private inputs to the client. Finally,
to aid development, Pinocchio provides an end-to-end tool-
chain that compiles a subset of C into programs that imple-
ment the verifiable computation protocol.

1. INTRODUCTION
Since computational power is often asymmetric (particu-
larly for mobile devices), a relatively weak client may wish to
outsource computation to one or more powerful workers.
For example, a scientist might want to run a protein folding
simulation in the cloud or make use of volunteer distrib-
uted computing. In such settings, the client should be able
to verify the results returned, to guard against malicious or
malfunctioning workers. Even from a legitimate worker’s
perspective, verifiable results are beneficial, since they are
likely to command a higher price. They also allow the worker
to shed liability: any undesired outputs are provably the
result of data the client supplied.

Considerable systems and theory research has looked at
the problem of verifying computation (Section 6). However,
most of this work has either been function specific, relied
on assumptions we prefer to avoid, or simply failed to pass
basic practicality requirements. Function specific solu-
tions13, 24 are often efficient, but only for a narrow class

of computations. More general solutions often rely on
assumptions that may not apply. For example, systems
based on replication5 assume uncorrelated failures, while
those based on Trusted Computing19 or other secure hard-
ware16 assume that physical protections cannot be defeated.
Finally, the theory community has produced a number of
beautiful, general-purpose protocols1, 9, 12, 15 that offer com-
pelling asymptotics. In practice however, because many rely
on complex Probabilistically Checkable Proofs (PCPs)1 or
fully homomorphic encryption (FHE),11 the performance
is currently unacceptable—verifying small instances would
take millions of years (Section 5.1). Recent work7, 22, 23 has
improved these protocols considerably, but efficiency is still
problematic, and the protocols lack features like public
verification. Without public verification, anyone who can
verify a proof can also produce a cheating proof.

In contrast, Pinocchio is a concrete system for efficiently
verifying general computations while making only crypto-
graphic assumptions. In particular, Pinocchio supports pub-
lic verifiable computation (VC),9, 20 which allows an untrusted
worker to produce signatures of computation. Initially, the
client chooses a function and generates a public evaluation
key and a (small) public verification key. Given the evalua-
tion key, a worker verifiably computes the function on an
input and produces a proof (or signature) to accompany the
result. Anyone (not just the client) can then use the verifica-
tion key to check the correctness of the worker’s result for
the specific input used.

As an additional feature, Pinocchio supports zero-
knowledge VC, in which the worker convinces the client
that it knows one or more private inputs with a particular
property, without revealing any information about the input.
For example, Pantry4 uses Pinocchio to compute Map-
Reduce jobs (e.g., image matching) over private data (e.g.,
DMV photos) held by a server. Recent work also employs
Pinocchio to anonymize Bitcoin transactions by proving,
in zero knowledge, that the transactions do not create or
destroy money.2, 8

Pinocchio’s asymptotics are excellent: cryptographic oper-
ations required for key setup and proof generation are lin-
ear in the size of the original computation, and verification
requires time linear in the size of the inputs and outputs.
Even more surprising, Pinocchio’s proof is constant sized,
regardless of the computation performed. Crucially, our

The original version of this paper was published in the
Proceedings of the 2013 IEEE Symposium on Security and
Privacy, 238–252.

DOI:10.1145/2856449

http://doi.acm.org/10.1145/2856449

research highlights

104 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

evaluation (Section 5) demonstrates that these asymptotics
come with small constants.

Compared with previous work,23 Pinocchio improves
verification time by 5–7 orders of magnitude and requires
less than 10 ms for applications with reasonably sized IO,
enabling Pinocchio to beat native C execution for some
apps. We also improve the worker’s proof efforts by 19×–60×
relative to prior work. The resulting proof is tiny, 288 bytes
(only slightly more than an RSA-2048 signature), regardless
of the computation. Making a proof zero-knowledge is also
cheap, adding negligible overhead (213 µs to key generation
and 0.1% to proof generation).

While these improvements are promising, additional
progress is needed before the worker’s proof overhead
reaches true practicality. However, even now, this overhead
may be acceptable in scenarios that require high assur-
ance, or that need the zero-knowledge properties Pinocchio
supports.

To achieve efficient VC, Pinocchio combines quadratic
programs, a computational model introduced by Gennaro
et al.,10 with a series of theoretical refinements and systems
engineering to produce an end-to-end toolchain for verify-
ing computations. Specifically, via an improved protocol and
proof technique relative to Gennaro et al., we slash the cost
of key generation by 61%, and the cost of producing a proof
by 64%. From a developer’s perspective, Pinocchio provides
a compiler that transforms C code into a circuit representa-
tion (we support both Boolean and arithmetic), converts the
circuit into a quadratic program, and then generates pro-
grams to execute the cryptographic protocol (Figure 1).

Pinocchio’s end-to-end toolchain allows us to implement
real applications that benefit from verification. In particular,
we implement two forms of matrix multiplication, multivar-
iate polynomial evaluation, image matching, all-pairs short-
est paths, a lattice-gas scientific simulator, and SHA-1. We
find (Section 5) that the first three apps translate efficiently
into arithmetic circuits, and hence Pinocchio can verify
their results faster than native execution of the same pro-
gram. The latter four apps translate less efficiently, due to
their reliance on inequality comparisons and bitwise opera-
tions, and yet they may still be useful for zero-knowledge
applications.

In summary, this paper contributes:

1. An end-to-end system for efficiently verifying compu-
tation performed by one or more untrusted workers.

This includes a compiler that converts C code into a
format suitable for verification, as well as a suite of
tools for running the actual protocol.

2. Theoretical and systems-level improvements that
bring performance down by 5–7 orders of magnitude
relative to prior work,23 and hence into the realm of
plausibility.

3. An evaluation on seven real C apps, showing verifica-
tion faster than 32-bit native integer execution for
some apps.

2. BACKGROUND
2.1. Verifiable computation (VC)
A public VC scheme allows a computationally limited cli-
ent to outsource to a worker the evaluation of a function
F on input u. The client can then verify the correctness of
the returned result F(u) while performing less work than
required for the function evaluation.

More formally, we define public VC as follows, generalizing
previous definitions.9, 10, 20

Definition 1 (Public Verifiable Computation). A public
verifiable computation scheme consists of a set of three
polynomial-time algorithms (KeyGen, Compute, Verify):

• (EKF, VKF) ← KeyGen(F, 1l): The randomized key genera-
tion algorithm takes the function F to be outsourced and
security parameter l; it outputs a public evaluation key
EKF, and a public verification key VKF.

• (y, py) ← Compute(EKF, u): The deterministic worker algo-
rithm uses the public evaluation key EKF and input u. It
outputs y ← F(u) and a proof πy of y’s correctness.

• {0, 1} ← Verify(VKF, u, y, py): Given the verification key
VKF, the deterministic verification algorithm outputs 1 if
F (u) = y, and 0 otherwise.

