Memoir—Formal Specs and Correctness Proofs

John R. Douceur!, Jacob R. Lorch?, Bryan Parnof, James Mickens', Jonathan M. McCunet

"Microsoft Research, Redmond, WA
fCarnegie Mellon University, Pittsburgh, PA

ABSTRACT

This tech report presents formal specifications for the Memoir system and proofs of the system’s correctness.
The proofs were constructed manually but have been programmatically machine-verified using the TLA+ Proof
System.? Taken together, the specifications and proofs contain 61 top-level definitions, 182 LET-IN definitions,
74 named theorems, and 5816 discrete proof steps. The proofs address only the safety of the Memoir system, not
the liveness of the system. Safety is proven by showing that a formal low-level specification of the Memoir-Basic
system implements a formal high-level specification of desired behavior. The proofs then show that a formal
specification of the Memoir-Opt system implements the Memoir-Basic system.

TABLE OF CONTENTS

1 INTRODUCTION 2
1.1 Overview oo e e e 2
1.2 Memoir-Basic L e 5
1.3 Memoir-Opt 9
1.4 Organization 11

2 SPECIFICATIONS 18
2.1 Declarations Common to High- and Low-Level Specs 19
2.2 Specification of the High-Level System (Semantics) 20
2.3 Primitives Used by the Low-Level Systems 22
2.4 Specification of the Memoir-Basic System L oL o 24
2.5 Specification of the Memoir-Opt System L 31

3 REFINEMENTS AND INVARIANTS 40
3.1 Refinement 1: Mapping Memoir-Basic State to High-Level State 41
3.2 Refinement 2: Mapping Memoir-Opt State to Memoir-Basic State 43
3.3 Invariants Needed to Prove Memoir-Basic Implementation 47
3.4 Invariants Needed to Prove Memoir-Basic Invariance 49

4 PROOFS 51
4.1 Proof of Type Safety of the High-Level Spec, 52
4.2 Proofs of Lemmas Relating to Types in the Memoir-Basic Spec 54
4.3 Proof of Type Safety of the Memoir-Basic Spec 69
4.4 Proofs of Lemmas that Support Memoir-Basic Invariance Proofs 82
4.5 Proof of Unforgeability Invariance in Memoir-Basic 107
4.6 Proof of Inclusion, Cardinality, and Uniqueness Co-invariance in Memoir-Basic 120
4.7 Proof that Memoir-Basic Spec Implements High-Level Spec 157
4.8 Proofs of Lemmas Relating to Types in the Memoir-Opt Spec 192
4.9 Proof of Type Safety of the Memoir-Opt Spec 213
4.10 Proofs of Lemmas Relating to the Memoir-Opt Refinement 230
4.11 Proofs of Lemmas Relating to the Memoir-Opt Implementation 271
4.12 Proof that Memoir-Opt Spec Implements Memoir-Basic Spec 284

ACKNOWLEDGMENTS 390

REFERENCES 390

1. INTRODUCTION
1.1 Overview
This tech report presents formal specifications and safety proofs for the Memoir system. The specifications herin
are written in the TLA+ language,® and the proofs are written in the TLA+ proof language.” Our hope is that
a reader unfamiliar with TLA+ can easily understand the prose descriptions in this tech report, along with the
textual comments embedded in the specifications and proofs. However, a thorough understanding of this tech
report requires a solid knowledge of TLA+. We do not provide even a cursory tutorial of the language herein.

In TLA+, a specification is inductive. The spec describes a set of state variables, the initial values for these
variables, and a set of actions that modify the variables. Each action is a relation between a pair of successive
states. The temporally earlier state is called the unprimed state, and the temporally later state is called the
primed state. (Within the language, the different states are identified by the absence or presence of a prime
character following the state variable or expression.)

Our proofs are written in a hierarchical style advocated by Lamport.* Each progressive level of the proof
contains sub-proofs, each of which proves a single proof step at the prior level. Our proofs contain a total of
5816 discrete proof steps, all in the service of proving 74 named theorems. Although these steps were all written
manually, they have been programmatically machine-verified using the TLA+ proof system.' 3

1.1.1 Background—The Memoir System

Memoir is a generic framework for executing modules of code in a protected environment. In particular, Memoir
guarantees not only privacy and integrity; it also guarantees state continuity across TCB interruptions. This
means that, when a module pauses execution and returns control to the untrusted caller, and then later resumes
execution, the module will resume from the same state it was in before it paused.

Understanding the formal specifications in this tech report requires a detailed understanding of the Memoir
system, which this tech report does not provide. The reader is referred to our paper® describing the Memoir
system. The level of knowledge contained in the cited paper will be assumed by the remainder of this tech report.

The associated paper introduces several terms of art with meanings that are specific to Memoir, such as
“history”, “history summary”, and “authenticator”. Herein, we supplement these terms with two others that
represent intermediate values in the construction of an authenticator:

state hash: a secure hash of a public state and an encrypted private state
history state binding: a secure hash of a history summary and a state hash
Thus, an authenticator is a MAC of a history state binding.

1.1.2 Philosophy and Approach

One common way to formally address the correctness of a system is to state and prove particular properties that
the system maintains. Closely related is the approach of proving that the system prevents a particular set of
undesirable things from occurring. For instance, in Memoir, we might have asserted that the system is correct
if it does not allow a rollback attack to set the service state to a previous state. Although this might seem
intuitive, this particular property is is in fact too strong, because one could easily define a service that allows
transitions to arbitrary previous states. Memoir does not prevent such a service from executing, and there no
reason Memoir should be constrained to only run services that disallow repeated entries into the same state.

More importantly, there is a general problem with the approach of stating desirable and/or undesirable
properties and proving that they do/don’t follow. The problem is that there is no a priori reason to believe that
any particular set of properties sufficiently captures the intended behavior of a system. Even if we were to modify
the above non-rollback property to account for systems that allow state re-entry, there is no reason to believe
that this is the only important property for the Memoir system to maintain. And, in fact, it is not the only
important property: Memoir should also prevent a transition to any state that is not reachable by the service
code. Even this is not sufficient, because the service may define multiple states that are independently reachable
from the initial state, but that are mutually exclusive in any given execution sequence. We could continue adding
and modifying properties, but there is no clear way to know when the set is sufficient to characterize the desired
system behavior.

Instead of defining properties, we follow a proof approach encouraged by TLA4. This approach has four
main parts, and often includes a fifth. The first part of the approach is to define a high-level specification
that describes the intended semantics of the system. The high-level spec is small enough and simple enough that
a knowledgeable reader should be able to examine the spec and easily determine whether its semantics are the

right ones. It is, of course, possible to prove properties of the high-level spec, but the hope is that the high-level
spec is straightforward enough that its desirability is readily assessable.

The second part of the approach is to define a low-level specification that describes the implementation
of the system. Whereas a high-level spec typically describes abstract state at the semantic level, a low-level spec
typically describes concrete state at the implementation level. Just as it should be easy to determine that the
high-level spec describes desirable semantics, it should be easy to determine that the low-level spec accurately
characterizes the real hardware and software that implements the system.

The third part of the approach is to define a refinement that describes how to interpret any given state
of the low-level system as a corresponding state of the high-level system. This is a somewhat subtle concept,
and we do not elaborate on it here, although the specific descriptions of refinements below (§ 1.2.3, § 1.3.4)
may implicitly provide sufficient edification. A brief and surprisingly entertaining introduction to the topic of
refinement is presented in the paper Refinement in State-Based Formalisms® by Lamport. For the very interested
reader, the book Specifying Systems® describes the concept in depth.

The fourth part of the approach is where the rubber meets the road: a proof of implementation that shows
that any behavior satisfying the low-level spec, when interpreted according to the refinement, also satisfies the
high-level spec. Such a proof may (and ours does) show the mapping from particular actions in the low-level spec
to particular actions in the high-level spec. This additional set of cross-spec correspondences provides further
understanding of the relationship between the two specs, beyond merely that provided by the state-to-state
correspondences established by the refinement.

The fifth (and the only optional) part the approach is to define and prove a set of inductive invariants that
are maintained by the low-level spec. These inductive invariants may seem similar to the correctness properties
we disparaged above; however, they are different in two important respects. First, and most importantly, they
are completely in service to the proof of implementation. The only reason the inductive invariants are needed
(if they even are) is as a necessary step in the process of proving that the low-level spec satisfies the high-level
spec. Consequently, there is no danger that the set will be incomplete in some important way. If the invariants
are sufficient to enable the proof of implementation, then the set is complete.

Second, it is not important for these invariants to be understood by a person who merely wants to be confident
that the low-level system provides desirable semantics. Such a person need only understand the high-level spec,
along with the abstract assertion that the low-level spec implements the high-level spec. This contrasts with the
approach of defining desirable/undesirable properties, which of necessity must be understood by anyone wishing
to know what the system is supposed to do. The invariants are important only to someone who wants to know
why the low-level system satisfies the high-level semantics. It is often (but not always) the case that the essence
of this why is in the definition of the inductive invariants.

For the particular case of Memoir, we define a single high-level spec but two low-level specs, one for Memoir-
Basic and one for Memoir-Opt. We construct two refinements, one that maps from the Memoir-Basic spec to
the high-level spec, and one that maps from the Memoir-Opt spec to the Memoir-Basic spec. We prove that
the Memoir-Basic spec implements the high-level spec, which requires three inductive invariants. Proving these
inductive invariants in turn requires stating and proving two more inductive invariants. We then prove that the
Memoir-Opt spec implements the Memoir-Basic spec, which transitively implies that it implements the high-level
spec. For this second implementation proof, no inductive invariants are necessary.

1.1.3 Assumptions

The proofs herein depend upon several assumptions. Some of these are realized as explicit assumptions using a
TLA+ ASSUME statement. Others are realized implicitly in the definitions of various actions. The strongest
assumptions we make are the following:

Assumption: Highly improbable events never occur.
Realization:
e The hash function is fully collision-resistant. See the explicit assumptions named HashCollisionResistant
and BaseHash ValueUnique.
e The MAC functions are fully collision-resistant and unforgeable. See the explicit assumptions
named MACCollisionResistant and MACUnforgeable.
e Upon restarting, the arbitrary values in the computer’s RAM will not contain an authenticator
that is coincidentally equal to an authenticator that could be computed with the symmetric key

stored in the NVRAM. See the definitions of the LL1 Restart and LL2Restart actions.

Assumption: The untrusted system cannot modify the contents of the NVRAM.
Realization:
e In the Memoir-Basic spec, the only action that changes the value in the NVRAM is LL1 PerformOperation.
See the definitions of LL1Next and all actions it disjoins.
e In the Memoir-Opt spec, the only action that changes the value in the NVRAM is LL2 PerformOperation.
See the definitions of LL2Next and all actions it disjoins.

Assumption: The SPCR can be modified only by resetting it or extending it. Extending means that
the new value is a chained hash of the previous value in the SPCR with another value.
Realization:
e There are only three actions that modify the SPCR: LL2PerformOperation, LL2Restart, and
LL2CorruptSPCR. See the definitions of LL2Next and all actions it disjoins.
e The LL2PerformOperation action extends the SPCR. See the definition of the LL2 PerformOperation
action and the Successor operator.
e The LL2Restart action resets the SPCR. See the definition of the LL2Restart action.
e The LL2CorruptSPCR action extends the SPCR. See the definition of the LL2CorruptSPCR
action.

Assumption: The symmetric key stored in the NVRAM is unknown outside the trusted subsystem.
Realization:
e The only authenticators available to an attacker are (1) those previously returned by Memoir
and (2) those the attacker can generate using a symmetric key other than the key stored in the
NVRAM. See the definitions of LL1CorruptRAM and LL2CorruptRAM.

Assumption: The hash barrier stored in the NVRAM is unknown outside the trusted subsystem.
Realization:
e When an attacker extends the SPCR, the value for the extension cannot be constructed as a
hash of any value with the hash barrier secret stored in the NVRAM. See the definitions of
LL2CorruptSPCR.

In addition to the above strong assumptions, we use TLA+ ASSUME statements for several other purposes:

Type safety of primitives, parameters, and formalisms

e The primitive operators for hashing, message authentication codes, and symmetric cryptography
are assumed to be type-safe. This is asserted by the explicit assumptions BaseHash Value TypeSafe,
Generate MACTypeSafe, Validate MACTypeSafe, HashTypeSafe, SymmetricEncryption TypeSafe,
and SymmetricDecryption TypeSafe.

e The service that the Memoir platform executes is assumed to be type-safe, as asserted by the
explicit assumptions Service TypeSafe and ConstantsTypeSafe.

e Formalisms needed by the proof are assumed to be type-safe. See the explicit assumptions
HashCardinality TypeSafe and CrazyHash Value TypeSafe.

Correctness of primitives

e The MAC functions are assumed to be complete, meaning that every MAC generated with a key
validates correctly with the same key, as asserted by the explicit assumption MACComplete.

e The MAC functions are assumed to be consistent, meaning that if a MAC validates correctly
with a key, it must have been generated as a MAC with that same key, as asserted by the explicit
assumption MACConsistent.

e The cryptographic functions are assumed to be correct, meaning that decryption is the inverse of
encryption with the same key, as asserted by the explicit assumption SymmetricCryptoCorrect.

Formalisms
e One consequence of the strong collision-resistance of the hash function is that the result of any
hash chain has a well-defined count of hashes that went into its production. We formalize this
as the cardinality of the hash using the operator HashCardinality along with a set of explicit as-

sumptions: HashCardinalityAccumulative, BaseHashCardinalityZero, and InputCardinalityZero.

e When a flag in the Memoir-Opt NVRAM indicates that the SPCR should contain the value
BaseHashValue but it in fact contains some other value, we represent the logical value as a
formalized CrazyHashValue. This value is assumed to be unequal to any other hash value by the
explicit assumption CrazyHashValue Unique.

e The HistorySummariesMatch predicate is defined recursively, but the current version of the
prover can neither handle recursive operators nor tractably support proofs using recursive func-
tion definitions. Therefore, we define the operator indirectly, by using the explicit assumption
HistorySummariesMatchDefinition.

One final—and very important—assumption of this tech report is the correctness of our inductive reasoning.
As of this writing, the current version of the TLA+ Proof System is unable to verify the proof step that ties
together a base case and an induction step into an inductive proof. We thus depend upon human reasoning skills
to ensure that this final step is correct for all proofs that use induction. This includes:

e the use of the Invl rule in the proofs of type safety for our three specs and in the proofs of the inductive
invariance of four invariants

e the use of the StepSimulation rule in the two implementation proofs

e the final step in the HistorySummariesMatchUniqueLemma, which uses non-temporal inductive reasoning

1.2 Memoir-Basic

Since Memoir is a platform that supports arbitrary services, our high-level spec declares the service to be an
undefined function that maps a state and a request to a state and a response. More precisely, the spec partitions
the service state into a public portion and a private portion, with the intent that only the private portion need be
hidden from the untrusted system by encryption. Thus, the service function takes three arguments—the current
public state, the current private state, and an input—and it yields a record with three fields—the new public
state, the new private state, and an output. The service also specifies an initial value for the public state, an
initial value for the private state, and an initial value for the set of inputs that are available to be processed by
the service. This is described precisely in Section 2.1.

1.2.1 High-Level Specification for Memoir-Basic Semantics

The high-level spec for Memoir-Basic semantics contains four state variables: the current public state, the current
private state, the set of inputs that are available to be processed by the service, and the set of outputs that the
service has been observed to produce. The latter two warrant some explanation.

The set of available inputs is intended to model the fact that, at any given time, some inputs might not be
known to the user that invokes the service. For example, if the service is used to redeem cryptographically signed
tokens, the user may not know the complete set of valid tokens. The set of available inputs includes the inputs
that, at a given moment, are known by the user and thus available to be processed by the service.

The high-level spec includes a variable for the set of outputs observed from the service, because it is important
to show that the low-level specs produce a corresponding set of outputs by their actions. It is not enough to
show that the public and private states in the refined low-level specs equal the public and private states of the
high-level spec, because this would be insufficient to preclude a low-level spec that returns a different set of
outputs than are intended by the semantics.

The high-level spec for Memoir-Basic semantics includes two actions. The main action, HLAdvanceService,
invokes the service function with arguments of the current public state, the current private state, and an input
from the set of available inputs. The output of the service function updates the current public state, the current
private state, and the set of outputs observed from the service.

The second action, HL MakelnputAvailable, adds an input to the set of available inputs. This action might,
for example, model an out-of-band transaction in which the user pays money in exchange for a signed token,
thereby enabling the user to submit a request containing that token.

As argued above (§ 1.1.2), this high-level spec is small and simple enough that it should be easy to determine
that its semantics are the right ones. In particular, it is readily apparent that the HLAdvanceService action
provides the state continuity desired for the service module.

1.2.2 Memoir-Basic Low-Level Specification

The Memoir-Basic low-level spec contains six state variables. Three of these variables represent concrete state
maintained by a Memoir-Basic implementation: contents of the disk, contents of the RAM, and contents of the
NVRAM. The only parts of each storage device we model are those of direct relevance to Memoir. For the
NVRAM, this is the history summary and symmetric key that Memoir-Basic stores in the NVRAM. For the
RAM, this is the values that are exchanged between Memoir and the untrusted system: the current public state
and encrypted private state stored by the untrusted system, and the history summary and authenticator that
the untrusted system uses to convince Memoir that the current state is valid. For the disk, this is a copy of the
contents of the RAM that are stored on the disk for crash-resilience.

The other three variables represent abstractions, two of which are direct analogues of state variables in the
high-level spec: the set of inputs that are available to be processed and the set of outputs that have been
observed. The third abstract variable is the set of authenticators that the untrusted system has observed to be
returned from Memoir. This set is needed as part of the formalism, because an attacker can attempt to re-use
any authenticator it has observed Memoir to produce (c.f. § 1.1.3), so the specification needs to track this set to
show that its elements are available to an attacker.

The Memoir-Basic low-leve spec includes seven actions. The only two actions that model the execution of
Memoir-Basic code are LL1PerformOperation and LL1RepeatOperation. The LL1PerformOperation action de-
scribes both concrete operations performed by the Memoir-Basic implementation and also abstract operations
needed for the formalism. The concrete operations include checking the values in the RAM from the untrusted
system against values in NVRAM to ensure correctness and currency, invoking the service function with argu-
ments from the RAM and an input from the set of available inputs, and updating the RAM and NVRAM with
new values based on the output of the service function. The abstract operations update the sets of observed
outputs and observed authenticators.

The LL1RepeatOperation action behaves similarly to the LL1PerformOperation action, with two main ex-
ceptions: First, instead of checking that the state in the RAM is current, it checks that if the state in the RAM
were advanced by the given input from the set of available inputs, the resulting state would be current according
to the NVRAM. Second, it does not update the NVRAM. Importantly, the LL1RepeatOperation action does
update the sets of observed outputs and observed authenticators. This may seem odd, because if the Memoir
system is functioning correctly, the LL1 RepeatOperation action will not produce an output that it has not pre-
viously produced, nor will it produce an authenticator with a meaning other than that of some authenticator it
previously produced. However, this is not a property we assume in the definition of the action; it is a property
we prove as part of the implementation proof (c.f. the inclusion invariant in § 1.2.4).

A third action, LL1 MakelnputAvailable, is an abstract action that is a direct analogue of the high-level spec’s
HLMakelnputAvailable action. This action adds an input to the set of available inputs but leaves all concrete
state unchanged.

There are three actions that model behavior of the untrusted system. The LL1ReadDisk action reads the
state of the disk into the RAM. The LL1WriteDisk action writes the state of the RAM onto the disk. The
LL1Restart action models the effect of a system restart by trashing the values in the RAM.

The final Memoir-Basic low-level action is LL1CorruptRAM. This action models an attacker’s ability to
put nearly arbitrary values in the RAM before invoking Memoir. As described in Section 1.1.3, because the
symmetric key stored in the NVRAM is unknown outside the trusted subsystem, the only authenticators the
attacker can put in the RAM are (1) those from the set of authenticators that the untrusted system has observed
to be returned from Memoir and (2) those the attacker can generate using a symmetric key other than the key
stored in the NVRAM.

1.2.3 Refinement of Memoir-Basic State
The refinement describes how to interpret values of state variables in the Memoir-Basic low-level spec as values
of state variables in the high-level spec. There are four high-level variables whose values need to be established
through the refinement, two of which are trivial: The high-level variables representing the set of available inputs
and the set of observed outputs are asserted by the refinement to respectively equal the corresponding sets from
the low-level spec. These are abstract variables, and they have identical meanings across the two specs.
Refining the high-level public and private state is more involved. Intuitively, the only concrete value in the
low-level spec that determines the current service state is the history summary in the NVRAM. The values in

the RAM and the disk are irrelevant, because the untrusted system can set these to any values at any time. So,
the refinement needs to express that the high-level values of public and private state are values that correspond
(in some strong but as yet ill-defined sense) to the history summary in the NVRAM. The way we express this
correspondence is by exploiting the set of observed authenticators. Each authenticator expresses a binding
between a history summary (such as the one stored in the NVRAM) and a state hash formed from a public and
private state. Thus, the refinement asserts that the high-level variables representing the public and private state
have any values whose hash is bound to the history summary currently in the NVRAM by some authenticator in
the set of observed authenticators. Although it may not be obvious, this assertion uniquely defines the high-level
public and private state. We will prove this uniqueness as part of the implementation proof (c.f. the uniqueness
invariant in § 1.2.4).

1.2.4 Memoir-Basic Invariants

The proof that the Memoir-Basic low-level spec implements the high-level spec depends upon three inductive in-
variants: the unforgeability invariant, the inclusion invariant, and the uniqueness invariant, which we collectively
refer to as the correctness invariants.

The unforgeability invariant is a somewhat boring invariant. As described above (§ 1.2.2), the definition of
the LL1CorruptRAM action constrains the set of authenticators that can be put into the RAM by an attacker.
The unforgeability invariant essentially states that the only authenticator values in the RAM are those that
satisfy the constraint imposed by the LL1CorruptRAM action. In other words, no other actions violate this
constraint. Since one of these other actions, LL1ReadDisk, copies the authenticator from the disk into the RAM,
we cannot prove the unforgeability invariant directly. Instead, we first prove the extended unforgeability invariant,
which applies the authenticator constraint to both the RAM and the disk. The extended unforgeability invariant
directly implies the unforgeability invariant.

The inclusion invariant is needed for the implementation proof in the presence of the LL1RepeatOperation
action. This invariant essentially states that (1) the output that LL1RepeatOperation will produce is already
in the set of observed outputs, and (2) the new authenticator that LL1RepeatOperation will produce authenti-
cates a history state binding that is already being authenticated by some authenticator in the set of observed
authenticators. Thus, the LL1RepeatOperation action will not modify these sets in any semantically important
way.

The uniqueness invariant states that the the history summary in the NVRAM is bound to only one public
and private state by an authenticator in the set of observed authenticators. This invariant is used in the proof
that the initial high-level state is correctly defined, in the proofs that the high-level public and private state
is not changed by any low-level action that should not change this state, and in the proof that the low-level
LL1PerformOperation action implements the behavior of the high-level HLAdvanceService action.

Just as the proof of the unforgeability invariant relies on the extended unforgeability invariant, the proof of
the inclusion invariant and the uniqueness invariant also rely on a supplementary invariant, which we call the
cardinality invariant. However, unlike the extended unforgeability invariant, the cardinality invariant cannot
be proven on its own. Moreover, the inclusion, cardinality, and uniqueness invariants cannot be ordered with
respect to each other. The proof of the inclusion invariant inductively depends upon the uniqueness invariant,
which in turn depends upon the cardinality invariant, which in turn depends upon the inclusion invariant. We
prove these three invariants co-inductively.

The statement of the cardinality invariant relies on a formalism we call the cardinality of a hash, which is
the count of hashes that went into the production of any value in the domain of the hash function. The hash
cardinality is well-defined because of the strong collision-resistance of the hash function that is assumed (§ 1.1.3)
by our proof. The hash cardinality of the base hash value is zero; the hash cardinality of any value not output
from the hash function is zero; and the hash cardinality of any output from the hash function is one greater than
the hash cardinality of the inputs to the hash function.

The cardinality invariant states that the hash cardinality of the history summary bound by any authenticator
in the set of observed authenticators is less than or equal to the hash cardinality of the history summary in the
NVRAM. The cardinality invariant inductively supports the proof of the uniqueness invariant, because it allows
us to prove that when the LL1PerformOperation action produces a new authenticator, that authenticator binds
a history summary that is not bound by any authenticator in the set of observed authenticators, because the
new authenticator has a greater hash cardinality than any authenticator in the set. In turn, the uniqueness

invariant inductively supports the proof of the inclusion invariant, because it allows us to prove that when the
LL1PerformOperation action produces a state hash from the public and private state in the RAM, this equals the
state hash defined in the inclusion invariant. Completing the cycle, the inclusion invariant inductively supports
the proof of the cardinality invariant, because it allows us to prove that the LL1 RepeatOperation action makes no
semantic change to the set of observed authenticators, and thus there is no change to the set of hash cardinalities
represented by this set.

1.2.5 Memoir-Basic Correctness

To prove that the Memoir-Basic low-level spec implements the high-level spec, we prove (1) that the initial
state of the low-level spec, under refinement, satisfies the initial state of the high-level spec, and (2) the next-
state predicate of the low-level spec, under refinement, satisfies the next-state predicate of the high-level spec.
Moreover, the proof of the next-state predicate includes sub-proofs for the following eight implications:

UNCHANGED LL1Vars = UNCHANGED HLVars
LL1 MakelnputAvailable = HLMakelnputAvailable
LL1PerformOperation = HLAdvanceService
LL1RepeatOperation = UNCHANGED HLVars
LL1Restart = UNCHANGED HLVars
LL1ReadDisk = UNCHANGED HLVars
LL1 WriteDisk = UNCHANGED HLVars
LL1CorruptRAM = UNCHANGED HLVars

In other words:

e A Memoir-Basic stuttering step maps to a high-level stuttering step.

e A Memoir-Basic LL1 MakeInputAvailable action maps to a high-level HL MakeInputAvailable action.
e A Memoir-Basic LL1 PerformOperation action maps to a high-level HLAdvanceService action.

e All other Memoir-Basic actions map to high-level stuttering steps.

The proofs of high-level stuttering all exploit a lemma called the non-advancement lemma. This lemma states
that, if there is no change to the NVRAM or to the authentication status of any history state binding, then
there is no change to the high-level public and private state defined by the refinement. Employing this lemma is
completely straightforward for a low-level stuttering step and for the LL1 Restart, Li1ReadDisk, LL1 WriteDisk,
and LL1CorruptRAM actions. For the LL1RepeatOperation action, this lemma is usable because the inclusion
invariant guarantees that LL1RepeatOperation does not change the authentication status of any history state
binding.

The proof for the LL1 MakelnputAvailable action is straightforward. The set of available inputs corresponds
directly across the two specs, and the non-advancement lemma shows that the high-level state does not change.

The proof for LL1PerformOperation uses the uniqueness invariant twice: First, it is used to show that the
public and private state in the arguments to the service correspond to the refined high-level state. Second, it
is used to show that the service results in a public and private state that corresponds to the refined high-level
primed state. Thus, the service processes the same inputs and produces the same outputs as the service in the
HL AdvanceService action in the high-level spec.

The following table shows which invariants are needed for which action’s proof:

’ Predicate H unforgeability invariant \ inclusion invariant \ uniqueness invariant

LL1Init - -
UNCHANGED LL1 Vars - -
LL1 MakelnputAvailable -
LL1PerformOperation v -
LL1RepeatOperation v

LL1Restart - -
LL1ReadDisk - -
LL1 WriteDisk - -
LL1CorruptRAM - -

\
SNENENENENENENENEN

1.3 Memoir-Opt

The Memoir-Opt system has a different high-level specification than the Memoir-Basic system. In particular,
there are actions in the Memoir-Opt system that enable a malicious user of the system to permanently kill the
system. Although we cannot prevent the user from killing the system, we wish to ensure that the only undesirable
behavior that can happen is the death of the system, meaning that it stops processing inputs and produces no
new outputs. Therefore, we modify the high-level spec to add this behavior to the system semantics.

Our approach to proving the correctness of Memoir-Opt is to prove that, under refinement, the Memoir-Opt
spec satisfies the Memoir-Basic spec, which transitively implies that it satisfies the high-level spec. However,
because Memoir-Opt includes actions that can kill the system, whereas Memoir-Basic does not, it is not possible
for the Memoir-Opt spec to satisfy the Memoir-Basic spec we have described so far. Therefore, we modify
the Memoir-Basic spec to include an additional action that does not represent any realistic action in a direct
implementation of the Memoir-Basic spec. We will prove that this new action in the Memoir-Basic spec maps to
a system death in the high-level spec. Then, we will prove that certain actions in the Memoir-Opt spec, under
certain conditions, will map to this new action in the Memoir-Basic spec.

1.3.1 Modifications to High-Level Specification for Memoir-Opt Semantics
To support refinement from the Memoir-Opt spec, we modify the high-level spec to add an additional action,
which in turn requires adding an additional state variable.

The new state variable is simply a boolean that indicates whether the system is alive. We modify the initial-
state predicate to indicate that this variable is true in the initial system state. We also add an enablement
condition to the existing high-level HLAdvanceService action to require this variable to be true; in other words,
the system must be alive for the HL AdvanceService action to occur.

The new action we add is HLDie, which does nothing other than set the new state variable to false. Once
the variable becomes false, there is no action that will set it back to true.

1.3.2 Modifications to Memoir-Basic Specification for Memoir-Opt Semantics

To support refinement from the Memoir-Opt spec, we modify the Memoir-Basic spec to add an additional action.
This new action, LL1RestrictedCorruption, does not model any realistic action in a direct implementation of
the Memoir-Basic spec. In particular, this action corrupts the history summary stored in the NVRAM, but the
TPM prevents any code other than Memoir from writing to the NVRAM.

The purpose of this action is to model the effect on the Memoir-Basic spec that refines from the Memoir-Opt
spec when the SPCR in Memoir-Opt is corrupted or inappropriately reset. We need the LL1 RestrictedCorruption
action to be strong enough to enable refinement from actions the Memoir-Opt spec but weak enough to enable
refinement to the HLDie action in the high-level spec.

We therefore impose two constraints on the corrupted history summary value in the NVRAM. First, to ensure
that the CardinalityInvariant and UniquenessInvariant continue to hold, no authenticator in the set of observed
authenticators may validate a history state binding that binds the NVRAM’s history summary to any state
hash. Second, to ensure that the InclusionInvariant continues to hold, no authenticator in the set of observed
authenticators may validate a history state binding that binds any predecessor of the the NVRAM’s history
summary to any state hash.

The LL1RestrictedCorruption action may also corrupt the state of the RAM in the exact same way the
LL1Restart action corrupts the RAM, or it may leave the RAM unchanged. Both alternatives are necessary
because two different actions in the Memoir-Opt spec refine to the LL1 RestrictedCorruption action, and although
they have the same effect on the NVRAM, they have different effects on the RAM.

1.3.3 Memoir-Opt Low-Level Specification
The Memoir-Opt low-level spec contains seven state variables, three of which represent the same abstractions
represented in the Memoir-Basic low-level spec: the set of available inputs, the set of observed outputs, and the
set of observed authenticators. The other four state variables represent concrete state maintained by a Memoir-
Opt implementation: disk, RAM, NVRAM, and SPCR. The disk and RAM variables are direct analogues of the
disk and RAM variables in Memoir-Basic.

The NVRAM variable contains a history summary and symmetric key, just like the Memoir-Basic NVRAM.
However, it also stores two additional fields: a hash barrier secret and flag indicating whether an extension is in
progress. The SPCR variable, unsurprisingly, models the the SPCR.

