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Abstract

The Web public-key infrastructure (PKI) provides a mechanism to identify websites to end users for the purposes of

encrypted communication. The security of the Web PKI primarily relies on certification authorities (CAs), trusted

parties whose misbehavior can enable man-in-the-middle (MITM) attacks: the impersonation of websites to users,

followed by the theft or modification of sensitive information. While many methods of addressing CA misbehavior

have been proposed, no solution has been both effective and practical: able to protect websites users against CA

misbehavior and to be easily deployed and used by all parties involved. Thus, despite more than two decades of

research advances, the Web PKI remains largely vulnerable to misbehaving CAs.

In this thesis, I argue that we can use minimal changes to existing technology to build deployable solutions that

reduce the rate of successful MITM attacks in the Web PKI. Specifically, I present three projects that exemplify

effective and practical approaches to improving the Web PKI. In IKP, I use the Ethereum cryptocurrency and smart

contract platform to build an insurance-like mechanism that disincentivizes CA misbehavior. In CAPS, I use two

global monitoring and logging systems, CT and Censys, to build a system that strengthens the existing PKI against

misbehaving CAs and enables the secure incremental deployment of new and improved PKIs for the Web. In SAINT, I

use the SCION future Internet architecture to propose a PKI that unifies public-key authentication for naming, routing,

and end-entity public keys in a federated environment, and identify challenges and desired properties in such an

environment. Through this work, I provide a first step towards making a more resilient Web PKI a reality.
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Chapter 1

Introduction

1.1 (In)Secure Communication in the Modern Web

Users and services in the modern Web send increasingly valuable data to one another. For example, users today

consider it rather unremarkable to send login credentials to view emails with sensitive information, transmit financial

information such as credit card details to complete an online purchase, or send highly personal search queries to

a website. Due to the sensitivity and importance of this communication, users and services require confidentiality

and integrity, which guarantee that only the communication endpoints can read or write the transmitted information,

respectively. In the modern Web, communication is secured using the HTTPS protocol [112], which relies on the

Transport Layer Security (TLS) protocol [113] to provide confidentiality and integrity.

While TLS is necessary to secure communication between a user and a service, it is not sufficient to do so. On its

own, TLS does not provide public-key authentication, that is, it does not guarantee that a public key is bound to (i.e.,

associated with) identity information such as a domain name. Without this information, a malicious party could mount

a MITM attack: if Alice and Bob are communicating with one another, Mallory could masquerade as Bob to Alice

and vice versa. Both Alice and Bob have confidentiality and integrity in their communication with Mallory, but not in

their communication with each other: Mallory can read and change the messages between them as she pleases. Thus

in a MITM attack, not even the most ironclad guarantees of confidentiality and integrity can secure communication

between Alice and Bob, as they are not directly communicating with one another.

To provide public-key authentication and thus prevent this type of MITM attack, the Web uses a public-key in-

frastructure (PKI), which provides mechanisms for certifying and verifying the binding between a public key and

identity information. In the Web PKI, trusted entities called certification authorities (CAs) check these bindings based

on external information such as DNS records, legal business registrations, or an in-person meeting, and digitally sign

certificates, which can be sent to Web clients. This process illustrates the fact that a CA that does not properly perform

1



2 CHAPTER 1. INTRODUCTION

this duty can issue a certificate that binds identity information to the wrong public key, thus enabling a MITM attack.

Thus secure communication in the modern Web also depends heavily on the correct behavior of CAs.

Unfortunately, CAs have failed time and again, resulting in misissued certificates that provide opportunities for

MITM attacks. These failures have occurred both at relatively small, localized CAs [56] and at the largest CAs in

the market [121]. The misissued certificates themselves have been the product of (1) insufficiently diligent checks of

real-world identity information [99], (2) poorly implemented certificate issuance software [128], (3) weaknesses of

authority delegation in the Web PKI [83], or (4) deliberate subversion of the Web PKI for the monitoring of HTTPS

connections [107].