Prior work gives formal definitions for correctness, secu-
rity, and efficiency,10 so we merely summarize:

• Correctness. For any function F, and any input u to F, if
we generate keys for F, and run Compute with the
resulting evaluation key EKF, then Verify will always
accept.

• Security. For any function F and any probabilistic poly-
nomial-time adversary, the adversary cannot produce a
proof for IO û, ŷ such that F(û) ≠ ŷ but Verify accepts the
proof.

• Efficiency. KeyGen is assumed to be a one-time opera-
tion whose cost is amortized over many calculations,
but we require that Verify is cheaper than evaluating F.

Several previous VC schemes9 were not public, but rather
designated verifier, meaning that the verification key VKF
must be kept secret. Indeed, in these schemes, even reveal-
ing the output of the verification function (i.e., whether
or not the worker had been caught cheating) could lead
to attacks on the system. A public VC scheme avoids such
issues.

Zero-Knowledge Verifiable Computation. We also consider

Figure 1. Overview of Pinocchio’s Toolchain. Pinocchio takes a
high-level C program all the way through to a distributed set of
executables that run the program in a verified fashion.

C IL
C exprs

ARITH
GATES
+, *, split

QAP
polynomials

ECC
verification

BOOL
GATES QSP

polynomials

High-level
language

Low-level
logic

Satisfiability
encoding

Verification
protocol

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 105

an extended setting where the outsourced computation is a
function, F(u, w), of two inputs: the client’s input u and an aux-
iliary input w from the worker. A VC scheme is zero- knowledge
if the client learns nothing about the worker’s input beyond
the output of the computation.

2.2. Quadratic programs
Gennaro, Gentry, Parno, and Raykova (GGPR) showed how to
compactly encode computations as quadratic programs,10
so as to obtain efficient VC and zero-knowledge VC schemes.
Specifically, they show how to convert any arithmetic cir-
cuit into a comparably sized Quadratic Arithmetic Program
(QAP).

Standard results show that polynomially sized circuits are
equivalent (up to a logarithmic factor) to Turing machines
that run in polynomial time, though of course the actual effi-
ciency of computing via circuits versus on native hardware
depends heavily on the application; for example, an arith-
metic circuit for matrix multiplication adds essentially no
overhead, whereas a Boolean circuit for integer multiplica-
tion is far less efficient than executing a single 32-bit assem-
bly instruction.

An arithmetic circuit consists of wires that carry values
from a field F and connect to addition and multiplication
gates—see Figure 2 for an example.

Before formally defining QAPs, we walk through the steps
for encoding the circuit in Figure 2 into an equivalent QAP.
First, we select two arbitrary values, r5, r6 ∈ F to represent
the two multiplication gates (the addition gates will be com-
pressed into their contributions to the multiplication gates).
We define three sets of polynomials , , and by letting
the polynomials in encode the left input into each multi-
plication gate, the encode the right input into each gate,
and the encode the outputs. Thus, for the circuit in Figure 2,
we define six polynomials for each set , , and , four for
the input wires, and two for the outputs from the multipli-
cation gates. We define these polynomials based on each
wire’s contributions to the multiplication gates. Specifically
all of the vk(r5) = 0, except v3(r5) = 1, since the third input
wire contributes to the left input of c5’s multiplication gate.
Similarly, vk(r6) = 0, except for v1(r6) = v2(r6) = 1, since the first
two inputs both contribute to the left input of c6’s gate. For

, we look at right inputs. Finally, represents outputs;
none of the input wires is an output, so yk(r5) = yk(r6) = 0 for
k ∈ {1, . . ., 4}, and y5(r5) = y6(r6) = 1. As we explain below, we

can use this encoding of the circuit to efficiently check that
it was evaluated correctly.

More generally, we define a QAP, an encoding of an arith-
metic circuit, as follows.

Definition 2 (Quadratic Arithmetic Program (QAP)10).
A QAP Q over field F contains three sets of m + 1 polynomials

 = {vk(x)}, = {wk(x)}, = {yk(x)}, for k ∈ {0 . . . m}, and a target
polynomial t(x). Suppose F is a function that takes as input n
elements of F and outputs n′ elements, for a total of N = n + n′
I/O elements. Then we say that q computes F if: (c1, . . ., cN) ∈ FN
is a valid assignment of F’s inputs and outputs, if and only if
there exist coefficients (cN+1, . . ., cm) such that t(x) divides p(x),
where:

(1)

In other words, there must exist some polynomial h(x) such that
h(x) × t(x) = p(x). The size of Q is m, and the degree is the degree
of t(x).

Building a QAP Q for a general arithmetic circuit C is
fairly straightforward. We pick an arbitrary root rg ∈ F for
each multiplication gate g in C and define the target poly-
nomial to be t(x) = Πg(x − rg). We associate an index k ∈ [m]
= {1 . . . m} to each input of the circuit and to each output
from a multiplication gate. Finally, we define the polynomi-
als in , , and by letting the polynomials in encode
the left input into each gate, the encode the right input
into each gate, and the encode the outputs. For example,
vk(rg) = 1 if the kth wire is a left input to gate g, and vk(rg) = 0
otherwise. Similarly, yk(rg) = 1 if the kth wire is the out-
put of gate g, and yk(rg) = 0 otherwise. Thus, if we consider
a particular gate g and its root rg, Equation (1) simplifies to:

 cg yk(rg)
= cg,which just says that the output value of the gate is equal
to the product of its inputs, the very definition of a multipli-
cation gate. For example, in the QAP for the circuit in Figure 2,
if we evaluate p(x) at r5, we get (c3) × (c4) = c5, which directly
encodes the first multiplication gate, and similarly, at r6, p(x)
simplifies to (c1 + c2) × (c5) = c6, that is, an encoding of the sec-
ond multiplication gate.

In short, the divisibility check that t(x) divides p(x) decom-
poses into deg(t(x)) separate checks, one for each gate g and
root rg of t(x), that p(rg) = 0.

The actual construction10 is a bit more complex, as
it handles addition and multiplication by constants.
Nonetheless, GGPR show that for any arithmetic circuit
with d multiplication gates and N I/O elements, one can
construct an equivalent QAP with degree (the number of
roots rg) d and size (number of polynomials in each set)
d + N. Note that addition gates and multiplication-by-
constant gates do not contribute to the size or degree of the
QAP. Thus, these gates are essentially “free” in QAP-based
VC schemes.

Strong QAPs. In their QAP-based VC scheme, described
below, GGPR unfortunately require a strong property

Figure 2. Arithmetic Circuit and Equivalent QAP. Each wire value
comes from, and all operations are performed over, a field F. The
polynomials in the QAP are defined in terms of their evaluations at
the two roots, r5 and r6. See text for details.