The Memoir-Opt low-level spec includes nine actions. Four of these actions are semantically identical to
corresponding actions in the Memoir-Basic spec: LL2MakelnputAvailable, LL2ReadDisk, LL2WriteDisk, and
LL2CorruptRAM. Three other actions, although not identical, are semantically analogous to actions in the
Memoir-Basic spec: LL2PerformOperation, LL2RepeatOperation, and LL2Restart. The first two of these action
differ from their Memoir-Basic counterparts as described in the Memoir paper.® The third action, LL2Restart,
is different only in that it additionally resets the state of the SPCR.

The remaining two actions have no counterparts in the Memoir-Basic spec. The LL2TakeCheckpoint action
takes a checkpoint, updating the state of the NVRAM to include the history summary information from the
SPCR. The LL2CorruptSPCR action models an attacker’s ability to modify the contents of the SPCR by extend-
ing it with a nearly arbitrary value. As described in Section 1.1.3, the precise specification of LL2CorruptSPCR
ensures that (1) the SPCR can only be modified by extending its hash chain, and (2) because the hash bar-
rier stored in the NVRAM is unknown outside the trusted subsystem, the value that extends the PCR cannot
incorporate the hash barrier.

1.3.4 Refinement of Memoir-Opt State
The refinement describes how to interpret values of state variables in the Memoir-Opt low-level spec as values of
state variables in the Memoir-Basic low-level spec. There are three cases for how this interpretation is handled.

The first and simplest case is variables that are directly equal between the two specs. This includes the set
of available inputs, the set of observed outputs, and some of the fields of the disk, the RAM, and the NVRAM.
For the disk and RAM, the particular fields that are equal across the two specs are the public state and the
encrypted private state. For the NVRAM, the symmetric key is equal across the two specs.

The second case is variables that directly “match” across the two specs. This includes the set of observed
authenticators and the fields of the disk and RAM that are not (as described above) directly equal, namely the
authenticator and history summary. Two authenticators match if they are MACs of history state bindings that
bind matching history summaries to equal state hashes. Two history summaries match if they both equal the
respective initial history summaries for the two specs or (recursively) if they are both successors (with the same
input) of matching history summaries.

The third and most involved case is the history summary in the Memoir-Basic NVRAM, which is refined to
match the logical value of the history summary defined by the Memoir-Opt NVRAM and SPCR. The logical value
of the anchor is the anchor value in the NVRAM, but the logical extension is the value in the SPCR only if the
NVRAM indicates that an extension is in progress; otherwise, the logical extension equals the base hash value.
The reason for this is that the LL2TakeCheckpoint action clears the flag that indicates whether an extension is
in progress, but it does not reset the SPCR to the base hash value. Therefore, between an LL2 TakeCheckpoint
action and an LL2Restart action, the logical extension is really the base hash value, even though the SPCR has
not yet been reset.

1.3.5 Memoir-Opt Correctness

Since we modified the Memoir-Basic low-level spec by adding a new action, we need to state and prove the
mapping of this action to the high-level spec. Specifically, in the Memoir-Basic implementation proof, we add
an additional sub-proof to the proof of the next-state predicate for the following implication:

LL1RestrictedCorruption = HLDie

Then, to prove that the Memoir-Opt low-level spec implements the Memoir-Basic low-level spec, we prove (1)
that the initial state of the Memoir-Opt spec, under refinement, satisfies the initial state of the Memoir-Basic
spec, and (2) the next-state predicate of the Memoir-Opt spec, under refinement, satisfies the next-state predicate
of the Memoir-Basic spec. Moreover, the proof of the next-state predicate includes sub-proofs for the following
ten implications:

UNCHANGED LL2Vars = UNCHANGED LL1 Vars

LL2MakelnputAvailable = LL1 MakelnputAvailable

LL2PerformOperation = LL1 PerformOperation

LL2RepeatOperation = LL1RepeatOperation

LL2TakeCheckpoint = UNCHANGED LL1 Vars

LL2Restart =

IF LL2NVRAM .extensionInProgress

10

THEN
LL1Restricted Corruption
ELSE
LL1Restart
LL2ReadDisk = LL1ReadDisk
LL2WriteDisk = LL1 WriteDisk
LL2CorruptRAM = LL1CorruptRAM
LL2CorruptSPCR =
IF LL2NVRAM .extensionInProgress
THEN
LL1RestrictedCorruption
ELSE
UNCHANGED LL1 Vars
In other words:

e A Memoir-Opt stuttering step maps to a Memoir-Basic stuttering step.

e Six Memoir-Opt actions directly map to analogous Memoir-Basic actions; these are LL2MakelnputAvailable,
LL2PerformOperation, LL2RepeatOperation, LL2ReadDisk, LL2 WriteDisk, and LL2CorruptRAM .

A Memoir-Opt LL2TakeCheckpoint action maps to a Memoir-Basic stuttering step.

o A Memoir-Opt LL2Restart action maps either to an LL1 RestrictedCorruption action or to an LL1 Restart
action depending on whether an extension is in progress.

A Memoir-Opt LL2CorruptSPCR action maps either to an LL1 RestrictedCorruption action or to a Memoir-
Basic stuttering step depending on whether an extension is in progress.

In the above list, the final two bullet points merit explanation. It might seem that an LL2Restart action
should map directly to an LL1Restart action, and this is the case under normal operation. In particular, since
Memoir-Opt should always perform an LL2TakeCheckpoint action immediately prior to restarting, and since
the LL2TakeCheckpoint action clears the extension-in-progress flag, a subsequent LL2Restart action (with no
intervening LL2PerformOperation action) will map to LL1Restart. However, a malicious user can force the
system to restart without first taking a checkpoint. If this happens when an extension is in progress, the Memoir
system will die. We prove this by the transitive implication:

LI2NVRAM .extensionInProgress A LL2Restart = LL1 RestrictedCorruption = HLDie
Irrespective of whether an extension is in progress, the LL2Restart action corrupts the state of the RAM in
the exact same way the LL1Restart action corrupts the RAM. This is not a problem for the above implication,
because we have specified the LL1 RestrictedCorruption action to allow corruption of the RAM in this exact same
manner.

Complementary reasoning applies to the mapping of LL2 CorruptSPCR. It might seem that this action should
map directly to an LL1 RestrictedCorruption action, since the SPCR holds important data about the service state.
However, when the flag in the NVRAM indicates that an extension is not in progress, the state of the SPCR
is supposed to equal the base hash value. Therefore, even if the SPCR is corrupted by an LL2CorruptSPCR
action, the SPCR can be restored to its proper value by an LL2Restart action, after which normal operation can
resume. Thus, when an extension is not in progress, the LL2Restart action does not cause the system to die,
which we prove with the following transitive implication:

- LI2NVRAM .extensionInProgress A LL2 CorruptSPCR = UNCHANGED LL1 Vars = UNCHANGED HLVars
Note that if we were specifying liveness as well as safety, this implication would not hold, because the states
before and after an LL2CorruptSPCR action differ in their liveness, insofar as an LL2PerformOperation action
can occur beforehand but not afterward, unless it is preceded by an LL2Restart action.

1.4 Organization
The remainder of this tech report includes the following items:

High-level spec: There is a single high-level spec that defines the semantics of the Memoir system. It includes
both the basic semantics of the Memoir-Basic implementation and also the additional semantics of the
Memoir-Opt implementation.

11

Low-level primitives: The low-level specifications make use of several primitives, namely a hash function,
MAC functions, and symmetric cryptography. These functions are specified by undefined operators, along
with explicit assumptions about the guarantees made by the operators.

Memoir-Basic low-level spec: The Memoir-Basic spec describes how a Memoir-Basic implementation be-
haves, in terms of input, output, and operations on the disk, RAM, and NVRAM. This spec also includes
an additional action (which is not part of a a Memoir-Basic implementation) that supports refinement from
the Memoir-Opt specification.

Memoir-Opt low-level spec: The Memoir-Opt spec describes how a Memoir-Opt implementation behaves,
in terms of input, output, and operations on the disk, RAM, NVRAM, and SPCR.

Refinements: There are two refinements. One describes the mapping of Memoir-Basic state to high-level state.
The other describes the mapping of Memoir-Opt state to Memoir-Basic state.

Invariants: There are five invariants maintained by the Memoir-Basic specification, three of which are needed
by the proof that the Memoir-Basic spec satisfies the high-level spec. There are no invariants needed for
the proof that the Memoir-Opt spec satisfies the Memoir-Basic spec.

Type-safety theorems: TLA+ is an untyped language, so we state and prove the types of all variables main-
tained by each of the three specs.

Invariance theorems: The invariants are proven using a temporal inductive proof rule called Invi. To employ
this rule, we prove that each invariant is satisfied in the initial system state, and we prove that each valid
action preserves the invariant.

Implementation theorems: There are two implementation theorems: The first states that Memoir-Basic im-
plements the high-level spec, and the second states that Memoir-Opt implements Memoir-Basic. Each
implementation is proven using a temporal inductive proof rule called StepSimulation. To employ this rule,
we prove that the initial state of each lower-level spec, under refinement, satisfies the initial state of the
corresponding higher-level spec, and that each lower-level action corresponds to a higher-level action.

Ancillary Lemmmas: There are quite a few lemmas that support the invariance proofs and/or the implemen-
tation proofs.

These items are partitioned into TLA+ organizational structures called modules, which group related items
together. There are 21 modules in this set of specifications and proofs. Within Sections 2—4, each subsection
corresponds to one module.

1.4.1 Organization of TLA+ Modules

Multiple modules are combined by the process of extension™. Each module can extend the declarations and
definitions of one or more other modules. The Memoir modules are organized into a linear chain, wherein each
of the following modules extends the one before it:

e MemoirCommon—declarations common to high- and low-level specs

e MemoirHLSpecification—specification of the high-level system (semantics)

o MemoirHLTypeSafety—proof of type safety of the high-level spec

e MemoirLLPrimitives—primitives used by the low-level systems

e MemoirLL1Specification—specification of the Memoir-Basic system

e MemoirLL1Refinement—refinement 1: mapping Memoir-Basic state to high-level state

o MemoirLL1TypeLemmas—proofs of lemmas relating to types in the Memoir-Basic Spec

e MemoirLL1TypeSafety—proof of type safety of the Memoir-Basic spec

e MemoirLL1CorrectnessInvariants—invariants needed to prove Memoir-Basic implementation
e MemoirLL1Supplementallnvariants—invariants needed to prove Memoir-Basic invariance

e MemoirLL1InvarianceLemmas—proofs of lemmas that support Memoir-Basic invariance proofs

*This use of the term ‘extension’ is completely unrelated to the ‘extension’ performed on the SPCR. The name collision
is unfortunate but unavoidable, since both uses predate our work.

12

e MemoirLL1UnforgeabilityInvariance—proof of unforgeability invariance in Memoir-Basic

e MemoirLL1InclCardUniqlnvariance—proof of inclusion, cardinality, and uniqueness co-invariance in Memoir-
Basic

e MemoirLL1Implementation—proof that Memoir-Basic spec implements high-level spec

o MemoirLL2Specification—specification of the Memoir-Opt system

e MemoirLL2Refinement—refinement 2: mapping Memoir-Opt state to Memoir-Basic state

o MemoirLL2TypeLemmas—proofs of lemmas relating to types in the Memoir-Opt spec

e MemoirLL2TypeSafety—proof of type safety of the Memoir-Opt spec

e MemoirLL2RefinementLemmas—proofs of lemmas relating to the Memoir-Opt refinement

e MemoirLL2ImplementationLemmas—proofs of lemmas relating to the Memoir-Opt implementation

e MemoirLL2Implementation—proof that Memoir-Opt spec implements Memoir-Basic spec

This organization largely reflects the order in which the modules were developed. More importantly, the
organization places each proof roughly as early in the chain as possible, so that only the items it depends on
come before it.

However, within this document, we present the modules in a different order that is more conducive to reading.
First, we present the modules pertaining to the specification of the system’s behavior and its implementation
(Section 2, beginning on page 18). Second, we present the modules pertaining to the refinement of one spec to
another, as well as modules describing invariants maintained by the specs (Section 3, beginning on page 40).
Third, we present the modules that contain proofs (Section 4, beginning on page 51).

1.4.2 Index of Declarations

Following is a complete list of all declarations in this set of formal specs and proofs, along with the page on which
the declaration can be found. The declarations are partitioned into those of constants, variables, definitions,
assumptions, and theorems.

Constants
BaseHashValue e 22
CrazyHashValue e e 45
DeadPrivateState 19
DeadPublicState 19
GenerateMAC (2, 2) oo 22
20 S 22
HashCardinality (Z) . .« .o vt et e 49
HASRTYPE .« .o oo 22
HistorySummariesMatch (o, —,Z) « .o e 43
Initial AvailableInputs 19
INGEIalPrivateStateo 19
InGtialPublicState e 19
INDUETYDE . « < o e e 19
MACTYDE . oo oo e e e 22
OUEPULTYPE . . . oo e e e e e 19
PrivateStateEncTypeo 22
PrivateStateTypeo e 19
PublicSTateType . .« ..o oo 19
B L (S 19
SYMMELTICDECTYPE(Zy)« oo ettt e e 22
SYMMEITICENCTYDE (2, 2) oottt et e 22
SYmmetTicKeyTypeo e e e 22
ValidateMAC (g s) oot e e 22

13

Variables

HLABIVE « oo e e e 20
HLAvQlabIEINDULSo oo e e e e 20
HLODSETvEdOULPULS . .« o v et et e e e e e e e e e e e e e e e e e et et e e e et e e 20
HLPrIivateStatet e e e e e 20
HLPUDIICSTALE . . . oot e e e e e e e e e e e e e e 20
LL1AvailableInputsttt e e e e e e e 24
LLTIDISK « oo e e 24
LLINVRAM . . e e e e e 24
LL10bserved AUtRentiCtorst et e et e et e e e e e e 24
LL1OBSETVEAOULPULS -« - .« o o e et et e e e e e e e e e e e e e e e e e 24
LLTRAM . . e e e e e 24
LL2AvailableInputso 31
LL2Di0SK . oo 32
LI2NVRAM . ..o e e e e e e e e e 32
LL20bserved AUtRentiCators et e e 31
LL20bServedOULPULS « . .« o oot et et e e e e e e e e e 31
LL2RAM .. oo 32
LL2SPCR . ..o e 32
Definitions
AuthenticatorSetsMatch(—, -y ;) oottt e 44
AuthenticatorsMatch(, —y —y) oot e 44
CardinalityInvariant 49
CReckpoint(Z) . . oo 32
CorrectnesSINUATIANES - . . .« ottt et e e e et et e e e e e e e 48
Ezxtended UnforgeabilityInuvariant 49
HaShDOMGITo oo et e et e e e e e e 22
HistorySummariesMatchRecursion [, —y—) ..o vn et e e e 43
HistorySummaryTypeo 31
HLAAUANCESETVICE « .« o oo et e e et e e e e e e e e 20
HLDE . oo e e e 21
HELINGE . oo e e e e e 21
HLMakeInputAvailable e 20
HLNETt . . .o e e 21
HLSPEC . o e 21
HLTypeInvariantt e 20
HLVATS « oo e e 20
INCluSTONIMUATIANT\t e et e e et e ettt e e e 47
LLTCorruptRAM . ..o e e e 28
LL1HistoryStateBinding Authenticated ()oou oo e 41
LLTINGE . . e e e e 29
LL1MakeInputAvailable 25
LLTNEIE o oot e e ettt e e e e e 30
LLINVRAMHistorySummaryUncorrupted et 41
LLTPerformOperation e e e e e 25
LLTReAADISK e s 27
LLTREAIMEMENT . oo oi ittt e e ettt e e e e e e e 41
LLTRePeatOPEraliont e e et et et et et 26
LLTRESLATT « ..o ottt e e e e e 27
LLTRestrictedCOTTuptiono. ot et e e e 28
LLLISPEC . o oot e e 30
LL1SubtypeImplicationt e et e e e e 54

LL1TrustedStorageTypeottt e e e e e e e 24

LLITYpelInuariQnt et 24
LL1UntrustedStorageTypeo et 24
LLIVATS . oo oo e e 25
LLIWEILeDisk « . ..o e e e e e e 28
LL2CorruptRAM . ..o e 37
LL2CoTTuptSPCOR . . . oo o e e et e 38
LL2 HistorySummarylsSuccesSOT (y —y—y) vt ettt e ettt e e e e e 43
LL2IMAE . . oo e e e 38
LL2MakelInputAvailable 33
LL2INETt ..o e e 39
LL2NVRAMLOGiCGIHISTOTYSUIMIIIATY « .+« o v e ettt e e e e et e et e e e et et et e aas 45
LL2PerformOperation e e e e 33
LL2ReaADISE . ..o 37
LL2REfIMEMENT ..o o ettt e e e e 46
LL2RepeatOperalion ettt e e e e 34
LL2RESLATT ..o oo e e 36
LL25PEC . . oo e 39
LL2S5ubtypelmplication e 195
LL2TakeCheckpoint o e e e e e e 36
LL2TrustedStorageTypeo et 31
LL2TYpelInuariQntot e e e e 32
LL2UntrustedStorageType e e 31
LL2VATS . o oo oo e e 32
LI2WriteDisko e e e 37
ServiceReSUltTYDE . ..« ..o 19
SUCCESSOT (g oy) et ettt e 32
UnforgeabilityInuarianl e 47
UniquenesSINUATIANTottt e 48
Assumptions
BaseHashCardinalityZIerooo. e 49
BaseHashValueTypeSafe. e 22
Base Hash ValueUnGqQue e e e e e e e e e e et 22
ConstantsTypeSafeo 19
CrazyHash ValueTypeSafeo e 45
CrazyHash ValueUnique e e e e e 45
GenerateMACTYPESAfe. e e 23
HashCardinalityAccumulative e e e 49
HashCardinalityTypeSafeo e 49
HashCollisSionResiStANTE« oo e e et e 23
HashTypeSafeo 22
HistorySummariesMatchDefinition e 43
InputCardinalilyZeroo 49
MACCOUISTONRESISEANE .« oo ot e e e et e e e e e e 23
MACCOMPIELE . . o oo e e e e e e e 23
MACCONSISTENE . .« oo e e e e 23
MACURFOrgeableo. o e e 23
Service TYDESALE . .« oo 19
SymmetricCryptoCOTTECT o 23
SymmetricDecryplion TypeSafe e 23
SymmetricEncryptionTypeSafe 23
ValidateMACTYPESAfe e e 23

15

Theorems

AuthenticatorGeneratedLemmao e 252
AuthenticatorINSetLemma 250
AuthenticatorSetsMatchUniqueLemmua.c.o et e e et 248
AuthenticatorsMatchDefs TypeSafeLemma e 210
AuthenticatorsMatchUniqueLemma. e et e 245
Authenticator ValidatedLemma e e 257
CardinalityInvariantDefs TypeSafeLemma e 65
CardinalityUnchangedLemmao. o e 101
CheckpointDefs TypeSafeLemmaou. i e 192
CheckpointHasBaseETtensionLemmattt ettt 234
CheckpointTypeSafe e 193
CorrectnesSINVATIANCEo e 156
Extended UnforgeabilityInuarianceo 107
GEQOTLTo e e e e 82
HistorySummariesMatchAcrossCheckpointLemmaoo e 259
HistorySummariesMatchUniqueLemma e 236
HistorySummaryRecordCompositionLemmua.coo.o o 230
HLTYDESAfe . .o e e 52
InclusionCardinality UniquenessInuariQneeoo. oo 120
InclusionInvariantDefs TypeSafeLemma e 63
InclusionUnchangedLemma oo 96
LEQTransitivet et e et e e e e 82
LL1DiskRecordCompositionLemmMaot 230
LL1DiskUnforgeabilityUnchangedLemmao 94
LL1IMplementationo ot e e e e 162
LL1InitDefs TypeSafeLemma.o.u oot 56
LLINVRAMHistorySummaryUncorruptedEqualsHLAliveLemma, 162
LL1NVRAMHistorySummaryUncorruptedUnchangedLemma 83
LLINVRAMRecordCompositionLemmao.u e 233
LL1PerformOperationDefs TypeSafeLemimaoue e e 58
LL1RAMRecordCompositionLemimaottt et e e e ettt 232
LL1RAMUnforgeabilityUnchangedLemma 92
LL1RefinementDefs TypeSafeLemmuao et 67
LL1RefinementPrimeDefs TypeSafeLemmao e 67
LL1RepeatOperationDefs TypeSafeLemma e 60
LL1RepeatOperationUnchanged Authenticated HistoryStateBindingsLemma 88
LL1RepeatOperationUnchangedObsered OutputsLemmao 86
LL1SubtypelmplicationLemmaooou e 54
LLTTYPESAfe . ..o o e e 69
LL2CorruptSPCRDefs TypeSafeLemma e 209
LL2Implementationt 284
LL2InitDefs TypeSafeLemmaooou ot e e 198
LI2NVRAMULogicalHistorySummaryTypeSafeo 249
LL2PerformOperationDefs TypeSafeLemma 200
LL2RepeatOperationDefs TypeSafeLemmaoo. e 204
LL2SubtypelImplicationLemmiat e e 195
LL2TakeCheckpointDefs TypeSafeLemmat 209
LL2TYDESAIE .« oottt e e e 213
NonAdvancementLemIa e et e e e 157
SuccessorDefs TypeSafeLemma 193
SuccessorHasNonBase EXtensionLemmac.ooo i 235

16

SUCCESSOTTYPESAIE . . . oo 195

SymmetricKeyConstantLemmat e 82
TypeSafetyRefinementLemmao e 211
UnchangedAuthenticated HistoryState BindingsLemmacoouii i, 105
Unchanged AvailableInputsLemma e 271
UnchangedDisk AuthenticatorLemma e 275
UnchangedDiskHistorySummaryLemmmat e e 274
UnchangedDiskLemmat 276
UnchangedDiskPrivateState EncLemma 274
UnchangedDiskPublicStateLemma e e 273
UnchangedNVRAMHistorySummaryLemma e 281
UnchangedNVRAMLEMMGo e e e 282
UnchangedNVRAMSymmetricKeyLemmao e e e 282
UnchangedObserved AuthenticatorSLemma o e 272
UnchangedObserved QutputSLemmaot e 272
UnchangedRAMAuthenticatorLemma.o e 279
UnchangedRAMHistorySummaryLemmat e e 278
UnchangedRAMLEMING oou o e e e e e e e e e e 280
UnchangedRAMPrivateState ENCLemMIMQo e 277
UnchangedRAMPuUbliCSTAteLemmao.o o e e 277
UnforgeabilityInUarianeeo. oo e 119
UniquenessInvariantDefs TypeSafeLemma e 66
UniquenessUnchangedLemma i e 102

17

2. SPECIFICATIONS
This section presents TLA+ modules pertaining to the specification of the system’s behavior and its implementa-
tion. This includes common declarations, definitions of low-level primitives, and specifications for the high-level
spec and both low-level specs.

As a guide to understanding the impact of the actions in each spec, the following tables show which state
variables are read and/or written by each action. To keep these tables from being useless, we employ definitions
of “read” and “written” that are slightly non-obvious with respect to the formal specification. In particular, we
ignore the fact that the UNCHANGED predicate both “reads” and “writes” a variable, insofar as it specifies that
the primed state of the variable equals the unprimed state of that variable.

HL | HLAvailable | HLObserved | HLPublic | HLPrivate
Action Alive Inputs Outputs State State
HLMakelInputAvailable - R/W - - -
HLAdvanceService R R R/W R/W R/W
HLDie W - - W W
LL1Available | LL1Observed | LL1Observed | LL1 | LL1 LL1
Action Inputs Outputs Authenticators | Disk | RAM | NVRAM
LL1MakeInputAvailable R/W - - - - -
LL1PerformOperation R R/W R/W - R/W R/W
LL1RepeatOperation R R/W R/W - R/W R
LL1Restart - - - - W R
LL1ReadDisk - - - R W -
LL1 WriteDisk - - - W R -
LIL1CorruptRAM - - - - W R
LL1RestrictedCorruption - - - - - R/W
LL2Available | LL20bserved | LL20bserved | LL2 | LL2 LL2 LL2
Action Inputs Outputs Authenticators | Disk | RAM | NVRAM | SPCR
LL2MakelnputAvailable R/W - - - - -
L12PerformOperation R R/W R/W - R/W R/W R/W
LL2RepeatOperation R R/W R/W - R/W R -
LL2TakeCheckpoint - - - - - R/W R
LL2Restart - - - - W R R/W
LL2ReadDisk - - - R W - -
LL2WriteDisk - - - W R - -
LL2CorruptRAM - - - - W R -
LL2CorruptSPCR - - - - - R R/W

18

2.1 Declarations Common to High- and Low-Level Specs
MODULE MemoirCommon

This module defines some basic constants used by both the high-level and low-level specs.

A developer that wishes to use Memoir is expected to provide a service implementation that (1) operates on some
application-specific input, (2) produces some application-specific output, and (3) maintains some application-specific
public and private state. The developer also specifies an initial public and private state for the service. The service is
assumed to be type-safe.

The one non-obvious aspect of this module is the constant InitialAvailablelnputs, which will be explained in the comments
relating to the high-level spec.

EXTENDS TLAPS

CONSTANT InputType
CONSTANT QutputType
CONSTANT PublicState Type
CONSTANT PrivateState Type

ServiceResult Type =
[newPublicState : PublicState Type,
newPrivateState : PrivateState Type,
output : OutputType

]

CONSTANT Service(-, —, =)

ASSUME Service TypeSafe =
Vinput € InputType, publicState € PublicState Type, privateState € PrivateState Type :
Service(publicState, privateState, input) € ServiceResult Type

CONSTANT InitialAvailableInputs
CONSTANT InitialPublicState
CONSTANT InitialPrivateState
CONSTANT DeadPublicState
CONSTANT DeadPrivateState

ASSUME Constants TypeSafe =

Initial AvailableInputs C InputType
InitialPublicState € PublicState Type
Initial PrivateState € PrivateState Type
DeadPublicState € PublicState Type
DeadPrivateState € PrivateState Type

> > > > >

19

2.2 Specification of the High-Level System (Semantics)

MODULE MemoirHLSpecification

This module defines the high-level behavior of Memoir. There are three actions:
HLMakelInputAvailable
HLAdvanceService
HLDie

EXTENDS MemoirCommon

VARIABLE HLAlive

VARIABLE HLAwvailableInputs
VARIABLE HLObservedOutputs
VARIABLE HLPublicState
VARIABLE HLPrivateState

HLTypelnvariant =

A HLAlive € BOOLEAN
HLAwvailableInputs C InputType
HLObservedOutputs C Output Type
HLPublicState € PublicStateType
HL PrivateState € PrivateState Type

> > > >

HLVars = (HLAlive, HL AvailableInputs, HL ObservedOutputs, HLPublicState, HL PrivateState)

The HLAdvanceService action is not allowed to take just any input from InputType. It may only take an input from the
set HLAwailableInputs. This models the fact that some inputs might not be known to the user that invokes the service.
For example, the service might be used to redeem cryptographically signed tokens, and the user does not initially know
the complete set of valid tokens. The user might, for example, have to pay money to retrieve a token from a server, and
when the user does so, this corresponds to the action HLMakelnputAvailable, which puts the input that includes this
token into the set of HLAvailablelnputs.

HLMakelnputAvailable =

Jinput € InputType :

A input ¢ HLAvailableInputs

HLAvailableInputs’ = HLAwvailableInputs U {input}
UNCHANGED HLObservedOutputs
UNCHANGED HLAlive
UNCHANGED HLPublicState
UNCHANGED HLPrivateState

> > > > >

The high-level behavior is a service. There is one main action, which is HLAdvanceService. This action takes some input,
invokes the developer-supplied service with this input and the current public and private state, updates the public and
private state accordingly, and adds the output to the set of observed outputs.

HLAdvanceService =
Jinput € HLAwvailableInputs :

LET
hiSResult = Service(HLPublicState, HLPrivateState, input)

IN
A HLAlive = TRUE
A HLPublicState’ = hiSResult.newPublicState
A HLPrivateState’ = hiSResult.newPrivateState
A HLObservedOutputs’ = HLObserved Outputs U { hlSResult.output }

20

A UNCHANGED HLAvailableInputs
A UNCHANGED HLAlive

The high-level spec includes the HLDie action, which kills the system. This is necessary because, in the low-level specs,
it is possible for an adversary to perform an action that causes the system to no longer function. Therefore, we must
admit a corresponding action in the high-level spec. Importantly, the HLDie action does not change the set of observed
outputs, so it cannot be used to trick the system into providing an output it would not otherwise be willing to provide.

HLDie =

A HLAlive' = FALSE
UNCHANGED HL AvailableInputs
UNCHANGED HLObservedOutputs
HLPublicState’ = DeadPublicState
HL PrivateState’ = DeadPrivateState

> > > >

HLInit =

A HLAlive = TRUE
HLAvailableInputs = Initial AvailableInputs
HLObserved Outputs = {}
HLPublicState = InitialPublicState
HLPrivateState = InitialPrivateState

> > > >

HLNext =
V HLMakelnputAvailable
V HLAdvanceService
V HLDie

HLSpec = HLInit A O[HLNext] i1, vars

21

2.3 Primitives Used by the Low-Level Systems

MODULE MemoirLLPrimitives

This module defines primitives that are used by the low-level specs. The primitives include a hash function, MAC
functions, and symmetric crypto functions, along with their associated types. The module also asserts assumptions about
the properties of these functions.

EXTENDS MemoirHLTypeSafety

The low-level specs make use of three primitives: a secure hash, a MAC (message authentication code), and symmetric
cryptography.

CONSTANT HashType
CONSTANT MACType
CONSTANT SymmetricKeyType
CONSTANT PrivateStateEncType

CONSTANT Hash(-, _)

CONSTANT Generate MAC(-, -)
CONSTANT Validate MAC(-, -, -)
CONSTANT SymmetricEncrypt(—,)
CONSTANT SymmetricDecrypt(—,)

The hash function has a somewhat strange signature. It accepts two arguments, rather than one. The reason for this is
so that we can construct hash chains. Alternatively, we could have written the spec with a conventional single-argument
hash function and a two-argument concatenation function, but this would have added complexity for no real benefit.

We assume a base hash value, which in a real implementation, might just be the value zero.

CONSTANT BaseHash Value

The domain of the hash function is hashes, inputs, public states, and encrypted private states. These are the only types
we need to hash.

HashDomain = UNION {
HashType,
InputType,
PublicState Type,
PrivateStateEnc Type}

The base hash value is a valid hash value, and it cannot be produced by hashing any other value.

ASSUME BaseHash Value TypeSafe £ BaseHashValue € HashType

ASSUME BaseHash ValueUnique =
Y hashInputl, hashInput2 € HashDomain :
Hash(hashInputl, hashInput2) # BaseHashValue

The hash function is assumed to be type-safe and collision-resistant. In this spec, we define collision resistance in a very
strong sense, namely that there are no different inputs that will hash to the same output. Although a real implementation
of a hash function cannot satisfy this, cryptographically secure hash functions are expected to practically satisfy such a
condition.

ASSUME HashTypeSafe =
Y hashInputl, hashInput2 € HashDomain : Hash(hashInputl, hashInput2) € HashType

22

ASSUME HashCollisionResistant =
Y hashInputla, hashinput2a, hashInputlb, hashinput2b € HashDomain :

Hash(hashInputla, hashInput2a) = Hash(hashInput1b, hashInput2b) =

A hashInputla = hashInputlb
A hashInput2a = hashInput2b

The MAC functions are assumed to be type-safe, complete, consistent, unforgeable, and collision-resistant.