In many of the above examples, the misissued certificates have been used to attempt MITM attacks on popular sites

with large user bases, such as those owned by Microsoft and Google, and in some cases, it was possible for someone to

mount a MITM attack on all HTTPS connections from a certain network. Worse yet, modern browsers trust over 1,500

CAs public keys spanning more than 600 organizations; any of these CAs has the authority to misissue a certificate

for, and thereby enable a MITM attack on, nearly any site on the Web. These examples show that CA failures are a

systemic problem with potentially disastrous consequences for secure communication in the Web.

1.2 Advances and Shortcomings in Public-Key Infrastructures

There has been a great deal of previous work that aims to mitigate the effects of CA failures and misissued certificates

on the Web PKI. Much of this work takes one of three main approaches:

1. Allow misissued certificates to be quickly detected so the responsible CAs can be notified and, for popular sites

with valuable information, so Web browser vendors can take action to prevent the use of the certificate [85].

2. Impose additional rules for the issuance or verification of certificates to prevent certain misissued certificates

from being used in successful MITM attacks [73].

3. Introduce additional entities that provide information used to corroborate the binding between a public key and

identity found in a CA-issued certificate [130].

As I describe in Chapter 2, these approaches have collectively strengthened the Web PKI and, in some cases, provided

strong formal guarantees of the security of the certificate issuance process against misbehaving trusted parties [30].

Despite the advancement of previous work, however, the Web PKI still lacks a sufficiently practical and effective

solution to MITM attacks. The most widely-deployed solutions do not reduce CA misbehavior or MITM attacks, and in

fact often fail to even disincentivize CA misbehavior. Proposals that can prevent MITM attacks often have non-viable

deployment strategies: they offer only modest security improvements if deployed gradually by participants, greatly

increase the complexity of interaction among trusted parties such as CAs, or make significant changes to the operation

of domains or CAs. While a small number of these proposals have been deployed, they have been error-prone in
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practice, preventing successful public-key authentication and even recovery from error in the face of misconfiguration

or the loss or compromise of a private key. In short, a major problem plaguing the Web PKI is that there is currently

no practical, deployable solution that reduces the occurrence and possibility of MITM attacks in the Web PKI.

1.3 Thesis Overview

To address the above problem, I show in this thesis that we can use minimal changes to existing technology to build

deployable solutions that reduce the rate of successful MITM attacks in the Web PKI. To substantiate this claim,

I have designed three systems that strengthen the Web PKI while avoiding major shortcomings of previous work.

Below, I describe each system and its contribution to my thesis.

1.3.1 IKP: Realigning Incentives for the Web PKI

Despite an epidemic of CA failures over the years, CAs have rarely suffered major consequences, despite putting major

sites and their users at risk of MITM attacks. This inconsistency is partially due to the reluctance of browser vendors to

distrust misbehaving CAs, as this removal of trust would force sites with legitimate certificates from the misbehaving

CAs to obtain certificates from another CA. Due to the time, effort, and uncertainty in reporting potentially misissued

certificates, it is also unlikely that a user or service that encounters a suspicious certificate will publicize it, reducing

the chances that a misbehaving CA will be caught. The result is that while CAs could simply invest more in security

to minimize the risk of misissuance (and thereby the occurrence of MITM attacks), they do not do so.

In IKP, I extend previous work that proposes the use of certificate policies, criteria specified by the site (hereafter

domain) about which certificates should be considered authorized [126]. Specifically, I generalize certificate policies

as programs that take a certificate as input, allowing IKP to use any part of a certificate to determine if the certificate

is authorized. I use these policies to build an insurance-like mechanism in which upon proof of misbehavior, which

can be submitted by anyone, CAs must immediately compensate domains for the incurred security risk and provide

a bounty to the finder of the certificate. I then implement this system in the cryptocurrency Ethereum [131], which

provides both the smart contracts used to express policy and insurance terms and a financial framework to handle

payments.

IKP reduces MITM attacks in the Web PKI by realigning incentives: it imposes financial consequences on mis-

behaving CAs, simplifies the certificate reporting process, and publicizes information such as rewards, penalties, and

liability to provide an economic signal to clients and domains. Specifically, IKP guarantees that in the absence of

out-of-band payments, (1) a rational CA is better off joining IKP and correctly issuing certificates than not joining

IKP or misissuing certificates, (2) a rational entity is better off reporting a misissued certificate than not reporting it or

incorrectly reporting a certificate as misissued, and (3) no collusion of parties can collectively result in a profit from



4 CHAPTER 1. INTRODUCTION

the misissuance of a certificate. These incentives serve to reduce the rate of misissued certificates and thus the rate

of MITM attacks, and also provide a means of punishing misbehaving CAs without resorting to complete distrust of

those CAs.