+ x

x

c2c1 c3 c4

c5

c6

Inputs

Output

(r5, r6)(r5, r6)(r5, r6)
v1(ri) (0,1) w1(ri) (0,0) y1(ri) (0,0)
v2(ri) (0,1) w2(ri) (0,0) y2(ri) (0,0)
v3(ri) (1,0) w3(ri) (0,0) y3(ri) (0,0)
v4(ri) (0,0) w4(ri) (1,0) y4(ri) (0,0)
v5(ri) (0,0) w5(ri) (0,1) y5(ri) (1,0)
v6(ri) (0,0) w6(ri) (0,0) y6(ri) (0,1)

t(x)=(x − r5)(x − r6)

research highlights

106 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

t(x), but the randomization makes the scheme statistically
zero-knowledge.10

3. THEORETICAL REFINEMENTS
In this section, we improve GGPR’s protocol10 to signifi-
cantly reduce key generation time, evaluation key size, and
worker effort. We analyze our improvements empirically in
Section 5.

Our main optimization is that we construct a VC scheme
that uses a regular QAP (as in Definition 2), rather than a
strong QAP. Recall that GGPR show how to transform a reg-
ular QAP into a strong QAP, but the transformation more
than triples the degree of the QAP. Consequently, when
they plug their strong QAP into their VC construction, the
strengthening step more than triples the key generation
time, evaluation key size, and worker computation. We
take a different approach that uses a regular QAP, and
hence we do not need a strengthening step at all. Instead,
we embed additional structure into our new VC proof that
ensures that the worker uses the same linear combination
to construct the v, w, and y terms of its proof.a Surprisingly,
this additional structure comes at no cost, and our VC
scheme is actually less complicated than GGPR’s! Finally,
we expand the expressivity and efficiency of the functions
QAPs can compute by designing a number of custom cir-
cuit gates for specialized functions.

3.1. Our new VC protocol
Next we describe our more efficient VC scheme, with some
remarks afterwards on some its properties.

Protocol 1 (Verifiable Computation from regular
QAPs).

• (EKF, VKF) ← KeyGen(F, 1l): Let F be a function with N
input/output values from F. Convert F into an arithmetic
circuit C; then build the corresponding QAP Q = (t(x), ,

,) of size m and degree d. Let Imid = {N + 1, . . ., m}, that
is, the non-IO-related indices.
Let e be a non-trivial bilinear map e: G × G → GT , and let g
be a generator of G.
Choose rv, rw, s, av, aw, ay, b, g at random from F and set
ry = rv × rw, gv = g rv, gw = grw and gy = gry.
Construct the public evaluation key EKF as:

and the public verification key as: VKF = (g1, gav, gaw, gay,
.

• (y, py) ← Compute(EKF, u): On input u, the worker evaluates
the circuit for F to obtain y ← F(u); he also learns the values

from the QAP. Note that Definition 2 only considers the
case where the same set of coefficients ci are applied to all
three sets of polynomials. GGPR additionally require the
if-and-only-if condition in Definition 2 to hold even when
different coefficients ai, bi, ci are applied—that is, when

. The y
show how to convert any QAP into a strong QAP that satisfies
this stronger condition. Unfortunately, this strengthening
step increases the QAP’s degree to 3d + 2N, more than tripling
it. This in turn, more than triples the cost of key generation,
the size of the evaluation key, and the worker’s effort to pro-
duce a proof.

2.3. Building VC from quadratic programs
To construct a VC protocol from a quadratic program, we
map each polynomial—for example, vk(x)—of the quadratic
program to an element gv

k
(s) in an elliptic curve group G,

where s is a secret value selected by the client, and g is a gen-
erator of G. These group elements are given to the worker.
For a given input, the worker evaluates the circuit directly
to obtain the output and the values of the internal circuit
wires. These values correspond to the coefficients ci of
the quadratic program. Thus, the VC worker can evaluate
v(s) = Sk∈[m] ck × vk(s) “in the exponent” to get g v(s); it computes
w(s) and y(s), in the exponent, similarly.

To allow the worker to prove that Equation (1) holds, we
also, as part of the evaluation key, give the worker g (si) terms.
The worker computes , and then
uses the hi, along with g (si) terms, to compute gh(s). To over-
simplify, the proof consists of (g v(s), g w(s), g y(s), g h(s)). To check
that p(s) = h(s)t(s), the verifier uses a bilinear map that allows
him to take two elliptic curve elements and “multiply” their
exponents together to create an element in a new group. The
actual protocol10 is a bit more complex, because additional
machinery is needed to ensure that the worker incorporates
the client’s input u correctly, and that the worker indeed
generates (say) v(s) in the exponent as some linear function
of the vk(s) values.

Regarding efficiency, GGPR10 show that the one-time
setup of KeyGen runs in time linear in the original circuit
size, O(|C|). The worker performs O(|C|) cryptographic
work, but he must also perform O(|C|log2|C|) non-
cryptographic work to calculate h(x). To achieve this per-
formance, the worker exploits the fact that the evaluation
vectors (vk(r1), . . ., vk(rd)) are all very sparse (also for the w
and y polynomials). The proof itself is constant size, with
only 9 group elements for QAPs, though the verifier’s work
is still linear, O(N), in the size of the inputs and outputs of
the function.

In terms of security, GGPR10 show this VC scheme is
sound under the d-PKE and q-PDH assumptions, which are
weak versions of assumptions in prior work.

Zero Knowledge. Making the VC scheme zero-knowledge
is remarkably simple. One simply includes the target poly-
nomial t(x) itself in the polynomial sets , , and . This
allows the worker to “randomize” its proof by adding δvt(s) in
the exponent to vmid(s), δwt(s) to w(s), and δyt(s) to y(s) for ran-
dom δv, δw, δy, and modifying the other elements of the proof
accordingly. The modified value of p(x) remains divisible by

a Our proof contains a term that enforces this linear constraint without
increasing the degree. GGPR’s generic strengthening step checked the
consistency of the linear combinations via additional multiplication gates,
which increased the degree of the QAP.

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 107

{ci}i ∈ [m] of the circuit’s wires.
He solves for h(x) (the polynomial such that p(x) = h(x)×
t(x)), and computes the proof py as:

where vmid(x) = Sk∈Imid ck × vk(x), and similarly for wmid(s)
and ymid(s). Since these are linear equations, he can com-
pute them “in the exponent” using the material in the eval-
uation key, for example, .

• {0, 1} ← Verify(VKF, u, y, py): The verification of an alleged
proof with elements
and gZ uses the public verification key VKF and the pairing
function e for the following checks.
• Divisibility check for the QAP: using elements from VKF,

compute a term representing the I/O, u and y, by repre-
senting them as coefficients c1, …, cN ∈ F and comput-
ing: (and similarly for and

). Check:

 (2)

(3)

• Check that the linear combinations computed over ,
, and are in their appropriate spans:

• Check that the same coefficients were used in each of
the linear combinations over , , and :

In a designated verifier setting (where the verifier knows
s, a, etc.), pairings are only needed for divisibility check,
and the I/O term can be computed directly over F, rather
than “in the exponent.”