ASSUME GenerateMACTypeSafe =
YV key € SymmetricKeyType, hash € HashType :

GenerateMAC (key, hash) € MACType

ASSUME Validate MAC TypeSafe =
Y key € SymmetricKeyType, hash € HashType, mac € MACType :

ValidateMAC (key, hash, mac) € BOOLEAN

ASSUME MACComplete =
YV key € SymmetricKeyType, hash € HashType :
ValidateMAC (key, hash, GenerateMAC (key, hash)) = TRUE

ASSUME MACConsistent =
Vkey € SymmetricKeyType, hash € HashType, mac € MACType :

Validate MAC (key, hash, mac) = mac = Generate MAC (key, hash)

A

ASSUME MACUnforgeable =
Vkeyl, key2 € SymmetricKeyType, hashl, hash2 € HashType :

Validate MAC (keyl, hashl, Generate MAC (key2, hash2)) = keyl = key?2

ASSUME MACCollisionResistant =
YV keyl, key2 € SymmetricKeyType, hashl, hash2 € HashType :
ValidateMAC (keyl, hashl, GenerateMAC (key2, hash2)) = hashl = hash2

The symmetric-crypto functions are assumed to be type-safe. They are also assumed to be correct, meaning that decryp-

tion is the inverse of encryption, given the same crypto key.

ASSUME SymmetricEncryption TypeSafe
YV key € SymmetricKeyType, privateState € PrivateState Type :
SymmetricEncrypt(key, privateState) € PrivateStateEncType

ASSUME SymmetricDecryption TypeSafe =
YV key € SymmetricKeyType, privateStateEnc € PrivateStateEncType :

SymmetricDecrypt(key, privateStateEnc) € PrivateState Type

ASSUME SymmetricCryptoCorrect =
YV key € SymmetricKeyType, privateState € PrivateState Type :
SymmetricDecrypt(key, SymmetricEncrypt(key, privateState)) = privateState

23

2.4 Specification of the Memoir-Basic System

MODULE MemoirLL1Specification

This module defines the low-level specification of Memoir-Basic.

There are eight actions:
LI1MakelnputAvailable
LL1 PerformOperation
LL1 RepeatOperation
LL1Restart
LL1ReadDisk
LL1 WriteDisk
LIL1CorruptRAM
LL1RestrictedCorruption

EXTENDS MemoirL LPrimitives

The disk and RAM are untrusted. They each can store the service’s public state, encrypted private state, a history
summary (a chained hash of all inputs that the service has processed), and an authenticator (a MAC that binds the
history summary to the public and private state).

LL1 UntrustedStorage Type = [
publicState : PublicState Type,
privateStateEnc : PrivateStateEncType,
historySummary : HashType,
authenticator : MACType]

The NVRAM is trusted, since the TPM guarantees that it can only be read or written by the code that implements
Memoir. The NVRAM stores the current history summary and the symmetric key that is used (1) to encrypt the private
state and (2) to MAC the history summary and service state into an authenticator.

LL1 TrustedStorage Type = |
historySummary : HashType,
symmetricKey : SymmetricKeyType]

LL1AvailableInputs and LL1ObservedOutputs are abstract variables that do not directly represent part of the implemen-
tation. They correspond to the HLAwvailableInputs and HLObservedOutputs variables in the high-level spec.

VARIABLE LL1AvailableInputs
VARIABLE LL1ObservedOutputs

The LL10ObservedAuthenticators variable is also abstract. It records the set of authenticators that the user has seen from
Memoir. A malicious user can attempt to use these state authenticators in a replay attack against Memoir.

VARIABLE LL1ObservedAuthenticators

The LL1Disk, LLIRAM, and LLINVRAM variables represent concrete state maintained by the Memoir-Basic imple-
mentation.

VARIABLE LL1Disk
VARIABLE LL1RAM
VARIABLE LLINVRAM

LL1 Typelnvariant =
A LL1Awvailablelnputs C InputType
A LL10ObservedOutputs C OutputType
A LL1ObservedAuthenticators C MACType

24

A LL1Disk € LL1UntrustedStorage Type
AN LL1RAM € LL1UntrustedStorageType
AN LLINVRAM € LL1 TrustedStorageType

LL1Vars = {
LL1AvailableInputs,
LL10ObservedOutputs,
LL10bservedAuthenticators,
LL1Disk,

LL1IRAM,
LLINVRAM)

The LL1MakelnputAvailable action is a direct analog of the HLMakelnputAvailable action in the high-level spec.

LL1 MakeInputAvailable =

Jinput € InputType :

A input ¢ LL1AwvailableInputs

LL1AvailableInputs’ = LL1 AvailableInputs U {input}
UNCHANGED LL1Disk
UNCHANGED LL1RAM
UNCHANGED LLINVRAM
UNCHANGED LL1ObservedOQutputs
UNCHANGED LL1ObservedAuthenticators

> > > > > >

The LL1PerformOperation action is invoked by the user to perform a service operation. It is intended to provide the
semantics of the HLAdvanceService action in the high-level spec.

LL1PerformOperation =
Finput € LL1AvailableInputs :
LET

stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)

historyStateBinding = Hash(LL1RAM .historySummary, stateHash)

privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1 RAM .privateStateEnc)

sResult = Service(LL1RAM .publicState, privateState, input)

newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)

newHistorySummary = Hash(LL1NVRAM .historySummary, input)

newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)

newHistoryStateBinding = Hash(newHistorySummary, newStateHash)

newAuthenticator = GenerateMA C(LLINVRAM .symmetricKey, newHistoryStateBinding)

IN

There are two enablement conditions: First, the authenticator supplied by the user
(LL1RAM .authenticator) must validly bind the user-supplied public and encrypted private state to
the history summary supplied by the user. Second, the history summary supplied by the user must match
the history summary in the NVRAM.

A Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator)

AN LLINVRAM .historySummary = LL1RAM .historySummary
At the conclusion of the action, the RAM contains the new public and encrypted private state, the new
history summary, and an authenticator that binds these together.

A LLIRAM' =

25

publicState — sResult.newPublicState,
privateStateEnc — newPrivateStateEnc,
historySummary — newHistorySummary,
authenticator — newAuthenticator)

The NVRAM is updated with the new history summary.
A LLINVRAM' =]

historySummary — newHistorySummary,
symmetricKey — LLINVRAM .symmetricKey|

The output of the service is added to the set of outputs that the user has observed.
A LL10bservedOutputs’ = LL1 Observed Outputs U { sResult.output}
The disk is unchanged.
A UNCHANGED LL1Disk
The set of available inputs is unchanged
A UNCHANGED LL1AvailableInputs
The new authenticator is added to the set of authenticators that the user has observed.

A LL1ObservedAuthenticators’ =
LL10bservedAuthenticators U {newAuthenticator}

The LL1RepeatOperation action is invoked by the user when the computer crashed after a LL1 PerformOperation action
was performed but before the user had a chance to perform a LL1 WriteDisk action to persistently record the new state
and its authenticator. This action enables the user to reproduce the result of the most-recent LL1PerformOperation
action.

LL1RepeatOperation =
Finput € LL1AvailableInputs :
LET
stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
historyStateBinding = Hash(LL1RAM .historySummary, stateHash)
privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1 RAM .privateStateEnc)
sResult = Service(LL1RAM .publicState, privateState, input)
newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
newHistoryStateBinding = Hash(LLINVRAM .historySummary, newStateHash)
newAuthenticator = GenerateMAC(LLINVRAM .symmetricKey, newHistoryStateBinding)
IN
There are two enablement conditions: First, the authenticator supplied by the user

(LL1RAM .authenticator) must validly bind the user-supplied public and encrypted private state to
the history summary supplied by the user.

Second, the history summary supplied by the user, hashed with the input supplied by the user, must match
the history summary in the NVRAM. This condition ensures that this action will invoke the service with
the same input used with the most recent LL1PerformOperation action.

A Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator)

A LLINVRAM .historySummary = Hash(LL1RAM .historySummary, input)
At the conclusion of the action, the RAM contains the new public and encrypted private state, the new
history summary, and an authenticator that binds these together. These should match the values produced
by the most recent LL1PerformOperation action.

A LL1RAM' =

publicState — sResult.newPublicState,

26

privateStateEnc — newPrivateStateEnc,
historySummary — LLINVRAM .historySummary,
authenticator — newAuthenticator)

The output of the service is added to the set of outputs that the user has observed. If Memoir is working
correctly, the user already saw this output when the previous LL1PerformOperation action was executed.

A LL10bservedOutputs’ = LL1 ObservedOutputs U { sResult.output}
The NVRAM is unchanged, because this action is not supposed to change the state of the service.
A UNCHANGED LLINVRAM
The disk is unchanged.
A UNCHANGED LL1Disk
The set of available inputs is unchanged
A UNCHANGED LL1AwvailableInputs
The new authenticator is added to the set of authenticators that the user has observed. If Memoir is
working correctly, the user already saw this authenticator when the previous LL1 PerformOperation action
was executed.
A LL1ObservedAuthenticators’ =
LL1ObservedAuthenticators U {newAuthenticator}

The LL1Restart action occurs when the computer restarts.

LL1Restart =
3 untrustedStorage € LL1 UntrustedStorage Type,

randomSymmetricKey € SymmetricKeyType \ { LLINVRAM .symmetricKey},

hash € HashType :
The state of the RAM is trashed by a restart, so we set it to some *almost* arbitrary value in
LL1 UntrustedStorage Type. The only condition we impose is that the authenticator is not coincidentally equal
to an authenticator that could be computed with the symmetric key known only to Memoir.
untrustedStorage. authenticator = GenerateMAC (randomSymmetricKey, hash)
LL1RAM' = untrustedStorage
UNCHANGED LL1Disk
UNCHANGED LLINVRAM
UNCHANGED LL1AvailableInputs
UNCHANGED LL1ObservedOutputs
UNCHANGED LL10bservedAuthenticators

>>> > > > >

The LL1ReadDisk action copies the state of the disk into the RAM.

LL1ReadDisk =

AN LL1RAM' = LL1Disk
UNCHANGED LL1Disk
UNCHANGED LLINVRAM
UNCHANGED LL1AvailableInputs
UNCHANGED LL1ObservedOutputs
UNCHANGED LL1ObservedAuthenticators

> > > > >

The LL1 WriteDisk action copies the state of the RAM onto the disk.

27

LL1 WriteDisk =

A LL1Disk’ = LLIRAM
UNCHANGED LL1RAM
UNCHANGED LLINVRAM
UNCHANGED LL1AvailableInputs
UNCHANGED LL1ObservedOutputs
UNCHANGED LL1ObservedAuthenticators

> > > > >

The LL1CorruptRAM action models the ability of a malicious user to attack Memoir by supplying *almost* arbitrary
data to Memoir. The data is not completely arbitrary, because the user is assumed to be unable to forge authenticators
using the symmetric key stored in the NVRAM of Memoir.

LI1CorruptRAM =
3 untrustedStorage € LL1UntrustedStorage Type,
fakeSymmetricKey € SymmetricKeyType \ { LLINVRAM .symmetricKey},
hash € HashType :
The user can launch a replay attack by re-using any authenticator previously observed.

AV untrustedStorage.authenticator € LL1Observed Authenticators

Or the user can create a fake authenticator using some other symmetric key.

vV untrustedStorage.authenticator = Generate MAC (fakeSymmetricKey, hash)
LL1RAM’' = untrustedStorage

UNCHANGED LL1Disk

UNCHANGED LLINVRAM

UNCHANGED LL1AvailableInputs

UNCHANGED LL1ObservedOutputs

UNCHANGED LL1ObservedAuthenticators

> > > > > >

The LL1RestrictedCorruption does not model any realistic action in a direct implementation of this low-level spec. The
TPM prevents any code other than Memoir from writing to the NVRAM, so an attacker cannot actually perform this
action in Memoir-Basic.

However, Memoir-Opt allows an attacker to perform an action (LL2CorruptSPCR) that corrupts the stored history
summary in Memoir-Opt, and in the correctness proof of Memoir-Opt, we will show that the CorruptSPCR action in
Memoir-Opt (under some circumstances) refines to the LL1 RestrictedCorruption action in Memoir-Basic.

Similarly, when a LL2Restart action occurs in Memoir-Opt, there are circumstances that cause this to refine to the
LL1RestrictedCorruption action in Memoir-Basic.

For this reason, we need the LL1RestrictedCorruption action to be strong enough to enable refinement from the
LL2CorruptSPCR and LL2Restart actions in Memoir-Opt, but weak enough to enable refinement to an action in the
high-level spec, specifically the HLDie action.

We therefore impose a somewhat bizarre-looking pair of constraints on the garbage value to which an attacker can set the
history summary in the NVRAM. The first constraint (labeled current) is needed to ensure that the CardinalityInvariant
and Uniquenessinvariant continue to hold when a LL1RestrictedCorruption action occurs, and the second constraint
(labeled previous) is needed to ensure that the InclusionInvariant continues to hold when a LL1RestrictedCorruption
action occurs.

LI RestrictedCorruption =
A nuvram::
3 garbageHistorySummary € HashType :
A current(garbageHistorySummary)::

28

There is no authenticator that validates a history state binding that binds the the garbage history summary
to any state hash.
V stateHash € HashType, authenticator € LL1ObservedAuthenticators :
LET
historyState Binding = Hash(garbageHistorySummary, stateHash)
IN
- Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, authenticator)
A previous(garbageHistorySummary)::
There is no authenticator that validates a history state binding that binds any predecessor of the the
garbage history summary to any state hash.
V stateHash € HashType,
authenticator € LL1ObservedAuthenticators,
someHistorySummary € HashType,
somelnput € InputType :
LET
historyStateBinding = Hash(someHistorySummary, stateHash)
IN
garbageHistorySummary = Hash(someHistorySummary, somelnput) =
- Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, authenticator)

The history summary in the NVRAM becomes equal to the garbage history summary.

A LLINVRAM' =]
historySummary — garbageHistorySummary,
symmetricKey — LLINVRAM .symmetricKey|
A ram::
V unchanged::
A LL2CorruptSPCR action in the Memoir-Opt spec leaves the state of the RAM unchanged.

UNCHANCGED LL1RAM
V trashed::
A LL2Restart action in the Memoir-Opt spec trashes the RAM, so we set it to some *almost* arbitrary value
in LL1 UntrustedStorageType. The only condition we impose is that the authenticator is not coincidentally
equal to an authenticator that could be computed with the symmetric key known only to Memoir.
3 untrustedStorage € LL1 UntrustedStorage Type,
randomSymmetricKey € SymmetricKeyType \ { LLINVRAM .symmetricKey},
hash € HashType :
A untrustedStorage.authenticator = Generate MAC (randomSymmetricKey, hash)
AN LL1RAM' = untrustedStorage
UNCHANGED LL1Disk
UNCHANGED LL1AvailableInputs
UNCHANGED LL1ObservedOutputs
UNCHANGED LL10ObservedAuthenticators

> > > >

In the initial state of the Memoir-Basic implementation, some symmetric key is generated and stored in the NVRAM. The
initial history summary is the base hash value, indicating that no inputs have been supplied yet. An initial authenticator
binds the initial history summary to the initial public and encrypted private state.

LL1Init =
J symmetricKey € SymmetricKeyType :
LET
initial PrivateStateEnc = SymmetricEncrypt(symmetricKey, InitialPrivateState)
initialStateHash = Hash(InitialPublicState, initial PrivateStateEnc)

29

A

initialHistoryStateBinding = Hash(BaseHashValue, initialState Hash)
initial Authenticator = Generate MAC (symmetricKey, initialHistoryStateBinding)
initialUntrustedStorage = |
publicState — Initial PublicState,
privateStateEnc — initial PrivateStateEnc,
historySummary — BaseHashValue,
authenticator — initial Authenticator)
initial TrustedStorage = |
historySummary — BaseHashValue,
symmetricKey — symmetricKey]

IN
A LL1Disk = initialUntrustedStorage
AN LL1RAM = initialUntrustedStorage
AN LLINVRAM = initial TrustedStorage
A LL1AwailableInputs = InitialAvailableInputs
A LL10ObservedOutputs = {}
A LL10ObservedAuthenticators = {initial Authenticator}
LL1Next =

V LL1MakeInputAvailable

V LL1PerformOperation

V LL1RepeatOperation

VvV LL1Restart

V LL1ReadDisk

VvV LL1WriteDisk

VvV LL1CorruptRAM

VvV LL1RestrictedCorruption

LL1Spec = LL1Init A D[LL1Next] 111 vars

30

2.5 Specification of the Memoir-Opt System

MODULE MemoirLL2Specification

This module defines the specification of Memoir-Opt.

There are nine actions:
LIL2MakelnputAvailable
LL2 PerformQOperation
LL2RepeatOperation
LL2 TakeCheckpoint
LL2Restart
LL2ReadDisk
LL2WriteDisk
LL2CorruptRAM
LL2CorruptSPCR

EXTENDS MemoirLL1Implementation

In Memoir-Opt, each history summary (which is a composite chained hash of all inputs that the service has processed) is
partitioned into two pieces: an anchor and an extension.

HistorySummary Type = |
anchor : HashType,
extension : HashType)

The disk and RAM are untrusted. They each can store the service’s public state, encrypted private state, a history
summary, and an authenticator (a MAC that binds the history summary to the public and private state).

LL2 UntrustedStorage Type = [
publicState : PublicState Type,
privateStateEnc : PrivateStateEncType,
historySummary : HistorySummaryType,
authenticator : MACType)]

The NVRAM is trusted, since the TPM guarantees that it can only be read or written by the code that implements
Memoir. The NVRAM stores the current history summary anchor and the symmetric key that is used to encrypt the
private state and to MAC the history summary and service state into an authenticator. It also stores a hash barrier for
securing the history summary and a guard bit that indicates whether the current history summary has been extended,
such that the history summary anchor is not a complete representation of the inputs summary.

LL2 TrustedStorage Type = |
historySummaryAnchor : HashType,
symmetricKey : SymmetricKeyType,
hashBarrier : Hash Type,
extensionInProgress : BOOLEAN |

LL2AvailableInputs and LL2ObservedOutputs are abstract variables that do not directly represent part of the implemen-
tation. They correspond to the HLAwvailableInputs and HLObservedOutputs variables in the Memoir-Opt spec.

VARIABLE LL2AwvailableInputs
VARIABLE LL2ObservedOQutputs

The ObservedAuthenticators variable is also abstract. It records the set of authenticators that the user has seen from
Memoir. A malicious user can attempt to use these authenticators in a replay attack against Memoir.

VARIABLE LL2ObservedAuthenticators

31

The LL2Disk, LL2RAM, LL2NVRAM, and LL2SPCR variables represent concrete state maintained by the Memoir-Opt
implementation.

The LL2SPCR is semi-trusted. Any party can write to it, but arbitrary writes are not allowed. The only allowable
updates are of the form

3z : LL2SPCR' = Hash(LL2SPCR, z)

We use the LL2SPCR to store a history summary extension.

VARIABLE LL2Disk
VARIABLE LL2RAM
VARIABLE LI2NVRAM
VARIABLE LL2SPCR

LL2 Typelnvariant =

A LL2AwvailableInputs C InputType
LL20ObservedOutputs C Output Type
LL2ObservedAuthenticators C MACType
LL2Disk € LL2UntrustedStorage Type
LL2RAM € LL2UntrustedStorage Type
LI2NVRAM € LL2TrustedStorage Type
AN LL2SPCR € HashType

> > > > >

LI2Vars = {
LL2AvailableInputs,
LL20ObservedOutputs,
LL20ObservedAuthenticators,
LL2Disk,

LIL2RAM,
LI2NVRAM,
LL2SPCR)

The Checkpoint function takes a history summary that may or may not be checkpointed and produces a checkpointed
history summary from it.

Checkpoint(historySummary) =
LET
checkpointed Anchor = Hash(historySummary.anchor, historySummary.extension)
checkpointed HistorySummary = [
anchor — checkpointedAnchor,
extension — BaseHash Value]
IN
IF historySummary.extension = BaseHashValue
THEN
historySummary
ELSE
checkpointedHistorySummary

The Successor function defines the history summary that results from extending a given history summary with a given
input. It secures the input using a hash barrier to thwart forgery.

Successor(historySummary, input, hashBarrier) =
LET

32

A

securedInput = Hash(hashBarrier, input)
newAnchor = historySummary.anchor
newExtension = Hash(historySummary.extension, securedInput)
newHistorySummary = |
anchor — newAnchor,
extension — newExtension]
IN
newHistorySummary

The LL2MakelnputAvailable action is a direct analog of the HLMakelnputAvailable action in the high-level spec.

LL2MakelnputAvailable =
Jinput € InputType :

A input ¢ LL2AvailableInputs

LI2AvailableInputs’ = LL2 AvailableInputs U {input}

UNCHANGED LL2Disk

UNCHANGED LL2RAM

UNCHANGED LL2NVRAM

UNCHANGED LL2SPCR

UNCHANGED LL2ObservedOutputs

UNCHANGED LL2ObservedAuthenticators

>>> > > > >

The LL2PerformOperation action is invoked by the user to perform a service operation. It is intended to provide the
semantics of the HLAdvanceService action in the high-level spec.

LL2PerformOperation =
Finput € LL2AwvailableInputs :
LET
historySummaryHash =
Hash(LL2RAM .historySummary.anchor, LL2RAM .historySummary.extension)
stateHash = Hash(LL2RAM .publicState, LL2RAM .privateStateEnc)
historyStateBinding = Hash(historySummaryHash, stateHash)
privateState = SymmetricDecrypt(LL2NVRAM .symmetricKey, LL2RAM .privateStateEnc)
sResult = Service(LL2RAM .publicState, privateState, input)
newPrivateStateEnc =
SymmetricEncrypt(LL2ZNVRAM .symmetricKey, sResult.newPrivateState)
currentHistorySummary = [
anchor — LL2NVRAM .historySummaryAnchor,
extension — LL2SPCR]
newHistorySummary = Successor (currentHistorySummary, input, LL2ZNVRAM .hashBarrier)
newHistorySummaryHash = Hash(newHistorySummary.anchor, newHistorySummary.extension)
newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
newHistoryStateBinding = Hash(newHistorySummaryHash, newStateHash)
newAuthenticator = GenerateMAC(LL2NVRAM .symmetricKey, newHistoryStateBinding)
IN

There are three enablement conditions:

First, the authenticator supplied by the user (LL2RAM .authenticator) must validly bind the user-supplied
public and encrypted private state to the user-supplied history summary.

33

Second, the value in the SPCR must be consistent with the flag that indicates whether an extension is in
progress.

Third, the user-supplied history summary (LL2RAM .historySummary) must match the history summary
in the TPM (NVRAM and SPCR). There are two different ways to check this condition, depending on
whether a extension is in progress.

A Validate MAC(LL2NVRAM .symmetricKey, historyStateBinding, LL2RAM .authenticator)
A IF LL2NVRAM .extensionInProgress = TRUE
THEN
AN LL2SPCR # BaseHashValue
A currentHistorySummary = LL2RAM .historySummary

AN LL2SPCR = BaseHashValue
A currentHistorySummary = Checkpoint(LL2RAM .historySummary)

At the conclusion of the action, the RAM contains the new public and encrypted private state, the new
history summary, and an authenticator that binds these together.

A LL2RAM’' =
publicState — sResult.newPublicState,
privateStateEnc — newPrivateStateEnc,
historySummary — newHistorySummary,
authenticator — newAuthenticator)

The NVRAM is updated to indicate that the extension is in progress. The NVRAM may already indicate
this, in which case this step does not require writing to the NVRAM .

A LL2NVRAM' =]
historySummaryAnchor — LL2NVRAM .historySummaryAnchor,
symmetricKey — LL2NVRAM .symmetricKey,
hashBarrier — LL2NVRAM .hashBarrier,
extensionInProgress — TRUE]
The SPCR is updated with the new history summary extension.
A LL2SPCR' = newHistorySummary.extension
The output of the service is added to the set of outputs that the user has observed.
A LL20bservedOutputs’ = LL2Observed Outputs U { sResult.output}
The disk is unchanged.
A UNCHANGED LL2Disk
The set of available inputs is unchanged.
A UNCHANGED LL2AwvailableInputs
The new authenticator is added to the set of authenticators that the user has observed.
A LL20bservedAuthenticators’ =
LL2 ObservedAuthenticators U { newAuthenticator}

The LL2RepeatOperation action is invoked by the user when the computer crashed after a LL2PerformOperation action
was performed but before the user had a chance to perform a LL2 WriteDisk action to persistently record the new state
and its authenticator. This action enables the user to reproduce the result of the most-recent LL2PerformOperation
action.

LL2RepeatOperation =
Jinput € LL2AwvailableInputs :
LET
historySummaryHash =
Hash(LL2RAM .historySummary.anchor, LL2RAM .historySummary.extension)

34

IN

stateHash = Hash(LL2RAM .publicState, LL2RAM .privateStateEnc)
historyStateBinding = Hash(historySummaryHash, stateHash)
newHistorySummary = Successor(LL2RAM .historySummary, input, LL2ZNVRAM .hashBarrier)
checkpointedHistorySummary = Checkpoint(LL2RAM .historySummary)
newCheckpointed HistorySummary =

Successor(checkpointedHistorySummary, input, LL2ZNVRAM .hashBarrier)
checkpointedNewHistorySummary = Checkpoint(newHistorySummary)
checkpointedNewCheckpointedHistorySummary =

Checkpoint(newCheckpointed HistorySummary)
privateState = SymmetricDecrypt(LL2NVRAM .symmetricKey, LL2RAM .privateStateEnc)
sResult = Service(LL2RAM .publicState, privateState, input)
newPrivateStateEnc =

SymmetricEncrypt(LL2ZNVRAM .symmetricKey, sResult.newPrivateState)
currentHistorySummary = [

anchor — LL2NVRAM .historySummaryAnchor,

extension — LL2SPCR]
currentHistorySummaryHash = Hash(LL2NVRAM .historySummaryAnchor, LL2SPCR)
newStateHash = Hash(slgesult.newPublicState, newPrivateStateEnc)

newHistoryStateBinding = Hash(currentHistorySummaryHash, newStateHash)
newAuthenticator = GenerateMA C(LL2NVRAM .symmetricKey, newHistoryStateBinding)

There are three enablement conditions:
First, the authenticator supplied by the user (LL2RAM .authenticator) must validly bind the user-supplied
public and encrypted private state to the history summary supplied by the user.
Second, a TakeCheckpoint action should always occur immediately before a shutdown, power-off, or reboot;
therefore, an extension will not be in progress at the time LL2RepeatOperation is needed. This implies
that the flag in the NVRAM must indicate that an extension is not in progress, and the value in the SPCR
must equal the BaseHash Value.
Third, the user-supplied history summary (LL2RAM .historySummary), extended with the user-supplied
input, must match the history summary in the TPM (NVRAM and SPCR). This condition ensures that
this action will invoke the service with the same input used with the most recent LL2PerformOperation
action. There are two different ways to check this condition, depending on whether a checkpoint was taken
before the input was processed.

A Validate MAC(LL2NVRAM .symmetricKey, historyStateBinding, LL2RAM .authenticator)

AN LL2NVRAM .extensionInProgress = FALSE

A LL2SPCR = BaseHashValue

A no checkpoint before input

V currentHistorySummary = checkpointed NewHistorySummary

checkpoints before input

V currentHistorySummary = checkpointedNewCheckpointed HistorySummary
At the conclusion of the action, the RAM contains the new public and encrypted private state, the new
history summary, and an authenticator that binds these together. These should match the values produced
by the most recent LL2PerformOperation action.
A LL2RAM’' =|

publicState — sResult.newPublicState,

privateStateEnc — newPrivateStateEnc,

historySummary — currentHistorySummary,

authenticator — newAuthenticator)
The output of the service is added to the set of outputs that the user has observed. If Memoir is working
correctly, the user already saw this output when the previous LL2PerformOperation action was executed.

A LL20ObservedOutputs’ = LL2Observed Outputs U {sResult.output}

35

The NVRAM is unchanged, because this action is not supposed to change the state of the service.
A UNCHANGED LL2NVRAM
The SPCR is unchanged, because this action is not supposed to change the state of the service.
A UNCHANGED LL2SPCR
The disk is unchanged.
A UNCHANGED LL2Disk
The set of available inputs is unchanged.
A UNCHANGED LL2AvailableInputs
The new authenticator is added to the set of authenticators that the user has observed. If Memoir is
working correctly, the user already saw this authenticator when the previous LL2PerformOperation action
was executed.
A LL20bservedAuthenticators’ =
LL20bservedAuthenticators U {newAuthenticator}

The LL2TakeCheckpoint action occurs in response to an NMI indicating that a shutdown, power-off, or reboot is imminent.

LL2 TakeCheckpoint =
LET
newHistorySummaryAnchor = Hash(LL2NVRAM .historySummaryAnchor, LL2SPCR)
IN
There are two enablement conditions. The guard bit in the NVRAM must indicate that an extension is in
progress, and the SPCR must contain an extension.
AN LL2NVRAM .extensionInProgress = TRUE
A LL2SPCR # BaseHashValue
This action changes nothing other than the NVRAM.

A UNCHANGED LL2RAM

A UNCHANGED LL2Disk

A LIL2NVRAM' =|
historySummaryAnchor — newHistorySummaryAnchor,
symmetricKey — LL2NVRAM .symmetricKey,
hashBarrier — LL2NVRAM .hashBarrier,
extensionInProgress — FALSE]

UNCHANGED LL2SPCR

UNCHANGED LL2AvailableInputs

UNCHANGED LL2ObservedOutputs

UNCHANGED LL2ObservedAuthenticators

> > > >

The LL2Restart action occurs when the computer restarts.

LL2Restart =
3 untrustedStorage € LL2UntrustedStorage Type,

randomSymmetricKey € SymmetricKeyType \ {LL2ZNVRAM .symmetricKey},

hash € HashType :
The state of the RAM is garbaged by a restart, so we set it to some *almost* arbitrary value in
LL2 UntrustedStorage Type. The only condition we impose is that the authenticator is not coincidentally equal
to an authenticator that could be computed with the symmetric key known only to Memoir.

A untrustedStorage.authenticator = Generate MAC (randomSymmetricKey, hash)

A LL2RAM’' = untrustedStorage

36

UNCHANGED LL2Disk

UNCHANGED LL2NVRAM

The value of the SPCR is set to a known starting value, which we model with the BaseHash Value.
LL2SPCR' = BaseHashValue

UNCHANGED LL2AvailableInputs

UNCHANGED LL2ObservedOutputs

UNCHANGED LL2ObservedAuthenticators

> >

> > > >

The LL2ReadDisk action copies the state of the disk into the RAM.

LL2ReadDisk =

A

>>> > > >

LL2RAM' = LL2Disk

UNCHANGED LL2Disk

UNCHANGED LL2NVRAM

UNCHANGED LL2SPCR

UNCHANGED LL2AvailableInputs
UNCHANGED LL2ObservedOutputs
UNCHANGED LL20ObservedAuthenticators

The LL2WriteDisk action copies the state of the RAM onto the disk.

LL2WriteDisk =

A

> > > > > >

LL2Disk! = LL2RAM

UNCHANGED LL2RAM

UNCHANGED LIL2NVRAM

UNCHANGED LL2SPCR

UNCHANGED LL2AvailableInputs
UNCHANGED LL2ObservedOutputs
UNCHANGED LL2ObservedAuthenticators

The LL2CorruptRAM action models the ability of a malicious user to attack Memoir by supplying *almost* arbitrary
data to Memoir. The data is not completely arbitrary, because the user is assumed to be unable to forge authenticators
using the symmetric key stored in the NVRAM of the TPM.

LL2CorruptRAM =

3

untrustedStorage € LL2UntrustedStorage Type,
fakeSymmetricKey € SymmetricKeyType \ {LL2NVRAM .symmetricKey},
hash € HashType :

The user can launch a replay attack by re-using any authenticator previously observed.

AV untrustedStorage.authenticator € LL2ObservedAuthenticators
Or the user can create a fake authenticator using some other symmetric key.