IKP is provides a straightforward deployment plan: the main functionality of IKP can be deployed as a set of smart

contracts, and as an insurance-like mechanism, IKP does not change existing operations in the Web PKI. Furthermore,

while building IKP on Ethereum means that we implicitly trust the consensus of Ethereum miners, the deployment of

IKP does not introduce a new trusted party because all functionality is implemented as smart contracts whose code

and execution is recorded publicly in the Ethereum blockchain.

1.3.2 CAPS: Deployably Increasing Web PKI Resilience

Previous work at improving the security of the Web PKI has been effective or practical, but not both. By effective, I

mean that a system can preemptively stop MITM attacks even in the face of multiple misbehaving trusted parties, and

by practical, I mean that a system has a viable deployment strategy and offers a realistic scheme for recovery in the

face of domain misconfiguration or lost private keys. For example, while IKP is a practical system, it only provides a

way to find and punish misbehaving CAs, and does not seek to prevent MITM attacks as they occur.

While previous work has succeeded in designing solutions that can provably prevent MITM attacks in the face

of misbehavior by multiple CAs [30], such solutions have notable weaknesses under realistic deployment models.

Because the entire Web is unlikely to adopt any solution overnight, any improvement to the Web PKI must assume

an incremental deployment model, that is, a model in which the existing Web PKI and any improvements (or entirely

new PKIs) coexist for a likely long period of time. In such a model, downgrade attacks are possible: consider an

attacker Mallory who has obtains a misissued certificate for Bob’s domain. Using a downgrade attack, even if Bob has

deployed a PKI improvement, Mallory can convince a user Alice that Bob’s site has not deployed the improvement,

and thus carry out a MITM attack. Thus the integrity of a domain’s deployment status itself must be protected just as

much as public-key certificates, a challenge that I call the signaling problem.

Moreover, for security purposes, this previous work, as well as solutions that have been deployed in the Web [58],

make it difficult for domains to change their public keys. Unfortunately, in the event a domain configures the wrong

public key, or loses its private key due to catastrophic failure or compromise, this difficulty in changing keys renders

the domain inaccessible. In particular, existing solutions require the domain to wait for a specified “cool-off period”

or contact one or more trusted authorities, who are typically slow to react. At the same time, making it easy to change

a domain’s public key seems to run counter to the concept of effectively preventing MITM attacks. This problem of

preventing MITM attacks in the face of multiple misbehaving trusted parties while simultaneously maintaining the

ability to easily change public keys is a challenge I call the recoverability problem.
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In CAPS, I address the signaling problem by leveraging the fact that global certificate monitoring systems [85, 52],

many of which are referred to as public logs, keep track of nearly all certificates accepted by major Web browsers. In

particular, I design log aggregators, who maintain a list of this global view over time to determine which sites have

deployed HTTPS. Moreover, I introduce a simple certificate policy in which domains obtain multiple certificates for

the same public key in order to denote that certain public keys bound to their name should be preferred over others.

This information is sent in a succinct encoding to client browsers. The actual certificates are sent in an extension to

the standard TLS handshake [55], making the scheme backwards-compatible with the existing Web PKI.

CAPS is effective in reducing the rate of MITM attacks, both in the current Web PKI and during the deployment

of a new PKI. The way in which CAPS addresses the signaling problem prevents downgrade attacks, both from a

PKI improvement to plain HTTPS and from HTTPS to HTTP (which would bypass the PKI improvement entirely).

Furthermore, the way in which CAPS addresses the recoverability problem allows each domain to gain n certificates

for the same public key, preventing against MITM attacks for that domain in spite of n−1 misbehaving trusted entities

such as CAs. CAPS is also practical because it leaves the existing certificate issuance process unchanged. This design

choice means that CAs do not need to do anything for clients and domains to begin using CAPS. Furthermore, by

simplifying the policy to only consider how many certificates a domain has for each public key, recovering from

misconfiguration or a lost private key is as simple as gaining n certificates for a new public key.