The correctness of the VC scheme follows from the prop-
erties of the QAP. Regarding security, we have the following:

Theorem 1. Let d be an upper bound on the degree of the QAP
used in the VC scheme, and let q = 4d + 4. The VC scheme is
sound under the d-PKE, q-PDH, and 2q-SDH assumptions.

The proof of Theorem 1 is in the full version of the paper.
Security Intuition. As intuition for why the VC scheme is

sound, note that it seems hard for an adversary who does not
know α to construct any pair of group elements h, hα except
in the obvious way: by taking pairs , , . . . that he
is given, and applying the same linear combination (in the
exponent) to the left and right elements of the pairs. This
hardness is formalized in the d-PKE assumption, a sort of
“knowledge-of-exponent” assumption, that says that the

adversary must “know” such a linear combination, in the
sense that this linear combination can be extracted from
him. Roughly, this means that, in the security proof, we
can extract polynomials Vmid(x), Wmid(x), Ymid(x) such that Vmid
(from the proof) equals Vmid(s), Wmid = Wmid(s) and Ymid = Ymid(s),
and that moreover these polynomials are in the linear spans
of the vk(x)’s, wk(x)’s, and yk(x)’s, respectively. If the adversary
manages to provide a proof of a false statement that verifies,
then these polynomials must not actually correspond to a
QAP solution. So, either p(x) is not actually divisible by t(x)
(in this case we break 2q-SDH) or V(x) = vio(x) + Vmid(x), W(x)
and Y(x) do not use the same linear combination (in this
case we break q-PDH because in the proof we choose β in a
clever way).

Zero Knowledge. We can apply GGPR’s rerandomization
technique10 (Section 2.3) to provide statistical zero-knowledge
for our new VC construction. The worker chooses
F and in his proof, instead of the polynomials vmid(x), v(x), w(x),
and y(x), he uses the following randomized versions vmid(x) +
δvt(x), v(x) + δvt(x), w(x) + δwt(x), and y(x) + δyt(x).

Performance. Our main improvement is that our VC
scheme only requires a regular QAP, rather than a strong
QAP, which improves performance by more than a factor of
3. Moreover, the scheme itself is simpler, leading to fewer
group elements in the keys and proof, fewer bilinear maps
for Verify, etc.

3.2. Expressive circuit constructions
The QAP that we use in our VC scheme is defined over Fp,
where p is a large prime. We can, as explained previously,
derive a QAP over Fp that efficiently computes any function
F that can be expressed in terms of addition and multiplica-
tion modulo p. This provides no obvious way to express some
operations, such as a ≥ b using mod-p arithmetic. On the
other hand, given a and b as bits, comparison is easy. Hence,
one might infer that Boolean circuits are more general.

However, we design an arithmetic split gate to translate
an arithmetic wire a ∈ Fp, known to be in [0, 2k − 1], into k
binary output wires. Given such binary values, we can com-
pute Boolean functions using arithmetic gates: NAND(a, b)
= 1 − ab, AND(a, b) = ab, OR(a, b) = 1 − (1 − a)(1 − b). Each
embedded Boolean gate costs only one multiply.

Surprisingly, this arithmetic embedding gives a fairly effi-
cient VC scheme. Embedding introduces an expensive ini-
tial gate that constrains each input to {0, 1}, but henceforth,
each embedded gate preserves the {0, 1} invariant, adding
only 1 to the degree and size of the QAP. Furthermore, the
expression combines a bitwise representation of a
back into a single wire. Because the sum consists of addi-
tions and multiplications by constants, recombination is
free; it doesn’t increase the size of the QAP.

In our full paper, we also design a gate that enforces
equality between two wires and a gate that checks whether
a wire is equal to zero. These can be composed (Thm 11 in
Ref.10) with other gates.

4. IMPLEMENTATION
We implemented a compiler that takes a subset of C to an
equivalent arithmetic circuit (Section 4.1). Our VC suite

research highlights

108 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

bounds the bit-width of each wire value:

• inputs have the compiler-specified int width;
• each constant has a known width (e.g., 13 = 11012 has

bit width 4);
• a bitwise op produces the max of its arguments’

widths;
• add can produce max + 1 bits (for a carry); and
• mul can produce 2 × max bits.

When the width nears the available bits in the field (254), the
compiler generates a split gate to truncate the value back to
the specified int width. Tracking bit width minimizes the
cost of split gates.

4.2. Quadratic programs and cryptographic
protocol
The next pipeline stage accepts a Boolean or arithmetic cir-
cuit and builds a QSP or QAP (Section 2). Then, per Section
3.1, it compiles the quadratic program into a set of crypto-
graphic routines for the client (key generation and verifica-
tion) and the worker (computation and proof generation).
For comparison, we also implement the original GGPR10;
GGPR protocol Section 5 shows that Pinocchio’s enhance-
ments reduce overhead by 18–64%.

The key-generation routine runs at the client, with
selectable public verification and zero-knowledge features
(Section 5.2). The code transmits the evaluation key over
the network to the worker; to save bandwidth, the program
transmits as C and the worker compiles it locally.

The computation routine runs at the server, collecting
input from the client, using the evaluation key to produce
the proof, and transmitting the proof back to the client (or,
if desired, a different verifier). The verification routine uses
the verification key and proof to determine if the worker
cheated.

Our cryptographic code is single-threaded, but each
stage is embarrassingly parallel. Prior work23 shows that
standard techniques can parallelize work across cores,
machines, or GPUs. For the cryptographic code, we use a
high-speed elliptic curve library18 with a 256-bit BN-curve
that provides 128 bits of security. The quadratic-program-
construction and protocol-execution code is 10,832 lines
of C and C++.
Faster Exponentiation. Generating the evaluation key EK
requires exponentiating the same base g to many differ-
ent powers. We optimize this operation by adapting Pip-
penger’s multi-exponential algorithm for use with a single
base. Essentially this means that we build a table of inter-
mediate powers of g, allowing us to compute any particular
exponent with only a few multiplications.

In a similar vein, the worker’s largest source of overhead
is applying the coefficients from the circuit “in the expo-
nent” to compute gY(s), etc. We optimize this operation via a
sliding-window technique to build a small table of powers
for each pair of bases. In practice, these tables can improve
performance by a factor of three to four, even counting the
time to build the tables in the first place.

