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Pinocchio: Nearly Practical 
Verifiable Computation
By Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova

Abstract
To instill greater confidence in computations outsourced to 
the cloud, clients should be able to verify the correctness of 
the results returned. To this end, we introduce Pinocchio, 
a built system for efficiently verifying general computa-
tions while relying only on cryptographic assumptions. 
With Pinocchio, the client creates a public evaluation key to 
describe her computation; this setup is proportional to eval-
uating the computation once. The worker then evaluates 
the computation on a particular input and uses the evalua-
tion key to produce a proof of correctness. The proof is only 
288 bytes, regardless of the computation performed or the 
size of the IO. Anyone can check the proof using a public 
verification key.

Crucially, our evaluation on seven applications demon-
strates that Pinocchio is efficient in practice too. Pinocchio’s 
verification time is a fixed 10 ms plus 0.4–15 µs per IO 
element: 5–7 orders of magnitude less than previous work23; 
indeed Pinocchio is the first general-purpose system to 
demonstrate verification cheaper than native execution (for 
some apps). The worker’s proof effort is still expensive, but 
Pinocchio reduces it by 19×–60× relative to prior work. As an 
additional feature, Pinocchio allows the worker to include 
private inputs in the computation and prove that she per-
formed the computation correctly without revealing any 
information about the private inputs to the client. Finally, 
to aid development, Pinocchio provides an end-to-end tool-
chain that compiles a subset of C into programs that imple-
ment the verifiable computation protocol.

1. INTRODUCTION
Since computational power is often asymmetric (particu-
larly for mobile devices), a relatively weak client may wish to 
outsource computation to one or more powerful workers. 
For example, a scientist might want to run a protein folding 
simulation in the cloud or make use of volunteer distrib-
uted computing. In such settings, the client should be able 
to verify the results returned, to guard against malicious or 
malfunctioning workers. Even from a legitimate worker’s 
perspective, verifiable results are beneficial, since they are 
likely to command a higher price. They also allow the worker 
to shed liability: any undesired outputs are provably the 
result of data the client supplied.

Considerable systems and theory research has looked at 
the problem of verifying computation (Section 6). However, 
most of this work has either been function specific, relied 
on assumptions we prefer to avoid, or simply failed to pass 
basic practicality requirements. Function specific solu-
tions13, 24 are often efficient, but only for a narrow class 

of computations. More general solutions often rely on 
assumptions that may not apply. For example, systems 
based on replication5 assume uncorrelated failures, while 
those based on Trusted Computing19 or other secure hard-
ware16 assume that physical protections cannot be defeated. 
Finally, the theory community has produced a number of 
beautiful,  general-purpose protocols1, 9, 12, 15 that offer com-
pelling asymptotics. In practice however, because many rely 
on complex Probabilistically Checkable Proofs (PCPs)1 or 
fully homomorphic encryption (FHE),11 the performance 
is currently unacceptable—verifying small instances would 
take millions of years (Section 5.1). Recent work7, 22, 23 has 
improved these protocols considerably, but efficiency is still 
problematic, and the protocols lack features like public 
verification. Without public verification, anyone who can 
verify a proof can also produce a cheating proof.

In contrast, Pinocchio is a concrete system for efficiently 
verifying general computations while making only crypto-
graphic assumptions. In particular, Pinocchio supports pub-
lic verifiable computation (VC),9, 20 which allows an untrusted 
worker to produce signatures of computation. Initially, the 
client chooses a function and generates a public evaluation 
key and a (small) public verification key. Given the evalua-
tion key, a worker verifiably computes the function on an 
input and produces a proof (or signature) to accompany the 
result. Anyone (not just the client) can then use the verifica-
tion key to check the correctness of the worker’s result for 
the specific input used.

As an additional feature, Pinocchio supports zero- 
knowledge VC, in which the worker convinces the client 
that it knows one or more private inputs with a particular 
property, without revealing any information about the input. 
For example, Pantry4 uses Pinocchio to compute Map-
Reduce jobs (e.g., image matching) over private data (e.g., 
DMV photos) held by a server. Recent work also employs 
Pinocchio to anonymize Bitcoin transactions by proving, 
in zero knowledge, that the transactions do not create or 
destroy money.2, 8

Pinocchio’s asymptotics are excellent: cryptographic oper-
ations required for key setup and proof generation are lin-
ear in the size of the original computation, and verification 
requires time linear in the size of the inputs and outputs. 
Even more surprising, Pinocchio’s proof is constant sized, 
regardless of the computation performed. Crucially, our 
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evaluation (Section 5) demonstrates that these asymptotics 
come with small constants.

Compared with previous work,23 Pinocchio improves 
verification time by 5–7 orders of magnitude and requires 
less than 10 ms for applications with reasonably sized IO, 
enabling Pinocchio to beat native C execution for some 
apps. We also improve the worker’s proof efforts by 19×–60× 
relative to prior work. The resulting proof is tiny, 288 bytes 
(only slightly more than an RSA-2048 signature), regardless 
of the computation. Making a proof zero-knowledge is also 
cheap, adding negligible overhead (213 µs to key generation 
and 0.1% to proof generation).

While these improvements are promising, additional 
progress is needed before the worker’s proof overhead 
reaches true practicality. However, even now, this overhead 
may be acceptable in scenarios that require high assur-
ance, or that need the zero-knowledge properties Pinocchio 
supports.

To achieve efficient VC, Pinocchio combines quadratic 
programs, a computational model introduced by Gennaro 
et al.,10 with a series of theoretical refinements and systems 
engineering to produce an end-to-end toolchain for verify-
ing computations. Specifically, via an improved protocol and 
proof technique relative to Gennaro et al., we slash the cost 
of key generation by 61%, and the cost of producing a proof 
by 64%. From a developer’s perspective, Pinocchio provides 
a compiler that transforms C code into a circuit representa-
tion (we support both Boolean and arithmetic), converts the 
circuit into a quadratic program, and then generates pro-
grams to execute the cryptographic protocol (Figure 1).