1.3.3 SAINT

Even though IKP and CAPS provide deployable solutions to reducing the rate of MITM attacks in the current Web

PKI, they implicitly assume a CA ecosystem almost identical to that of today: browsers and operating system (OS)

vendors provide a set of public keys of trusted root CAs, which delegate authority to other CAs, and so on. Each of

these CAs can issue certificates for any site in the Web, and though previous work has endeavored to mitigate MITM

attacks that stem from this global authority [73], the use of a near-globally common set of near-unrestricted roots of

trust has proven problematic. Unfortunately, simply moving to a world in which different users may have different

roots of trust comes with its own challenges, the most notable being how two users with different roots of trust can

authenticate one another’s public keys.

In SAINT, I address this challenge by noting that in a world with distinct “realms” of trust (which I refer to as

isolation domains because they can isolate the failures within their realm from others), each with its own root CAs

and other trusted entities, each realm must still be able to communicate with the others using a series of internetwork

connections found via a routing algorithm. The inherent business or political relations underlying these routes provides

a natural starting point to build a graph of trust among these ISDs. The public keys of each ISD’s trust roots can be

sent along these routes as well, providing relatively rapid updates of trust root information. I then show that this design
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limits the scope of a misbehaving root of trust (or delegated trusted entity) while allowing users to authenticate each

other’s public keys, even when they are physically present in a different ISD from where their trust roots are located.

I then instantiate this design using the SCION future Internet architecture [134].

SAINT provides a viable deployment strategy based on existing technology, both by considering the existing basis

of routing relationships and by presenting an instantiation with a future Internet architecture whose deployment is

ongoing and increasing [28]. However, SAINT primarily aims to anticipate the future of the Web PKI and distill the

fundamental properties required for authentication in a holistic and federated enviroment. SAINT is thus orthogonal

to IKP and CAPS: it does not aim to reduce MITM attacks in the current Web PKI, and it can be augmented with IKP

and CAPS to provide greater resilience against misbehaving CAs. SAINT also demonstrates how a future Internet

architecture can add a further layer of recovery to the Web PKI: while CAPS makes it easy for a domain to change its

public key in the face of misconfiguration, SAINT allows a trust root (e.g., a CA) to do the same.

1.3.4 Contributions

To summarize, in this thesis I make the following contributions:

• In designing and implementing IKP, I show that by leveraging smart contracts, we can realign incentives to

deter and detect misissued certificates without changing the existing Web PKI.

• In designing and implementing CAPS, I show that by leveraging public certificate logs, we can increase the

resilience of the Web PKI against misbehaving CAs with minimal changes to existing entities and with recovery

from misconfiguration or lost private keys.

• In designing SAINT, I show that by leveraging the business relationships inherent in internetwork routing, we

can maintain the resilience of a PKI, even in a federated model without common roots of trust.

Together these contributions show that minimal changes to existing technology can indeed create practical, effective

improvements to the Web PKI.



Chapter 2

Background and Related Work

In this chapter, I provide an overview of the Web PKI literature related to my work in the remainder of the thesis.

Rather than providing a comprehensive treatment of the literature in this space, my goal is to provide a foundation of,

and context for, the insights and techniques I describe in later chapters.

I begin by briefly explaining foundational features of the current Web PKI. I then describe technical approaches

seen in the literature that aim to improve the security of the Web PKI. I organize these approaches into three classes:

(1) those that aim to detect instances of potential CA misbehavior, (2) those that augment the existing PKI, leaving

current CA operations unchanged, and (3) those that change or replace existing CA operations. I then describe pri-

marily non-technical efforts to understand and realign incentives in the Web PKI as a means of reducing the rate of

CA misbehavior. Finally, I describe PKIs beyond that of the Web, along with the challenges they face, how these

challenges compare to those of the Web PKI, and proposed solutions to these challenges.

2.1 Overview of the Web PKI

I begin with an overview of four foundational facets of the Web PKI. I first describe the information contained in

public-key certificates. Next, I describe the CA ecosystem, including the certificate issuance process, the CA hier-

archy, and organizational bodies. I then list instances of CA failures observed over the years, along with the causes

and impacts of these failures, where they are known. I conclude with a discussion of certificate revocation. While

revocation is not a focus of my thesis, it is an example of a relatively simple fix to CA misbehavior that is rarely used

due to various hurdles, both technical and non-technical.