Polynomial Asymptotics. To generate a proof, the worker

then compiles the circuit representation to the equivalent
QAP, and generates code to run the VC protocol, including
key generation, proof computation, and proof verification
(Section 4.2). The toolchain compiles a large collection of
applications and runs them with verification (Section 4.3).
Source code for the toolchain is available.b

4.1. Compiler toolchain
The applications described below (Section 4.3) and evalu-
ated in Section 5 are each compiled using qcc, our C-to-
arithmetic-expression compiler, a 3525-line Python
program. They are also compiled with gcc to produce the
Native timings in Figures 5 and 6.

The compiler understands a substantial subset of C,
including global, function, and block-scoped variables;
arrays, structs, and pointers; function calls, conditionals,
loops; and static initializers (Figure 3). It also understands
arithmetic and bitwise Boolean operators and preprocessor
syntax.

Since the “target machine” (arithmetic circuits) supports
only expressions, not mutable state and iteration, we restrict
the C program’s semantics accordingly. For example, point-
ers and array dereferences must be compile-time constants;
otherwise, each dynamic reference would produce condi-
tional expressions of size proportional to the addressable
memory. Function calls are inlined, while preserving C vari-
able scope and pointer semantics.

Imperative conditionals compile to conditional expres-
sions that encode the imperative side effects. Static condi-
tions are collapsed at compile time. Similarly, loops with
statically computable termination conditions are automati-
cally unrolled completely.

The only scalar type presently supported is int; a compiler
flag selects the integer size. The compiler inserts masking
expressions to ensure that a k-bit int behaves exactly as the
corresponding C type, including overflow.

The compiler’s intermediate language is a set of expres-
sions of C-like operators, such as +, *, <=, ?:, &, and ˆ.

The compiler back-end expands each expression into
the arithmetic gate language of mul, add, const-mul, wire-
split, etc., eliminating common subexpressions. It carefully

Figure 3. Fixed-Matrix Multiplication. The qcc compiler unrolls the
loops and decodes the struct and array references to generate an
arithmetic expression for Out in terms of In.

int mat[SIZE*SIZE] = { 0x12, ... };
struct In { int vector[SIZE]; };
struct Out { int result[SIZE]; };

void compute(struct In *in, struct Out *out){
int i, j, k, t;
for (i=0; i<SIZE; i+=1) {
int t=0;
for (k=0; k<SIZE; k+=1) {
t = t + mat->[i*SIZE+k] * in->vector[k];

}
out->result[i] = t;

}
}

b https://vc.codeplex.com.

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 109

must compute the polynomial h(x) such that t(x) × h(x) = P(x)
(Section 1). Since we store P(x) in terms of its evaluations
at the roots of the quadratic program (recall Figure 2), the
worker must first interpolate to find P(x) and then perform a
polynomial division to arrive at h(x).

Note that all of these computations take place in a nor-
mal field, whereas all of the worker’s other steps involve
cryptographic operations, which are about three orders of
magnitude more expensive.

Thus, one might naïvely conclude, as we did, that sim-
ple polynomial algorithms, such as Lagrangian interpola-
tion and “high-school” polynomial multiplication, suffice.
However, we quickly discovered that the O(n2) behavior of
these algorithms, at the scale required for verifiable com-
puting, dwarfed the linear number of cryptographic opera-
tions (Section 5). Hence we implemented an FFT-based
O(nlogn) polynomial multiplication library and used a
polynomial interpolation algorithm that builds a binary
tree of polynomials, giving total time O(nlog2n). Even so
optimized, solving for h(x) is the second largest source of
worker overhead.

Preparing for the Future; Learning from the Past. In our
implementation and evaluation, we assume a worst case sce-
nario in which the client decides, without any warning, to
outsource a new function, and similarly that the worker only
ever computes a single instance for a given client. In practice,
neither scenario is plausible. When the client first installs
Pinocchio, the program, could build the single base expo-
nent table discussed earlier. Further, it can choose a ran-
dom s and begins computing powers of s in the background,
since these are entirely independent of the computation.
The worker can optimize similarly, given the client’s key.

4.3. Applications
Pinocchio runs several applications; each can be instanti-
ated with some static parameters, and then each instance
can be executed with dynamic inputs. While it may be pos-
sible to use custom verification checks for some of these
applications (e.g., matrix multiplication), we include them
to illustrate their performance within a general-purpose sys-
tem like Pinocchio.

Fixed Matrix multiplies an n × n matrix parameter M by an
n-length input vector A, and outputs the resulting n-length
vector M × A. We choose five parameter settings that range
from |M| = 200 × 200 to |M| = 1000 × 1000.

Two Matrices has parameter n, takes as input two n × n
matrices M1 and M2, and outputs the n × n matrix M1 × M2.
Matrix operations are widely used, for example, in collabora-
tive filtering (|M| = 30 × 30 to |M| = 110 × 110).

MultiVar Poly evaluates a k-variable, m-degree multivari-
ate polynomial. The (m + 1)k coefficients are parameters, the
k variables x1, . . ., xk are the inputs, and the polynomial’s
scalar value is the output (k = 5, m = 6, 16,807 coeff. to k = 5,
m = 10; 644,170 coeff.).

Image Matching is parameterized by an iw × ih rectangular
image and parameters kw, kh. It takes as input a kw × kh image
kernel, and outputs the minimum difference and the point
(x, y) in the image where it occurs (iw × ih = 25, kw × kh = 9 to
iw × ih = 2025, kw × kh = 9).

Shortest Paths implements the Floyd-Warshall O(n3) graph
algorithm, useful for network routing and matrix inversion.
Its parameter n specifies the number of vertices, its input is
an n × n edge matrix, and its output is an n × n matrix of all-pairs
shortest paths (n = 8, e = 64 to n = 24, e = 576).

LGCA is a Lattice-Gas Cellular Automata implementation
that converges to Navier-Stokes. It has parameter n, the fluid
lattice size, and k, the iteration count. It inputs one n-cell lat-
tice and outputs another reflecting k steps (n = 294, k = 5 to
n = 294, k = 40).

SHA-1 has no parameters. Its input is a 13-word (416-bit)
input string, and it outputs its 5-word (160-bit) SHA-1 hash.

5. EVALUATION
We experiment on a Lenovo X201 ThinkPad. We run on a
single core of a 2.67 GHz Intel Core i7 with 8 GB of RAM.

Below, we focus on comparisons with previous work
and app-level performance. In the full paper, we pres-
ent microbenchmarks to quantify the basic cost units
of our protocol. Our results show that the optimizations
described in Section 4.2.1 reduce costs by 2–3 orders of
magnitude for polynomial operations, and factors of 3–10
for exponentiations. At the macro level, relative to the orig-
inal GGPR protocol, KeyGen and Compute are more than
twice as fast, and even verification is 24% faster. Pinocchio
also drastically reduces the size of the evaluation key and
even manages to reduce the size of GGPR’s already svelte 9
element proof to 8 elements.