V untrustedStorage.authenticator = Generate MAC (fakeSymmetricKey, hash)
LL2RAM' = untrustedStorage

UNCHANGED LL2Disk

UNCHANGED LI2NVRAM

UNCHANGED LL2SPCR

UNCHANGED LL2AvailableInputs

UNCHANGED LL2ObservedOutputs

>>> > > >

37

A UNCHANGED LL2ObservedAuthenticators

The LL2CorruptSPCR action models the ability of a malicious user to attack Memoir by extending the SPCR with
almost™ arbitrary data. The data is not completely arbitrary, because the user is assumed not to know the hash barrier
stored in the NVRAM of the TPM, so the user has negligible probability of being able to correctly guess this value and
use it to extend the SPCR.

LL2CorruptSPCR =
3 fakeHash € HashDomain :
LET

The SPCR can only be modified by extending it.

A

newHistorySummaryEztension = Hash(LL2SPCR, fakeHash)
IN
vV fakeInput € InputType : fakeHash # Hash(LL2NVRAM .hashBarrier, fakeInput)
UNCHANGED LIL2RAM
UNCHANGED LL2Disk
UNCHANGED LI2NVRAM
LL2SPCR' = newHistorySummaryExtension
UNCHANGED LL2AvailableInputs
UNCHANGED LL2Observed Outputs
UNCHANGED LL2ObservedAuthenticators

>>>>> > > >

In the initial state of the Memoir-Opt spec, some symmetric key and some hash barrier are generated and stored in the
NVRAM. The initial history summary anchor and extension are both the base hash value, indicating that no inputs have
been supplied yet. An initial authenticator binds the initial history summary to the initial public and encrypted private
state.

LL2Init =
JsymmetricKey € SymmetricKeyType, hashBarrier € HashType :
LET
initialPrivateStateEnc = SymmetricEncrypt(symmetricKey, InitialPrivateState)
initialStateHash = Hash(InitialPublicState, initialPrivateStateEnc)
initialHistorySummary = |
anchor — BaseHash Value,
extension — BaseHash Value]
initialHistorySummaryHash = Hash(BaseHashValue, BaseHashValue)
initialHistoryStateBinding = Hash(initialHistorySummaryHash, initialState Hash)
initial Authenticator = Generate MAC (symmetricKey, initialHistoryStateBinding)
initialUntrustedStorage = |
publicState — Initial PublicState,
privateStateEnc — initial PrivateStateEnc,
historySummary — initialHistorySummary,
authenticator — initial Authenticator)
initial TrustedStorage = |
historySummaryAnchor — BaseHash Value,
symmetricKey — symmetricKey,
hashBarrier — hashBarrier,
extensionInProgress — FALSE]
IN
A LL2Disk = initialUntrustedStorage

38

LIL2RAM = initialUntrustedStorage

LL2NVRAM = initial TrustedStorage

LL2SPCR = BaseHash Value

LL2AvailableInputs = InitialAvailableInputs
LL20bservedOutputs = {}
LL2ObservedAuthenticators = {initial Authenticator}

>>> > > >

LL2Next =

V LL2MakelnputAvailable
LL2PerformOperation
LL2 RepeatOperation
LL2 TakeCheckpoint
LL2Restart
LL2ReadDisk
LL2 WriteDisk
LL2CorruptRAM
VvV LL2CorruptSPCR

I I LCLCKL

LL2Spec = LL2Init A D[LL2Next) 112 vars

39

3. REFINEMENTS AND INVARIANTS
This section presents two classes of TLA+ modules. First, it contains modules pertaining to the refinement
of one spec to another. There are two such modules, one that refines the Memoir-Basic low-level spec to the
high-level spec and one that refines the Memoir-Opt low-level spec to the Memoir-Basic low-level spec.
Second, this section includes modules describing invariants maintained by the Memoir-Basic spec. This
include both invariants needed for proving the Memoir-Basic refinement and also invariants needed for proving
those invariants. No invariants are necessary for proving Memoir-Opt refinement.

40

3.1 Refinement 1: Mapping Memoir-Basic State to High-Level State

MODULE MemoirLL1 Refinement

This module describes how to interpret the state of the Memoir-Basic spec as a state of the high-level spec.

This module includes the following definitions:
LL1 HistoryStateBindingAuthenticated
LL1NVRAMHistorySummary Uncorrupted
LL1Refinement

EXTENDS MemoirLL1Specification

The LL1 HistoryStateBindingAuthenticated predicate asserts that a history state binding is authenticated, meaning that
the set of observed authenticators includes an authenticator that is a valid MAC of this history state binding.
LL1HistoryStateBindingAuthenticated (historyStateBinding) =
J authenticator € LL1ObservedAuthenticators :

Validate MAC (LLINVRAM .symmetricKey, historyStateBinding, authenticator)

The LL1NVRAMHistorySummaryUncorrupted predicate asserts that there exists some state hash that is bound to the
history summary in the NVRAM by an authenticated history state binding. This predicate is initially true, and it remains
true until a LL1 RestrictedCorruption action occurs, which makes the predicate false, and it remains false thereafter.

LL1NVRAMHistorySummaryUncorrupted =
JstateHash € HashType :
LET
historyStateBinding = Hash(LLINVRAM .historySummary, stateHash)
IN
LL1HistoryStateBinding Authenticated (historyState Binding)

The LL1Refinement describes the relationship between the Memoir-Basic spec and the high-level spec.

LL1Refinement =
The high-level available inputs correspond exactly to the Memoir-Basic available inputs, since both are abstrac-
tions that model the availability of particular input values to the user.
A HLAwailableInputs = LL1 AvailableInputs

The high-level observed outputs correspond exactly to the Memoir-Basic observed outputs, since both are ab-
stractions that model the set of outputs that the user has so far observed from the operation of the service.

A HLObservedOutputs = LL1ObservedOQutputs
The high-level public and private state is defined in terms of the history summary in the NVRAM. There are
two possibilities.
A 1F LL1NVRAMHistorySummaryUncorrupted
THEN
First, if the set of observed authenticators contains an authenticator that binds any state hash to the history
summary currently in the NVRAM, then the public and private state is any state of the legal type whose
hash is so bound. In this case, the service is alive.
LET
refPrivateStateEnc = SymmetricEncrypt(LLINVRAM .symmetricKey, HLPrivateState)
refStateHash = Hash(HLPublicState, refPrivateStateEnc)
refHistoryStateBinding = Hash(LLINVRAM .historySummary, refStateHash)
IN
A HLPublicState € PublicStateType
A HLPrivateState € PrivateStateType
A LL1HistoryStateBindingAuthenticated (refHistoryState Binding)

41

A HLAlive = TRUE
ELSE
Second, if the set of observed authenticators does not contain an authenticator that binds any state hash to
the history summary currently in the NVRAM, then the values of the public and private state are equal to
their dead states, and the service is not alive.

A HLPublicState = DeadPublicState
A HLPrivateState = DeadPrivateState
A HLAlive = FALSE

42

3.2 Refinement 2: Mapping Memoir-Opt State to Memoir-Basic State

MODULE MemoirLL2 Refinement

This module describes how to interpret the state of Memoir-Opt as a state of Memoir-Basic.

This module includes the following definitions:
L L2 HistorySummarylsSuccessor
HistorySummariesMatch
AuthenticatorsMatch
AuthenticatorSetsMatch
LL2NVRAMLogicalHistorySummary
LL2Refinement

EXTENDS MemoirLL2Specification, Sequences

The LL2HistorySummarylsSuccessor predicate defines, in the Memoir-Opt spec, the conditions under which one history
summary is a successor of another history summary with a particular intervening input.

L2 HistorySummarylsSuccessor(historySummary, previousHistorySummary, input, hashBarrier) =
LET
successorHistorySummary = Successor (previousHistorySummary, input, hashBarrier)
checkpointedSuccessorHistorySummary = Checkpoint(successorHistorySummary)
IN
V historySummary = successorHistorySummary
V historySummary = checkpointedSuccessorHistorySummary

The HistorySummariesMatch predicate defines the conditions under which a history summary in the Memoir-Basic spec
semantically matches a history summary in the Memoir-Opt spec.

This requires a recursive definition, but the current version of the prover cannot handle recursive operators, nor can it
tractably support proofs using recursive function definitions. Therefore, we define the operator indirectly, by using an
assumption. Although Lamport has stated that this approach is “not a satisfactory alternative to recursive definitions,”
he has also called it “a reasonable hack to get a proof done.”

CONSTANT HistorySummariesMatch(—, —, =)

HistorySummariesMatchRecursion (U1 HistorySummary, 112 HistorySummary, hashBarrier) =

3 input € InputType,
previousLL1 HistorySummary € HashType,
previousLL2 HistorySummary € HistorySummaryType :
A HistorySummariesMatch(previousLL1 HistorySummary, previousLL2HistorySummary, hashBarrier)
A U1 HistorySummary = Hash(previousLL1 HistorySummary, input)
A LL2HistorySummarylsSuccessor(
112 HistorySummary, previousLL2HistorySummary, input, hashBarrier)

ASSUME HistorySummariesMatchDefinition =
vV ll1HistorySummary € HashType,
112 HistorySummary € HistorySummaryType,
hashBarrier € HashType :
LET
112 InitialHistorySummary = [anchor — BaseHashValue, extension — BaseHash Value]
IN
IF 12 HistorySummary = l2InitialHistorySummary
THEN
HistorySummariesMatch(ll1 HistorySummary, 112 HistorySummary, hashBarrier) =

43

(111 HistorySummary = BaseHashValue)
ELSE
HistorySummariesMatch (111 HistorySummary, 112 HistorySummary, hashBarrier) =
HistorySummariesMatchRecursion(ll1 HistorySummary, 12 HistorySummary, hashBarrier)

The AuthenticatorsMatch predicate defines the conditions under which an
authenticator in the Memoir-Basic spec semantically matches an
authenticator in the Memoir-Opt spec.
AuthenticatorsMatch (111 Authenticator, 112 Authenticator, symmetricKey, hashBarrier) =
3 stateHash € HashType,
U1 HistorySummary € HashType,
L2 HistorySummary € HistorySummaryType :
LET
111 HistoryStateBinding = Hash(ll1HistorySummary, stateHash)
112 HistorySummaryHash = Hash(li2HistorySummary.anchor, 112 HistorySummary.extension)
l12 HistoryStateBinding = Hash(li2HistorySummaryHash, stateHash)
IN
The Memoir-Opt authenticator is a valid MAC of an
Memoir-Opt history state binding that binds some
Memoir-Opt history summary to some state hash.

A Validate MAC (symmetricKey, 112 HistoryStateBinding, 112 Authenticator)

The Memoir-Basic authenticator is generated as a MAC of a Memoir-Basic history state binding that binds
some Memoir-Basic history summary to the same state hash as the previous conjunct.

A Il Authenticator = Generate MAC (symmetricKey, 111 HistoryStateBinding)
The Memoir-Basic history state binding matches the Memoir-Opt history state binding.

A HistorySummariesMatch(ll1 HistorySummary, 112 HistorySummary, hashBarrier)

The AuthenticatorSetsMatch predicate defines the conditions under which a set of authenticators in the Memoir-Basic
spec semantically matches a set of authenticators in the Memoir-Opt spec.

AuthenticatorSetsMatch(111 Authenticators, 112 Authenticators, symmetricKey, hashBarrier) =
For every authenticator in the Memoir-Basic set, there is some authenticator in the Memoir-Opt set that matches
it.
A VU1 Authenticator € IlI1 Authenticators :
J 2 Authenticator € 112 Authenticators :
AuthenticatorsMatch(
11 Authenticator, 112 Authenticator, symmetricKey, hashBarrier)
For every authenticator in the Memoir-Opt set, there is some authenticator in the Memoir-Basic set that matches
it.
A Y I2Authenticator € 112 Authenticators :
F U1 Authenticator € 11 Authenticators :
AuthenticatorsMatch(
11 Authenticator, 112 Authenticator, symmetricKey, hashBarrier)

The LL2NVRAMULogicalHistorySummary is the history summary that is represented by the state of the NVRAM and
the SPCR in the Memoir-Opt spec. The anchor always comes directly from the NVRAM, but the
extension only comes from the SPCR if the NVRAM indicates that an

44

extension is in progress; otherwise, the extension is set to the base hash value. The reason for this is that a
LL2TakeCheckpoint action clears the extensionInProgress flag but is unable to reset the SPCR, so during the time
between a LL2TakeCheckpoint action and a LL2Restart action, the extension is really the base hash value, even though
the SPCR has not yet been reset.

The other interesting aspect of LL2NVRAM LogicalHistorySummary is that if there is an extension in progress but the
SPCR equals the base hash value, then the logical value of the extension is set to a crazy hash value. This is necessary
because if a Restart occurs when the LL2NVRAM .historySummaryAnchor equals the base hash value, the SPCR will
be set to the BaseHashValue, but we don’t want the logical history summary to appear the same as the initial history
summary, which it would if both the anchor and the extension were to equal the base hash value.

CONSTANT CrazyHashValue
ASSUME CrazyHashValue TypeSafe = CrazyHashValue € HashType

ASSUME CrazyHash ValueUnique =
A Y hashInputl, hashInput2 € HashDomain :
Hash(hashInputl, hashInput2) # CrazyHashValue
A BaseHashValue # CrazyHashValue

LL2NVRAMLogicalHistorySummary =
IF LL2NVRAM .extensionInProgress
THEN
IF LL2SPCR = BaseHashValue
THEN
[anchor — LL2NVRAM .historySummaryAnchor,
extension — CrazyHash Value]
ELSE
[anchor — LL2NVRAM .historySummaryAnchor,
extension — LL2SPCR)]
ELSE
[anchor — LL2NVRAM .historySummaryAnchor,
extension — BaseHash Value]

The LL2Refinement describes the relationship between the 2nd low-level spec (Memoir-Opt) and the 1st low-level spec
(Memoir-Basic).

The following variables are directly equal between the two specs:
LLxAvailableInputs
LLzObservedOutputs
LLxDisk.publicState
LLzxDisk.privateStateEnc
LLzRAM .publicState
LLxRAM .privateStateEnc
LLzNVRAM .symmetricKey

The following variables directly match according to the operators defined above:

LLzObservedAuthenticators

LLxDisk.historySummary

LLzDisk.authenticator

LLzRAM .historySummary

LLzRAM .authenticator
Note that the authenticators in the sets of observed authenticators match using the symmetric key in the LL2NVRAM.
By contrast, the authenticators in the disk and RAM match using some unspecified symmetric key, because the values in
the disk and RAM may be set arbitrarily by the user.

45

The following variable has a more involved matching process, involving both the LL2NVRAMLogicalHistorySummary
operator and a match operator:
LL1NVRAM .historySummary

For each of the variables that are refined via match predicates rather than through an equality relation, the refinement
asserts that the variable has the appropriate type.

For each of the record types (LL1Disk, LLIRAM, and LLINVRAM), the refinement defines the mapping for each
individual field within the record.

LL2Refinement =
A LL1AwvailableInputs = LL2AvailableInputs
LL10bservedOutputs = LL20Observed OQutputs
LL10bservedAuthenticators C MACType
AuthenticatorSetsMatch(
LL10ObservedAuthenticators,
LL20ObservedAuthenticators,
LI2NVRAM .symmetricKey,
LIL2NVRAM .hashBarrier)
LL1Disk € LL1 UntrustedStorage Type
LL1Disk.publicState = LL2Disk.publicState
LL1Disk.privateStateEnc = LL2Disk.privateStateEnc
HistorySummariesMatch(
LL1Disk.historySummary,
LL2Disk.historySummary,
LL2NVRAM .hashBarrier)
A JsymmetricKey € SymmetricKeyType :
AuthenticatorsMatch(
LL1Disk.authenticator,
LL2Disk.authenticator,
symmetricKey,
LL2NVRAM .hashBarrier)
LI1RAM € LL1UntrustedStorageType
LL1RAM .publicState = LL2RAM .publicState
LL1RAM .privateStateEnc = LL2RAM .privateStateEnc
HistorySummariesMatch(
LL1RAM .historySummary,
LL2RAM .historySummary,
LL2NVRAM .hashBarrier)
A dsymmetricKey € SymmetricKeyType :
AuthenticatorsMatch(
LL1RAM .authenticator,
LL2RAM .authenticator,
symmetricKey,
LL2NVRAM .hashBarrier)
AN LLINVRAM € LL1 TrustedStorageType
A HistorySummariesMatch(
LLINVRAM .historySummary,
LL2NVRAM LogicalHistorySummary,
LL2NVRAM .hashBarrier)
AN LLINVRAM .symmetricKey = LL2ZNVRAM .symmetricKey

> > >

> > > >

> > > >

46

3.3 Invariants Needed to Prove Memoir-Basic Implementation
MODULE MemoirLL1 CorrectnessInvariants

This module defines the three correctness invariants needed to prove that the Memoir-Basic spec implements the high-level
spec.

EXTENDS MemoirLL1 TypeSafety

The Unforgeabilitylnvariant states that, for any authenticator residing in the user’s RAM, if the authenticator validates
using the symmetric key in the NVRAM , the authenticator is in the set of authenticators that the user observed Memoir
to produce.

This is a somewhat boring invariant. It really just extends the assumption in the LL1CorruptRAM action, which con-
straints the set of authenticators the user can create. If we had written the low-level spec differently, such that this con-
straint had been expressed in the LL1 PerformOperation and LL1 RepeatOperation actions instead of the LL1 CorruptRAM
action, this invariant might not be necessary.

UnforgeabilityInvariant =
Y historyStateBinding € HashType :
Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator) =
LL1RAM .authenticator € LL1ObservedAuthenticators

The InclusionInvariant states that, for any history summary and input that together hash to the history summary in the
NVRAM, if this history summary is bound to some public and private state by an authenticated history state binding,
then the result of invoking the service with this public state, private state, and input will yield an output that is already
in the set of observed outputs and a new history state binding that is already authenticated.

This invariant is needed to show that the LL1RepeatOperation action does not have any ill effects. In particular, this
invariant tells us that the output that LL1RepeatOperation will produce is already in LL1ObservedOutputs, and the
new authenticator that LL1RepeatOperation will produce makes an assertion that is already being asserted by some
authenticator in LL1ObservedAuthenticators.

InclusionInvariant =
V input € InputType,
historySummary € HashType,
publicState € PublicStateType,
privateStateEnc € PrivateStateEncType :
LET
stateHash = Hash(publicState, privateStateEnc)
historyStateBinding = Hash(historySummary, stateHash)
privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, privateStateEnc)
sResult = Service(publicState, privateState, input)
newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
newHistoryStateBinding = Hash(LL1NVRAM .historySummary, newStateHash)
IN
(AN LLINVRAM .historySummary = Hash(historySummary, input)
A LL1HistoryStateBindingAuthenticated (historyState Binding))
=
(A sResult.output € LL1ObservedOutputs
A LL1HistoryStateBindingAuthenticated (newHistoryStateBinding))

47

The UniquenessInvariant states that the the history summary in the NVRAM is bound to only one public and private state
by an authenticator in the set of observed authenticators. This invariant is used in several places in the implementation
proof.

In the NonAdvancementLemma, the property of uniqueness is needed to show that the refined public and private state
does not change when the NVRAM and set of observed authenticators does not change. If there were more than one state
bound to the history summary in the NVRAM, a low-level stuttering step could lead to a high-level change in state.

In the base case of the Memoir-Basic implementation proof, the uniqueness property is needed to show that the refined
state hash corresponds uniquely to the initial state hash.

Within the induction of the Memoir-Basic implementation proof, in the case of LL1PerformOperation, the uniqueness
property is used in two places. First, it is needed to show that the public and private state in the arguments to the service
correspond to the refined high-level state. Second, it is needed to show that the public and private state produced as the
result from the service correspond to the refined high-level primed state.

UniquenessInvariant =
V stateHash1, stateHash2 € HashType :
LET
historyStateBindingl = Hash(LLINVRAM .historySummary, stateHash1)
historyStateBinding2 = Hash(LLINVRAM .historySummary, stateHash2)
IN
(A LL1HistoryState BindingAuthenticated (historyStateBinding1)
A LL1HistoryStateBindingAuthenticated (historyState Binding?2))
=
stateHashl = stateHash2

Collectively, we refer to these three invariants as the correctness invariants for the Memoir-Basic implementation.

CorrectnessInvariants =
A UnforgeabilityInvariant
A InclusionInvariant
A UniquenessInvariant

48

3.4 Invariants Needed to Prove Memoir-Basic Invariance

MODULE MemoirL L1 Supplementallnvariants

This module defines two supplemental invariants. These are not needed directly by the Memoir-Basic implementation
proof, but they are needed by the proofs that the correctness invariants hold.

EXTENDS MemoirLL1 CorrectnessInvariants, Naturals

The ExtendedUnforgeabilityInvariant states that the unforgeability property of the authenticator in the RAM also applies
to the authenticator on the disk. This is needed to show that the Unforgeabilitylnvariant holds through a LL1ReadDisk
action.

Eztended UnforgeabilityInvariant =
Y historyStateBinding € HashType :
A ValidateMAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator) =
LL1RAM .authenticator € LL1ObservedAuthenticators
A Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1Disk.authenticator) =
LL1Disk.authenticator € LL1ObservedAuthenticators

The Cardinalitylnvariant is a little funky. We define a new operatior called HashCardinality that indicates the count of
hashes needed to produce the supplied hash value. For example, if you create a hash chain, starting with the base hash
value, and chain in N inputs, the cardinality of the resulting hash will be N. Although our low-level spec uses the hash
operator only for linear hash chains, the hash cardinality is also defined for arbitrary trees of hashes.

The CardinalityInvariant states that the hash cardinality of the history summary in any observed authenticator is less
than or equal to the hash cardinality of the history summary in the NVRAM.

This property is needed to prove that the uniqueness property is an inductive invariant.

CONSTANT HashCardinality(-)

A

ASSUME HashCardinality TypeSafe =
Y hash € HashDomain : HashCardinality(hash) € Nat

A

ASSUME BaseHashCardinalityZero = HashCardinality(BaseHashValue) =0

ASSUME InputCardinalityZero =
Vinput € InputType : HashCardinality(input) = 0

ASSUME HashCardinalityAccumulative =
Y hash1l, hash2 € HashDomain :
HashCardinality(Hash(hashl, hash2)) =
HashCardinality(hashl) + HashCardinality(hash2) + 1

CardinalityInvariant =
Y historySummary € HashType, stateHash € HashType :
LET
historyStateBinding = Hash(historySummary, stateHash)
IN
(A LL1INVRAMHistorySummaryUncorrupted
A LL1HistoryState Binding Authenticated (historyStateBinding))
=
HashCardinality (historySummary) < HashCardinality(LLLNVRAM .historySummary)

49

50

4. PROOFS

This section presents TLA+ modules that contain proofs. The proofs include type safety of the three specs;
lemmas relating to types, invariants, refinement, or implementation; proofs of invariance; and proofs of imple-
mentation.

o1

4.1 Proof of Type Safety of the High-Level Spec
MODULE MemoirHLTypeSafety

This is a very simple proof that shows the high-level spec to be type-safe.

EXTENDS MemoirHLSpecification

A

THEOREM HLTypeSafe = HLSpec = OHLTypelnvariant
The top level of the proof is boilerplate TLA+ for an Invl-style proof. First, we prove that the initial state satisfies
HLTypelnvariant. Second, we prove that the HLNext predicate inductively preserves HLTypelnvariant. Third, we use
temporal induction to prove that these two conditions satisfy type safety over all behaviors.
(1)1. HLInit = HLTypelnvariant
The base case follows trivially from the definition of HLInit and the assumption that the developer-supplied constants
are type-safe.
(2)1. HAVE HLInit
(2)2. QED
BY (2)1, ConstantsTypeSafeDEF HLInit, HL Typelnvariant
(1)2. HLTypelInvariant A [HLNext] g vars = HLTypelnvariant’
The induction step is also fairly trivial. We assume the antecedents of the implication, then show that the consequent
holds for both HLNezt actions.
(2)1. HAVE HLTypelnvariant A [HLNext] grvars
(2)2. CASE UNCHANGED HLVars
Type safety is inductively trivial for a stuttering step.

BY (2)1, (2)2 DEF HLTypelnvariant, HLVars
(2)3. cASE HLMakeInputAvailable
Type safety is also trivial for a HLMakelInputAvailable action.

BY (2)1, (2)3 DEF HLTypelnvariant, HLMakeInputAvailable
(2)4. cASE HLAdvanceService

For a HLAdvanceService action, we just walk through the definitions. Type safety follows directly.

(3)1. PICK input € HLAvailableInputs : HLAdvanceService! (input)!1
BY DEF HLAdvanceService
(3)2. A HLPublicState € PublicState Type
A HLPrivateState € PrivateState Type
A HLAvailableInputs C InputType
BY (2)1 DEF HLTypelnvariant
(3)3. HLAdvanceService! (input)! hlSResult € ServiceResult Type
BY (3)1, (3)2, Service TypeSafe
(3)4. A HLAdvanceService! (input) ! hiSResult.newPublicState € PublicState Type
A HLAdvanceService! (input)! hiSResult.newPrivateState € PrivateState Type
A HLAdvanceService! (input)! hiSResult.output € OutputType
BY (3)3 DEF ServiceResultType
(3)5. QED
BY (2)1, (3)1, (3)4 DEF HLAdvanceService, HLTypelInvariant
(2)5. CASE HLDie

Type safety is also trivial for a HLDie action.
BY (2)1, (2)5, ConstantsTypeSafeDEF HLTypelnvariant, HLDie
(2)6. QED
BY (2)1, (2)2, (2)3, (2)4, (2)5 DEF HLNext
(1)3. QED
Using the Inv1 proof rule, the base case and the induction step together imply that the invariant always holds.
(2)1. HLTypeInvariant A O[HLNext] g1 vars = OHLTypelnvariant

52

BY (1)2, Invl
(2)2. QED
BY (2)1, (1)1 DEF HLSpec

53

4.2 Proofs of Lemmas Relating to Types in the Memoir-Basic Spec

MODULE MemoirLL1 TypeLemmas

This module states and proves sevaral lemmas that are useful for proving type safety. Since type safety is an important
part of the implementation proof, these lemmas also will be used in theorems other than the Memoir-Basic type-safety
theorem.

The lemmas in this module are:
LL1SubtypelImplicationLemma
LL1InitDefsTypeSafeLemma
LL1 PerformOperationDefs TypeSafeLemma
LL1RepeatOperationDefs TypeSafeLemma
InclusionInvariantDefs TypeSafeLemma
CardinalityInvariantDefs TypeSafeLemma
UniquenessInvariantDefs TypeSafeLemma
LL1NVRAMHistorySummaryUncorruptedDefs TypeSafeLemma
LL1 RefinementDefs TypeSafeLemma
LL1RefinementPrimeDefs TypeSafeLemma

EXTENDS MemoirL L1 Refinement

LL1SubtypelmplicationLemma proves that when the LL1Typelnvariant holds, the subtypes of LL1Disk, LL1IRAM, and
LLINVRAM also hold. This is asserted and proven for both the unprimed and primed states.

The proof itself is completely trivial. It follows directly from the type definitions LL1 UntrustedStorageType and
LL1 TrustedStorage Type.

LL1Subtypelmplication =
LL1Typelnvariant =

A LL1Disk.publicState € PublicState Type
LL1Disk.privateStateEnc € PrivateStateEncType
LIL1Disk.historySummary € HashType
LL1Disk.authenticator € MACType
LL1RAM .publicState € PublicStateType
LL1RAM .privateStateEnc € PrivateStateEncType
LL1RAM .historySummary € HashType
LI1RAM .authenticator € MACType
LLINVRAM .historySummary € HashType
LLINVRAM .symmetricKey € SymmetricKeyType

>>>>>> > > >

THEOREM LL1SubtypelmplicationLemma =
A LL1Subtypelmplication
A LL1SubtypeImplication’
(1)1. LL1Subtypelmplication
(2)1. SUFFICES
ASSUME LL1 Typelnvariant
PROVE
A LL1Disk.publicState € PublicState Type
LL1Disk.privateStateEnc € PrivateStateEncType
LL1Disk.historySummary € HashType
LL1Disk.authenticator € MACType
LL1RAM .publicState € PublicState Type
LL1RAM .privateStateEnc € PrivateStateEncType
LL1RAM .historySummary € HashType
LL1RAM .authenticator € MACType
LLINVRAM .historySummary € HashType

>>>>> > > >

54

AN LLINVRAM .symmetricKey € SymmetricKeyType
BY DEF LL1Subtypelmplication
(2)2. LL1Disk € LL1 UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(2)3. LLIRAM € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(2)4. LLINVRAM € LL1TrustedStorage Type
BY (2)1 DEF LL1Typelnvariant
(2)5. LL1Disk.publicState € PublicState Type
BY (2)2 DEF LL1UntrustedStorageType
(2)6. LL1Disk.privateStateEnc € PrivateStateEncType
BY (2)2 DEF LL1 UntrustedStorage Type
(2)7. LL1Disk.historySummary € HashType
BY (2)2 DEF LL1 UntrustedStorage Type
(2)8. LL1Disk.authenticator € MACType
BY (2)2 DEF LL1 UntrustedStorage Type
(2)9. LL1RAM .publicState € PublicState Type
BY (2)3 DEF LL1 UntrustedStorage Type
(2)10. LL1RAM .privateStateEnc € PrivateStateEncType
BY (2)3 DEF LL1 UntrustedStorage Type
(2)11. LL1RAM .historySummary € HashType
BY (2)3 DEF LL1 UntrustedStorage Type
(2)12. LL1RAM .authenticator € MACType
BY (2)3 DEF LL1 UntrustedStorage Type
(2)13. LLINVRAM .historySummary € HashType
BY (2)4 DEF LL1 TrustedStorage Type
(2)14. LLINVRAM .symmetricKey € SymmetricKeyType
BY (2)4 DEF LL1 TrustedStorage Type
(2)15. QED
BY (2)5, (2)6, (2)7, (2)8, (2)9, (2)10, (2)11, (2)12, (2)13, (2)14
(1)2. LL1Subtypelmplication’
(2)1. SUFFICES
ASSUME LL1 Typelnvariant’
PROVE
A LL1Disk.publicState’ € PublicState Type
LL1Disk.privateStateEnc’ € PrivateStateEnc Type
LL1Disk.historySummary’ € HashType
LL1Disk.authenticator’ € MACType
LL1RAM .publicState’ € PublicState Type
LL1RAM .privateStateEnc’ € PrivateStateEncType
LL1RAM .historySummary’ € HashType
LL1RAM .authenticator’ € MACType
LL1INVRAM .historySummary’ € HashType
LLINVRAM .symmetricKey' € SymmetricKeyType
BY DEF LL1Subtypelmplication
(2)2. LL1Disk’ € LL1 UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(2)3. LLIRAM' € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(2)4. LLINVRAM' € LL1 TrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(2)5. LL1Disk.publicState’ € PublicState Type

>>>>>> > > >

55

BY (2)2 DEF LL1 UntrustedStorage Type
(2)6. LL1Disk.privateStateEnc’ € PrivateStateEncType
BY (2)2 DEF LL1 UntrustedStorage Type
(2)7. LL1Disk.historySummary’ € HashType
BY (2)2 DEF LL1 UntrustedStorage Type
(2)8. LL1Disk.authenticator’ € MACType
BY (2)2 DEF LL1 UntrustedStorage Type
(2)9. LLIRAM .publicState’ € PublicState Type
BY (2)3 DEF LL1 UntrustedStorage Type
(2)10. LL1RAM .privateStateEnc’ € PrivateStateEncType
BY (2)3 DEF LL1 UntrustedStorage Type
(2)11. LL1RAM .historySummary’ € HashType
BY (2)3 DEF LL1UntrustedStorage Type
(2)12. LL1RAM .authenticator’ € MACType
BY (2)3 DEF LL1UntrustedStorage Type
(2)13. LLINVRAM .historySummary’ € HashType
BY (2)4 DEF LL1 TrustedStorage Type
(2)14. LLINVRAM .symmetricKey' € SymmetricKeyType
BY (2)4 DEF LL1 TrustedStorage Type
(2)15. QED
By (2)5, (2)6, (27, (2)8, (2)9, ()10, (211, (2)12, (2)13, (2)14
(1)3. QED
BY (1)1, (1)2

LL1InitDefs TypeSafeLemma proves that the definitions within the LET of the LL1Init action all have the appropriate
type. This is a trivial proof that merely walks through the definitions.