Pinocchio’s end-to-end toolchain allows us to implement 
real applications that benefit from verification. In particular, 
we implement two forms of matrix multiplication, multivar-
iate polynomial evaluation, image matching, all-pairs short-
est paths, a lattice-gas scientific simulator, and SHA-1. We 
find (Section 5) that the first three apps translate efficiently 
into arithmetic circuits, and hence Pinocchio can verify 
their results faster than native execution of the same pro-
gram. The latter four apps translate less efficiently, due to 
their reliance on inequality comparisons and bitwise opera-
tions, and yet they may still be useful for zero-knowledge 
applications.

In summary, this paper contributes:

1. An end-to-end system for efficiently verifying compu-
tation performed by one or more untrusted workers. 

This includes a compiler that converts C code into a 
format suitable for verification, as well as a suite of 
tools for running the actual protocol.

2. Theoretical and systems-level improvements that 
bring performance down by 5–7 orders of magnitude 
relative to prior work,23 and hence into the realm of 
plausibility.

3. An evaluation on seven real C apps, showing verifica-
tion faster than 32-bit native integer execution for 
some apps.

2. BACKGROUND
2.1. Verifiable computation (VC)
A public VC scheme allows a computationally limited cli-
ent to outsource to a worker the evaluation of a function 
F on input u. The client can then verify the correctness of 
the returned result F(u) while performing less work than 
required for the function evaluation.

More formally, we define public VC as follows, generalizing 
previous definitions.9, 10, 20

Definition 1 (Public Verifiable Computation). A public 
verifiable computation scheme   consists of a set of three 
polynomial-time algorithms (KeyGen, Compute, Verify):

• (EKF, VKF) ← KeyGen(F, 1l): The randomized key genera-
tion algorithm takes the function F to be outsourced and 
security parameter l; it outputs a public evaluation key 
EKF, and a public verification key VKF.

• ( y, py) ← Compute(EKF, u): The deterministic worker algo-
rithm uses the public evaluation key EKF and input u. It 
outputs y ← F(u) and a proof πy of y’s correctness.

• {0, 1} ← Verify(VKF, u, y, py): Given the verification key 
VKF, the deterministic verification algorithm outputs 1 if 
F (u) = y, and 0 otherwise.

Prior work gives formal definitions for correctness, secu-
rity, and efficiency,10 so we merely summarize:

• Correctness. For any function F, and any input u to F, if 
we generate keys for F, and run Compute with the 
resulting evaluation key EKF, then Verify will always 
accept.

• Security. For any function F and any probabilistic poly-
nomial-time adversary, the adversary cannot produce a 
proof for IO û, ŷ  such that F(û) ≠ ŷ  but Verify accepts the 
proof.

• Efficiency. KeyGen is assumed to be a one-time opera-
tion whose cost is amortized over many calculations, 
but we require that Verify is cheaper than evaluating F.

Several previous VC schemes9 were not public, but rather 
designated verifier, meaning that the verification key VKF 
must be kept secret. Indeed, in these schemes, even reveal-
ing the output of the verification function (i.e., whether 
or not the worker had been caught cheating) could lead 
to attacks on the system. A public VC scheme avoids such 
issues.

Zero-Knowledge Verifiable Computation. We also consider 

Figure 1. Overview of Pinocchio’s Toolchain. Pinocchio takes a 
high-level C program all the way through to a distributed set of 
executables that run the program in a verified fashion.
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an extended setting where the outsourced computation is a 
function, F(u, w), of two inputs: the client’s input u and an aux-
iliary input w from the worker. A VC scheme is zero- knowledge 
if the client learns nothing about the worker’s input beyond 
the output of the computation.

2.2. Quadratic programs
Gennaro, Gentry, Parno, and Raykova (GGPR) showed how to 
compactly encode computations as quadratic programs,10 
so as to obtain efficient VC and zero-knowledge VC schemes. 
Specifically, they show how to convert any arithmetic cir-
cuit into a comparably sized Quadratic Arithmetic Program 
(QAP).

Standard results show that polynomially sized circuits are 
equivalent (up to a logarithmic factor) to Turing machines 
that run in polynomial time, though of course the actual effi-
ciency of computing via circuits versus on native hardware 
depends heavily on the application; for example, an arith-
metic circuit for matrix multiplication adds essentially no 
overhead, whereas a Boolean circuit for integer multiplica-
tion is far less efficient than executing a single 32-bit assem-
bly instruction.

An arithmetic circuit consists of wires that carry values 
from a field F and connect to addition and multiplication 
gates—see Figure 2 for an example.

Before formally defining QAPs, we walk through the steps 
for encoding the circuit in Figure 2 into an equivalent QAP. 
First, we select two arbitrary values, r5, r6 ∈ F to represent 
the two multiplication gates (the addition gates will be com-
pressed into their contributions to the multiplication gates). 
We define three sets of polynomials , , and  by letting 
the polynomials in  encode the left input into each multi-
plication gate, the  encode the right input into each gate, 
and the  encode the outputs. Thus, for the circuit in Figure 2, 
we define six polynomials for each set , , and , four for 
the input wires, and two for the outputs from the multipli-
cation gates. We define these polynomials based on each 
wire’s contributions to the multiplication gates. Specifically 
all of the vk(r5) = 0, except v3(r5) = 1, since the third input 
wire contributes to the left input of c5’s multiplication gate. 
Similarly, vk(r6) = 0, except for v1(r6) = v2(r6) = 1, since the first 
two inputs both contribute to the left input of c6’s gate. For 

, we look at right inputs. Finally,  represents outputs; 
none of the input wires is an output, so yk(r5) = yk(r6) = 0 for 
k ∈ {1, . . ., 4}, and y5(r5) = y6(r6) = 1. As we explain below, we 

can use this encoding of the circuit to efficiently check that 
it was evaluated correctly.

More generally, we define a QAP, an encoding of an arith-
metic circuit, as follows.

Definition 2 (Quadratic Arithmetic Program (QAP)10). 
A QAP Q over field F contains three sets of m + 1 polynomials 

 = {vk(x)},  = {wk(x)},  = {yk(x)}, for k ∈ {0 . . . m}, and a target 
polynomial t(x). Suppose F is a function that takes as input n 
elements of F and outputs n′ elements, for a total of N = n + n′ 
I/O elements. Then we say that q computes F if: (c1, . . ., cN) ∈ FN 
is a valid assignment of F’s inputs and outputs, if and only if 
there exist coefficients (cN+1, . . ., cm) such that t(x) divides p(x), 
where:

 

(1)

In other words, there must exist some polynomial h(x) such that 
h(x) × t(x) = p(x). The size of Q is m, and the degree is the degree 
of t(x).