5.1. Comparison with related work
Figure 4 plots Pinocchio’s performance against that of
related systems. We use the multiplication of two matrices
as our test application since it has appeared in several prior
papers, though simpler, non-cryptographic verification
procedures exist. Since all of these prior schemes are des-
ignated verifier, we measure against Pinocchio’s designated
verifier mode.

We compare against (1) a naïve version of a PCP-based
scheme22; (2) GGP,9 an early scheme that defined VC, but
which relies on FHE; (3) Pepper,22 an optimized refine-
ment of (1); (4) Ginger,23 a further refinement of Pepper;
(5) Ginger with a batch of one million simultaneous

Figure 4. Performance Relative to Related Schemes. Pinocchio
reduces costs by orders of magnitude (note the log scale on the
y-axis). We graph the time necessary to (a) verify and (b) produce a
proof result for multiplying two N × N matrices.

1021

1019

1017

1015

1013

1011

109

T
im

e
(s

)

107

105

103

101

10–1

10–3

25 50
Matrix dimension (N x N)

75 100 25 50
Matrix dimension (N x N)

(b) Worker Latency(a) Per-Instance Verification Latency

75 100

1021
PCPs

1019

1017

1015

1013

1011

109

T
im

e
(s

)

107

105

103

101

10–1

10–3

GGP
Pepper
Ginger
Ginger
Batch=1M
Pinocchio
Thaler

research highlights

110 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

Pinocchio, since Pinocchio operates over a 254-bit field
using multi-precision integers, whereas the local execution
uses the CPU’s native 32-bit operations.

Figure 5 plots Pinocchio’s verification time against the
time to execute the same app natively; each line represents
a parameterized app, and each point represents a par-
ticular parameter setting. Our key finding is that, for suf-
ficiently large parameters, three apps cross the line where
outsourcing makes sense; that is, verifying the results of an
outsourced computation is cheaper than local native execu-
tion. Note that the slope of each app’s line is dictated by
the size of the app parameters we experimented with (e.g.,
we reached larger parameters for fixed matrix than for two
matrices).

On the downside, the other three apps, while trend-
ing in the right direction, fail to cross the outsourcing
threshold. The difference is that these three apps perform
large numbers of inequality comparisons and/or bitwise
operations. This makes our circuit-based representation
less efficient relative to native, and hence on our current
experimental platform, we cannot push the application
parameter settings to the point where they would beat
local execution. Nonetheless, these applications may still
be useful in settings that require Pinocchio’s zero-knowl-
edge proofs.

Fortunately, additional experiments show that enabling
zero-knowledge proofs adds a negligible, fixed cost to key
generation (213 µs), and re-randomizing a proof to make it
zero-knowledge requires little effort (e.g., 300 ms or 0.1% for
the multivariate polynomial app).

Figure 6 provides more details of Pinocchio’s per-
formance. For KeyGen, our experiments conserva-
tively assume that the client does no precomputation in

instances (see below); and (6) a subsequent system by
Thaler,25 tailored specifically for matrix multiplication
and extending work based on interactive protocols.7, 12
See Section 6 for more details on these schemes and the
tradeoffs between them. Since most of these schemes are
ridiculously impractical, we model, rather than measure,
their performance. For GGP, we built a model of its per-
formance based on recent performance results for FHE;
for Thaler, we extrapolated from reported results25; while
for the others, we used previously published models.22, 23
For Pinocchio, however, we use real numbers from our
implementation.

Figure 4 shows that Pinocchio continues the recent
trend of reducing costs by orders of magnitude. A naive
PCP-based scheme requires trillions of years to pro-
duce or verify a single proof. The FHE-based GGP proto-
col improves this performance significantly but remains
impractical. Pepper and Ginger have made huge improve-
ments over prior work, but, as we discuss in more detail
in Section 6, they do not offer public verification or zero
knowledge.

In addition to offering new properties, Pinocchio sig-
nificantly improves performance and security. Except for
Thaler’s work, the systems shown in Figure 4 amortize
setup work across many work instances,c but the charac-
teristics of the amortization differ. To reach a break-even
point, where the client does less work verifying than per-
forming the work locally, Pepper and Ginger must batch
work instances, whereas GGP and Pinocchio must per-
form enough instances to amortize key setup costs. These
approaches have very different effects on latency. A client
cannot benefit from Pepper or Ginger until it has accu-
mulated an entire batch of instances. In Pinocchio, key
setup can be precomputed, and henceforth every instance
(including the first one) enjoys a better-than-break-even
latency. Figure 4 shows the minimum latency achievable by
each system. Compared with Ginger for a single instance,
Pinocchio’s verifier is ~120,000×–17,000,000× faster, and
the worker is 19×–60× faster. To improve performance,
Ginger’s parameters are chosen such that the probability
that the adversary can successfully cheat can be as high as

,(Figure 2 in Ref.23) while in Pinocchio, the probability is
roughly .

Finally, Pinocchio’s verification is more efficient than
Thaler’s custom protocol, but Thaler’s protocol is the only
one to achieve practicality for the worker, showing the price
the other systems pay for generality.

5.2. End-to-end application performance
We measure Pinocchio’s performance for the applications
and parameter settings described in Section 4.3. All appli-
cations are written in C and compile to both QAPs and to
native executables. We measure performance using 32-bit
input values, so we can compare against the native C ver-
sion. This obviously makes things more challenging for

c In contrast, Pinocchio’s public verifier (not shown) enables a client to
benefit from a third party’s key setup work.

Figure 5. Cost of Verification versus Local. Verification must be
cheaper than native execution for outsourcing to make sense,
though for applications that want zero-knowledge, more expensive
verification may be acceptable. All apps trend in the right direction,
and three apps cross the plane where verification is cheaper than
native. Error bars, often too small to see, represent 95% confidence
intervals (N = 50, s £ 2%).

16

14

0.0

10.8

0.1 0.2 0.3 0.4 0.512

10

8

6

Q
A

P
 D

V
 v

er
ify

 (
m

s)

Native execution (ms)

4

2

0
0 2

Cheaper to verify
than execute locally

4 6 8 10

Shortest paths

12 14 16

Image matching
Lattice gas sim
Two matrices
MultiVar poly
Fixed matrix

10.6
10.4
10.2
10.0

9.8
9.6

FEBRUARY 2016 | VOL. 59 | NO. 2 | COMMUNICATIONS OF THE ACM 111

anticipation of outsourcing a function, and for Compute,
we assume that the worker only does a single work instance
before throwing away all of its state. As discussed in
Section 4.2.1, in practice, we would take advantage of both
precomputation and caching of previous work, which on
average saves at least 43% of the effort for KeyGen and 16%
of the effort for Compute.