I do not intend for this section to constitute a detailed overview of the entire Web PKI. For more thorough coverage,

I refer the reader to works such as those by Gutmann [63], Clark and van Oorschot [44], or Yu and Ryan [132].

7
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2.1.1 Public-Key Certificates

The format for public-key certificates used in the Web PKI follows Version 3 of the ITU-T X.509 standard [5], typically

abbreviated X.509 v3, with additional Web-specific clarifications in an IETF RFC [46]. According to these standards,

a public-key certificate contains a minimum of (1) metadata, such as the version of the certificate standard and a CA-

issued serial number, (2) the validity period of the certificate, (3) identity information of the issuer (CA), (4) identity

information of the subject (domain), (5) the public key of the subject, and (6) a signature by the issuer. The subject

identity information is typically given as a DNS name, which, for example, allows a client connecting to a site to verify

that the public key in the certificate is indeed bound to the DNS name of that site.

X.509 v3 certificates support extensions, which provide additional information that clients can use during iden-

tity verification. In the Web PKI, widely-used extensions include Basic Constraints (which allows delegation of CA

powers), Subject Alternative Name (which allows multiple names to be bound to the same public key), Server Name

Indicator (which allows multiple HTTPS sites to reside at the same IP address), and Authority Key Identifier (which

indicates a fingerprint of the issuer’s private key) [46, 55]. Perhaps the most influential extension has been the Cer-

tificate Policies extension [46], which provides support for Extended Validation (EV) certificates. These certificates

represent additional, stringent identity checks performed by the CA during issuance. Web browsers only recognize

EV certificates issued by a small subset of trusted CAs [20].

2.1.2 The CA Ecosystem

When issuing certificates, CAs are responsible for ensuring that the information in the certificate is correct. Typically,

a domain sends the CA a certificate signing request (CSR), which is effectively the certificate that should be issued

to the domain, but self-signed to show that the domain has control over the private key corresponding to the public

key in the certificate [106]. The CA further verifies that the requesting entity controls the domain name(s) in the

certificate [19]. For example, the CA may send a confirmation email to a specified address at the requested domain

name, or, in the case of an EV certificate, send an employee to physically meet with a representative of the requesting

entity [20]. Each CA has a certification practice statement (CPS), which is a legal, non-technical document used to

describe how the CA verifies the subject identity and the procedural steps for issuing certificates.

As mentioned in Section 2.1.1, the Basic Constraints extension allows for the delegation of CA powers. This

delegation system has led to a hierarchy of CAs in the Web PKI that begins with the set of root CAs public keys

configured by browser or OS vendors. The hierarchy of CAs stems from business rather than technical considerations;

in almost all cases, a CA can issue a certificate for any domain in the Web, greatly increasing the fragility of the Web

PKI [109].

The standards for CA operations are set by the CA/Browser Forum, a collection of Web browser vendors and CAs.
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The CA/Browser Forum has produced two major standards: a set of Baseline Requirements that all trustworthy CAs

issuing public-key certificates for the Web should follow [19], and a set of EV Guidelines that all CAs should follow

when issuing EV certificates [20].

2.1.3 CA Failures

Unfortunately, despite the standards and requirements above that govern CA operations, CAs have failed repeatedly,

misissuing certificates that are often subsequently used in MITM attacks. As I describe below, these misissuances

have resulted from a diverse range of failures in the CA operational process and have affected both large and small

CAs across the world. The diversity of these CA failures shows that certificate misissuance is a systemic problem in

the Web PKI.

One way in which CAs have misissued certificates is to perform insufficiently stringent identity checks on a

subject requesting a public-key certificate. For example, in 2001, VeriSign mistakenly issued code-signing certificates

to someone who claimed to be a Microsoft employee [99]. In 2009, a researcher obtained a certificate for live.com

by using the publicly-available email address SSLCertificates@live.com [136].