Building a QAP Q for a general arithmetic circuit C is 
fairly straightforward. We pick an arbitrary root rg ∈ F for 
each multiplication gate g in C and define the target poly-
nomial to be t(x) = Πg(x − rg). We associate an index k ∈ [m] 
= {1 . . . m} to each input of the circuit and to each output 
from a multiplication gate. Finally, we define the polynomi-
als in , , and  by letting the polynomials in  encode 
the left input into each gate, the  encode the right input 
into each gate, and the  encode the outputs. For example, 
vk(rg) = 1 if the kth wire is a left input to gate g, and vk(rg) = 0 
otherwise. Similarly, yk(rg) = 1 if the kth wire is the out-
put of gate g, and yk(rg) = 0 otherwise. Thus, if we consider 
a particular gate g and its root rg, Equation (1) simplifies to: 

  cg yk(rg) 
= cg,which just says that the output value of the gate is equal 
to the product of its inputs, the very definition of a multipli-
cation gate. For example, in the QAP for the circuit in Figure 2, 
if we evaluate p(x) at r5, we get (c3) × (c4) = c5, which directly 
encodes the first multiplication gate, and similarly, at r6, p(x) 
simplifies to (c1 + c2) × (c5) = c6, that is, an encoding of the sec-
ond multiplication gate.

In short, the divisibility check that t(x) divides p(x) decom-
poses into deg(t(x)) separate checks, one for each gate g and 
root rg of t(x), that p(rg) = 0.

The actual construction10 is a bit more complex, as 
it handles addition and multiplication by constants. 
Nonetheless, GGPR show that for any arithmetic circuit 
with d multiplication gates and N I/O elements, one can 
construct an equivalent QAP with degree (the number of 
roots rg) d and size (number of polynomials in each set) 
d + N. Note that addition gates and multiplication-by- 
constant gates do not contribute to the size or degree of the 
QAP. Thus, these gates are essentially “free” in QAP-based 
VC schemes.

Strong QAPs. In their QAP-based VC scheme, described 
below, GGPR unfortunately require a strong property 

Figure 2. Arithmetic Circuit and Equivalent QAP. Each wire value 
comes from, and all operations are performed over, a field F. The 
polynomials in the QAP are defined in terms of their evaluations at 
the two roots, r5 and r6. See text for details.
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t(x), but the randomization makes the scheme statistically 
zero-knowledge.10

3. THEORETICAL REFINEMENTS
In this section, we improve GGPR’s protocol10 to signifi-
cantly reduce key generation time, evaluation key size, and 
worker effort. We analyze our improvements empirically in 
Section 5.

Our main optimization is that we construct a VC scheme 
that uses a regular QAP (as in Definition 2), rather than a 
strong QAP. Recall that GGPR show how to transform a reg-
ular QAP into a strong QAP, but the transformation more 
than triples the degree of the QAP. Consequently, when 
they plug their strong QAP into their VC construction, the 
strengthening step more than triples the key generation 
time, evaluation key size, and worker computation. We 
take a different approach that uses a regular QAP, and 
hence we do not need a strengthening step at all. Instead, 
we embed additional structure into our new VC proof that 
ensures that the worker uses the same linear combination 
to construct the v, w, and y terms of its proof.a Surprisingly, 
this additional structure comes at no cost, and our VC 
scheme is actually less complicated than GGPR’s! Finally, 
we expand the expressivity and efficiency of the functions 
QAPs can compute by designing a number of custom cir-
cuit gates for specialized functions.

3.1. Our new VC protocol
Next we describe our more efficient VC scheme, with some 
remarks afterwards on some its properties.

Protocol 1 (Verifiable Computation from regular 
QAPs).

• (EKF, VKF) ← KeyGen(F, 1l): Let F be a function with N 
input/output values from F. Convert F into an arithmetic 
circuit C; then build the corresponding QAP Q = (t(x), , 

, ) of size m and degree d. Let Imid = {N + 1, . . ., m}, that 
is, the non-IO-related indices.
Let e be a non-trivial bilinear map e: G × G → GT , and let g 
be a generator of G.
Choose rv, rw, s, av, aw, ay, b, g at random from F and set 
ry = rv × rw, gv = g rv, gw = grw and gy = gry.
Construct the public evaluation key EKF as:

and the public verification key as: VKF = (g1, gav, gaw, gay, 
.

• (y, py) ← Compute(EKF, u): On input u, the worker evaluates 
the circuit for F to obtain y ← F(u); he also learns the values 

from the QAP. Note that Definition 2 only considers the 
case where the same set of coefficients ci are applied to all 
three sets of polynomials. GGPR additionally require the 
if-and-only-if condition in Definition 2 to hold even when 
different coefficients ai, bi, ci are applied—that is, when  

. The y 
show how to convert any QAP into a strong QAP that satisfies 
this stronger condition. Unfortunately, this strengthening 
step increases the QAP’s degree to 3d + 2N, more than tripling 
it. This in turn, more than triples the cost of key generation, 
the size of the evaluation key, and the worker’s effort to pro-
duce a proof.

2.3. Building VC from quadratic programs
To construct a VC protocol from a quadratic program, we 
map each polynomial—for example, vk(x)—of the quadratic 
program to an element gv

k
( s) in an elliptic curve group G, 

where s is a secret value selected by the client, and g is a gen-
erator of G. These group elements are given to the worker. 
For a given input, the worker evaluates the circuit directly 
to obtain the output and the values of the internal circuit 
wires. These values correspond to the coefficients ci of 
the quadratic program. Thus, the VC worker can evaluate 
v(s) = Sk∈[m] ck × vk(s) “in the exponent” to get g v(s); it computes 
w(s) and y(s), in the exponent, similarly.