THEOREM LL1InitDefs TypeSafeLemma =
Y symmetricKey € SymmetricKeyType :
LET
initialPrivateStateEnc = SymmetricEncrypt(symmetricKey, InitialPrivateState)
initialStateHash = Hash(InitialPublicState, initialPrivateStateEnc)
initialHistoryStateBinding = Hash(BaseHashValue, initialStateHash)
initial Authenticator = GenerateMAC (symmetricKey, initialHistoryState Binding)
initialUntrustedStorage = |
publicState — InitialPublicState,
privateState Enc — initial PrivateStateEnc,
historySummary — BaseHashValue,
authenticator — initial Authenticator)
initial TrustedStorage = |
historySummary — BaseHashValue,
symmetricKey — symmetricKey]
IN
initial PrivateStateEnc € PrivateStateEnc Type
initialStateHash € HashType
initial HistoryStateBinding € HashType
initial Authenticator € MACType
initialUntrustedStorage € LL1 UntrustedStorage Type
A initial TrustedStorage € LL1 TrustedStorage Type
(1)1. TAKE symmetricKey € SymmetricKeyType
(1) 4nitialPrivateStateEnc = SymmetricEncrypt(symmetricKey, InitialPrivateState)
(1) initialStateHash = Hash(InitialPublicState, initialPrivateStateEnc)
(1) initialHistoryStateBinding = Hash(BaseHash Value, initialStateHash)

> > > > >

56

(1) initial Authenticator = GenerateMAC (symmetricKey, initialHistoryStateBinding)
(1) initial UntrustedStorage = |
publicState — InitialPublicState,
privateStateEnc — initial PrivateStateEnc,
historySummary — BaseHashValue,
authenticator — initial Authenticator)
(1) initial TrustedStorage = |
historySummary — BaseHash Value,
symmetricKey — symmetricKey]
(1) HIDE DEF initialPrivateStateEnc, initialState Hash, initial Authenticator,
initialUntrustedStorage, initial TrustedStorage
(1)2. ingtialPrivateStateEnc € PrivateStateEncType
(2)1. symmetricKey € SymmetricKeyType
BY (1)1
(2)2. InitialPrivateState € PrivateState Type
BY ConstantsTypeSafe
(2)3. QED
BY (2)1, (2)2, SymmetricEncryption TypeSafeDEF initial PrivateState Enc
(1)3. initialStateHash € HashType
(2)1. InitialPublicState € HashDomain
(3)1. InitialPublicState € PublicState Type
BY ConstantsTypeSafe
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. initialPrivateStateEnc € HashDomain
BY (1)2 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF initialStateHash
(1)4. initialHistoryStateBinding € HashType
(2)1. BaseHashValue € HashDomain
(3)1. BaseHashValue € HashType
BY BaseHashValue TypeSafe
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. initialStateHash € HashDomain
BY (1)3 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF initialHistoryStateBinding
(1)5. initial Authenticator € MACType
(2)1. symmetricKey € SymmetricKeyType
BY (1)1
(2)2. initialHistoryStateBinding € HashType
BY (1)4
(2)3. QED
BY (2)1, (2)2, Generate MACTypeSafeDEF initial Authenticator
(1)6. initialUntrustedStorage € LL1 UntrustedStorage Type
(2)1. InitialPublicState € PublicState Type
BY ConstantsTypeSafe
(2)2. ingtialPrivateStateEnc € PrivateStateEncType
BY (1)2
(2)3. BaseHashValue € HashType
BY BaseHashValue TypeSafe

57

(2)4. initial Authenticator € MACType
BY (1)5
(2)5. QED
BY (2)1, (2)2, (2)3, (2)4 DEF initialUntrustedStorage, LL1 UntrustedStorage Type
(1)7. initial TrustedStorage € LL1 TrustedStorage Type
(2)1. BaseHashValue € HashType
BY BaseHashValue TypeSafe
(2)2. symmetricKey € SymmetricKeyType
BY (1)1
(2)3. QED
BY (2)1, (2)2 DEF initialTrustedStorage, LL1 TrustedStorage Type
(1)8. QED
BY (1)2, (1)3, (1)4, (1)5, (1)6, (1)7
DEF initialPrivateStateEnc, initialStateHash, initial Authenticator,
initial UntrustedStorage, initial TrustedStorage

LL1PerformOperationDefs TypeSafeLemma proves that the definitions within the LET of the LL1 PerformOperation action
all have the appropriate type. This is a trivial proof that merely walks through the definitions.

THEOREM LL1PerformOperationDefs TypeSafeLemma =
Vinput € LL1AvailableInputs :
LL1 Typelnvariant =
LET

stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)

A

historyStateBinding = Hash(LL1RAM .historySummary, stateHash)
privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)
sResult = Service(LL1RAM .publicState, privateState, input)
newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
newHistorySummary = Hash(LLINVRAM .historySummary, input)
newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
newHistoryStateBinding = Hash(newHistorySummary, newStateHash)
newAuthenticator = Generate MAC(LL1NVRAM .symmetricKey, newHistoryState Binding)
IN
stateHash € HashType
historyStateBinding € HashType
privateState € PrivateState Type
sResult € ServiceResultType
sResult.newPublicState € PublicState Type
sResult.newPrivateState € PrivateState Type
sResult.output € OutputType
newPrivateStateEnc € PrivateStateEncType
newHistorySummary € HashType
newStateHash € HashType
newHistoryState Binding € HashType
A newAuthenticator € MACType
y1. TAKE input € LL1AvailableInputs
) stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
) historyStateBinding = Hash(LL1RAM historySummary, stateHash)
)
)
)

>>>>>>>>> > >

privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)
sResult = Service(LL1RAM .publicState, privateState, input)
newPrivateStateEnc =

SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)

(1
(1
(1
(1
(1
(1

58

(1) newHistorySummary = Hash(LLINVRAM .historySummary, input)
(1) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
(1) newHistoryStateBinding = Hash(newHistorySummary, newStateHash)
(1) newAuthenticator = GenerateMAC(LLINVRAM .symmetricKey, newHistoryState Binding)
(1) HIDE DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newHistorySummary, newStateHash, newHistoryStateBinding, newAuthenticator
(1)2. HAVE LL1 Typelnvariant
(1)3. stateHash € HashType
(2)1. A LL1RAM .publicState € PublicState Type
A LL1RAM .privateStateEnc € PrivateStateEncType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. A LL1RAM .publicState € HashDomain
A LL1RAM .privateStateEnc € HashDomain
BY (2)1 DEF HashDomain
(2)3. QED
BY (2)2, HashTypeSafeDEF stateHash
(1)4. historyStateBinding € HashType
(2)1. LLIRAM .historySummary € HashDomain
(3)1. LL1RAM .historySummary € HashType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. stateHash € HashDomain
BY (1)3 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF historyStateBinding
(1)5. privateState € PrivateState Type
(2)1. A LLINVRAM .symmetricKey € SymmetricKeyType
A LL1RAM .privateStateEnc € PrivateStateEncType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. QED
BY (2)1, SymmetricDecryption TypeSafeDEF privateState
(1)6. sResult € ServiceResult Type
(2)1. LLIRAM .publicState € PublicState Type
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. privateState € PrivateState Type
BY (1)5
(2)3. input € InputType
(3)1. LL1AvailableInputs C InputType
BY (1)2 DEF LL1 Typelnvariant
(3)2. QED
BY (1)1, (3)1
(2)4. QED
BY (2)1, (2)2, (2)3, Service TypeSafeDEF sResult
(1)7. A sResult.newPublicState € PublicStateType
A sResult.newPrivateState € PrivateState Type
A sResult.output € OutputType
BY (1)6 DEF ServiceResult Type
(1)8. newPrivateStateEnc € PrivateStateEncType
(2)1. LLINVRAM .symmetricKey € SymmetricKeyType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. sResult.newPrivateState € PrivateState Type

59

BY (1)7
(2)3. QED
BY (2)1, (2)2, SymmetricEncryptionTypeSafeDEF newPrivateStateEnc
(1)9. newHistorySummary € HashType
(2)1. LLINVRAM .historySummary € HashDomain
(3)1. LLINVRAM .historySummary € HashType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. input € HashDomain
(3)1. input € InputType
(4)1. LL1 AvailableInputs C InputType
BY (1)2 DEF LL1 Typelnvariant
(4)2. QED
BY (1)1, (4)1
(3)2. QED
BY (3)1 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF newHistorySummary
(1)10. newStateHash € HashType
(2)1. sResult.newPublicState € HashDomain
(3)1. sResult.newPublicState € PublicState Type
BY (1)7
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. newPrivateStateEnc € HashDomain
BY (1)8 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF newStateHash
(1)11. newHistoryStateBinding € HashType
(2)1. newHistorySummary € HashDomain
BY (1)9 DEF HashDomain
(2)2. newStateHash € HashDomain
BY (1)10 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF newHistoryStateBinding
(1)12. newAuthenticator € MACType
(2)1. LLINVRAM .symmetricKey € SymmetricKeyType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. newHistoryStateBinding € HashType
BY (1)11
(2)3. QED
BY (2)1, (2)2, Generate MACTypeSafeDEF newAuthenticator
(1)13. QED
BY (1)3, (1)4, (1)5, (1)6, (1)7, (1)8, (1)9, (1)10, (1)11, (1)12
DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newHistorySummary, newStateHash, newHistoryStateBinding, newAuthenticator

LL1 RepeatOperationDefs TypeSafeLemma proves that the definitions within the LET of the LL1RepeatOperation action
all have the appropriate type. This is a trivial proof that merely walks through the definitions.

THEOREM LL1RepeatOperationDefs TypeSafeLemma =
Vinput € LL1AvailableInputs :

60

LL1 Typelnvariant =
LET
stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
historyStateBinding = Hash(LL1RAM .historySummary, stateHash)
privateState = SymmetricDecrypt(LLLNVRAM .symmetricKey, LL1RAM .privateStateEnc)
sResult = Service(LL1RAM .publicState, privateState, input)
newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
newHistoryState Binding = Hash(LLINVRAM .historySummary, newStateHash)
newAuthenticator = Generate MAC(LLINVRAM .symmetricKey, newHistoryStateBinding)
IN

stateHash € HashType

historyStateBinding € HashType

privateState € PrivateState Type

sResult € ServiceResultType

sResult.newPublicState € PublicState Type

sResult.newPrivateState € PrivateState Type

sResult.output € OutputType

newPrivateStateEnc € PrivateStateEncType

newStateHash € HashType

newHistoryStateBinding € HashType

A newAuthenticator € MACType
1. TAKE input € LL1AvailableInputs
stateHash = Hash(LALlRAM.publicState, LL1RAM .privateStateEnc)

historyStateBinding = Hash(LL1RAM .historySummary, stateHash)

A

)
)
)
) privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)
)
)

>>>>>> > > > >

sResult = Service(LL1RAM .publicState, privateState, input)
. A
newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
) newHistoryStateBinding = Hash(LLINVRAM .historySummary, newStateHash)
) newAuthenticator = Generate MAC(LLINVRAM .symmetricKey, newHistoryStateBinding)
) HIDE DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newStateHash, newHistoryStateBinding, newAuthenticator
(1)2. HAVE LL1 TypeInvariant
(1)3. stateHash € HashType
(2)1. A LL1RAM .publicState € PublicState Type
A LL1RAM .privateStateEnc € PrivateStateEncType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. A LL1RAM .publicState € HashDomain
A LL1RAM .privateStateEnc € HashDomain
BY (2)1 DEF HashDomain
(2)3. QED
BY (2)2, HashTypeSafeDEF stateHash
(1)4. historyStateBinding € HashType
(2)1. LL1RAM .historySummary € HashDomain
(3)1. LL1RAM .historySummary € HashType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. stateHash € HashDomain

(1
(1
(1
(1

61

BY (1)3 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF historyStateBinding
(1)5. privateState € PrivateState Type
(2)1. A LLINVRAM .symmetricKey € SymmetricKeyType
AN LL1RAM .privateStateEnc € PrivateStateEncType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. QED
BY (2)1, SymmetricDecryption TypeSafeDEF privateState
(1)6. sResult € ServiceResultType
(2)1. LL1RAM .publicState € PublicStateType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. privateState € PrivateState Type
BY (1)5
(2)3. input € InputType
(3)1. LL1AwvailableInputs C InputType
BY (1)2 DEF LL1 Typelnvariant
(3)2. QED
BY (1)1, (3)1
(2)4. QED
BY (2)1, (2)2, (2)3, Service TypeSafeDEF sResult
(1)7. A sResult.newPublicState € PublicState Type
A sResult.newPrivateState € PrivateState Type
A sResult.output € OutputType
BY (1)6 DEF ServiceResult Type
(1)8. newPrivateStateEnc € PrivateStateEncType
(2)1. LLINVRAM .symmetricKey € SymmetricKeyType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. sResult.newPrivateState € PrivateState Type
BY (1)7
(2)3. QED
BY (2)1, (2)2, SymmetricEncryption TypeSafeDEF newPrivateStateEnc
(1)9. newStateHash € HashType
(2)1. sResult.newPublicState € HashDomain
(3)1. sResult.newPublicState € PublicState Type
BY (1)7
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. newPrivateStateEnc € HashDomain
BY (1)8 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF newStateHash
(1)10. newHistoryStateBinding € HashType
(2)1. LLINVRAM .historySummary € HashDomain
(3)1. LLINVRAM .historySummary € HashType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. newStateHash € HashDomain
BY (1)9 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF newHistoryStateBinding

62

(1)11. newAuthenticator € MACType
(2)1. LLINVRAM .symmetricKey € SymmetricKeyType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. newHistoryStateBinding € HashType
BY (1)10
(2)3. QED
BY (2)1, (2)2, Generate MACTypeSafeDEF newAuthenticator
(1)12. QED
BY (1)3, (1)4, (1)5, (1)6, (1)7, (1)8, (1)9, (1)10, (1)11
DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newStateHash, newHistoryState Binding, newAuthenticator

The InclusionInvariantDefs TypeSafeLemma proves that the definitions within the LET of the InclusionInvariant all have
the appropriate type. This is a trivial proof that merely walks through the definitions.

THEOREM InclusionInvariantDefs TypeSafeLemma =
V input € InputType,
historySummary € HashType,
publicState € PublicStateType,
privateStateEnc € PrivateStateEncType :
LL1 Typelnvariant =
LET
stateHash = Hash(publicState, privateStateEnc)
historyState Binding = Hash(historySummary, stateHash)
privateState = SymmetricDecrypt(LLLNVRAM .symmetricKey, privateStateEnc)
sResult = Service(publicState, privateState, input)
newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
newHistoryStateBinding = Hash(LLINVRAM .historySummary, newStateHash)
IN
A stateHash € HashType
A historyStateBinding € HashType
A privateState € PrivateState Type
A sResult € ServiceResultType
A sResult.newPublicState € PublicState Type
A sResult.newPrivateState € PrivateState Type
A sResult.output € Output Type
A newPrivateStateEnc € PrivateStateEnc Type
A newStateHash € HashType
A newHistoryStateBinding € HashType
(1)1. TAKE input € InputType,
historySummary € HashType,
publicState € PublicState Type,
privateStateEnc € PrivateStateEnc Type
(1) stateHash = Hash(publicState, privateStateEnc)
(1) historyStateBinding = Hash(historySummary, stateHash)
(1) privateState = SymmetricDecrypt(LLLNVRAM .symmetricKey, privateStateEnc)
(1) sResult = Service(publicState, privateState, input)
(1) newPrivateStateEnc =

SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)

63

(1) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
(1) newHistoryStateBinding = Hash(LL1INVRAM historySummary, newStateHash)
(1) HIDE DEF stateHash, historyStateBinding, privateState, sResult,
newPrivateStateEnc, newStateHash, newHistoryState Binding
(1)2. HAVE LL1 Typelnvariant
(1)3. stateHash € HashType
(2)1. A publicState € PublicState Type
A privateStateEnc € PrivateStateEnc Type
BY (1)1
(2)2. A publicState € HashDomain
A privateStateEnc € HashDomain
BY (2)1 DEF HashDomain
(2)3. QED
BY (2)2, HashTypeSafeDEF stateHash
(1)4. historyStateBinding € HashType
(2)1. historySummary € HashDomain
(3)1. historySummary € HashType
BY (1)1
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. stateHash € HashDomain
BY (1)3 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF historyStateBinding
(1)5. privateState € PrivateState Type
(2)1. LLINVRAM .symmetricKey € SymmetricKeyType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. privateStateEnc € PrivateStateEncType
BY (1)1
(2)3. QED
BY (2)1, (2)2, SymmetricDecryptionTypeSafeDEF privateState
(1)6. sResult € ServiceResultType
(2)1. publicState € PublicState Type
BY (1)1
(2)2. privateState € PrivateState Type
BY (1)5
(2)3. input € InputType
(3)1. LL1AvailableInputs C InputType
BY (1)2 DEF LL1 Typelnvariant
(3)2. QED
BY (1)1, (3)1
(2)4. QED
BY (2)1, (2)2, (2)3, Service TypeSafeDEF sResult
(1)7. A sResult.newPublicState € PublicStateType
A sResult.newPrivateState € PrivateState Type
A sResult.output € OutputType
BY (1)6 DEF ServiceResult Type
(1)8. newPrivateStateEnc € PrivateStateEncType
(2)1. LLINVRAM .symmetricKey € SymmetricKeyType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. sResult.newPrivateState € PrivateState Type
BY (1)7

64

(2)3. QED
BY (2)1, (2)2, SymmetricEncryption TypeSafeDEF newPrivateState Enc
(1)9. newStateHash € HashType
(2)1. sResult.newPublicState € HashDomain
(3)1. sResult.newPublicState € PublicState Type
BY (1)7
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. newPrivateStateEnc € HashDomain
BY (1)8 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF newStateHash
(1)10. newHistoryStateBinding € HashType
(2)1. LLINVRAM .historySummary € HashDomain
(3)1. LLINVRAM .historySummary € HashType
BY (1)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. newStateHash € HashDomain
BY (1)9 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF newHistoryStateBinding
(1)11. QED
BY (1)3, (1)4, (1)5, (1)6, (1)7, (1)8, (1)9, (1)10
DEF stateHash, historyStateBinding, privateState, sResult,
newPrivateStateEnc, newStateHash, newHistoryState Binding

The CardinalityInvariantDefs TypeSafeLemma proves that the definition within the LET of the CardinalityInvariant has
the appropriate type. This is a trivial proof that merely walks through the definitions.

THEOREM CardinalityInvariantDefs TypeSafeLemma =
Y historySummary € HashType, stateHash € HashType :
LET
historyStateBinding = Hash(historySummary, stateHash)
IN
historyStateBinding € HashType
(1)1. TAKE historySummary € HashType, stateHash € HashType
(1) historyStateBinding = Hash(historySummary, stateHash)
(1) HIDE DEF historyStateBinding
(1)2. QED
(2)1. historySummary € HashDomain
(3)1. historySummary € HashType
BY (1)1
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. stateHash € HashDomain
(3)1. stateHash € HashType
BY (1)1
(3)2. QED
BY (3)1 DEF HashDomain
(2)3. QED

65

BY (2)1, (2)2, HashTypeSafeDEF historyStateBinding

The UniquenessInvariantDefs TypeSafeLemma proves that the definitions within the LET of the UniquenessInvariant all
have the appropriate type. This is a trivial proof that merely walks through the definitions.

THEOREM UniquenessInvariantDefs TypeSafeLemma =
YV stateHashl, stateHash2 € HashType :
LL1Typelnvariant =
LET
historyState Binding1
historyStateBinding?2

= Hash(LLINVRAM .historySummary, stateHash1)
£ Hash(LLINVRAM historySummary, stateHash2)
IN
A historyStateBindingl € HashType
A historyStateBinding2 € HashType
1. TAKE stateHashl, stateHash2 € HashType
historyStateBinding1 Hash(LLINVRAM .historySummary, stateHashl)
historyStateBinding2 = Hash(LL1NVRAM .historySummary, stateHash2)
HIDE DEF historyStateBindingl, historyStateBinding2
2. HAVE LL1 Typelnvariant
3. LLINVRAM .historySummary € HashDomain
2)1. LLINVRAM .historySummary € HashType
(3)1. LL1 Typelnvariant
BY (1)2
(3)2. QED
BY (3)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. QED
BY (2)1 DEF HashDomain
(1)4. historyStateBindingl € HashType
(2)1. stateHashl € HashDomain
(3)1. stateHashl € HashType
BY (1)1
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. QED
BY (1)3, (2)1, HashTypeSafeDEF historyStateBindingl
(1)5. historyStateBinding2 € HashType
(2)1. stateHash2 € HashDomain
(3)1. stateHash2 € HashType
BY (1)1
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. QED
BY (1)3, (2)1, HashTypeSafeDEF historyStateBinding2

Il

(1)
(1)
(1)
(1)
(1)
(1)

(

(1)6. QED
BY (1)4, (1)5
DEF historyStateBindingl, historyStateBinding2

The LL1RefinementDefsTypeSafeLemma proves that the definitions within the LET of the LL1Refinement definition all
have the appropriate type in the unprimed state. This is a trivial proof that merely walks through the definitions.

66

THEOREM LL1RefinementDefs TypeSafeLemma =
LL1Refinement A LL1 TypeInvariant =
LET
refPrivateStateEnc = SymmetricEncrypt(LLINVRAM .symmetricKey, HLPrivateState)
refStateHash = Hash(HLPublicState, refPrivateStateEnc)
refHistoryStateBinding = Hash(LLINVRAM .historySummary, refStateHash)
IN
A refPrivateStateEnc € PrivateStateEnc Type
A refStateHash € HashType
A refHistoryStateBinding € HashType
1) refPrivateStateEnc = SymmetricEncrypt(LLINVRAM .symmetricKey, HLPrivateState)
1) refStateHash = Hash(HLPublicState, refPrivateStateEnc)
1) refHistoryStateBinding = Hash(LL1INVRAM historySummary, refStateHash)
1) HIDE DEF refPrivateStateEnc, refStateHash
1)1. HAVE LL1Refinement A LL1 Typelnvariant
1)2. refPrivateStateEnc € PrivateStateEncType
(2)1. LLINVRAM .symmetricKey € SymmetricKeyType
BY (1)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. HLPrivateState € PrivateStateType
BY (1)1, ConstantsTypeSafeDEF LL1Refinement
(2)3. QED
BY (2)1, (2)2, SymmetricEncryption TypeSafeDEF refPrivateStateEnc
(1)3. refStateHash € HashType
(2)1. HLPublicState € HashDomain
(3)1. HLPublicState € PublicState Type
BY (1)1, ConstantsTypeSafeDEF LL1Refinement
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. refPrivateStateEnc € HashDomain
BY (1)2 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF refStateHash
(1)4. refHistoryStateBinding € HashType
(2)1. LLINVRAM .historySummary € HashDomain
(3)1. LLINVRAM .historySummary € HashType
BY (1)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. refStateHash € HashDomain
BY (1)3 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafe
(1)5. QED
BY (1)2, (1)3, (1)4
DEF refPrivateStateEnc, refStateHash

(
(
(
(
(
(

The LL1RefinementPrimeDefsTypeSafeLemma proves that the definitions within the LET of the LL1 Refinement definition
all have the appropriate type in the primed state. This is a trivial proof that merely walks through the definitions.

THEOREM LL1RefinementPrimeDefs TypeSafeLemma =
LIL1Refinement’ A LL1 Typelnvariant’ =

67

LET
refPrivateStateEnc = SymmetricEncrypt(LLINVRAM .symmetricKey, HLPrivateState)
refStateHash = Hash(HLPublicState, refPrivateStateEnc)
refHistoryState Binding = Hash(LLINVRAM .historySummary, refStateHash)
IN
A refPrivateStateEnc’ € PrivateStateEncType
A refStateHash' € HashType
A refHistoryStateBinding’ € HashType
) refPrivateStateEnc = SymmetricEncrypt(LLANVRAM .symmetricKey, HLPrivateState)
) refStateHash = Hash(HLPublicState, refPrivateStateEnc)
) refHistoryStateBinding = Hash(LLINVRAM .historySummary, refStateHash)
) HIDE DEF refPrivateStateEnc, refStateHash
1. HAVE LL1Refinement’ A LL1 Typelnvariant’
2. refPrivateStateEnc’ € PrivateStateEncType
(2)1. LLINVRAM .symmetricKey' € SymmetricKeyType
BY (1)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(2)2. HLPrivateState’ € PrivateState Type
BY (1)1, ConstantsTypeSafeDEF LL1Refinement
(2)3. QED
BY (2)1, (2)2, SymmetricEncryptionTypeSafeDEF refPrivateStateEnc
(1)3. refStateHash' € HashType
(2)1. HLPublicState’ € HashDomain
(3)1. HLPublicState’ € PublicState Type
BY (1)1, ConstantsTypeSafeDEF LL1Refinement
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. refPrivateStateEnc’ € HashDomain
BY (1)2 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafeDEF refStateHash
(1)4. refHistoryStateBinding’ € HashType
(2)1. LLINVRAM .historySummary’ € HashDomain
(3)1. LLINVRAM .historySummary’ € HashType
BY (1)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(3)2. QED
BY (3)1 DEF HashDomain
(2)2. refStateHash' € HashDomain
BY (1)3 DEF HashDomain
(2)3. QED
BY (2)1, (2)2, HashTypeSafe
(1)5. QED
By (1)2, (1)3, (1)4
DEF refPrivateStateEnc, refStateHash

68

4.3 Proof of Type Safety of the Memoir-Basic Spec
MODULE MemoirLL1 TypeSafety

This module proves the type safety of the Memoir-Basic spec.

EXTENDS MemoirL L1 TypeLemmas

A

THEOREM LL1TypeSafe = LL1Spec = OLL1 Typelnvariant
The top level of the proof is boilerplate TLA+ for an Invl-style proof. First, we prove that the initial state satisfies
LL1 Typelnvariant. Second, we prove that the LL1Next predicate inductively preserves LL1 Typelnvariant. Third, we
use temporal induction to prove that these two conditions satisfy type safety over all behaviors.
(1)1. LL1Init = LL1 TypeInvariant
The base case follows directly from the definition of LL1Init. There are a bunch of steps, but they are simple
expansions of definitions and appeals to the type safety of the initial definitions.
(2)1. HAVE LL1Init
(2)2. PICK symmetricKey € SymmetricKeyType : LL1Init! (symmetricKey)!1
BY (2)1 DEF LL1Init
) initial PrivateStateEnc = SymmetricEncrypt(symmetricKey, InitialPrivateState)
) initialStateHash = Hash(InitialPublicState, initialPrivateStateEnc)
) initialHistoryStateBinding = Hash(BaseHashValue, initialStateHash)
) initial Authenticator = GenerateMAC (symmetricKey, initialHistoryStateBinding)
) initial UntrustedStorage = |
publicState — InitialPublicState,
privateStateEnc — initial PrivateStateEnc,
historySummary — BaseHashValue,
authenticator — initial Authenticator)
(2) initial TrustedStorage = |
historySummary — BaseHash Value,
symmetricKey — symmetricKey]
initial PrivateStateEnc € PrivateStateEncType
initialStateHash € HashType
initialHistoryStateBinding € HashType
initial Authenticator € MACType
initialUntrustedStorage € LL1 UntrustedStorage Type
A initialTrustedStorage € LL1 TrustedStorage Type
(3)1. symmetricKey € SymmetricKeyType
BY (2)2
(3)2. QED
BY (3)1, LL1InitDefsTypeSafeLemma
(2) HIDE DEF initialPrivateStateEnc, initialStateHash, initial Authenticator,
initial UntrustedStorage, initial TrustedStorage
(2)4. LL1AvailableInputs C InputType
(3)1. LL1AvailableInputs = Initial AvailableInputs
BY (2)2
(3)2. InitialAvailableInputs C InputType
BY Constants TypeSafeDEF ConstantsTypeSafe
(3)3. QED
BY (3)1, (3)2
(2)5. LL1Observed Outputs C Output Type
(3)1. LL1ObservedOutputs = {}
BY (2)2
(3)2. QED
BY (3)1

(2
(2
(2
(2
(2

(2)3.

> > > > >

69

(2)6. LL1Observed Authenticators C MACType
(3)1. LL1ObservedAuthenticators = {initial Authenticator}
BY (2)2
DEF initialAuthenticator, initialHistoryStateBinding,
initialStateHash, initial PrivateStateEnc
(3)2. indtial Authenticator € MACType
BY (2)3
(3)3. QED
BY (3)1, (3)2
(2)7. LL1Disk € LL1UntrustedStorage Type
(3)1. LL1Disk = initial UntrustedStorage
BY (2)2
DEF initialUntrustedStorage, initial Authenticator,
initial HistoryStateBinding, initialStateHash, initial PrivateState Enc
(3)2. initialUntrustedStorage € LL1 UntrustedStorage Type
BY (2)3
(3)3. QED
BY (3)1, (3)2
(2)8. LLIRAM € LL1UntrustedStorage Type
(3)1. LLIRAM = initialUntrustedStorage
BY (2)2
DEF initial UntrustedStorage, initialAuthenticator,
initial HistoryStateBinding, initialStateHash, initial PrivateState Enc
(3)2. initialUntrustedStorage € LL1UntrustedStorage Type
BY (2)3
(3)3. QED
BY (3)1, (3)2
(2)9. LLINVRAM € LL1TrustedStorage Type
(3)1. LLINVRAM = initial TrustedStorage
BY (2)2 DEF initialTrustedStorage
(3)2. initial TrustedStorage € LL1 TrustedStorage Type
BY (2)3
(3)3. QED
BY (3)1, (3)2
(2)10. QED
BY (2)4, (2)5, (2)6, (2)7, (2)8, (2)9 DEF LL1 Typelnvariant
(1)2. LL1 Typelnvariant A [LL1Next] 11 vars = LL1 Typelnvariant’
The induction step is also straightforward. We assume the antecedents of the implication, then show that the
consequent holds for all eight LL1Next actions plus stuttering.
(2)1. HAVE LL1 Typelnvariant A [LL1Next] 1,11 vars
(2)2. CASE UNCHANGED LL1 Vars

Type safety is inductively trivial for a stuttering step.

(3)1. LL1AvailableInputs’ C InputType
(4)1. LL1 AvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(4)2. UNCHANGED LL1AwvailableInputs
BY (2)2 DEF LL1Vars
(4)3. QED
BY (4)1, (4)2
(3)2. LL10bservedOutputs’ C OutputType
(4)1. LL10ObservedOutputs C Output Type
BY (2)1 DEF LL1 Typelnvariant

70

(4)2. UNCHANGED LL1 ObservedOutputs
BY (2)2 DEF LL1Vars
(4)3. QED
BY (4)1, (4)2
(3)3. LL1ObservedAuthenticators’ C MACType
(4)1. LL1 ObservedAuthenticators C MACType
BY (2)1 DEF LL1Typelnvariant
(4)2. UNCHANGED LL1ObservedAuthenticators
BY (2)2 DEF LL1Vars
(4)3. QED
BY (4)1, (4)2
(3Y4. LL1Disk’ € LL1 UntrustedStorage Type
(4)1. LL1Disk € LL1 UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(4)2. UNCHANGED LL1Disk
BY (2)2 DEF LL1Vars
(4)3. QED
BY (4)1, (4)2
(3)5. LLIRAM' € LL1UntrustedStorage Type
(4)1. LLIRAM € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(4)2. UNCHANGED LL1RAM
BY (2)2 DEF LL1Vars
(4)3. QED
BY (4)1, (4)2
(3)6. LLINVRAM' € LL1TrustedStorage Type
(4)1. LLINVRAM € LL1 TrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(4)2. UNCHANGED LLINVRAM
BY (2)2 DEF LL1Vars
(4)3. QED
BY (4)1, (4)2
(3)7. QED
BY (3)1, (3)2, (3)3, (3)4, (3)5, (3)6 DEF LL1 Typelnvariant
(2)3. CASE LL1Next
(3)1. cASE LL1MakeInputAvailable

Type safety is straightforward for a LL1 MakelnputAvailable action.