In Figure 6, we see again that three apps (starred) beat
native execution, including one in the public verifier setting
(which requires more expensive operations per IO). The data
also reinforces the point that using a circuit representation
imposes a significant cost on image matching, shortest
paths, and the lattice gas sim relative to native, suggesting
a target for optimization. Relative to the circuit representa-
tion, Pinocchio’s verification is cheap: both the public and
the designated verifier “win” most of the time when com-
pared to the circuit execution. Specifically, the designated
verifier wins in 12 of 13 (92%) application settings. Public
verification is more expensive, particularly for large IO, but
still wins in 9 of 13 (69%) settings.

Since Pinocchio offers public verification, some clients
will benefit from the KeyGen work of others, and hence only
care about the verification costs. For example, a cellphone
carrier might perform the one-time KeyGen so that its cus-
tomers can verify computations done by arbitrary workers.

However, in other settings, for example, a company out-
sourcing work to the cloud, the key generator and verifier
may be the same entity, and will wish to amortize the cost
of key generation via the savings from verification. Figure 6
shows that most apps have a low “break even” point vs.
circuit execution: the median for the designated verifier is
555 instances and for public verifier is 500 instances. Every
instance afterwards is a net “win,” even for the key generator.

Figure 6 holds more good news for Pinocchio: the keys
it generates are reasonably sized, with the evaluation key

(which describes the entire computation) typically requir-
ing 10s or 100s of MB. The weak verifier’s key (which
grows linearly with the I/O) is typically only a few KB,
and even at its largest, for two-matrix multiplication, it
requires only slightly more than 1 MB. This suggests that
the keys are quite portable and will not require excessive
bandwidth to transmit.

Finally, from the client’s perspective, if the worker’s
efforts are free, then the worker’s additional overhead of
generating a proof is irrelevant, as long as it doesn’t hurt
response latency. Our results, combined with prior work on
parallelization,23 suggest that latency can be brought down
to reasonable levels. And indeed in high-assurance scenar-
ios, scenarios where the client is incapable of performing
the calculation itself (e.g., a power-limited device), or sce-
narios where the worker’s resources are otherwise idle, the
client may very well view the worker as “free.”

However, in other scenarios, such as cloud computing,
the worker’s efforts are not free. Even here, however, Chen
and Sion6 estimate that the cost of cloud computing is about
60× cheaper than local computing for a small enterprise.
This provides an approximate upper-bound for the amount
of extra work we should be willing to add to the worker’s
overhead.

6. RELATED WORK
When implementing verified computation, prior efforts
focused on either interactive proofs or PCPs. One effort7,

25 builds on the interactive proofs of Goldwasser et al.12
(GKR). They target a streaming setting where the client
cannot store all of the data it wishes to compute over; the
system currently requires the function computed to be
highly parallelizable. On the plus side, it does not require
cryptography, and it is secure against computationally
unbounded adversaries.

Figure 6. Application Performance. Pinocchio’s performance for a sampling of the parameter settings (Section 4.3). All programs are
compiled directly from C. The first two columns indicate the number of application inputs and outputs, and the number of gates in the
corresponding arithmetic circuit. KeyGen is a one-time setup cost per application; Compute is the time the worker spends proving it
computed correctly; Verify is the time the client spends checking the proof. Verification values in bold indicate verification is cheaper than
computing the circuit locally; those with stars (*) indicate verification is cheaper than native execution. Public verification, while more
expensive, allows anyone to check the results; private verification is faster, but allows anyone who can verify a proof to potentially generate a
cheating proof. The Circuit column reports the time to evaluate the application’s circuit representation, while Native indicates the time to run
the application as a local, native executable. The last three columns indicate the size of the keys necessary to produce and verify proofs, as
well as the size of the proof itself.

Fixed matrix, Medium
Fixed matrix, Large
Two matrices, Medium
Two matrices, Large
MultiVar poly, Medium
MultiVar poly, Large
Image matching, Medium
Image matching, Large
Shortest paths, Medium
Shortest paths, Large
Lattice gas sim, Medium
Lattice gas sim, Large
SHA-1

Mult KeyGen Compute Verify (ms) Circuit Native EvalKey VerKey Proof
|IO| gates pub(s) (s) Pub Priv (ms) (ms) (MB) (KB) (B)

1201 600 0.7 0.4 39.5 10.0 123.7 4.3 0.3 37.9 288
2001 1000 1.5 0.9 58.9 *10.1 337.4 12.4 0.5 62.9 288

14,701 347,900 79.8 269.4 340.7 12.1 124.9 4.0 97.9 459.8 288
36,301 1,343,100 299.3 1127.8 882.2 *15.4 509.5 15.5 374.8 1134.8 288

7 203,428 41.9 246.1 11.6 10.0 93.1 4.5 55.9 0.6 288
7 571,046 127.1 711.6 *12.7 *11.1 267.2 12.9 156.8 0.6 288

13 86,345 26.4 41.1 11.1 9.9 5.5 0.1 23.6 0.8 288
13 277,745 67.0 144.4 11.4 10.1 18.0 0.4 75.8 0.8 288

513 366,089 85.4 198.0 25.5 10.0 18.7 0.1 99.6 16.4 288
1153 1,400,493 317.5 850.2 48.9 10.8 69.5 0.3 381.4 36.4 288

21 144,063 38.2 76.4 10.9 9.9 91.4 0.2 39.6 1.1 288
21 283,023 75.6 165.8 10.9 9.8 176.6 0.4 77.7 1.1 288
22 23,785 12.0 15.7 11.1 9.9 18.8 0.0 6.5 1.1 288

research highlights

112 COMMUNICATIONS OF THE ACM | FEBRUARY 2016 | VOL. 59 | NO. 2

ReferencesSetty et al. produced a line of PCP-based systems called
Pepper22 and Ginger.23 They build on a particular type of PCP
called a linear PCP,14 in which the proof can be represented
as a linear function. This allows the worker to use a linearly
homomorphic encryption scheme to create a commitment
to its proof while relying only on standard cryptographic
assumptions. Through a combination of theoretical and
systems-level improvements, this work made tremendous
progress in making PCP-based systems practical. Indeed,
for applications that can tolerate large batch sizes, the amor-
tized costs of verification can be quite low.

A few downsides remain, however. Because the work
builds on the Hadamard PCP,1 the setup time, network over-
head, and the prover’s work are quadratic in the size of the
original computation, unless the protocol is hand-tailored.
To achieve efficiency, the verifier cannot verify the results
until a full batch returns. The scheme is designated verifier,
meaning that third parties cannot verify the results of out-
sourced computations without sharing the client’s secret
key and risking fraud. The scheme also does not support
zero-knowledge proofs.

Concurrent work21 also builds on the quadratic programs
of Gennaro et al.10 They observe that QAPs can be viewed as
linear PCPs and hence can fit into Ginger’s cryptographic
framework.23 Their work shows worker computation
improvements similar to those of Pinocchio. They retain
PCPs and Ginger’s cryptographic protocol, so they rely on
simpler cryptographic assumptions than Pinocchio, but
they must still batch computations to obtain an efficient
verifier. They also remain designated verifier and do not sup-
port zero-knowledge proofs.