To allow the worker to prove that Equation (1) holds, we 
also, as part of the evaluation key, give the worker g (si) terms. 
The worker computes , and then 
uses the hi, along with g (si) terms, to compute gh(s). To over-
simplify, the proof consists of ( g v(s), g w(s), g y(s), g h(s)). To check 
that p(s) = h(s)t(s), the verifier uses a bilinear map that allows 
him to take two elliptic curve elements and “multiply” their 
exponents together to create an element in a new group. The 
actual protocol10 is a bit more complex, because additional 
machinery is needed to ensure that the worker incorporates 
the client’s input u correctly, and that the worker indeed 
generates (say) v(s) in the exponent as some linear function 
of the vk(s) values.

Regarding efficiency, GGPR10 show that the one-time 
setup of KeyGen runs in time linear in the original circuit 
size, O(|C|). The worker performs O(|C|) cryptographic 
work, but he must also perform O(|C|log2|C|) non- 
cryptographic work to calculate h(x). To achieve this per-
formance, the worker exploits the fact that the evaluation 
vectors (vk(r1), . . ., vk(rd) ) are all very sparse (also for the w 
and y polynomials). The proof itself is constant size, with 
only 9 group elements for QAPs, though the verifier’s work 
is still linear, O(N), in the size of the inputs and outputs of 
the function.

In terms of security, GGPR10 show this VC scheme is 
sound under the d-PKE and q-PDH assumptions, which are 
weak versions of assumptions in prior work.

Zero Knowledge. Making the VC scheme zero-knowledge 
is remarkably simple. One simply includes the target poly-
nomial t(x) itself in the polynomial sets , , and . This 
allows the worker to “randomize” its proof by adding δvt(s) in 
the exponent to vmid(s), δwt(s) to w(s), and δyt(s) to y(s) for ran-
dom δv, δw, δy, and modifying the other elements of the proof 
accordingly. The modified value of p(x) remains divisible by 

a Our proof contains a term that enforces this linear constraint without 
increasing the degree. GGPR’s generic strengthening step checked the 
consistency of the linear combinations via additional multiplication gates, 
which increased the degree of the QAP.
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{ci}i ∈ [m] of the circuit’s wires.
He solves for h(x) (the polynomial such that p(x) = h(x)× 
t(x)), and computes the proof py as:

where vmid(x) = Sk∈Imid ck × vk(x), and similarly for wmid(s) 
and ymid(s). Since these are linear equations, he can com-
pute them “in the exponent” using the material in the eval-
uation key, for example, .

• {0, 1} ← Verify(VKF, u, y, py): The verification of an alleged 
proof with elements  
and gZ uses the public verification key VKF and the pairing 
function e for the following checks.
• Divisibility check for the QAP: using elements from VKF, 

compute a term representing the I/O, u and y, by repre-
senting them as coefficients c1, …, cN ∈ F and comput-
ing:  (and similarly for  and 

). Check:

 (2)
 

(3)

• Check that the linear combinations computed over , 
, and  are in their appropriate spans:

• Check that the same coefficients were used in each of 
the linear combinations over , , and :

In a designated verifier setting (where the verifier knows 
s, a, etc.), pairings are only needed for divisibility check, 
and the I/O term can be computed directly over F, rather 
than “in the exponent.”

The correctness of the VC scheme follows from the prop-
erties of the QAP. Regarding security, we have the following:

Theorem 1. Let d be an upper bound on the degree of the QAP 
used in the VC scheme, and let q = 4d + 4. The VC scheme is 
sound under the d-PKE, q-PDH, and 2q-SDH assumptions.

The proof of Theorem 1 is in the full version of the paper.
Security Intuition. As intuition for why the VC scheme is 

sound, note that it seems hard for an adversary who does not 
know α to construct any pair of group elements h, hα except 
in the obvious way: by taking pairs , , . . . that he 
is given, and applying the same linear combination (in the 
exponent) to the left and right elements of the pairs. This 
hardness is formalized in the d-PKE assumption, a sort of 
“knowledge-of-exponent” assumption, that says that the 

adversary must “know” such a linear combination, in the 
sense that this linear combination can be extracted from 
him. Roughly, this means that, in the security proof, we 
can extract polynomials Vmid(x), Wmid(x), Ymid(x) such that Vmid 
(from the proof) equals Vmid(s), Wmid = Wmid(s) and Ymid = Ymid(s), 
and that moreover these polynomials are in the linear spans 
of the vk(x)’s, wk(x)’s, and yk(x)’s, respectively. If the adversary 
manages to provide a proof of a false statement that verifies, 
then these polynomials must not actually correspond to a 
QAP solution. So, either p(x) is not actually divisible by t(x) 
(in this case we break 2q-SDH) or V(x) = vio(x) + Vmid(x), W(x) 
and Y(x) do not use the same linear combination (in this 
case we break q-PDH because in the proof we choose β in a 
clever way).

Zero Knowledge. We can apply GGPR’s rerandomization 
technique10 (Section 2.3) to provide statistical zero-knowledge 
for our new VC construction. The worker chooses  
F and in his proof, instead of the polynomials vmid(x), v(x), w(x), 
and y(x), he uses the following randomized versions vmid(x) + 
δvt(x), v(x) + δvt(x), w(x) + δwt(x), and y(x) + δyt(x).

Performance. Our main improvement is that our VC 
scheme only requires a regular QAP, rather than a strong 
QAP, which improves performance by more than a factor of 
3. Moreover, the scheme itself is simpler, leading to fewer 
group elements in the keys and proof, fewer bilinear maps 
for Verify, etc.

3.2. Expressive circuit constructions
The QAP that we use in our VC scheme is defined over Fp, 
where p is a large prime. We can, as explained previously, 
derive a QAP over Fp that efficiently computes any function 
F that can be expressed in terms of addition and multiplica-
tion modulo p. This provides no obvious way to express some 
operations, such as a ≥ b using mod-p arithmetic. On the 
other hand, given a and b as bits, comparison is easy. Hence, 
one might infer that Boolean circuits are more general.

However, we design an arithmetic split gate to translate 
an arithmetic wire a ∈ Fp, known to be in [0, 2k − 1], into k 
binary output wires. Given such binary values, we can com-
pute Boolean functions using arithmetic gates: NAND(a, b) 
= 1 − ab, AND(a, b) = ab, OR(a, b) = 1 − (1 − a)(1 − b). Each 
embedded Boolean gate costs only one multiply.