(1. PicK input € InputType : LL1 MakeInputAvailable! (input)
BY (3)1 DEF LL1MakelnputAvailable
(4)2. LL1AvailableInputs’ C InputType
(5)1. LL1AwvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. LL1AvailableInputs’ = LL1 AvailableInputs U {input}
BY (4)1
(5)3. input € InputType
BY (4)1
(5)4. QED
BY (5)1, (5)2, (5)3
(4)3. LL1Observed Outputs’ C OutputType
(5)1. LL1ObservedOutputs C Output Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedOutputs

71

BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)4. LL1ObservedAuthenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Observed Authenticators
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)5. LL1Disk’ € LL1 UntrustedStorage Type
(5)1. LL1Disk € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Disk
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)6. LLIRAM' € LL1UntrustedStorage Type
(5)1. LLIRAM € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1RAM
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)7. LLINVRAM' € LL1 TrustedStorage Type
(5)1. LLINVRAM € LL1 TrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LLINVRAM
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)8. QED
BY (4)2, (4)3, (4)4, (4)5, (4)6, (4)7 DEF LL1 Typelnvariant
(3)2. cASE LL1PerformOperation
For a LL1PerformOperation action, we just walk through the definitions. Type safety follows directly.

(1. PICK input € LL1AvailableInputs : LL1 PerformOperation! (input)!1
BY (3)2 DEF LL1 PerformQOperation
) stateHash £ Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
) historyStateBinding = Hash(LL1RAM historySummary, stateHash)
) privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)
) sResult = Service(LL1RAM .publicState, privateState, input)
) newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
(4) newHistorySummary = Hash(LLINVRAM historySummary, input)
(4) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
(4) newHistoryStateBinding = Hash(newHistorySummary, newStateHash)
(1)
(4)

4
(4
(4
(4
4

newAuthenticator = GenerateMAC(LLINVRAM .symmetricKey, newHistoryStateBinding)
2.\ stateHash € HashType
historyStateBinding € HashType
privateState € PrivateState Type
sResult € ServiceResultType

sResult.newPublicState € PublicState Type

> > > > >

72

sResult.newPrivateState € PrivateStateType
sResult.output € OutputType
newPrivateStateEnc € PrivateStateEncType
newHistorySummary € HashType
newStateHash € HashType
newHistoryStateBinding € HashType
A newAuthenticator € MACType
(5)1. input € LL1AvailableInputs
BY (4)1
(5)2. LL1 Typelnvariant
BY (2)1
(5)3. QED
BY (5)1, (5)2, LL1PerformOperationDefsTypeSafeLemma
(4) HIDE DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newHistorySummary, newStateHash, newHistoryStateBinding, newAuthenticator
(4)3. LL1AvailableInputs’ C InputType
(5)1. LL1AwvailableInputs C InputType
BY (2)1 DEF LL1Typelnvariant
(5)2. UNCHANGED LL1AvailableInputs
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)4. LL10Observed Outputs’ C OutputType
(5)1. LL1ObservedOutputs C OutputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. LL1ObservedOutputs’ = LL1 ObservedOutputs U { sResult.output}
BY (4)1 DEF sResult, privateState
(5)3. sResult.output € OutputType
BY (4)2
(5)4. QED
BY ()1, (5)2, (5)3
(4)5. LL1 Observed Authenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1Typelnvariant
(5)2. LL1ObservedAuthenticators’ =
LL1ObservedAuthenticators U {newAuthenticator}
BY (4)1 DEF newAuthenticator, newHistoryStateBinding, newStateHash,
newHistorySummary, newPrivateStateEnc, sResult, privateState
(5)3. newAuthenticator € MACType
BY (4)2
(5)4. QED
BY (51, (5)2, (5)3
(4Y6. LL1Disk’ € LL1 UntrustedStorage Type
(5)1. LL1Disk € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Disk
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)7. LLIRAM' € LL1UntrustedStorage Type
(5)1. LLIRAM' = [publicState — sResult.newPublicState,
privateStateEnc — newPrivateStateEnc,

>>>> > >

73

historySummary — newHistorySummary,
authenticator — newAuthenticator)
BY (4)1 DEF newAuthenticator, newHistoryStateBinding, newStateHash,
newHistorySummary, newPrivateStateEnc, sResult, privateState
(5)2. sResult.newPublicState € PublicState Type
BY (4)2
(5)3. newPrivateStateEnc € PrivateStateEnc Type
BY (4)2
(5)4. newHistorySummary € HashType
BY (4)2
(5)5. newAuthenticator € MACType
BY (4)2
(5)6. QED
BY (5)1, (5)2, (5)3, (5)4, (5)5 DEF LL1UntrustedStorageType
(4)8. LLINVRAM' € LL1TrustedStorage Type
(5)1. LLINVRAM' = [historySummary — newHistorySummary,
symmetricKey — LLINVRAM .symmetricKey|
BY (4)1 DEF LL1 Typelnvariant, newHistorySummary
(5)2. newHistorySummary € HashType
BY (4)2
(5)3. LLINVRAM .symmetricKey € SymmetricKeyType
BY (2)1, LL1SubtypelmplicationLemmaDEF LL1Subtypelmplication
(5)4. QED
BY (5)1, (5)2, (5)3 DEF LL1 TrustedStorage Type
(4)9. QED
BY (4)3, (4)4, (4)5, (4)6, (4)7, (4)8 DEF LL1 Typelnvariant
(3)3. cASE LL1RepeatOperation
For a LL1RepeatOperation action, we just walk through the definitions. Type safety follows directly.

(1. PICK input € LL1AvailableInputs : LL1 RepeatOperation! (input)!1

BY (3)3 DEF LL1RepeatOperation
(4) stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
(4) historyStateBinding = Hash(LL1RAM historySummary, stateHash)
(4) privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)
(4) sResult = Service(LL1RAM .publicState, privateState, input)
(4) newPrivateStateEnc =

SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)

newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)

)
) newHistoryStateBinding = Hash(LL1NVRAM .historySummary, newStateHash)
)
)

A stateHash € HashType
A historyStateBinding € HashType
A privateState € PrivateState Type
A sResult € ServiceResultType
A sResult.newPublicState € PublicState Type
A sResult.newPrivateState € PrivateState Type
A sResult.output € OutputType
A newPrivateStateEnc € PrivateStateEncType
A newStateHash € HashType
A newHistoryStateBinding € HashType
A newAuthenticator € MACType
(5)1. input € LL1AvailableInputs
BY (4)1

74

(5)2. LL1 Typelnvariant
BY (2)1
(5)3. QED
BY (5)1, (5)2, LL1RepeatOperationDefsTypeSafeLemma
(4) HIDE DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newStateHash, newHistoryState Binding, newAuthenticator
(4)3. LL1AvailableInputs’ C InputType
(5)1. LL1 AvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1AvailableInputs
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)4. LL1ObservedOutputs’ C Output Type
(5)1. LL1ObservedOutputs C Output Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. LL10bservedOutputs’ = LL1ObservedOutputs U { sResult.output }
BY (4)1 DEF sResult, privateState
(5)3. sResult.output € OutputType
BY (4)2
(5)4. QED
BY (5)1, (5)2, (5)3
(4)5. LL1 ObservedAuthenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1 Typelnvariant
(5)2. LL1ObservedAuthenticators’ =
LL1ObservedAuthenticators U { newAuthenticator }
BY (4)1 DEF newAuthenticator, newHistoryStateBinding, newStateHash,
newPrivateStateEnc, sResult, privateState
(5)3. newAuthenticator € MACType
BY (4)2
(5)4. QED
BY (5)1, (5)2, (5)3
(4)6. LL1Disk’ € LL1UntrustedStorage Type
(5)1. LL1Disk € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Disk
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)7. LLIRAM' € LL1UntrustedStorage Type
(5)1. LLIRAM' = [publicState — sResult.newPublicState,
privateStateEnc — newPrivateState Enc,
historySummary — LLINVRAM .historySummary,
authenticator — newAuthenticator)
BY (4)1 DEF newAuthenticator, newHistoryStateBinding, newStateHash,
newPrivateStateEnc, sResult, privateState
(5)2. sResult.newPublicState € PublicState Type
BY (4)2
(5)3. newPrivateStateEnc € PrivateStateEnc Type
BY (4)2
(5)4. LLINVRAM .historySummary € HashType

75

BY (2)1, LL1SubtypelmplicationLemmaDEF LL1Subtypelmplication
(5)5. newAuthenticator € MACType
BY (4)2
(5)6. QED
BY (5)1, (5)2, (5)3, (5)4, (5)5 DEF LL1UntrustedStorageType
(4)8. LLINVRAM' € LL1 TrustedStorage Type
(5)1. LLINVRAM € LL1TrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LLINVRAM
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)9. QED
BY (4)3, (4)4, (4)5, (4)6, (4)7, (4)8 DEF LL1 Typelnvariant
(3)4. cASE LL1Restart
Type safety is straightforward for a LL1Restart action.

(4)1. PICK untrustedStorage € LL1 UntrustedStorage Type,
randomSymmetricKey € SymmetricKeyType \ { LLINVRAM .symmetricKey},
hash € HashType :

LL1Restart! (untrustedStorage, randomSymmetricKey, hash)
BY (3)4 DEF LL1Restart
(4)2. LL1 AvailableInputs’ C InputType
(5)1. LL1AvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1AvailableInputs
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)3. LL1ObservedOutputs’ C Output Type
(5)1. LL1ObservedOutputs C Output Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedOutputs
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)4. LL1 ObservedAuthenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedAuthenticators
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)5. LL1Disk’ € LL1UntrustedStorage Type
(5)1. LL1Disk € LL1 UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Disk
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)6. LLIRAM' € LL1UntrustedStorage Type
(5)1. untrustedStorage € LL1 UntrustedStorage Type
BY (4)1

76

(5)2. LLIRAM' = untrustedStorage
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)7. LLINVRAM' € LL1 TrustedStorage Type
(5)1. LLINVRAM € LL1 TrustedStorage Type
BY (2)1 DEF LL1Typelnvariant
(5)2. UNCHANGED LLINVRAM
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)8. QED
BY (4)2, (4)3, (4)4, (4)5, (4)6, (4)7 DEF LL1 Typelnvariant
(3)5. cASE LL1ReadDisk
Type safety is straightforward for a LL1ReadDisk action.

(4)1. LL1 AvailableInputs’ C InputType
(5)1. LL1AvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1AvailableInputs
BY (3)5 DEF LL1ReadDisk
(5)3. QED
BY (5)1, (5)2
(4)2. LL1ObservedOutputs’ C Output Type
(5)1. LL1ObservedOutputs C Output Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedOutputs
BY (3)5 DEF LL1ReadDisk
(5)3. QED
BY (5)1, (5)2
(4)3. LL1ObservedAuthenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1Typelnvariant
(5)2. UNCHANGED LL1Observed Authenticators
BY (3)5 DEF LL1ReadDisk
(5)3. QED
BY (5)1, (5)2
(4)4. LL1Disk’ € LL1 UntrustedStorage Type
(5)1. LL1Disk € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Disk
BY (3)5 DEF LL1ReadDisk
(5)3. QED
BY (5)1, (5)2
(4)5. LLIRAM' € LL1UntrustedStorage Type
(5)1. LL1Disk € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. LLIRAM' = LL1Disk
BY (3)5 DEF LL1ReadDisk
(5)3. QED
BY (5)1, (5)2
(4)6. LLINVRAM' € LL1TrustedStorage Type
(5)1. LLINVRAM € LL1 TrustedStorage Type

7

BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LLINVRAM
BY (3)5 DEF LL1ReadDisk
(5)3. QED
BY (5)1, (5)2
(4)7. QED
BY (4)1, (4)2, (4)3, (4)4, (4)5, (4)6 DEF LL1 Typelnvariant
(3)6. CASE LL1 WriteDisk
Type safety is straightforward for a LL1 WriteDisk action.

(4)1. LL1 AvailableInputs’ C InputType
(5)1. LL1AvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1AvailableInputs
BY (3)6 DEF LL1 WriteDisk
(5)3. QED
BY (5)1, (5)2
(4)2. LL1ObservedOutputs’ C OutputType
(5)1. LL1ObservedOutputs C Output Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedOutputs
BY (3)6 DEF LL1 WriteDisk
(5)3. QED
BY (5)1, (5)2
(4)3. LL1ObservedAuthenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Observed Authenticators
BY (3)6 DEF LL1 WriteDisk
(5)3. QED
BY (5)1, (5)2
(4Y4. LL1Disk’ € LL1UntrustedStorage Type
(5)1. LLIRAM € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. LL1Disk' = LLIRAM
BY (3)6 DEF LL1 WriteDisk
(5)3. QED
BY (5)1, (5)2
(4)5. LLIRAM' € LL1UntrustedStorage Type
(5)1. LLIRAM € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1RAM
BY (3)6 DEF LL1 WriteDisk
(5)3. QED
BY (5)1, (5)2
(4)6. LLINVRAM' € LL1 TrustedStorage Type
(5)1. LLINVRAM € LL1 TrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LLINVRAM
BY (3)6 DEF LL1 WriteDisk
(5)3. QED
BY (5)1, (5)2
(4)7. QED

78

BY (4)1, (4)2, (4)3, (4)4, (4)5, (4)6 DEF LL1 Typelnvariant
(3)7. cASE LL1CorruptRAM
Type safety is straightforward for a LL1CorruptRAM action.

(4)1. PICK untrustedStorage € LL1UntrustedStorage Type,
fakeSymmetricKey € SymmetricKeyType \ { LLINVRAM .symmetricKey},
hash € HashType :

LL1CorruptRAM | (untrustedStorage, fakeSymmetricKey, hash)
BY (3)7 DEF LL1CorruptRAM
(4)2. LL1AvailableInputs’ C InputType
(5)1. LL1AvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1AvailableInputs
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)3. LL1Observed Outputs’ C OutputType
(5)1. LL1ObservedOutputs C OutputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedOutputs
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)4. LL1ObservedAuthenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Observed Authenticators
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)5. LL1Disk’ € LL1UntrustedStorage Type
(5)1. LL1Disk € LL1 UntrustedStorage Type
BY (2)1 DEF LL1Typelnvariant
(5)2. UNCHANGED LL1Disk
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)6. LLIRAM' € LL1UntrustedStorage Type
(5)1. untrustedStorage € LL1 UntrustedStorage Type
BY (4)1
(5)2. LLIRAM' = untrustedStorage
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)7. LLINVRAM' € LL1 TrustedStorage Type
(5)1. LLINVRAM € LL1TrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LLINVRAM
BY (4)1
(5)3. QED
BY (5)1, (5)2
(4)8. QED
BY (4)2, (4)3, (4)4, (4)5, (4)6, (4)7 DEF LL1 Typelnvariant

79

(3)8. CASE LL1RestrictedCorruption
Type safety is straightforward for a LL1 RestrictedCorruption action.

(4)2. LL1AvailableInputs’ C InputType
(5)1. LL1AwvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1AvailableInputs
BY (3)8 DEF LL1RestrictedCorruption
(5)3. QED
BY (5)1, (5)2
(4)3. LL10Observed Outputs’ C OutputType
(5)1. LL1ObservedOutputs C OutputType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedOutputs
BY (3)8 DEF LL1RestrictedCorruption
(5)3. QED
BY (5)1, (5)2
(4)4. LL1 ObservedAuthenticators’ C MACType
(5)1. LL1ObservedAuthenticators C MACType
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1ObservedAuthenticators
BY (3)8 DEF LL1RestrictedCorruption
(5)3. QED
BY (5)1, (5)2
(4)5. LL1Disk’ € LL1 UntrustedStorage Type
(5)1. LL1Disk € LL1 UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(5)2. UNCHANGED LL1Disk
BY (3)8 DEF LL1RestrictedCorruption
(5)3. QED
BY (5)1, (5)2
(4Y6. LLIRAM' € LL1UntrustedStorage Type
(5)1. CASE LL1RestrictedCorruption!ram!unchanged
(6)1. LLIRAM € LL1UntrustedStorage Type
BY (2)1 DEF LL1 Typelnvariant
(6)2. UNCHANGED LL1RAM
BY (5)1
(6)3. QED
BY (6)1, (6)2
(5)2. CASE LL1RestrictedCorruption! ram!trashed
(6)1. PICK untrustedStorage € LL1 UntrustedStorage Type,
randomSymmetricKey € SymmetricKeyType \ { LLINVRAM .symmetricKey},
hash € HashType :
LL1RestrictedCorruption! ram ! trashed ! (
untrustedStorage, randomSymmetricKey, hash)
BY (5)2
(6)2. untrustedStorage € LL1 UntrustedStorage Type
BY (6)1
(6)3. LLIRAM' = untrustedStorage
BY (6)1
(6)4. QED
BY (6)2, (6)3
(5)3. QED

80

BY (3)8, (5)1, (5)2 DEF LL1RestrictedCorruption
(4)7. LLANVRAM' € LL1TrustedStorage Type
(5)1. PICK garbageHistorySummary € HashType :
LL1RestrictedCorruption! nvram!(garbageHistorySummary)
BY (3)8 DEF LL1RestrictedCorruption
(5)2. garbageHistorySummary € HashType
BY (5)1
(5)3. LLINVRAM .symmetricKey € SymmetricKeyType
BY (2)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(5)4. LLINVRAM' = [historySummary — garbageHistorySummary,
symmetricKey — LLINVRAM .symmetricKey|
BY (5)1
(5)5. QED
BY (5)2, (5)3, (5)4 DEF LL1 TrustedStorageType
(4)8. QED
BY (4)2, (4)3, (4)4, (4)5, (4)6, (4)7 DEF LL1 Typelnvariant
(3)9. QED
BY (2)3, (3)1, (3)2, (3)3, (3)4, (3)5, (3)6, (3)7, (3)8 DEF LL1Next
(2)4. QED
BY (2)1, (2)2, (2)3
(1)3. QED
Using the Invl proof rule, the base case and the induction step together imply that the invariant always holds.

(2)1. LL1 Typelnvariant A O[LL1Next] 11 vars = OLL1 Typelnvariant
BY (1)2, Invl

(2)2. QED
BY (1)1, (2)1 DEF LL1Spec

81

4.4 Proofs of Lemmas that Support Memoir-Basic Invariance Proofs

MODULE MemoirLL1InvarianceLemmas

This module states and proves several lemmas that are useful for proving the Memoir-Basic invariance properties.

The lemmas in this module are:
SymmetricKeyConstantLemma
LL1NVRAMHistorySummaryUncorrupted UnchangedLemma
LL1 RepeatOperation UnchangedObsered OutputsLemma
L1 RepeatOperation Unchanged Authenticated HistoryState BindingsLemma
LL1RAM Unforgeability UnchangedLemma
LL1DiskUnforgeability UnchangedLemma
InclusionUnchangedLemma
Cardinality UnchangedLemma
UniquenessUnchangedLemma
UnchangedAuthenticated HistoryState BindingsLemma,

EXTENDS MemoirLL1Supplementallnvariants

Proof relating to cardinality require some basic properties of inequalities on natural numbers. The prover requires that
we state these explicitly.

THEOREM LEQTransitive = Vn,m ge Nat:n<mAm<qg=n<yq
OBVIOUS {by(isabelle “(auto dest : nat_leg_trans)”)}

THEOREM GEQorLT = ¥Yn, m € Nat:n > m = —(m > n)
OBVIOUS {by(isabelle “(auto simp : nat_not_less dest : nat_leg_less_trans)”)}

The SymmetricKeyConstantLemma states that the LL1Next actions do not change the value of the symmetric key in
NVRAM. The proof follows directly from the definition of the actions.

THEOREM SymmetricKeyConstantLemma =
[LL1Next| 1,11 Vars = UNCHANGED LL1INVRAM .symmetricKey
(1)1. HAVE [LL1Next] 111 vars
(1)2. CASE UNCHANGED LL1 Vars
(2)1. UNCHANGED LLINVRAM
BY (1)2 DEF LL1Vars
(2)2. QED
BY (2)1
(1)3. cASE LL1Next
(2)1. cASE LL1MakeInputAvailable
(3)1. UNCHANGED LLINVRAM
BY (2)1 DEF LL1MakelnputAvailable
(3)2. QED
BY (3)1, HashCardinalityAccumulative
(2)2. cASE LL1PerformOperation
(3)1. PICK input € LL1AvailableInputs : LL1 PerformOperation! (input)!1
BY (2)2 DEF LL1PerformOperation
(3)2. LLINVRAM' = [historySummary — LL1PerformOperation! (input)! newHistorySummary,
symmetricKey — LLINVRAM .symmetricKey)
BY (3)1
(3)3. LLINVRAM .symmetricKey’ = LLINVRAM .symmetricKey
BY (3)2
(3)4. QED

82

BY (3)3
(2)3. CASE LL1RepeatOperation
(3)1. UNCHANGED LLINVRAM
BY (2)3 DEF LL1RepeatOperation
(3)2. QED
BY (3)1
(2)4. CASE LL1Restart
(3)1. UNCHANGED LLINVRAM
BY (2)4 DEF LL1Restart
(3)2. QED
BY (3)1
(2)5. CASE LL1ReadDisk
(3)1. UNCHANGED LLINVRAM
BY (2)5 DEF LL1ReadDisk
(3)2. QED
BY (3)1
(2)6. cASE LL1 WriteDisk
(3)1. UNCHANGED LLINVRAM
BY (2)6 DEF LL1 WriteDisk
(3)2. QED
BY (3)1
(2)7. cASE LL1CorruptRAM
(3)1. UNCHANGED LLINVRAM
BY (2)7 DEF LL1CorruptRAM
(3)2. QED
BY (3)1
(2)8. CASE LL1RestrictedCorruption

(3)1. PICK garbageHistorySummary € HashType :
LL1Restricted Corruption! nvram! (garbage HistorySummary)

BY (2)8 DEF LL1RestrictedCorruption

(3)2. LLINVRAM' = [historySummary — garbageHistorySummary,
symmetricKey — LLINVRAM .symmetricKey]

BY (3)1

(3)3. QED

BY (3)2
(2)9. QED

BY (1)3, (2)1, (2)2, (2)3, (2)4, (2)5, (2)6, (2)7, (2)8 DEF LL1Next
(1)4. QED

BY (1)1, (1)2, (1)3

The

NVRAM or

LL1NVRAMHistorySummary Uncorrupted Unchanged Lemma

to the authentication status

of any history

LL1NVRAMHistorySummaryUncorrupted predicate is unchanged.

states that,

state binding,

THEOREM LL1NVRAMHistorySummaryUncorruptedUnchangedLemma =

(A LL1Typelnvariant
A UNCHANGED LLINVRAM

A VY historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated (historyState Bindingl))

=

UNCHANGED LL1NVRAMHistorySummaryUncorrupted

83

if there are no changes to the
then the truth wvalue of the

We begin by assuming the antecedent.

()1. HAVE A LL1 Typelnvariant
A UNCHANGED LLINVRAM
A VY historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBinding1)
We first consider the case in which the truth value of the predicate is true.

(1)2. caSE LL1NVRAMHistorySummaryUncorrupted = TRUE
To show that the value is unchanged, it suffices to show that the value is true in the primed state.
(2)1. SUFFICES
ASSUME TRUE
PROVE LL1NVRAMHistorySummaryUncorrupted’ = TRUE
BY (1)2
We pick some state hash for which the LL1NVRAMHistorySummaryUncorrupted is true in the unprimed state.
(2)2. PICK stateHash € HashType :
LL1NVRAMHistorySummary Uncorrupted ! (stateHash)!1
BY (1)2 DEF LL1NVRAMHistorySummaryUncorrupted

We copy the definition from the LET in LL1NVRAMHistorySummaryUncorrupted.
A

(2) historyStateBinding = Hash(LL1NVRAM .historySummary, stateHash)
The LL1NVRAMHistorySummaryUncorrupted predicate has two conditions. First, that there exists a state hash in
Hash Type, for which we have a witness.
(2)3. stateHash € HashType
BY (2)2
The second condition is that the history state binding is authenticated in the primed state.
(2)4. LL1HistoryStateBindingAuthenticated (historyState Binding)'
We will use the assumption that there is no change to the authentication status of any history state binding.

(3)1. V historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated(historyStateBinding1)
BY (1)1
This requires that we prove the type of the history state binding.
(3)2. historyStateBinding € HashType
(4)1. LLINVRAM .historySummary € HashDomain
(5)1. LLINVRAM .historySummary € HashType
(6)1. LL1 Typelnvariant
BY (1)1
(6)2. QED
BY (6)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(5)2. QED
BY (5)1 DEF HashDomain
(4)2. stateHash € HashDomain
BY (2)3 DEF HashDomain
(4)3. QED
BY (4)1, (4)2, HashTypeSafeDEF historyStateBinding
We know that the history state binding is authenticated in the unprimed state.
(3)3. LL1HistoryStateBindingAuthenticated (historyStateBinding)
BY (2)2
By applying the assumption that there is no change to the authentication status of any history state binding, we
show that the history state binding is authenticated in the primed state.
(3)4. QED
BY (3)1, (3)2, (3)3

84

Since both conditions are satisfied, the LL1NVRAMHistorySummaryUncorrupted predicate is true in the primed
state.

(2)5. QED
BY (2)3, (2)4 DEF LL1NVRAMHistorySummaryUncorrupted
We then consider the case in which the truth value of the predicate is false.

(1)3. case LL1NVRAMHistorySummaryUncorrupted = FALSE

To show that the value is unchanged, it suffices to show that if the value were unequal to false in the primed state,
we would have a contradiction.

(2)1. SUFFICES
ASSUME LL1NVRAMHistorySummaryUncorrupted’ # FALSE
PROVE FALSE
BY (1)3
(2)2. LL1NVRAMHistorySummaryUncorrupted’
(3)1. LL1NVRAMHistorySummaryUncorrupted’ € BOOLEAN
BY DEF LL1NVRAMHistorySummaryUncorrupted
(3)2. QED
BY (2)1, (3)1
We pick some state hash for which the LL1NVRAMHistorySummaryUncorrupted is true in the primed state.
(2)3. PICK stateHash € HashType :
LL1NVRAMHistorySummaryUncorrupted ! (stateHash)!1’
BY (2)2 DEF LL1NVRAMHistorySummaryUncorrupted
We copy the definition from the LET in LL1NVRAMHistorySummaryUncorrupted.

(2) historyStateBinding = Hash(LL1NVRAM .historySummary, stateHash)

The LL1NVRAMHistorySummaryUncorrupted predicate has two conditions. First, that there exists a state hash in
Hash Type, for which we have a witness.

(2)4. stateHash € HashType
BY (2)3
The second condition is that the history state binding is authenticated in the unprimed state.
(2)5. LL1HistoryStateBindingAuthenticated (historyState Binding)
We will use the assumption that there is no change to the authentication status of any history state binding.
(3)1. V historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated(historyStateBindingl)
BY (1)1
This requires that we prove the type of the history state binding.
(3)2. historyStateBinding € HashType
(41. LLINVRAM .historySummary € HashDomain
(5)1. LLINVRAM .historySummary € HashType
(6)1. LL1 Typelnvariant
BY (1)1
(6)2. QED
BY (6)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(5)2. QED
BY (5)1 DEF HashDomain
(4)2. stateHash € HashDomain
BY (2)4 DEF HashDomain
(4)3. QED
BY (4)1, (4)2, HashTypeSafeDEF historyStateBinding
We know, in our contradictory universe, that the history state binding is authenticated in the primed state.
(3)3. LL1HistoryStateBindingAuthenticated (historyStateBinding)'
BY (2)3

85

By applying the assumption that there is no change to the authentication status of any history state binding, we
show that the history state binding is authenticated in the unprimed state.

(3)4. QED
BY (3)1, (3)2, (3)3
Since both conditions are satisfied, the LL1NVRAMHistorySummaryUncorrupted predicate is true in the unprimed
state.
(2)6. LL1NVRAMHistorySummaryUncorrupted
BY (2)4, (2)5 DEF LL1NVRAMHistorySummaryUncorrupted
However, we are considering the case in which the LL1NVRAMHistorySummaryUncorrupted predicate is false in the
unprimed state, so we have a contradiction.
(2)7. QED
BY (1)3, (2)6
The predicate has a boolean truth value.
(1)4. LLINVRAMHistorySummary Uncorrupted € BOOLEAN
BY DEF LL1NVRAMHistorySummaryUncorrupted
(1)5. QED
BY (1)2, (1)3, (1)4

The LL1RepeatOperationUnchangedObseredOutputsLemma states that the LL1RepeatOperation action does not change
the value of LL1ObservedOutputs. Together with the

LL1RepeatOperation Unchanged Authenticated HistoryState BindingsLemma

below, this is the essence of why LL1 RepeatOperation does not cause any change to the refined high-level state.

THEOREM LL1 RepeatOperationUnchangedObsered OutputsLemma =
LL1 Typelnvariant A UnforgeabilityInvariant A\ InclusionInvariant A LL1 RepeatOperation =
UNCHANGED LL1ObservedOutputs
First, we assume the antecedents.

(1)1. HAVE LL1 Typelnvariant A UnforgeabilityInvariant A InclusionInvariant A LL1 RepeatOperation
Then, we pick some input for which LL1 RepeatOperation is true.

(1)2. PICK input € LL1AwvailableInputs : LL1 RepeatOperation! (input)!1
BY (1)1 DEF LL1RepeatOperation
To simplify the writing of the proof, we re-state some of the definitions from the LL1RepeatOperation action.

(1) stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)

(1) historyStateBinding = Hash(LL1RAM historySummary, stateHash)

(1) privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)

(1) sResult = Service(LL1RAM .publicState, privateState, input)

We then assert the type safety of these definitions, with the help of the LL1 RepeatOperationDefsTypeSafeLemma.

(1)3. A stateHash € HashType
A historyStateBinding € HashType
A privateState € PrivateState Type
A sResult € ServiceResultType
A sResult.newPublicState € PublicState Type
A sResult.newPrivateState € PrivateState Type
A sResult.output € OutputType
(2)1. input € LL1AvailableInputs
BY (1)2
(2)2. LL1 Typelnvariant
BY (1)1
(2)3. QED

86

BY (2)1, (2)2, LL1RepeatOperationDefs TypeSafeLemma
We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.
(1) HIDE DEF stateHash, historyStateBinding, privateState, sResult

From the definition of LL1 RepeatOperation, we see the primed state of LL1ObservedOutputs is formed by unioning in
the output from the service.