CAs have also misissued certificates by incorrectly configuring their signing infrastructure, often by using test

configurations in production. For example, in 2013, the CA TURKTRUST mistakenly issued two CA certificates to

entities that should have received a leaf certificate [81]. TURKTRUST claimed that this was due to certificate issuing

profiles that were intended for testing but were used in production [128]. In 2015, Symantec, the CA with the largest

market share at the time, issued unauthorized certificates for several domains [123]. An audit revealed that Symantec

had issued 164 certificates for over 76 domains and almost 2,500 certificates for unregistered domains [121]. As a

result of this failure, Google made the decision to remove Symantec as a trusted root CA from Google products [122].

Some certificate misissuances have resulted from compromises of a CA’s network or administrative accounts. In

2011, a reseller account for the CA Comodo was compromised and used to issue fraudulent certificates for Google,

Yahoo, Mozilla, and various Microsoft sites [3]. Later in 2011, the internal network of the CA DigiNotar was breached,

resulting in more than 200 unauthorized certificates for more than 20 different domains [68]. Due to the way that

DigiNotar subsequently handled the breach, Mozilla removed DigiNotar as a trusted CA [104] and the CA later

declared bankruptcy [4].

One particularly dangerous CA failure is when CAs misissue certificates on the fly to mount MITM attacks. These

attacks often arise from good intentions, such as using privately configured CAs to prevent data exfiltration from net-

works that handle sensitive information, but instead enable MITM attacks against any client that receives the misissued

certificates, even those outside the intended networks. For example, in 2012, TrustWave sold a CA certificate to an

enterprise client who used the corresponding private key to sign fraudulent certificates for any site accessed from the
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client network [107]. In 2013, an intermediate CA rooted in the French CA ANSSI used its certificate to surreptitiously

intercept and inspect encrypted traffic from a network [82]. In 2015, an Egyptian CA called MCS Holdings installed

its CA private key in a MITM proxy device that could be used to intercept arbitrary connections [83].

Some CA failures have been the result of deliberate, malicious behavior rather than an error. For example, in

2014, Lenovo shipped some of their products with the Superfish software preinstalled [8]. Superfish installed a root

certificate on victim machines that allowed the software to generate certificates for MITM attacks on the fly for any site

a user was visiting [61]. While Superfish was intended to inject ads into HTTPS webpages, it allowed the interception

of all encrypted Web communication from affected devices. Sennheiser was the center of a similar scandal in 2018,

installing a root certificate as part of its management and control software for its audio products [77]. Finally, the

CA WoSign was slated for removal from major browsers for two major failures [89]: 1. it was found backdating its

certificates in response to browser deprecation of certificates issued with SHA-1 hashing in the signature, and 2. it did

not disclose the fact that it had acquired StartCom, another relatively large CA. A salient insight from these deliberate

attacks is that CA misbehavior can be profitable, and thus this systemic failure of CAs is a phenomenon that will likely

continue to occur in the future.

2.1.4 Certificate Revocation

A certificate, even a misissued certificate, is considered valid until its expiration, and thus a misissued certificate can

continue to be used for MITM attacks after it has been discovered. One method of mitigating these attacks is through

certificate revocation, that is, the invalidation of a certificate before its expiration. In the current Web PKI, a certificate

can only be revoked by the issuing CA via a signed message, and thus a CA that has deliberately issued an unauthorized

certificate is unlikely to revoke the certificate even if discovered.

Unfortunately, the distribution of these revocation messages has proven to be a major challenge in the Web PKI.

The earliest approach to distributing revocation information was through certificate revocation lists (CRLs), in which

each CA periodically published lists of serial numbers of revoked certificates, along with the time at which each

certificate was revoked [69]. Unfortunately, these lists can only grow, and with the scale of certificates being issued

in the Web, even distributing only the differences from the previous list has proven problematic for CAs. Another

approach is short-lived certificates, in which CAs issue certificates with short validity periods, minimizing the window

of time in which a misissued certificate can be used [114]. CAs have been seemingly reluctant to use this approach,

perhaps due to the far more frequent certificate issuances that are required. Yet another is approach is the Online