Surprisingly, this arithmetic embedding gives a fairly effi-
cient VC scheme. Embedding introduces an expensive ini-
tial gate that constrains each input to {0, 1}, but henceforth, 
each embedded gate preserves the {0, 1} invariant, adding 
only 1 to the degree and size of the QAP. Furthermore, the 
expression  combines a bitwise representation of a 
back into a single wire. Because the sum consists of addi-
tions and multiplications by constants, recombination is 
free; it doesn’t increase the size of the QAP.

In our full paper, we also design a gate that enforces 
equality between two wires and a gate that checks whether 
a wire is equal to zero. These can be composed (Thm 11 in 
Ref.10) with other gates.

4. IMPLEMENTATION
We implemented a compiler that takes a subset of C to an 
equivalent arithmetic circuit (Section 4.1). Our VC suite 
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bounds the bit-width of each wire value:

• inputs have the compiler-specified int width;
• each constant has a known width (e.g., 13 = 11012 has 

bit width 4);
• a bitwise op produces the max of its arguments’ 

widths;
• add can produce max + 1 bits (for a carry); and
• mul can produce 2 × max bits.

When the width nears the available bits in the field (254), the 
compiler generates a split gate to truncate the value back to 
the specified int width. Tracking bit width minimizes the 
cost of split gates.

4.2. Quadratic programs and cryptographic  
protocol
The next pipeline stage accepts a Boolean or arithmetic cir-
cuit and builds a QSP or QAP (Section 2). Then, per Section 
3.1, it compiles the quadratic program into a set of crypto-
graphic routines for the client (key generation and verifica-
tion) and the worker (computation and proof generation). 
For comparison, we also implement the original GGPR10; 
GGPR protocol Section 5 shows that Pinocchio’s enhance-
ments reduce overhead by 18–64%.

The key-generation routine runs at the client, with 
selectable public verification and zero-knowledge features 
(Section 5.2). The code transmits the evaluation key over 
the network to the worker; to save bandwidth, the program 
transmits as C and the worker compiles it locally.

The computation routine runs at the server, collecting 
input from the client, using the evaluation key to produce 
the proof, and transmitting the proof back to the client (or, 
if desired, a different verifier). The verification routine uses 
the verification key and proof to determine if the worker 
cheated.

Our cryptographic code is single-threaded, but each 
stage is embarrassingly parallel. Prior work23 shows that 
standard techniques can parallelize work across cores, 
machines, or GPUs. For the cryptographic code, we use a 
high-speed elliptic curve library18 with a 256-bit BN-curve 
that provides 128 bits of security. The quadratic-program-
construction and protocol-execution code is 10,832 lines 
of C and C++.
Faster Exponentiation. Generating the evaluation key EK 
requires exponentiating the same base g to many differ-
ent powers. We optimize this operation by adapting Pip-
penger’s multi-exponential algorithm for use with a single 
base. Essentially this means that we build a table of inter-
mediate powers of g, allowing us to compute any particular 
exponent with only a few multiplications.

In a similar vein, the worker’s largest source of overhead 
is applying the coefficients from the circuit “in the expo-
nent” to compute gY(s), etc. We optimize this operation via a 
sliding-window technique to build a small table of powers 
for each pair of bases. In practice, these tables can improve 
performance by a factor of three to four, even counting the 
time to build the tables in the first place.

Polynomial Asymptotics. To generate a proof, the worker 

then compiles the circuit representation to the equivalent 
QAP, and generates code to run the VC protocol, including 
key generation, proof computation, and proof verification 
(Section 4.2). The toolchain compiles a large collection of 
applications and runs them with verification (Section 4.3). 
Source code for the toolchain is available.b

4.1. Compiler toolchain
The applications described below (Section 4.3) and evalu-
ated in Section 5 are each compiled using qcc, our C-to-
arithmetic-expression compiler, a 3525-line Python 
program. They are also compiled with gcc to produce the 
Native timings in Figures 5 and 6.

The compiler understands a substantial subset of C, 
including global, function, and block-scoped variables; 
arrays, structs, and pointers; function calls, conditionals, 
loops; and static initializers (Figure 3). It also understands 
arithmetic and bitwise Boolean operators and preprocessor 
syntax.

Since the “target machine” (arithmetic circuits) supports 
only expressions, not mutable state and iteration, we restrict 
the C program’s semantics accordingly. For example, point-
ers and array dereferences must be compile-time constants; 
otherwise, each dynamic reference would produce condi-
tional expressions of size proportional to the addressable 
memory. Function calls are inlined, while preserving C vari-
able scope and pointer semantics.

Imperative conditionals compile to conditional expres-
sions that encode the imperative side effects. Static condi-
tions are collapsed at compile time. Similarly, loops with 
statically computable termination conditions are automati-
cally unrolled completely.

The only scalar type presently supported is int; a compiler 
flag selects the integer size. The compiler inserts masking 
expressions to ensure that a k-bit int behaves exactly as the 
corresponding C type, including overflow.

The compiler’s intermediate language is a set of expres-
sions of C-like operators, such as +, *, <=, ?:, &, and ˆ.

The compiler back-end expands each expression into 
the arithmetic gate language of mul, add, const-mul, wire-
split, etc., eliminating common subexpressions. It carefully 

Figure 3. Fixed-Matrix Multiplication. The qcc compiler unrolls the 
loops and decodes the struct and array references to generate an 
arithmetic expression for Out in terms of In.

int mat[SIZE*SIZE] = { 0x12, ... };
struct In { int vector[SIZE]; };
struct Out { int result[SIZE]; };

void compute(struct In *in, struct Out *out){
int i, j, k, t;
for (i=0; i<SIZE; i+=1) {
int t=0;
for (k=0; k<SIZE; k+=1) {
t = t + mat->[i*SIZE+k] * in->vector[k];

}
out->result[i] = t;

}
}

b https://vc.codeplex.com.
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must compute the polynomial h(x) such that t(x) × h(x) = P(x) 
(Section 1). Since we store P(x) in terms of its evaluations 
at the roots of the quadratic program (recall Figure 2), the 
worker must first interpolate to find P(x) and then perform a 
polynomial division to arrive at h(x).