(1)4. LL1ObservedOutputs’ = LL1 Observed Outputs U { sResult.output }
BY (1)2 DEF LL1RepeatOperation, sResult, privateState

We then show that the output from the service is already in LL1 ObservedOutputs.
(1)5. sResult.output € LL1ObservedOutputs

Our strategy is to use the Inclusionlnvariant. We first have to show that all of the types are satisfied.
(2)1. LL1 Typelnvariant
BY (1)1
(2)2. input € InputType
(3)1. input € LL1AvailableInputs
BY (1)2
(3)2. LL1AvailableInputs C InputType
BY (2)1 DEF LL1 Typelnvariant
(3)3. QED
BY (3)1, (3)2
(2)3. A LL1RAM .historySummary € HashType
A LL1RAM .publicState € PublicStateType
A LL1RAM .privateStateEnc € PrivateStateEncType
BY (2)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
We then have to show that the antecedents in the Inclusionlnvariant are satisfied.
(2)4. LLINVRAM .historySummary = Hash(LL1RAM .historySummary, input)
BY (1)2
(2)5. LL1HistoryStateBindingAuthenticated (historyStateBinding)
To show that the history state binding is authenticated, we demonstrate that LL1RAM .authenticator is a sufficient
witness for the existential quantifier within the definition of LL1HistoryStateBindingAuthenticated.
(3)1. Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator)
BY (1)2 DEF historyStateBinding, stateHash
(3)2. LLIRAM .authenticator € LL1ObservedAuthenticators
(4)1. historyStateBinding € HashType
BY (1)3
(4)2. UnforgeabilityInvariant
BY (1)1
(4)3. QED
BY (3)1, (4)1, (4)2 DEF UnforgeabilityInvariant
(3)3. QED
BY (3)1, (3)2 DEF LL1HistoryStateBindingAuthenticated
Then, we can apply the InclusionInvariant to show that the output from the service is in the set of observed outputs.
(2)6. QED
(3)1. InclusionInvariant
BY (1)1
(3)2. QED
BY (2)2, (2)3, (24, (2)5, (3)1
DEF InclusionInvariant, sResult, privateState, historyStateBinding, stateHash
Since the element being uniond into the set is already in the set, the set does not change.
(1)6. QED
BY (1)4, (1)5

87

The LL1RepeatOperationUnchangedAuthenticated HistoryState BindingsLemma states that the LL1 RepeatOperation action
does not change the set of history state bindings that have authenticators in the set LL1 ObservedAuthenticators. Together
with the LL1 RepeatOperationUnchangedObsered OutputsLemma above, this is the essence of why LL1 RepeatOperation does
not cause any change to the refined high-level state.

THEOREM LL1RepeatOperationUnchangedAuthenticatedHistoryState BindingsLemma =
LL1 Typelnvariant A UnforgeabilityInvariant A\ InclusionInvariant A LL1 RepeatOperation =
Y historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBinding1)
We assume the antecedents.

(1)1. HAVE LL1 Typelnvariant A UnforgeabilityInvariant A InclusionInvariant A LL1RepeatOperation

To prove the universally quantified expression, we take a new history state binding in HashType.

(1)2. TAKE historyStateBindingl € HashType
Then, we pick some input for which LL1RepeatOperation is true.

(1)3. PICK input € LL1AvailableInputs : LL1 RepeatOperation! (input)!1
BY (1)1 DEF LL1RepeatOperation
To simplify the writing of the proof, we re-state the definitions from the LL1RepeatOperation action.

1) stateHash £ Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
) historyStateBinding = Hash(LL1RAM historySummary, stateHash)
) privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)
) sResult = Service(LL1RAM .publicState, privateState, input)
) newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
(1) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
(1) newHistoryStateBinding = Hash(LLINVRAM .historySummary, newStateHash)
(1) newAuthenticator = GenerateMAC (LL1NVRAM .symmetricKey, newHistoryStateBinding)

We then assert the type safety of these definitions, with the help of the LL1 RepeatOperationDefsTypeSafeLemma.

(1)4. A stateHash € HashType

A historyStateBinding € HashType

A privateState € PrivateState Type

A sResult € ServiceResultType

A sResult.newPublicState € PublicState Type
A sResult.newPrivateState € PrivateState Type
A sResult.output € OutputType
N
N
N
N
1.

(

(1
(1
(1
(1

newPrivateStateEnc € PrivateStateEncType
newStateHash € HashType
newHistoryStateBinding € HashType
newAuthenticator € MACType
(2)1. input € LL1AvailableInputs
BY (1)3
(2)2. LL1 Typelnvariant
BY (1)1
(2)3. QED
BY (2)1, (2)2, LL1RepeatOperationDefsTypeSafeLemma

We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.

(1) HIDE DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newStateHash, newHistoryStateBinding, newAuthenticator

From the definition of LL1 RepeatOperation, we see the primed state of LL1 ObservedAuthenticators is formed by unioning
in the new authenticator.

88

(1)5. LL1Observed Authenticators’ =
LL10bservedAuthenticators U { newAuthenticator}
BY (1)3 DEF LL1RepeatOperation, newAuthenticator, newHistoryStateBinding,
newStateHash, newPrivateStateEnc, sResult, privateState
One fact that will be useful in several places is that the symmetric key in the NVRAM has not changed.

(1)6. UNCHANGED LL1NVRAM .symmetricKey
(2)1. UNCHANGED LLINVRAM
BY (1)3
(2)2. QED
BY (2)1
To show that LL1HistoryStateBindingAuthenticated predicate is unchanged for all history state bindings, we first con-
sider one specific history state binding, namely the the new history state binding defined in LL1 RepeatOperation.
(1)7. CASE historyStateBindingl = newHistoryState Binding
First, we’ll show that the new history state binding is authenticated in the unprimed state.

(2)1. LL1HistoryStateBindingAuthenticated (newHistoryState Binding)
Our strategy is to use the InclusionInvariant. We first have to show that all of the types are satisfied.

(3)2. LL1 Typelnvariant
BY (1)1
(3)3. input € InputType
(1. input € LL1 AvailableInputs
BY (1)3
(4)2. LL1 AvailableInputs C InputType
BY (3)2 DEF LL1 Typelnvariant
(4)3. QED
BY (4)1, (4)2
(3Y4. A LL1RAM .historySummary € HashType
A LL1RAM .publicState € PublicState Type
A LL1RAM .privateStateEnc € PrivateStateEnc Type
BY (3)2, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
We then have to show that the antecedents in the Inclusionlnvariant are satisfied.

(3)5. LLINVRAM .historySummary = Hash(LL1RAM .historySummary, input)
BY (1)3
(3)6. LL1HistoryStateBindingAuthenticated (historyStateBinding)
To show that the history state binding is authenticated, we demonstrate that LL1 RA M .authenticator is a sufficient
witness for the existential quantifier within the definition of LL1HistoryStateBindingAuthenticated.
(D)1. Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator)
BY (1)3 DEF historyStateBinding, stateHash
(4)2. LL1RAM .authenticator € LL1ObservedAuthenticators
(5)1. historyStateBinding € HashType
BY (1)4
(5)2. UnforgeabilityInvariant
BY (1)1
(5)3. QED
BY (4)1, (5)1, (5)2 DEF UnforgeabilityInvariant
(4)3. QED
BY (4)1, (4)2 DEF LL1HistoryStateBindingAuthenticated

Then, we can apply the InclusionInvariant to show that the new history state binding is authenticated.

(3)7. QED
(1. InclusionInvariant
BY (1)1

89

(4)2. QED
BY (3)3, (3)4, (3)5, (3)6, (4)1
DEF InclusionInvariant, newAuthenticator, newHistoryState Binding,
newStateHash, newPrivateStateEnc, sResult, privateState,
historyState Binding, stateHash

Next, we’ll show that the new history state binding is authenticated in the primed state.

(2)2. LL1HistoryStateBindingAuthenticated (historyStateBindingl)’
By expanding the definition of LL1 HistoryStateBindingAuthenticated, it suffices to show that the new authenticator
defined in LL1RepeatOperation (which we know to be in the primed set of observed authenticators) is a valid MAC
for the history state binding in the primed state.
(3)1. surFICES Validate MAC(LLINVRAM .symmetricKey', historyStateBindingl, newAuthenticator)
(4)1. newAuthenticator € LL1ObservedAuthenticators’
BY (1)5
(4)2. QED
BY (4)1 DEF LL1HistoryStateBindingAuthenticated
The new authenticator was genererated as a MAC of this history state binding by LL1RepeatOperation in the
unprimed state, and the symmetric key in the NVRAM has not changed.
(3)2. newAuthenticator = Generate MAC(LLINVRAM .symmetricKey', historyStateBindingl)
BY (1)6, (1)7 DEF newAuthenticator
We can thus use the MACComplete property to show that the generated MAC validates appropriately. To do this,
we first need to prove some types.
(3)3. LLINVRAM .symmetricKey' € SymmetricKeyType
(4)1. LLINVRAM .symmetricKey € SymmetricKeyType
(5)1. LL1 Typelnvariant
BY (1)1
(5)2. QED
BY (5)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(4)2. QED
BY (1)6, (4)1
(3)4. historyStateBindingl € HashType
BY (1)2
Then, we appeal to the MACComplete property in a straightforward way.
(3)5. QED
BY (3)2, (3)3, (3)4, MACComplete
Because the new history state binding is authenticated in both the unprimed and primed states, the
LL1HistoryStateBindingAuthenticated is unchanged for this history state binding.
(2)3. QED
BY (1)7, (2)1, (2)2
We then consider every state binding that is not equal to the the new history state binding defined in
LL1 RepeatOperation.
(1)8. CASE historyStateBindingl # newHistoryState Binding
We’ll subdivide these into two cases. In the first case, we’ll consider the history state bindings that are authenticated
in the unprimed state, and we’ll show that they continue to be authenticated in the primed state.
(2)1. cASE LL1HistoryState BindingAuthenticated (historyStateBindingl) = TRUE
(3)1. LL1HistoryState BindingAuthenticated (historyStateBindingl)’ = TRUE
By hypothesis, the history state binding is authenticated in the unprimed state. Thus, we can pick an authenticator
in the set of observed authenticators that is a valid MAC for this history state binding.
(4)1. PICK authenticator € LL1ObservedAuthenticators :
Validate MAC (LLINVRAM .symmetricKey, historyStateBindingl, authenticator)
BY (2)1 DEF LL1HistoryStateBindingAuthenticated

90

Because the symmetric key in the NVRAM has not changed, this authenticator is also a valid MAC for this
history state binding in the primed state.
(4)2. Validate MAC(LLINVRAM .symmetricKey', historyStateBindingl, authenticator)
BY (1)6, (4)1
Because the primed set of observed authenticators includes all authenticators that were in the unprimed set, this
authenticator is also in the primed set of observed authenticators.
(4)3. authenticator € LL1ObservedAuthenticators’
(5)1. authenticator € LL1ObservedAuthenticators
BY (4)1
(5)2. LL1ObservedAuthenticators C LL1 ObservedAuthenticators’
BY (1)5
(5)3. QED
BY (5)1, (5)2
The previous two conditions are sufficient to establish that the history state binding is authenticated in the primed
state.

(4)4. QED
BY (4)2, (4)3 DEF LL1HistoryStateBindingAuthenticated
Because the history state binding is authenticated in both the wunprimed and primed states, the
LL1 HistoryState BindingAuthenticated is unchanged for this history state binding.
(3)2. QED
BY (2)1, (3)1
We’ll subdivide these into two cases. In the second case, we’ll consider the history state bindings that are unau-
thenticated in the unprimed state, and we’ll show that they continue to be unauthenticated in the primed state.

(2)2. cASE LL1HistoryState BindingAuthenticated (historyStateBindingl) = FALSE
(3)1. LL1HistoryStateBindingAuthenticated (historyStateBindingl)’ = FALSE
To prove that the history state binding is not authenticated in the primed state, it suffices to show that none of
the authenticators in the primed set of observed authenticators is a valid MAC for the history state binding.
(4)1. SUFFICES V authenticator € LL1ObservedAuthenticators’ :
= Validate MAC(LLINVRAM .symmetricKey', historyStateBindingl, authenticator)

BY DEF LL1HistoryStateBindingAuthenticated
To prove the universally quantified expression, we take a new authenticator in the primed set of observed authen-
ticators.
(4)2. TAKE authenticator € LL1ObservedAuthenticators’
We’ll subdivide this into two cases. First, we consider the case in which the authenticator is in the unprimed set
of authenticators. In this case, because the authenticator failed to authenticate the history state binding in the
unprimed state, and the symmetric key has not changed, it immediately follows that the authenticator will not
authenticate the history state binding in the primed state.
(4)3. CASE authenticator € LL1ObservedAuthenticators

BY (1)6, (2)2, (4)3 DEF LL1HistoryStateBindingAuthenticated

In the second case, we consider the new authenticator defined in LL1RepeatOperation.

(4)4. CASE authenticator = newAuthenticator
We’ll use proof by contradiction. Assume that the new authenticator is a valid MAC for the history state
binding.
(5)1. SUFFICES
ASSUME Validate MAC (LLINVRAM .symmetricKey', historyStateBindingl, authenticator)
PROVE FALSE
OBVIOUS

By the collision resistance of MACs, it must be the case the history state binding is equal to the new history
state binding defined in LL1 RepeatOperation.

(5)2. historyStateBindingl = newHistoryStateBinding

91

(6)1. LLINVRAM .symmetricKey € SymmetricKeyType
(7)1. LL1 Typelnvariant
BY (1)1
(7)2. QED
BY (7)1, LL1SubtypeImplicationLemmaDEF LL1Subtypelmplication
(6Y2. LLINVRAM .symmetricKey' € SymmetricKeyType
BY (1)6, (6)1
(6)3. historyStateBindingl € HashType
BY (1)2
(6)4. newHistoryStateBinding € HashType
BY (1)4
(6)5. QED
BY (4)4, (5)1, (6)1, (6)2, (6)3, (6)4, MACCollisionResistantDEF newAuthenticator
But we are working within a case in which the history state binding is not equal to the new history state binding
defined in LL1 RepeatOperation. Thus, we have a contradiction.
(5)3. QED
BY (1)8, (5)2
We’ve considered authenticators in the unprimed set of authenticators, and we’ve considered the new authenticator
defined in LL1RepeatOperation. Because the primed set of authenticators is the union of these two, we have
exhausted the cases.
(4)5. QED
BY (1)5, (4)3, (4)4
Because the history state binding is unauthenticated in both the unprimed and primed states, the
LL1HistoryState BindingAuthenticated is unchanged for this history state binding.
(3)2. QED
BY (2)2, (3)1
By proving that LL1HistoryStateBindingAuthenticated is a boolean predicate, it is immediately clear that the two
cases of true and false are exhaustive for this predicate.
(2)3. LL1HistoryStateBindingAuthenticated (historyStateBindingl) € BOOLEAN
BY DEF LL1 HistoryStateBindingAuthenticated
(2)4. QED
BY (2)1, (2)2, (2)3
Because the conclusion holds for (1) the new history state binding defined in LL1RepeatOperation and (2) every other
state binding, the conclusion holds for all state bindings.
(1)9. QED
BY (1)7, (1)8

The LL1RAM UnforgeabilityUnchangedLemma states that, if the symmetric key in the NVRAM does not change and the
set of observed authenticators does not change, then the RAM’s portion of the Ezxtended UnforgeabilityInvariant inductively
holds when the RAM’s primed value is taken from the RAM or the disk.

THEOREM LL1RAMUnforgeabilityUnchangedLemma =
(A ExtendedUnforgeabilityInvariant

A LL1Typelnvariant
LL1 Typelnvariant’
LL1RAM' € {LL1RAM, LL1Disk}
LL1ObservedAuthenticators C LL1 ObservedAuthenticators’
UNCHANGED LLINVRAM .symmetricKey)

> > > >

=
Y historyStateBinding € HashType :
Validate MAC (LLINVRAM .symmetricKey', historyStateBinding, LL1RAM .authenticator’) =

92

LL1RAM .authenticator’ € LL1ObservedAuthenticators’

We begin by assuming the antecedent.

(1)1. HAVE A FEztendedUnforgeabilityInvariant

A LL1Typelnvariant
LL1 TypeInvariant’
LL1RAM’ € {LL1RAM, LL1Disk}
LL10ObservedAuthenticators C LL1ObservedAuthenticators’
A UNCHANGED LLINVRAM .symmetricKey

To prove the universally quantified expression, we take a new historyStateBinding in the HashType.

(1)2. TAKE historyStateBinding € HashType
We then assume the antecedent in the nested implication.

(1)3. HAVE Validate MAC(LLINVRAM .symmetricKey', historyStateBinding, LL1RAM .authenticator”)
The LL1RAM’s primed state is taken from either the LL1RAM or the disk.

(1)4. LLIRAM' € {LL1RAM, LL1Disk}
BY (1)1
Case 1: the LL1RAM’s primed state comes from the LLIRAM. There are three basic steps.
(1)5. CASE UNCHANGED LL1RAM
First, since we take the antecedent in the nested implication and swap out unprimed variables for primed variables,
since the symmetric key and authenticator have not changed.
(2)1. Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator)
(3)1. UNCHANGED LLINVRAM .symmetricKey
BY (1)1
(3)2. UNCHANGED LL1RAM .authenticator
BY (1)5
(3)3. QED
BY (1)3, (31, (3)2
Second, using the Extended UnforgeabilityInvariant, we show that the authenticator was in the unprimed set of observed
authenticators.
(2)2. LLIRAM .authenticator € LL1ObservedAuthenticators
(3)1. EztendedUnforgeabilityInvariant
BY (1)1
(3)2. QED
BY (1)2, (2)1, (3)1 DEF Extended UnforgeabilityInvariant
Third, we show that the authenticator is also in the primed set of observed authenticators, since the symmetric key
has not changed and set of observed authenticators includes every element in the primed state that it included in the
unprimed state.
(2)3. QED
(3)1. UNCHANGED LL1RAM .authenticator
BY (1)5
(3)2. LL1ObservedAuthenticators C LL1 Observed Authenticators’
BY (1)1
(3)3. QED
BY (2)2, (31, (3)2
Case 2: the RAM’s primed state comes from the disk. The proof is straightforward.
(1)6. cASE LL1RAM’ = LL1Disk

First, since we take the antecedent in the nested implication and make two changes: (1) swap out unprimed variables
for primed variables and (2) replace LL1RAM with LL1Disk, since the primed state of the RAM comes from the
unprimed state of the disk.
(2)1. Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1 Disk.authenticator)

(3)1. UNCHANGED LL1NVRAM .symmetricKey

> > >

93

BY (1)1
(3)2. LL1RAM .authenticator’ = LL1Disk.authenticator
BY (1)6
(3)3. QED
By (13, (3)1, (3)2

Second, using the Extended UnforgeabilityInvariant, we show that the authenticator was in the unprimed set of observed

authenticators.
(2)2. LL1Disk.authenticator € LL1ObservedAuthenticators
(3)1. EztendedUnforgeabilityInvariant
BY (1)1
(3)2. QED
BY (1)2, (2)1, (3)1 DEF ExtendedUnforgeabilityInvariant

Third, we show that the authenticator is also in the primed set of observed authenticators, since the symmetric key
has not changed and set of observed authenticators includes every element in the primed state that it included in the

unprimed state.
(2)3. QED
(3)1. LLIRAM .authenticator’ = LL1Disk.authenticator
BY (1)6
(3)2. LL1ObservedAuthenticators C LL1 Observed Authenticators’
BY (1)1
(3)3. QED

By (2)2, (3)1, (3)2
The theorem is true by exhaustive case analysis.
(1)7. QED
BY (1)4, (1)5, (1)6

The LL1DiskUnforgeabilityUnchangedLemma states that, if the symmetric key in the NVRAM does not change and the
set of observed authenticators does not change, then the disk’s portion of the Extended UnforgeabilityInvariant inductively

holds when the disk’s primed value is taken from the RAM or the disk.

THEOREM LL1DiskUnforgeabilityUnchangedLemma =

Eztended UnforgeabilityInvariant

LL1 Typelnvariant

LL1 Typelnvariant’

LL1Disk’ € {LL1RAM, LL1Disk}
LL1ObservedAuthenticators C LL1 ObservedAuthenticators’
UNCHANGED LLINVRAM .symmetricKey)

(A
A

> > > >

=

Y historyStateBinding € HashType :

Validate MAC (LLINVRAM .symmetricKey', historyStateBinding, LL1 Disk.authenticator’) =

LL1Disk.authenticator’ € LL10bservedAuthenticators’
We begin by assuming the antecedent.

(1)1. HAVE A

A

> > >

A

ExtendedUnforgeabilityInvariant

LL1 Typelnvariant

LL1 TypeInvariant’

LL1Disk’ € {LL1RAM, LL1Disk}
LL10bservedAuthenticators C LL1 ObservedAuthenticators’
UNCHANGED LLINVRAM .symmetricKey

To prove the universally quantified expression, we take a new historyStateBinding in the HashType.

(1)2. TAKE historyStateBinding € HashType
We then assume the antecedent in the nested implication.

94

(1)3. HAVE Validate MAC(LLINVRAM .symmetricKey', historyStateBinding, LL1Disk.authenticator’)
The disk’s primed state is taken from either the RAM or the disk.

(1)4. LL1Disk’ € {LL1RAM, LL1Disk}
BY (1)1
Case 1: the disk’s primed state comes from the disk. There are three basic steps.
(1)5. CASE UNCHANGED LL1Disk
First, since we take the antecedent in the nested implication and swap out unprimed variables for primed variables,
since the symmetric key and authenticator have not changed.
(2)1. ValidateMAC(LLINVRAM .symmetricKey, historyStateBinding, LL1Disk.authenticator)
(3)1. UNCHANGED LLINVRAM .symmetricKey
BY (1)1
(3)2. UNCHANGED LL1Disk.authenticator
BY (1)5
(3)3. QED
BY (1)3, (3)1, (3)2
Second, using the Eztended UnforgeabilityInvariant, we show that the authenticator was in the unprimed set of observed
authenticators.
(2)2. LL1Disk.authenticator € LL1ObservedAuthenticators
(3)1. EztendedUnforgeabilityInvariant
BY (1)1
(3)2. QED
BY (1)2, (2)1, (3)1 DEF Extended UnforgeabilityInvariant
Third, we show that the authenticator is also in the primed set of observed authenticators, since the symmetric key
has not changed and set of observed authenticators includes every element in the primed state that it included in the
unprimed state.
(2)3. QED
(3)1. UNCHANGED LL1Disk.authenticator
BY (1)5
(3)2. LL1ObservedAuthenticators C LL1Observed Authenticators’
BY (1)1
(3)3. QED
BY (2)2, (3)1, (3)2
Case 2: the disk’s primed state comes from the RAM. The proof is straightforward.
(1)6. cASE LL1Disk’ = LLIRAM
First, since we take the antecedent in the nested implication and make two changes: (1) swap out unprimed variables
for primed variables and (2) replace LL1Disk with LLIRAM, since the primed state of the disk comes from the
unprimed state of the RAM.
(2)1. Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator)
(3)1. UNCHANGED LL1NVRAM .symmetricKey
BY (1)1
(3)2. LL1Disk.authenticator’ = LL1RAM .authenticator
BY (1)6
(3)3. QED
BY (1)3, (3)1, (3)2
Second, using the Fxtended UnforgeabilityInvariant, we show that the authenticator was in the unprimed set of observed
authenticators.
(2)2. LL1RAM .authenticator € LL1ObservedAuthenticators
(3)1. ExtendedUnforgeabilityInvariant
BY (1)1
(3)2. QED
BY (1)2, (2)1, (3)1 DEF Extended UnforgeabilityInvariant

95

Third, we show that the authenticator is also in the primed set of observed authenticators, since the symmetric key
has not changed and set of observed authenticators includes every element in the primed state that it included in the
unprimed state.
(2)3. QED
(3)1. LL1Disk.authenticator’ = LL1RAM .authenticator
BY (1)6
(3)2. LL1ObservedAuthenticators C LL1 ObservedAuthenticators’
BY (1)1
(3)3. QED
BY (2)2, (3)1, (3)2
The theorem is true by exhaustive case analysis.
(1)7. QED
BY (1)4, (1)5, (1)6

The InclusionUnchangedLemma states that, if there are no changes to the NVRAM, to the set of observed outputs, or to
the authentication status of any history state binding, then the InclusionInvariant holds inductively from the unprimed
state to the primed state.

THEOREM InclusionUnchangedLemma 2

(A InclusionInvariant
A LL1Typelnvariant
A LL1 TypeInvariant’
A UNCHANGED (LLINVRAM, LL1ObservedOutputs)
A Y historyStateBindingl € HashType :

UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBindingl))
=
InclusionInvariant’
We begin by assuming the antecedent.

(1)1. HAVE A InclusionInvariant

A LL1Typelnvariant

A LL1Typelnvariant’

A UNCHANGED (LLINVRAM, LL1ObservedOutputs)

A Y historyStateBindingl € HashType :

UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBinding1l)

To prove the universally quantified expression, we take a new set of variables in the appropriate types. For the TAKE
step to be meaningful to the prover, first we have to tell the prover to expand the definition of InclusionInvariant, so
it will see the universally quantified expression therein.
(1) USE DEF InclusionInvariant
(1)2. TAKE input € InputType,

historySummary € HashType,

publicState € PublicState Type,

privateStateEnc € PrivateStateEncType
To simplify the writing of the proof, we re-state the definitions from the InclusionInvariant.

1) stateHash = Hash(publicState, privateStateEnc)

) historyStateBinding = Hash(historySummary, stateHash)
) privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, privateStateEnc)
) sResult = Service(publicState, privateState, input)
) newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)

(1) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)

(
(1
(1
(1
(

1

96

A

(1) newHistoryStateBinding = Hash(LL1NVRAM .historySummary, newStateHash)
We then assert the type safety of these definitions, with the help of the InclusionInvariantDefs TypeSafeLemma.

(1)3. A stateHash € HashType
A historyStateBinding € HashType
privateState € PrivateState Type
sResult € ServiceResultType
sResult.newPublicState € PublicState Type
sResult.newPrivateState € PrivateState Type
sResult.output € OutputType
newPrivateStateEnc € PrivateStateEncType
newStateHash € HashType
A newHistoryStateBinding € HashType
(2)1. LL1 Typelnvariant
BY (1)1
(2)2. QED
BY (1)2, (2)1, InclusionInvariantDefs TypeSafeLemma
The InclusionInvariant states an implication. To prove this, it suffices to assume the antecedent and prove the conse-
quent.
(1)4. SUFFICES
ASSUME
A LLINVRAM .historySummary’ = Hash(historySummary, input)
A LL1HistoryStateBinding Authenticated (historyState Binding)'
PROVE
A sResult.output’ € LL1Observed OQutputs’
A LL1HistoryStateBindingAuthenticated (newHistoryStateBinding)’
OBVIOUS
We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.

>>> > > > >

(1) HIDE DEF InclusionInvariant

(1) HIDE DEF stateHash, historyStateBinding, privateState, sResult,
newPrivateStateEnc, newStateHash, newHistoryState Binding

We will prove each of the conjuncts separately. Following is the proof of the first conjunct.

To prove that the primed output of the service is in the primed set of observed outputs, we prove three things: (1)
Before the action, the output of the service is in the set of observed outputs. (2) The output of the service does not
change. (3) The set of observed outputs does not change.
(1)5. sResult.output’ € LL1ObservedOutputs’
Step 1: Before the action, the output of the service is in the set of observed outputs. This follows because the
InclusionInvariant is true in the unprimed state.
(2)1. sResult.output € LL1ObservedOutputs
We prove the two conjuncts in the antecedent of the Inclusionlnvariant. Each follows as a straightforward conse-
quence of the fact that LLINVRAM and LL1ObservedAuthenticators have not changed.
(3)1. LLINVRAM .historySummary = Hash(historySummary, input)
(4)1. LLINVRAM .historySummary’ = Hash(historySummary, input)
BY (1)4
(4)2. UNCHANGED LL1NVRAM .historySummary
(5)1. UNCHANGED LLINVRAM
BY (1)1
(5)2. QED
BY (5)1
(4)3. QED
BY (4)1, (4)2
(3)2. LL1HistoryStateBindingAuthenticated (historyStateBinding)

97

The history state binding is authenticated in the primed state, by hypothesis.
(4)1. LL1HistoryStateBindingAuthenticated (historyStateBinding)'
BY (1)4
The authentication status of the history state binding has not changed, because this status has not changed for
any history state binding in HashType.
(4)2. UNCHANGED LL1 HistoryStateBindingAuthenticated (historyState Binding)
We have to show that the history state binding has the appropriate type.
(5)1. historyStateBinding € HashType
BY (1)3
The authentication status of all input state bindings has not changed, as assumed by the lemma.
(5)2. V historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated(historyStateBinding1)
BY (1)1
The conclusion follows directly.
(5)3. QED
BY (5)1, (5)2
Since the history state binding is authenticated in the primed state, and since its authentication status has not
changed, it is also authenticated in the unprimed state.
(4)3. QED
BY (4)1, (4)2

We can then use the InclusionInvariant to prove that the output of the service is in the set of observed outputs in
the unprimed state.

(3)3. InclusionInvariant
BY (1)1
(3)4. QED
BY (1)2, (3)1, (3)2, (3)3
DEF InclusionInvariant, sResult, privateState, historyStateBinding, stateHash
Step 2: The output of the service does not change.

(2)2. UNCHANGED sResult.output
(3)1. UNCHANGED privateState
(4)1. UNCHANGED LL1NVRAM .symmetricKey
(5)1. UNCHANGED LLINVRAM
BY (1)1
(5)2. QED
BY (5)1
(4)2. QED
BY (4)1 DEF privateState
(3)2. UNCHANGED sResult
BY (3)1 DEF sResult
(3)3. QED
BY (3)2
Step 3: The set of observed outputs does not change.

(2)3. UNCHANGED LL1ObservedOutputs
BY (1)1

(2)4. QED
By (2)1, (2)2, (2)3

Following is the proof of the second conjunct.

98

To prove that the new history state binding is authenticated in the primed state, we prove that the new history state
binding does not change, and we prove that the new history state binding was authenticated in the unprimed state.
Since, by assumption of the lemma, the authentication status of any history state binding does not change, the new
history state binding is authenticated in the primed state.
(1)6. LL1HistoryStateBindingAuthenticated (newHistoryState Binding)’
One fact we'll need several times is that the symmetric key in the NVRAM has not changed, so we’ll prove this once
up front.
(2)1. UNCHANGED LLINVRAM .symmetricKey
(3)1. UNCHANGED LLINVRAM
BY (1)1
(3)2. QED
BY (3)1
In the unprimed state, the new history state binding was authenticated. This follows because the InclusionlInvariant
is true in the unprimed state.
(2)2. LL1HistoryStateBindingAuthenticated (newHistoryStateBinding)
We prove the two conjuncts in the antecedent of the InclusionInvariant. The first conjunct follows as a straight-
forward consequence of the fact that NVRAM has not changed.
(3)1. LLINVRAM .historySummary = Hash(historySummary, input)
(4)1. LLINVRAM .historySummary’ = Hash(historySummary, input)
BY (1)4
(4)2. UNCHANGED LL1NVRAM .historySummary
(5)1. UNCHANGED LLINVRAM
BY (1)1
(5)2. QED
BY (5)1
(4)3. QED
BY (4)1, (4)2
Proving the second conjuct is more involved. We’'ll show that the history state binding is authenticated in the
primed state and that its authentication status has not changed
(3)2. LL1HistoryState BindingAuthenticated (historyStateBinding)

The history state binding is authenticated in the primed state, by hypothesis.

(4)1. LL1HistoryStateBindingAuthenticated (historyState Binding)'
BY (1)4
The authentication status of the history state binding has not changed, because this status has not changed for
any history state binding in HashType.
(4)2. UNCHANGED LL1 HistoryStateBindingAuthenticated (historyState Binding)
‘We have to show that the history state binding has the appropriate type.

(5)1. historyStateBinding € HashType
BY (1)3
The authentication status of all input state bindings has not changed, as assumed by the lemma.
(5)2. V historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated(historyStateBindingl)
BY (1)1
The conclusion follows directly.
(5)3. QED
BY (5)1, (5)2
Since the history state binding is authenticated in the primed state, and since its authentication status has not
changed, it is also authenticated in the unprimed state.
(4)3. QED
BY (4)1, (4)2

99

We can then use the InclusionInvariant to prove that the new history state binding was authenticated in the
unprimed state.