Certificate Sptatus Protocol (OCSP), in which clients can contact an additional OCSP server to check whether a

certificate has been revoked [116]. The additional latency incurred by this check can be minimized by using OCSP

stapling [55], an extension to the TLS protocol in which the client requests this information from the domain itself.
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Recent improvements in certificate revoation have focused on making the distribution of revocation information

quicker and more comprehensive. For example, the Chrome browser uses CRLsets [80], which push CRLs containing

misissued certificates for the most frequently visited sites to clients using the browser’s update mechanism. This

solution, however, clearly cannot scale to the entire Web. Thus CRLite [84] proposed to use filter cascades [115],

a data structure based on Bloom filters [35], along with the global view of Web certificates provided by monitoring

solutions (described in Section 2.2), to compactly represent the set of all revoked certificates in the Web.

Despite these improvements, certificate revocation remains a challenging problem in PKIs. With the diversity

of approaches to revocation still in use, clients must obtain the revocation method used as well as the information

necessary to check the revocation status of the certificate.

2.2 Detecting Potential CA Misbehavior

I now describe work that aims to decrease the incidence of MITM attacks by detecting instances of potential CA

misbehavior. Approaches in this area range from simply publicizing certificate issuances to using external information

to highlight possible MITM attacks with varying levels of confidence. Thus, the work in this area focuses on finding

possibly misissued certificates and does not necessarily propose steps to prevent MITM attacks using these certificates.

Many of the approaches used are simple and easy to deploy: they rarely introduce new parties or change existing

protocols for certificate issuance, and are often implemented as browser extensions that can be installed and used

immediately. However, these solutions also suffer from serious drawbacks: (1) they often cannot detect a misissuance

with certainty, leading to false positives, and (2) because they focus on detection, there is usually a window of time in

which a misissued certificate can be used for MITM attacks.

In this section, I describe three major approaches to detecting CA misbehavior: (1) global certificate monitoring,

(2) using past CA behavior, and (3) using domain-provided information.

2.2.1 Global Certificate Monitoring

Global certificate monitoring systems aim to find potential misbehavior by publicizing large numbers of certificates.

Censys [52] is a search engine that leverages large-scale scanning of the Internet to find certificates, primarily by

using ZMap [53], which can scan the entire public IPv4 address space in around 45 minutes. One data set that Censys

provides is the collection of certificates received from TLS handshakes, some dating back to 2013. Google’s Certificate

Transparency (CT) project [85] uses public logs, entities that maintain timestamped records of certificates issued by

browser-trusted CAs. The integrity of these records can be proven using a system based on Merkle Hash Trees [47],

a data structure first used for an efficient digital signature algorithm [98]. Clients using CT do not accept a certificate

unless it is accompanied by one or more signed certificate timestamps (SCTs), which prove that a public log has
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recorded the certificate. Thus any certificate used in a successful MITM attack on a client using CT can be detected

as potentially misissued by someone auditing the public logs. Because Censys and CT provide a near-complete view

of the known Web certificate ecosystem, they have formed the basis of a variety of studies [129] and improvements to

the Web PKI [84].

2.2.2 Using Past CA Behavior

CAge [73] aims to find potential CA misbehavior by examining the top-level domains (TLDs) in certificates issued by

a CA. In particular, a certificate is flagged as suspicious if the CA has never issued another certificate for a subject with

the same TLD. While this approach would have prevented several past instances of CA misbehavior, it suffers from

the possibility of false positives, particularly for new CAs. As another approach, Perl et al. find that few root CAs

trusted by browsers and OSs have ever issued certificates, and recommend distrusting these unused CAs for HTTPS,

thus flagging any certificate issued by these CAs as suspicious [108]. While this approach reduces the attack surface

of the Web PKI, it would not have prevented any previous instances of CA misbehavior, as these all involved CAs who

had issued certificates before.

2.2.3 Using Domain-Provided Information

For a given certificate, the domain named as the subject is the only entity who knows whether the issuance of the

certificate was authorized. Therefore, the domain can provide valuable information for finding potential misissuances

by specifying criteria for certificates it has authorized. One way of doing this is through the Certification Authority

Authorization (CAA) record in Domain Name System (DNS) [64], which allows a domain to specify a set of CAs

authorized to issue certificates for that domain. Before issuing a certificate for the domain, a CA checks this record

to ensure that it has been explicitly authorized to issue the certificate. While CAA is becoming more widely used due

to its simplicity, this approach suffers from two major flaws: 1. it implicitly relies on DNSSEC [23] to protect the

integrity of the CAA record itself, and 2. a malicious CA can simply ignore the record, thus relying on external entities

to monitor both certificates and CAA records to find misissued certificates.