Note that all of these computations take place in a nor-
mal field, whereas all of the worker’s other steps involve 
cryptographic operations, which are about three orders of 
magnitude more expensive.

Thus, one might naïvely conclude, as we did, that sim-
ple polynomial algorithms, such as Lagrangian interpola-
tion and “high-school” polynomial multiplication, suffice. 
However, we quickly discovered that the O(n2) behavior of 
these algorithms, at the scale required for verifiable com-
puting, dwarfed the linear number of cryptographic opera-
tions (Section 5). Hence we implemented an FFT-based 
O(nlogn) polynomial multiplication library and used a 
polynomial interpolation algorithm that builds a binary 
tree of polynomials, giving total time O(nlog2n). Even so 
optimized, solving for h(x) is the second largest source of 
worker overhead.

Preparing for the Future; Learning from the Past. In our 
implementation and evaluation, we assume a worst case sce-
nario in which the client decides, without any warning, to 
outsource a new function, and similarly that the worker only 
ever computes a single instance for a given client. In practice, 
neither scenario is plausible. When the client first installs 
Pinocchio, the program, could build the single base expo-
nent table discussed earlier. Further, it can choose a ran-
dom s and begins computing powers of s in the background, 
since these are entirely independent of the computation.  
The worker can optimize similarly, given the client’s key.

4.3. Applications
Pinocchio runs several applications; each can be instanti-
ated with some static parameters, and then each instance 
can be executed with dynamic inputs. While it may be pos-
sible to use custom verification checks for some of these 
applications (e.g., matrix multiplication), we include them 
to illustrate their performance within a general-purpose sys-
tem like Pinocchio.

Fixed Matrix multiplies an n × n matrix parameter M by an 
n-length input vector A, and outputs the resulting n-length 
vector M × A. We choose five parameter settings that range 
from |M| = 200 × 200 to |M| = 1000 × 1000.

Two Matrices has parameter n, takes as input two n × n 
matrices M1 and M2, and outputs the n × n matrix M1 × M2. 
Matrix operations are widely used, for example, in collabora-
tive filtering (|M| = 30 × 30 to |M| = 110 × 110).

MultiVar Poly evaluates a k-variable, m-degree multivari-
ate polynomial. The (m + 1)k coefficients are parameters, the 
k variables x1, . . ., xk are the inputs, and the polynomial’s 
scalar value is the output (k = 5, m = 6, 16,807 coeff. to k = 5, 
m = 10; 644,170 coeff.).

Image Matching is parameterized by an iw × ih rectangular 
image and parameters kw, kh. It takes as input a kw × kh image 
kernel, and outputs the minimum difference and the point 
(x, y) in the image where it occurs (iw × ih = 25, kw × kh = 9 to 
iw × ih = 2025, kw × kh = 9).

Shortest Paths implements the Floyd-Warshall O(n3) graph 
algorithm, useful for network routing and matrix inversion. 
Its parameter n specifies the number of vertices, its input is 
an n × n edge matrix, and its output is an n × n matrix of all-pairs 
shortest paths (n = 8, e = 64 to n = 24, e = 576).

LGCA is a Lattice-Gas Cellular Automata implementation 
that converges to Navier-Stokes. It has parameter n, the fluid 
lattice size, and k, the iteration count. It inputs one n-cell lat-
tice and outputs another reflecting k steps (n = 294, k = 5 to 
n = 294, k = 40).

SHA-1 has no parameters. Its input is a 13-word (416-bit) 
input string, and it outputs its 5-word (160-bit) SHA-1 hash.

5. EVALUATION
We experiment on a Lenovo X201 ThinkPad. We run on a 
single core of a 2.67 GHz Intel Core i7 with 8 GB of RAM.

Below, we focus on comparisons with previous work 
and app-level performance. In the full paper, we pres-
ent microbenchmarks to quantify the basic cost units 
of our protocol. Our results show that the optimizations 
described in Section 4.2.1 reduce costs by 2–3 orders of 
magnitude for polynomial operations, and factors of 3–10 
for exponentiations. At the macro level, relative to the orig-
inal GGPR protocol, KeyGen and Compute are more than 
twice as fast, and even verification is 24% faster. Pinocchio 
also drastically reduces the size of the evaluation key and 
even manages to reduce the size of GGPR’s already svelte 9 
element proof to 8 elements.

5.1. Comparison with related work
Figure 4 plots Pinocchio’s performance against that of 
related systems. We use the multiplication of two matrices 
as our test application since it has appeared in several prior 
papers, though simpler, non-cryptographic verification 
procedures exist. Since all of these prior schemes are des-
ignated verifier, we measure against Pinocchio’s designated 
verifier mode.

We compare against (1) a naïve version of a PCP-based 
scheme22; (2) GGP,9 an early scheme that defined VC, but 
which relies on FHE; (3) Pepper,22 an optimized refine-
ment of (1); (4) Ginger,23 a further refinement of Pepper; 
(5) Ginger with a batch of one million simultaneous 

Figure 4. Performance Relative to Related Schemes. Pinocchio 
reduces costs by orders of magnitude (note the log scale on the 
y-axis). We graph the time necessary to (a) verify and (b) produce a 
proof result for multiplying two N × N matrices.
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Pinocchio, since Pinocchio operates over a 254-bit field 
using multi-precision integers, whereas the local execution 
uses the CPU’s native 32-bit operations.

Figure 5 plots Pinocchio’s verification time against the 
time to execute the same app natively; each line represents 
a parameterized app, and each point represents a par-
ticular parameter setting. Our key finding is that, for suf-
ficiently large parameters, three apps cross the line where 
outsourcing makes sense; that is, verifying the results of an 
outsourced computation is cheaper than local native execu-
tion. Note that the slope of each app’s line is dictated by 
the size of the app parameters we experimented with (e.g., 
we reached larger parameters for fixed matrix than for two 
matrices).

On the downside, the other three apps, while trend-
ing in the right direction, fail to cross the outsourcing 
threshold. The difference is that these three apps perform 
large numbers of inequality comparisons and/or bitwise 
operations. This makes our circuit-based representation 
less efficient relative to native, and hence on our current 
experimental platform, we cannot push the application 
parameter settings to the point where they would beat 
local execution. Nonetheless, these applications may still 
be useful in settings that require Pinocchio’s zero-knowl-
edge proofs.