(3)3. InclusionInvariant
BY (1)1
(3)4. QED
BY (1)2, (3)1, (3)2, (3)3
DEF InclusionInvariant, newHistoryStateBinding, newStateHash, newPrivateStateEnc,
sResult, privateState, historyStateBinding, stateHash
(2)3. UNCHANGED LL1 HistoryStateBindingAuthenticated (newHistoryState Binding)
The new history state binding has not changed.

(3)1. UNCHANGED newHistoryState Binding
(4)1. UNCHANGED LL1NVRAM .historySummary
(5)1. UNCHANGED LLINVRAM
BY (1)1
(5)2. QED
BY (5)1
(4)2. UNCHANGED newStateHash
(5)1. UNCHANGED sResult
(6)1. UNCHANGED privateState
BY (2)1 DEF privateState
(6)2. QED
BY (6)1 DEF sResult
(5)2. UNCHANGED sResult.newPublicState
BY (5)1
(5)3. UNCHANGED newPrivateStateEnc
(6)1. UNCHANGED sResult.newPrivateState
BY (5)1
(6)2. QED
BY (2)1, (6)1 DEF newPrivateStateEnc
(5)4. QED
BY (5)2, (5)3 DEF newStateHash
(4)3. QED
BY (4)1, (4)2 DEF newHistoryStateBinding
The new history state binding has the appropriate type.
(3)2. newHistoryStateBinding € HashType
BY (1)3
The authentication status of all input state bindings has not changed, as assumed by the lemma.
(3)3. V historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated(historyStateBinding1)
BY (1)1
(3)4. QED
BY (3)1, (3)2, (3)3
(2)4. QED
BY (2)2, (2)3
Each of the conjuncts is true, so the conjunction is true.
(1)7. QED
BY (1)5, (1)6

The CardinalityUnchangedLemma states that, if there are no changes to the NVRAM or to the authentication status of
any history state binding, then the CardinalityInvariant holds inductively from the unprimed state to the primed state.

100

THEOREM CardinalityUnchangedLemma =
(A LL1 Typelnvariant
A CardinalityInvariant
A UNCHANGED LLINVRAM
A Y historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBindingl))
=

CardinalityInvariant’

We begin by assuming the antecedent.

(1)1. HAVE A LL1 Typelnvariant

A CardinalityInvariant

A UNCHANGED LLINVRAM

A Y historyStateBinding € HashType :

UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBinding)

To prove the universally quantified expression, we take a new set of variables in the appropriate types. For the TAKE
step to be meaningful to the prover, first we have to tell the prover to expand the definition of Cardinalitylnvariant, so
it will see the universally quantified expression therein.
(1) USE DEF CardinalityInvariant
(1)2. TAKE historySummary € HashType, stateHash € HashType

To simplify the writing of the proof, we re-state the definition from the CardinalityInvariant.
A

(1) historyStateBinding = Hash(historySummary, stateHash)
We then assert the type safety of these definitions, with the help of the CardinalityInvariantDefsTypeSafeLemma.
(1)3. historyStateBinding € HashType
BY (1)2, CardinalityInvariantDefs TypeSafeLemma
The CardinalityInvariant states an implication. To prove this, it suffices to assume the antecedent and prove the
consequent.
(1)4. SUFFICES
ASSUME
A LL1NVRAMH:istorySummaryUncorrupted’
A LL1HistoryStateBindingAuthenticated (historyState Binding)'
PROVE
HashCardinality(historySummary) < HashCardinality(LLINVRAM .historySummary’)
OBVIOUS
We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.

(1) HIDE DEF CardinalityInvariant

(1) HIDE DEF historyStateBinding

To prove the inequality in the primed state, we prove two things: (1) Before the action, the inequality held. (2) The
history summary in the NVRAM does not change.

The inequality held before the action because the Cardinalitylnvariant was true in the unprimed state.

(1)5. HashCardinality (historySummary) < HashCardinality(LLINVRAM .historySummary)

We’ll prove the two antecedents of the CardinalityInvariant in the unprimed state. First, we’ll prove that the
LL1NVRAMHistorySummary Uncorrupted predicate is true.

(2)1. LL1NVRAMHistorySummaryUncorrupted
The LL1NVRAMHistorySummaryUncorrupted predicate is true in the primed state, by hypothesis.
(3)1. LL1NVRAMHistorySummaryUncorrupted’
BY (1)4
The LL1NVRAMHistorySummaryUncorrupted ~ predicate has not changed, thanks to the
LL1NVRAMHistorySummaryUncorrupted UnchangedLemma.

(3)2. UNCHANGED LL1NVRAMHistorySummaryUncorrupted
BY (1)1, LLINVRAMHistorySummaryUncorrupted UnchangedLemma

101

Since the LL1NVRAMHistorySummaryUncorrupted predicate is true in the primed state, and since the
LL1NVRAMHistorySummaryUncorrupted predicate has not changed, the predicate is also true in the unprimed

state.
(3)3. QED
BY (3)1, (3)2
Then, we’ll prove that the history state binding is authenticated in the unprimed state. This is the second antecedent
of the CardinalityInvariant.
(2)2. LL1HistoryStateBindingAuthenticated (historyStateBinding)
The history state binding is authenticated in the primed state, by hypothesis.

(3)1. LL1HistoryState BindingAuthenticated (historyStateBinding)'
BY (1)4
The authentication status of the history state binding has not changed, because this status has not changed for any
history state binding in HashType.
(3)2. UNCHANGED LL1 HistoryStateBindingAuthenticated (historyState Binding)
We have to show that the history state binding has the appropriate type.

(4)1. historyStateBinding € HashType
BY (1)3
The authentication status of all input state bindings has not changed, as assumed by the lemma.
(4)2. ¥ historyStateBindingl € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated (historyState Bindingl)
BY (1)1
The conclusion follows directly.
(4)3. QED
BY (4)1, (4)2
Since the history state binding is authenticated in the primed state, and since its authentication status has not
changed, it is also authenticated in the unprimed state.
(3)3. QED
BY (3)1, (3)2
We can then use the CardinalityInvariant to prove that the inquality held in the unprimed state.
(2)3. CardinalityInvariant
BY (1)1
(2)4. QED
BY (1)2, (2)1, (2)2, (2)3
DEF CardinalityInvariant, historyStateBinding
Step 2: The history summary in the NVRAM does not change.

(1)6. UNCHANGED LL1NVRAM .historySummary
(2)1. UNCHANGED LLINVRAM
BY (1)1
(2)2. QED
BY (2)1
(1)7. QED
BY (1)5, (1)6

The UniquenessUnchangedLemma states that, if there are no changes to the NVRAM or to the authentication status of
any history state binding, then the Uniquenessinvariant holds inductively from the unprimed state to the primed state.

THEOREM UniquenessUnchangedLemma =

(A LL1Typelnvariant
A UniquenessInvariant

102

A UNCHANGED LLINVRAM
A Y historyStateBinding € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBinding))
=
UniquenessInvariant’

We begin by assuming the antecedent.

(1)1. HAVE A LL1Typelnvariant

A UniquenessInvariant

A UNCHANGED LLINVRAM

A Y historyStateBinding € HashType :

UNCHANGED LL1 HistoryStateBindingAuthenticated (historyState Binding)

To prove the universally quantified expression, we take a new set of variables in the appropriate types. For the TAKE
step to be meaningful to the prover, first we have to tell the prover to expand the definition of UniquenessInvariant, so
it will see the universally quantified expression therein.
(1) USE DEF UniquenessInvariant
(1)2. TAKE stateHashl, stateHash2 € HashType

To simplify the writing of the proof, we re-state the definitions from the Uniquenessinvariant.

(1) historyStateBinding1 Hash(LLINVRAM .historySummary, stateHash1)
(1) historyStateBinding?2 Hash(LLINVRAM .historySummary, stateHash2)
We then assert the type safety of these definitions, with the help of the UniquenessinvariantDefs TypeSafeLemma.
(1)3. A historyStateBindingl € HashType
A historyStateBinding2 € HashType
(2)1. LL1 Typelnvariant
BY (1)1
(2)2. QED
BY (1)2, (2)1, UniquenessInvariantDefs TypeSafeLemma
The UniquenessInvariant states an implication. To prove this, it suffices to assume the antecedent and prove the
consequent.
(1)4. SUFFICES
ASSUME A LL1HistoryStateBindingAuthenticated (historyStateBinding1l)’
A LL1HistoryState BindingAuthenticated (historyStateBinding2)’
PROVE stateHashl = stateHash2
OBVIOUS

We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.

e 1>

(1) HIDE DEF UniquenessInvariant
(1) HIDE DEF historyStateBindingl, historyStateBinding?2

First we’ll show that history state binding 1 is authenticated in the unprimed state.

(1)5. LL1HistoryState BindingAuthenticated (historyState Bindingl)
History state binding 1 is authenticated in the primed state, by hypothesis.
(2)1. LL1HistoryState BindingAuthenticated (historyStateBindingl)’
BY (1)4
The authentication status of history state binding 1 has not changed, because this status has not changed for any
history state binding in HashType.
(2)2. UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBinding1)
We have to show that the history state binding has not changed, which is not obvious because it is defined in terms
of the history summary in the NVRAM, so we have to derive this from the fact that the NVRAM has not changed.
(3)1. UNCHANGED historyStateBindingl
(4)1. UNCHANGED LL1NVRAM .historySummary
(5)1. UNCHANGED LLINVRAM
BY (1)1

103

(5)2. QED
BY (5)1
(4)2. QED
BY (4)1 DEF historyStateBindingl
Then, we have to show that history state binding 1 has the appropriate type.
(3)2. historyStateBindingl € HashType
BY (1)3
The authentication status of all input state bindings has not changed, as assumed by the lemma.
(3)3. V historyStateBinding € HashType :
UNCHANGED LL1 HistoryStateBindingAuthenticated (historyStateBinding)
BY (1)1
The conclusion follows directly.
(3)4. QED
BY (3)1, (3)2, (3)3
Since history state binding 1 is authenticated in the primed state, and since its authentication status has not changed,
it is also authenticated in the unprimed state.
(2)3. QED
BY (2)1, (2)2
The same argument holds for history state binding 2.
(1)6. LL1HistoryState BindingAuthenticated (historyState Binding?2)
History state binding 2 is authenticated in the primed state, by hypothesis.
(2)1. LL1HistoryState BindingAuthenticated (historyStateBinding2)’
BY (1)4
The authentication status of history state binding 2 has not changed, because this status has not changed for any
history state binding in HashType.
(2)2. UNCHANGED LL1 HistoryStateBindingAuthenticated (historyState Binding?2)
We have to show that the history state binding has not changed, which is not obvious because it is defined in terms
of the history summary in the NVRAM, so we have to derive this from the fact that the NVRAM has not changed.
(3)1. UNCHANGED historyStateBinding?2
(4)1. UNCHANGED LL1NVRAM .historySummary
(5)1. UNCHANGED LLINVRAM
BY (1)1
(5)2. QED
BY (5)1
(4)2. QED
BY (4)1 DEF historyStateBinding2
Then, we have to show that history state binding 2 has the appropriate type.
(3)2. historyStateBinding2 € HashType
BY (1)3
The authentication status of all input state bindings has not changed, as assumed by the lemma.
(3)3. V historyStateBinding € HashType :
UNCHANGED LL1 HistoryState BindingAuthenticated (historyStateBinding)
BY (1)1
The conclusion follows directly.
(3)4. QED
BY (3)1, (3)2, (3)3
Since history state binding 1 is authenticated in the primed state, and since its authentication status has not changed,
it is also authenticated in the unprimed state.

(2)3. QED

104

BY (2)1, (2)2
Since the UniquenessInvariant holds in the unprimed state, it follows directly that the two state hashes are equal.
(1)7. QED
(2)1. stateHashl € HashType
BY (1)2
(2)2. stateHash2 € HashType
BY (1)2
(2)3. UniquenessInvariant
BY (1)1
(2)4. QED
BY (1)5, (1)6, (2)1, (2)2, (2)3
DEF UniquenessInvariant, historyStateBindingl, historyStateBinding2

The UnchangedAuthenticatedHistoryStateBindingsLemma states that if the NVRAM and the set of observed authenti-
cators does not change, then there is no change to the set of history state bindings that have authenticators in the set
LL1ObservedAuthenticators.

THEOREM UnchangedAuthenticatedHistoryStateBindingsLemma =
UNCHANGED (LLINVRAM, LL1ObservedAuthenticators) =
Y historyStateBinding € HashType :
UNCHANGED LL1 HistoryState BindingAuthenticated (historyStateBinding)
We assume the antecedents.
(1)1. HAVE UNCHANGED (LL1NVRAM, LL1ObservedAuthenticators)
To prove the universally quantified expression, we take a new history state binding in HashType.
(1)2. TAKE historyStateBinding € HashType
One fact that will be useful in several places is that the symmetric key in the NVRAM has not changed.

(1)3. UNCHANGED LL1NVRAM .symmetricKey
(2)1. UNCHANGED LLINVRAM
BY (1)1
(2)2. QED
BY (2)1
We’ll subdivide these into two cases. In the first case, we’ll consider the history state bindings that are authenticated
in the unprimed state, and we’ll show that they continue to be authenticated in the primed state.
(1)4. cASE LL1HistoryState BindingAuthenticated (historyStateBinding) = TRUE
(2)1. LL1HistoryStateBindingAuthenticated (historyStateBinding) = TRUE
By hypothesis, the history state binding is authenticated in the unprimed state. Thus, we can pick an authenticator
in the set of observed authenticators that is a valid MAC for this history state binding.
(3)1. PICK authenticator € LL1ObservedAuthenticators :
Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, authenticator)
BY (1)4 DEF LL1HistoryStateBindingAuthenticated
Because the symmetric key in the NVRAM has not changed, this authenticator is also a valid MAC for this history
state binding in the primed state.
(3)2. Validate MAC(LLINVRAM .symmetricKey', historyStateBinding, authenticator)
BY (1)3, (3)1
Because the set of observed authenticators has not changed, this authenticator is also in the primed set of observed
authenticators.
(3)3. authenticator € LL1ObservedAuthenticators’
(1. authenticator € LL1ObservedAuthenticators
BY (3)1

105

(4)2. UNCHANGED LL1Observed Authenticators
BY (1)1
(4)3. QED
BY (4)1, (4)2
The previous two conditions are sufficient to establish that the history state binding is authenticated in the primed
state.

(3)4. QED
BY (3)2, (3)3 DEF LL1HistoryStateBindingAuthenticated
Because the history state binding is authenticated in both the wunprimed and primed states, the
LL1HistoryState BindingAuthenticated is unchanged for this history state binding.
(2)2. QED
BY (1)4, (2)1
In the second case, we’ll consider the history state bindings that are unauthenticated in the unprimed state, and we’ll
show that they continue to be unauthenticated in the primed state.
(1)5. cASE LL1HistoryState BindingAuthenticated (historyStateBinding) = FALSE
(2)1. LL1HistoryState BindingAuthenticated (historyStateBinding)’ = FALSE
To prove that the history state binding is not authenticated in the primed state, it suffices to show that none of the
state authenticators in the primed set of observed authenticators is a valid MAC for the history state binding.
(3)1. SUFFICES VY authenticator € LL1ObservedAuthenticators’ :
= Validate MAC(LLINVRAM .symmetricKey', historyStateBinding, authenticator)
BY DEF LL1HistoryStateBindingAuthenticated
To prove the universally quantified expression, we take a new authenticator in the primed set of observed authen-
ticators.
(3)2. TAKE authenticator € LL1Observed Authenticators’
Because the set of observed authenticators has not changed, this authenticator is also in the unprimed set of observed
authenticators.
(3)3. authenticator € LL1ObservedAuthenticators
(4)1. UNCHANGED LL1Observed Authenticators
BY (1)1
(4)2. QED
BY (3)2, (4)1
Because the authenticator failed to authenticate the history state binding in the unprimed state, and the symmetric

key has not changed, it immediately follows that the authenticator will not authenticate the history state binding
in the primed state.

(3)4. QED
BY (1)3, (1)5, (3)3 DEF LL1HistoryStateBindingAuthenticated
Because the history state binding is unauthenticated in both the unprimed and primed states, the
LL1HistoryStateBindingAuthenticated is unchanged for this history state binding.
(2)2. QED
BY (1)5, (2)1
By proving that LL1 HistoryStateBindingAuthenticated is a boolean predicate, it is immediately clear that the two cases
of true and false are exhaustive for this predicate.
(1)6. LL1HistoryStateBindingAuthenticated (historyStateBinding) € BOOLEAN
BY DEF LL1HistoryState BindingAuthenticated
(1)7. QED
BY (1)4, (1)5, (1)6

106

4.5 Proof of Unforgeability Invariance in Memoir-Basic

MODULE MemoirL L1 UnforgeabilityInvariance
This module proves that the UnforgeabilityInvariant is an inductive invariant of the Memoir-Basic spec.
EXTENDS MemoirL L1 InvarianceLemmas

Because the spec allows the data on the disk to be read into the RAM, proving UnforgeabilityInvariance of the RAM
requires also proving an analagous property for the disk. Thus, we first prove the that the Extended UnforgeabilityInvariant
is an invariant of the spec.

THEOREM FEztended UnforgeabilityInvariance 2 LI1Spec = O Extended UnforgeabilityInvariant

This proof will require the LL1Typelnvariant. Fortunately, the LL1 TypeSafe theorem has already proven that the
Memoir-Basic spec satisfies its type invariant.
(1)1. LL1Spec = OLL1 Typelnvariant

BY LL1TypeSafe
The top level of the proof is boilerplate TLA+ for an Invl-style proof. First, we prove that the initial state
satisfies ExtendedUnforgeabilityInvariant. Second, we prove that the LL1Next predicate inductively preserves
Extended UnforgeabilityInvariant. Third, we use temporal induction to prove that these two conditions satisfy the
Ezxtended UnforgeabilityInvariant over all behaviors.
(1)2. LL1Init A LL1 Typelnvariant = Extended UnforgeabilityInvariant

First, we assume the antecedents.

(2)1. HAVE LL1Init A LL1 Typelnvariant

Then, we pick some symmetrick key for which LL1Init is true.

(2)2. PICK symmetricKey € SymmetricKeyType : LL1Init!(symmetricKey)!1
BY (2)1 DEF LL1Init
To simplify the writing of the proof, we re-state some of the definitions from LL1Init. We don’t need all of them for
this proof, so we only re-state the ones we need.
(2) initialPrivateStateEnc = SymmetricEncrypt(symmetricKey, InitialPrivateState)
(2) initialStateHash = Hash(InitialPublicState, initialPrivateStateEnc)
(2) initialHistoryStateBinding = Hash(BaseHashValue, initialStateHash)
(2 initial Authenticator = GenerateMAC (symmetricKey, initialHistoryStateBinding)

We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.

(2) HIDE DEF initialPrivateStateEnc, initialStateHash, initialHistoryStateBinding,
initial Authenticator
To prove the universally quantified expression, we take a new hash. For the TAKE step to be meaningful to the
prover, first we have to tell the prover to expand the definition of Extended Unforgeabilitylnvariant, so it will see the
universally quantified expression therein.
(2) USE DEF ExtendedUnforgeabilityInvariant
(2)3. TAKE historyStateBinding € HashType
We will prove each of the conjuncts separately. Following is the proof of the unforgeability invariant for the RAM. It
follows directly from the definition of LL1Init.
(2)4. Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator) =
LL1RAM .authenticator € LL1ObservedAuthenticators
(3)1. HAVE ValidateMAC(LLINVRAM .symmetricKey, historyStateBinding, LL1RAM .authenticator)
(3)2. LL1RAM .authenticator = initial Authenticator
BY (2)2 DEF initial Authenticator, initialHistoryStateBinding,
initialState Hash, initial PrivateStateEnc
(3)3. LL1ObservedAuthenticators = {initial Authenticator}
BY (2)2 DEF initial Authenticator, initialHistoryStateBinding,
initialStateHash, initial PrivateState Enc
(3)4. QED

107

BY (3)2, (3)3
Following is the proof of the unforgeability invariant for the disk. It follows directly from the definition of LL1Init.

(2)5. Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1Disk.authenticator) =
LL1Disk.authenticator € LL1ObservedAuthenticators
(3)1. HAVE Validate MAC(LLINVRAM .symmetricKey, historyStateBinding, LL1 Disk.authenticator)
(3)2. LL1Disk.authenticator = initial Authenticator
BY (2)2 DEF initial Authenticator, initialHistoryStateBinding,
initialState Hash, initial PrivateState Enc
(3)3. LL1ObservedAuthenticators = {initial Authenticator}
BY (2)2 DEF initial Authenticator, initialHistoryStateBinding,
initialState Hash, initial PrivateStateEnc
(3)4. QED
BY (3)2, (3)3
(2)6. QED
BY (2)4, (2)5
For the induction step, we will need the type invariant to be true in both the unprimed and primed states.
(1)3. (A ExtendedUnforgeabilityInvariant
A [LL].N@IL’t]LLl Vars
A LL1Typelnvariant
A LL1Typelnvariant’)
=
ExtendedUnforgeabilityInvariant’
First, we assume the antecedents.

(2)1. HAVE Extended UnforgeabilityInvariant A [LL1Next] 11 vars A LL1 TypeInvariant A LL1 Typelnvariant’
The induction step includes two cases: stuttering and LL1Next actions. The stuttering case is a straightforward
application of the LL1RAM UnforgeabilityUnchangedLemma and the LL1DiskUnforgeabilityUnchangedLemma.
(2)2. CASE UNCHANGED LL1 Vars
(3)1. Y historyStateBinding € HashType :
Validate MAC(LLINVRAM .symmetricKey', historyStateBinding, LL1RAM .authenticator’) =
LL1RAM .authenticator’ € LL1ObservedAuthenticators’
(4)1. ExtendedUnforgeabilityInvariant A LL1 Typelnvariant A LL1 TypeInvariant’
BY (2)1
(4)2. UNCHANGED LL1RAM
BY (2)2 DEF LL1Vars
(4)3. UNCHANGED LL1Observed Authenticators
BY (2)2 DEF LL1Vars
(4)4. UNCHANGED LL1NVRAM .symmetricKey
(5)1. UNCHANGED LLINVRAM
BY (2)2 DEF LL1Vars
(5)2. QED
BY (5)1
(4)5. QED
BY (4)1, (4)2, (4)3, (4)4, LL1RAMUnforgeabilityUnchangedLemma
(3)2. V historyStateBinding € HashType :
Validate MAC(LLINVRAM .symmetricKey', historyStateBinding, LL1Disk.authenticator’) =
LL1Disk.authenticator’ € LL1ObservedAuthenticators’
(4)1. ExtendedUnforgeabilityInvariant A LL1 Typelnvariant A LL1 TypeInvariant’
BY (2)1
(4)2. UNCHANGED LL1Disk
BY (2)2 DEF LL1Vars
(4)3. UNCHANGED LL1Observed Authenticators

108

BY (2)2 DEF LL1 Vars
(4)4. UNCHANGED LL1NVRAM .symmetricKey
(5)1. UNCHANGED LLINVRAM
BY (2)2 DEF LL1Vars
(5)2. QED
BY (5)1
(4)5. QED
BY (4)1, (4)2, (4)3, (4)4, LL1DiskUnforgeability UnchangedLemma
(3)3. QED
BY (3)1, (3)2 DEF ExtendedUnforgeabilityInvariant

We break down the LL1Next case into eight separate cases for each action.

(2)3. CASE LL1Next
The LL1MakelnputAvailable case is a straightforward application of the LL1RAM UnforgeabilityUnchangedLemma
and the LL1DiskUnforgeabilityUnchangedLemma.
(3)1. cASE LL1MakeInputAvailable
(1. PICK input € InputType : LL1 MakelInputAvailable! (input)
BY (3)1 DEF LL1MakelnputAvailable
(4)2. ¥ historyStateBinding € HashType :
Validate MAC (LLINVRAM .symmetricKey', historyStateBinding, LL1RAM .authenticator’) =
LL1RAM .authenticator’ € LL10ObservedAuthenticators’
(5)1. ExtendedUnforgeabilityInvariant A LL1 TypeInvariant A LL1 Typelnvariant’
BY (2)1
(5)2. UNCHANGED LL1RAM
BY (4)1
(5)3. UNCHANGED LL1Observed Authenticators
BY (4)1
(5)4. UNCHANGED LL1INVRAM .symmetricKey
(6)1. UNCHANGED LLINVRAM
BY (4)1
(6)2. QED
BY (6)1
(5)5. QED
BY (5)1, (5)2, (5)3, (5)4, LL1RAM UnforgeabilityUnchangedLemma
(4)3. ¥ historyStateBinding € HashType :
Validate MAC (LLINVRAM .symmetricKey', historyStateBinding, LL1 Disk.authenticator’) =
LL1Disk.authenticator’ € LL10ObservedAuthenticators’
(5)1. ExtendedUnforgeabilityInvariant A LL1 TypeInvariant A LL1 Typelnvariant’
BY (2)1
(5)2. UNCHANGED LL1Disk
BY (4)1
(5)3. UNCHANGED LL1Observed Authenticators
BY (4)1
(5)4. UNCHANGED LL1NVRAM .symmetricKey
(6)1. UNCHANGED LLINVRAM
BY (4)1
(6)2. QED
BY (6)1
(5)5. QED
BY (5)1, (5)2, (5)3, (5)4, LL1DiskUnforgeabilityUnchanged Lemma
(4)4. QED
BY (4)2, (4)3 DEF ExtendedUnforgeabilityInvariant
The LL1 PerformOperation case is not terribly involved, but we have to treat the RAM and disk conjuncts separately.

109

(3)2. cASE LL1PerformOperation
We pick some input for which LL1PerformOperation is true.

(4)1. PICK input € LL1AvailableInputs : LL1 PerformOperation! (input)!1
BY (3)2 DEF LL1PerformOperation
To simplify the writing of the proof, we re-state the definitions from the LL1PerformOperation action.

4y stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
) historyStateBinding = Hash(LLINVRAM .historySummary, stateHash)
) privateState = SymmetricDecrypt(LLLNVRAM .symmetricKey, LL1RAM .privateStateEnc)
) sResult = Service(LL1RAM .publicState, privateState, input)
) newPrivateStateEnc =
SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
newHistorySummary = Hash(LLINVRAM .historySummary, input)

4)
4) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
4)

(
(4
(4
(4
(

4

A

newHistoryStateBinding = Hash(newHistorySummary, newStateHash)
4) newAuthenticator = GenerateMAC(LLINVRAM .symmetricKey, newHistoryStateBinding)
We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.

(4) HIDE DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newHistorySummary, newStateHash, newHistoryStateBinding, newAuthenticator
To prove the universally quantified expression, we take a new hash. For the TAKE step to be meaningful to the
prover, first we have to tell the prover to expand the definition of ExtendedUnforgeabilityInvariant, so it will see
the universally quantified expression therein.
(4) USE DEF EztendedUnforgeabilityInvariant
(4)2. TAKE historyStateBindingl € HashType
Before proceeding to prove each of the conjuncts, we prove a statement that will be useful in both of the sub-proofs
below. Namely, the new authenticator generated by the LL1PerformOperation action is unioned into the set of
observed authenticators.
(4)3. LL1ObservedAuthenticators’ =
LL1ObservedAuthenticators U { newAuthenticator}
BY (4)1 DEF newAuthenticator, newHistoryStateBinding, newStateHash,
newHistorySummary, newPrivateStateEnc, sResult, privateState
For the RAM portion of the unforgeability invariant, we note that the LL1 PerformOperation action updates the
authenticator in the RAM with the new authenticator. Since this new authenticator is unioned into the set of
observed authenticators, the invariant holds in the primed state.
(4)4. Validate MAC(LLINVRAM .symmetricKey', historyStateBindingl, LL1RAM .authenticator’) =
LL1RAM .authenticator’ € LL1ObservedAuthenticators’
(5)1. LL1RAM .authenticator’ = newAuthenticator
(6)1. newAuthenticator = LL1PerformOperation!(input)! newAuthenticator
BY (4)1 DEF newAuthenticator, newHistoryStateBinding, newStateHash,
newHistorySummary, newPrivateStateEnc, sResult, privateState
(6Y2. LLIRAM' = |
publicState — LL1PerformOperation! (input)! sResult.newPublicState,
privateStateEnc — LL1 PerformOperation! (input)! newPrivateStateEnc,
historySummary — LL1PerformOperation! (input)! newHistorySummary,
authenticator — newAuthenticator)
BY (4)1, (6)1
(6)3. QED
BY (6)2
(5)2. QED
BY (4)3, (5)1
For the disk portion of the unforgeability invariant, we employ the LL1 DiskUnforgeability UnchangedLemma, since
the disk is not changed by the LL1 PerformOperation action.

110

(4)5. Validate MAC(LLINVRAM .symmetricKey', historyStateBindingl, LL1 Disk.authenticator’) =
LIL1Disk.authenticator’ € LL1ObservedAuthenticators’
(5)1. ExtendedUnforgeabilityInvariant A LL1 TypeInvariant A LL1 Typelnvariant’
BY (2)1
(5)2. UNCHANGED LL1Disk
BY (4)1
(5)3. LL1ObservedAuthenticators C LL1 ObservedAuthenticators’
BY (4)3
(5)4. UNCHANGED LLINVRAM .symmetricKey
(6)1. LLINVRAM' = [historySummary — LL1PerformOperation! (input)! newHistorySummary,
symmetricKey — LLINVRAM .symmetricKey|
BY (4)1
(6)2. LLINVRAM .symmetricKey’ = LLINVRAM .symmetricKey
BY (6)1
(6)3. QED
BY (6)2
(5)5. QED
BY (5)1, (5)2, (5)3, (5)4, LL1DiskUnforgeabilityUnchangedLemma
(4)6. QED
BY (4)4, (4)5
The LL1 RepeatOperation case is not terribly involved, but we have to treat the RAM and disk conjuncts separately.
(3)3. CASE LL1RepeatOperation
We pick some input for which LL1 RepeatOperation is true.

(4)1. PICK input € LL1AwailableInputs : LL1 RepeatOperation! (input)!1
BY (3)3 DEF LL1RepeatOperation
To simplify the writing of the proof, we re-state the definitions from the LL1RepeatOperation action.

) stateHash = Hash(LL1RAM .publicState, LL1RAM .privateStateEnc)
historyStateBinding = Hash(LL1RAM .historySummary, stateHash)

A

4
4)
4y privateState = SymmetricDecrypt(LLINVRAM .symmetricKey, LL1RAM .privateStateEnc)
4) sResult = Service(LLLRAM .publicState, privateState, input)
4) newPrivateStateEnc =

SymmetricEncrypt(LLINVRAM .symmetricKey, sResult.newPrivateState)
(4) newStateHash = Hash(sResult.newPublicState, newPrivateStateEnc)
(4) newHistoryStateBinding = Hash(LL1INVRAM historySummary, newStateHash)
(4) newAuthenticator = GenerateMAC(LLINVRAM .symmetricKey, newHistoryStateBinding)

We hide the definitions, so they don’t overwhelm the prover. We’ll pull them in as necessary below.

(
(
(
(
(

(4) HIDE DEF stateHash, historyStateBinding, privateState, sResult, newPrivateStateEnc,
newStateHash, newHistoryStateBinding, newAuthenticator
To prove the universally quantified expression, we take a new hash. For the TAKE step to be meaningful to the
prover, first we have to tell the prover to expand the definition of ExtendedUnforgeabilityInvariant, so it will see
the universally quantified expression therein.
(4) USE DEF ExtendedUnforgeabilityInvariant
(4)2. TAKE historyStateBindingl € HashType
Before proceeding to prove each of the conjuncts, we prove a statement that will be useful in both of the sub-proofs
below. Namely, the new authenticator generated by the LL1PerformOperatio