A subsequent line of work3 expands application expressivity
by combining Pinocchio’s cryptographic protocol with an inno-
vative encoding of RAM accesses. They also propose an elegant
program encoding based on a general-purpose CPU, but this
leads to overheads, for applications like matrix multiplication,
of 5–7 orders of magnitude compared with Pinocchio.

Several systems provide compilers for zero-knowledge
(ZK) proofs.17 In general, these systems are likely to exhibit
better performance than Pinocchio for their particular sub-
set of functionality, but they do not possess the same level of
efficient generality.

7. CONCLUSION
We have presented Pinocchio, a system for public verifi-
able computing. Pinocchio uses quadratic programs, a new
method for encoding computation, combined with a highly
efficient cryptographic protocol to achieve both asymptotic
and concrete efficiency. Pinocchio produces 288-byte proofs,
regardless of the size of the computation, and the proofs can
be verified rapidly, typically in tens of milliseconds, beating
native execution in several cases. This represents five to seven
orders of magnitude performance improvement over prior
work.23 The worker also produces the proof 19×–60× faster.
Pinocchio even slashes the cost of its underlying protocol, cut-
ting the cost of both key and proof generation by more than
60%. The end result is a cryptographic protocol for efficiently
signing computations. Combined with a compiler for real C
programs, Pinocchio brings VC much closer to practicality.

 1. Arora, S., Lund, C., Motwani, R.,
Sudan, M., Szegedy, M. Proof
verification and the hardness of
approximation problems. J. ACM 45,
3 (1998).

 2. Ben-Sasson, E., Chiesa, A., Garman, C.,
Green, M., Miers, I., Tromer, E.,
Virza, M. Zerocash: Decentralized
anonymous payments from
Bitcoin. In Proceedings of the IEEE
Symposium on Security and Privacy
(2014).

 3. Ben-Sasson, E., Chiesa, A., Tromer, E.,
Virza, M. Succinct non-interactive
zero knowledge for a von Neumann
architecture. In Proceedings of
USENIX Security (2014).

 4. Braun, B., Feldman, A.J., Ren, Z.,
Setty, S., Blumberg, A.J., Walfish, M.
Verifying computations with state. In
Proceedings of the ACM SOSP (2013).

 5. Castro, M., Liskov, B. Practical
Byzantine fault tolerance and
proactive recovery. ACM Trans.
Comp. Syst. 20, 4 (2002).

 6. Chen, Y., Sion, R. To cloud or not
to cloud? Musings on costs and
viability. In Proceedings of the ACM
Symposium on Cloud Computing
(2011).

 7. Cormode, G., Mitzenmacher, M.,
Thaler, J. Practical verified
computation with streaming
interactive proofs. In ITCS (2012).

 8. Danezis, G., Fournet, C., Kohlweiss, M.,
Parno, B. Pinocchio coin: Building
Zerocoin from a succinct pairing-
based proof system. In ACM
Workshop on Language Support
for Privacy Enhancing Technologies
(2013).

 9. Gennaro, R., Gentry, C., Parno. B.
Non-interactive verifiable computing:
Outsourcing computation to
untrusted workers. In Proceedings of
IACR CRYPTO (2010).

 10. Gennaro, R., Gentry, C., Parno, B.,
Raykova, M. Quadratic span
programs and succinct NIZKs
without PCPs. In EUROCRYPT
(2013). Originally published as
Cryptology ePrint Archive, Report
2012/215.

 11. Gentry, C. A fully homomorphic
encryption scheme. PhD thesis,
Stanford University (2009).

 12. Goldwasser, S., Kalai, Y.T.,
Rothblum, G.N. Delegating
computation: Interactive proofs for
muggles. In STOC (2008).

 13. Golle, P., Mironov, I. Uncheatable
distributed computations. In
Proceedings of CT-RSA (2001).

 14. Ishai, Y., Kushilevitz, E., Ostrovsky, R.
Efficient arguments without short
PCPs. In IEEE Conference on
Computational Complexity (2007).

 15. Kilian, J. A note on efficient
zero-knowledge proofs and
arguments (extended abstract).
In STOC (1992).

 16. Lee, R.B., Kwan, P., McGregor, J.P.,
Dwoskin, J., Wang, Z. Architecture
for protecting critical secrets in
microprocessors. In Proceedings
of the International Symposium
on Computer Architecture (ISCA)
(2005).

 17. Meiklejohn, S., Erway, C.C., Küpçü, A.,
Hinkle, T., Lysyanskaya, A. ZKPDL: A
language-based system for efficient
zero-knowledge proofs and electronic
cash. In Proceedings of USENIX
Security (2010).

 18. Naehrig, M., Niederhagen, R.,
Schwabe, P. New software speed
records for cryptographic pairings.
In Proceedings of LATINCRYPT (2010).

 19. Parno, B., McCune, J.M., Perrig, A.
Bootstrapping Trust in Modern
Computers. Springer, New York/
Dordrecht/Heidelberg/London, 2011.
DOI: 10.1007/978-1-4614-1460-5.

 20. Parno, B., Raykova, M.,
Vaikuntanathan, V. How to delegate
and verify in public: Verifiable
computation from attribute-based
encryption. In IACR Theory of
Cryptography Conference (TCC)
(2012).

 21. Setty, S., Braun, B., Vu, V., Blumberg, A.J.,
Parno, B., Walfish, M. Resolving the
conflict between generality and
plausibility in verified computation.
In Proceedings of the ACM European
Conference on Computer Systems
(EuroSys) (Apr. 2013).

 22. Setty, S., McPherson, R., Blumberg, A.J.,
Walfish, M. Making argument
systems for outsourced computation
practical (sometimes). In Proceedings
of the ISOC NDSS (2012).

 23. Setty, S., Vu, V., Panpalia, N.,
Braun, B., Blumberg, A.J., Walfish, M.
Taking proof-based verified
computation a few steps closer
to practicality. In Proceedings of
USENIX Security (2012).

 24. Sion, R. Query execution assurance
for outsourced databases. In The
Very Large Databases Conference
(VLDB) (2005).

 25. Thaler, J. Time-optimal interactive
proofs for circuit evaluation.
In Proceedings of CRYPTO
(2013).

Bryan Parno and Jon Howell ({parno,
howell}@microsoft.com), Microsoft
Research.

Craig Gentry (cbgentry@us.ibm.com),
IBM Research.

Mariana Raykova (mariana@cs.columbia.
edu), SRI International.

Copyright held by authors. Publication rights licensed to ACM $15.00.

Watch the authors discuss
their work in this exclusive
Communications video.
http://cacm.acm.org/
videos/pinocchio-nearly-
practical-verifiable-
computation