Fortunately, additional experiments show that enabling 
zero-knowledge proofs adds a negligible, fixed cost to key 
generation (213 µs), and re-randomizing a proof to make it 
zero-knowledge requires little effort (e.g., 300 ms or 0.1% for 
the multivariate polynomial app).

Figure 6 provides more details of Pinocchio’s per-
formance. For KeyGen, our experiments conserva-
tively assume that the client does no precomputation in 

instances (see below); and (6) a subsequent system by 
Thaler,25 tailored specifically for matrix multiplication 
and extending work based on interactive protocols.7, 12 
See Section 6 for more details on these schemes and the 
tradeoffs between them. Since most of these schemes are 
ridiculously impractical, we model, rather than measure, 
their performance. For GGP, we built a model of its per-
formance based on recent performance results for FHE; 
for Thaler, we extrapolated from reported results25; while 
for the others, we used previously published models.22, 23 
For Pinocchio, however, we use real numbers from our 
implementation.

Figure 4 shows that Pinocchio continues the recent 
trend of reducing costs by orders of magnitude. A naive 
PCP-based scheme requires trillions of years to pro-
duce or verify a single proof. The FHE-based GGP proto-
col improves this performance significantly but remains 
impractical. Pepper and Ginger have made huge improve-
ments over prior work, but, as we discuss in more detail 
in Section 6, they do not offer public verification or zero 
knowledge.

In addition to offering new properties, Pinocchio sig-
nificantly improves performance and security. Except for 
Thaler’s work, the systems shown in Figure 4 amortize 
setup work across many work instances,c but the charac-
teristics of the amortization differ. To reach a break-even 
point, where the client does less work verifying than per-
forming the work locally, Pepper and Ginger must batch 
work instances, whereas GGP and Pinocchio must per-
form enough instances to amortize key setup costs. These 
approaches have very different effects on latency. A client 
cannot benefit from Pepper or Ginger until it has accu-
mulated an entire batch of instances. In Pinocchio, key 
setup can be precomputed, and henceforth every instance 
(including the first one) enjoys a better-than-break-even 
latency. Figure 4 shows the minimum latency achievable by 
each system. Compared with Ginger for a single instance, 
Pinocchio’s verifier is ~120,000×–17,000,000× faster, and 
the worker is 19×–60× faster. To improve performance, 
Ginger’s parameters are chosen such that the probability 
that the adversary can successfully cheat can be as high as 

,(Figure 2 in Ref.23) while in Pinocchio, the probability is 
roughly .

Finally, Pinocchio’s verification is more efficient than 
Thaler’s custom protocol, but Thaler’s protocol is the only 
one to achieve practicality for the worker, showing the price 
the other systems pay for generality.

5.2. End-to-end application performance
We measure Pinocchio’s performance for the applications 
and parameter settings described in Section 4.3. All appli-
cations are written in C and compile to both QAPs and to 
native executables. We measure performance using 32-bit 
input values, so we can compare against the native C ver-
sion. This obviously makes things more challenging for 

c In contrast, Pinocchio’s public verifier (not shown) enables a client to 
benefit from a third party’s key setup work.

Figure 5. Cost of Verification versus Local. Verification must be 
cheaper than native execution for outsourcing to make sense, 
though for applications that want zero-knowledge, more expensive 
verification may be acceptable. All apps trend in the right direction, 
and three apps cross the plane where verification is cheaper than 
native. Error bars, often too small to see, represent 95% confidence 
intervals (N = 50, s £ 2%).
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anticipation of outsourcing a function, and for Compute, 
we assume that the worker only does a single work instance 
before throwing away all of its state. As discussed in 
Section 4.2.1, in practice, we would take advantage of both 
precomputation and caching of previous work, which on 
average saves at least 43% of the effort for KeyGen and 16% 
of the effort for Compute.

In Figure 6, we see again that three apps (starred) beat 
native execution, including one in the public verifier setting 
(which requires more expensive operations per IO). The data 
also reinforces the point that using a circuit representation 
imposes a significant cost on image matching, shortest 
paths, and the lattice gas sim relative to native, suggesting 
a target for optimization. Relative to the circuit representa-
tion, Pinocchio’s verification is cheap: both the public and 
the designated verifier “win” most of the time when com-
pared to the circuit execution. Specifically, the designated 
verifier wins in 12 of 13 (92%) application settings. Public 
verification is more expensive, particularly for large IO, but 
still wins in 9 of 13 (69%) settings.

Since Pinocchio offers public verification, some clients 
will benefit from the KeyGen work of others, and hence only 
care about the verification costs. For example, a cellphone 
carrier might perform the one-time KeyGen so that its cus-
tomers can verify computations done by arbitrary workers.

However, in other settings, for example, a company out-
sourcing work to the cloud, the key generator and verifier 
may be the same entity, and will wish to amortize the cost 
of key generation via the savings from verification. Figure 6  
shows that most apps have a low “break even” point vs. 
circuit execution: the median for the designated verifier is 
555 instances and for public verifier is 500 instances. Every 
instance afterwards is a net “win,” even for the key generator.

Figure 6 holds more good news for Pinocchio: the keys 
it generates are reasonably sized, with the evaluation key 

(which describes the entire computation) typically requir-
ing 10s or 100s of MB. The weak verifier’s key (which 
grows linearly with the I/O) is typically only a few KB, 
and even at its largest, for two-matrix multiplication, it 
requires only slightly more than 1 MB. This suggests that 
the keys are quite portable and will not require excessive 
bandwidth to transmit.

Finally, from the client’s perspective, if the worker’s 
efforts are free, then the worker’s additional overhead of 
generating a proof is irrelevant, as long as it doesn’t hurt 
response latency. Our results, combined with prior work on 
parallelization,23 suggest that latency can be brought down 
to reasonable levels. And indeed in high-assurance scenar-
ios, scenarios where the client is incapable of performing 
the calculation itself (e.g., a power-limited device), or sce-
narios where the worker’s resources are otherwise idle, the 
client may very well view the worker as “free.”

However, in other scenarios, such as cloud computing, 
the worker’s efforts are not free. Even here, however, Chen 
and Sion6 estimate that the cost of cloud computing is about 
60× cheaper than local computing for a small enterprise. 
This provides an approximate upper-bound for the amount 
of extra work we should be willing to add to the worker’s 
overhead.

6. RELATED WORK
When implementing verified computation, prior efforts 
focused on either interactive proofs or PCPs. One effort7, 

25 builds on the interactive proofs of Goldwasser et al.12 
(GKR). They target a streaming setting where the client 
cannot store all of the data it wishes to compute over; the 
system currently requires the function computed to be 
highly parallelizable. On the plus side, it does not require 
cryptography, and it is secure against computationally 
unbounded adversaries.

Figure 6. Application Performance. Pinocchio’s performance for a sampling of the parameter settings (Section 4.3). All programs are 
compiled directly from C. The first two columns indicate the number of application inputs and outputs, and the number of gates in the 
corresponding arithmetic circuit. KeyGen is a one-time setup cost per application; Compute is the time the worker spends proving it 
computed correctly; Verify is the time the client spends checking the proof. Verification values in bold indicate verification is cheaper than 
computing the circuit locally; those with stars (*) indicate verification is cheaper than native execution. Public verification, while more 
expensive, allows anyone to check the results; private verification is faster, but allows anyone who can verify a proof to potentially generate a 
cheating proof. The Circuit column reports the time to evaluate the application’s circuit representation, while Native indicates the time to run 
the application as a local, native executable. The last three columns indicate the size of the keys necessary to produce and verify proofs, as 
well as the size of the proof itself.

Fixed matrix, Medium
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Two matrices, Large
MultiVar poly, Medium
MultiVar poly, Large
Image matching, Medium
Image matching, Large
Shortest paths, Medium
Shortest paths, Large
Lattice gas sim, Medium
Lattice gas sim, Large
SHA-1

Mult KeyGen Compute Verify (ms) Circuit Native EvalKey VerKey Proof
|IO| gates pub(s) (s) Pub Priv (ms) (ms) (MB) (KB) (B)

1201 600 0.7 0.4 39.5 10.0 123.7 4.3 0.3 37.9 288
2001 1000 1.5 0.9 58.9 *10.1 337.4 12.4 0.5 62.9 288

14,701 347,900 79.8 269.4 340.7 12.1 124.9 4.0 97.9 459.8 288
36,301 1,343,100 299.3 1127.8 882.2 *15.4 509.5 15.5 374.8 1134.8 288

7 203,428 41.9 246.1 11.6 10.0 93.1 4.5 55.9 0.6 288
7 571,046 127.1 711.6 *12.7 *11.1 267.2 12.9 156.8 0.6 288

13 86,345 26.4 41.1 11.1 9.9 5.5 0.1 23.6 0.8 288
13 277,745 67.0 144.4 11.4 10.1 18.0 0.4 75.8 0.8 288

513 366,089 85.4 198.0 25.5 10.0 18.7 0.1 99.6 16.4 288
1153 1,400,493 317.5 850.2 48.9 10.8 69.5 0.3 381.4 36.4 288

21 144,063 38.2 76.4 10.9 9.9 91.4 0.2 39.6 1.1 288
21 283,023 75.6 165.8 10.9 9.8 176.6 0.4 77.7 1.1 288
22 23,785 12.0 15.7 11.1 9.9 18.8 0.0 6.5 1.1 288
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ReferencesSetty et al. produced a line of PCP-based systems called 
Pepper22 and Ginger.23 They build on a particular type of PCP 
called a linear PCP,14 in which the proof can be represented 
as a linear function. This allows the worker to use a linearly 
homomorphic encryption scheme to create a commitment 
to its proof while relying only on standard cryptographic 
assumptions. Through a combination of theoretical and 
systems-level improvements, this work made tremendous 
progress in making PCP-based systems practical. Indeed, 
for applications that can tolerate large batch sizes, the amor-
tized costs of verification can be quite low.

A few downsides remain, however. Because the work 
builds on the Hadamard PCP,1 the setup time, network over-
head, and the prover’s work are quadratic in the size of the 
original computation, unless the protocol is hand-tailored. 
To achieve efficiency, the verifier cannot verify the results 
until a full batch returns. The scheme is designated verifier, 
meaning that third parties cannot verify the results of out-
sourced computations without sharing the client’s secret 
key and risking fraud. The scheme also does not support 
zero-knowledge proofs.

Concurrent work21 also builds on the quadratic programs 
of Gennaro et al.10 They observe that QAPs can be viewed as 
linear PCPs and hence can fit into Ginger’s cryptographic 
framework.23 Their work shows worker computation 
improvements similar to those of Pinocchio. They retain 
PCPs and Ginger’s cryptographic protocol, so they rely on 
simpler cryptographic assumptions than Pinocchio, but 
they must still batch computations to obtain an efficient 
verifier. They also remain designated verifier and do not sup-
port zero-knowledge proofs.

A subsequent line of work3 expands application expressivity 
by combining Pinocchio’s cryptographic protocol with an inno-
vative encoding of RAM accesses. They also propose an elegant 
program encoding based on a general-purpose CPU, but this 
leads to overheads, for applications like matrix multiplication, 
of 5–7 orders of magnitude compared with Pinocchio.

Several systems provide compilers for zero-knowledge 
(ZK) proofs.17 In general, these systems are likely to exhibit 
better performance than Pinocchio for their particular sub-
set of functionality, but they do not possess the same level of 
efficient generality.

7. CONCLUSION
We have presented Pinocchio, a system for public verifi-
able computing. Pinocchio uses quadratic programs, a new 
method for encoding computation, combined with a highly 
efficient cryptographic protocol to achieve both asymptotic 
and concrete efficiency. Pinocchio produces 288-byte proofs, 
regardless of the size of the computation, and the proofs can 
be verified rapidly, typically in tens of milliseconds, beating 
native execution in several cases. This represents five to seven 
orders of magnitude performance improvement over prior 
work.23 The worker also produces the proof 19×–60× faster. 
Pinocchio even slashes the cost of its underlying protocol, cut-
ting the cost of both key and proof generation by more than 
60%. The end result is a cryptographic protocol for efficiently 
signing computations. Combined with a compiler for real C 
programs, Pinocchio brings VC much closer to practicality. 
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