2.3 Augmenting CA Authentication

In this section, I describe approaches that aim to reduce MITM by augmenting the existing CA ecosystem. Thus these

approaches leave the certificate issuance process unchanged, and in general, add extra information that can be used

to corroborate the information in certificates issued by CAs. The client then uses this extra information to determine

whether or not to accept a certificate presented by a domain.
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The extra information in these approaches is typically distributed through publicly accessible locations such as an

external server. The information may be certified by the domain or third party, or simply assumed as trust on first use

(TOFU). As with OCSP, the distribution of this extra information and the deployment of these approaches comes with

challenges. All of these approaches face the signaling problem, that is, the challenge of proving to the client that a

domain has deployed a new approach (and thus has distributed extra information for the verification of a certificate). If

the information is distributed by a third party, then an adversary can block connections to this third party, forcing the

client to choose between simply accepting a domain’s certificate (thus facing a potential MITM attack) or rejecting the

connection (thus rendering the domain inaccessible). For TOFU solutions, some clients face the risk of MITM attacks

between them and a domain if receiving an unauthorized certificate on their first connections to that domain.

2.3.1 Domain-Certified Information

As described in Section 2.2.3, domain-certified information has proven useful in solutions because only the domain

knows which certificates or public keys it has authorized to be bound to its name. Clients can use this information to

reject suspicious certificates, thereby preventing a successful MITM attack. For example, the DNS record created for

CAA (also described in Section 2.2.3) can be used at verification time to check whether the domain authorized the

certificate.

In other systems, domains provide public keys whose corresponding private keys are used during certificate verifi-

cation. For example, in PoliCert [126], domains specify policies that include criteria such as authorized CAs or public

keys, maximum certificate chain length, and the use of wildcard certificates. These policies can be enforced on DNS

subdomains, offering some protection during incremental deployment.

Solutions that use domain-certified information face the risk of misconfiguration. For example, a domain that

misconfigures its policy in PoliCert may become unable to quickly update its policy, its keys, or its certificates, instead

relying on a longer “cool-off period” imposed by the system, as described in AKI [75].

2.3.2 Externally-Certified Information

The use of externally-certified information (i.e., not certified by the domain or CA) avoids the misconfiguration pitfalls

of using domain-certified information. Externally-certified information can also prevent MITM attacks in a relatively

common scenario: an adversary obtains an unauthorized certificate for a domain and uses this certificate to carry out

targeted MITM attacks on certain clients. Thus solutions that rely on externally-certified information typically assume

that a MITM attack only targets certain clients and then relies on a global view to prevent these attempted attacks.

In Perspectives, a system of notary servers periodically establish connections with domains and note the public

keys presented by these domains. Clients can then contact some of these notary servers in parallel with establishing
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a TLS connection with a domain, and only proceed with the connection if a threshold number of notary servers

corroborate the public key that the domain presents to the client [130]. In Convergence, clients’ queries to these notary

servers (i.e., which domains’ public keys are being requested) are kept private: clients forward encrypted queries to a

different notary server, who then forwards this to the desired notary and relays the result back to the client [91].

Solutions that use externally-certified information suffer from several critical shortcomings. These solutions re-

quire the use of several external sources of information, yet there are generally a low number of providers of this

information in practice. In part, this is because there are no incentives for these external entities to operate; they are

often encouraged to do so for the greater good of the system, but receive no compensation for the resources they use

during operation. Additionally, some entity must typically be trusted to maintain a list of the providers of this infor-

mation. For example, a browser extension for Perspectives may include a list of suggested notary servers, and in CT

(described in Section 2.2.1), Google maintains a list of trusted public logs.

2.3.3 Trust on First Use

TOFU solutions are typically simple, yet provide protection against MITM attacks in many common scenarios. In

TOFU solutions, the client assumes that its first connection with a domain is benign, that is, not an attempted MITM

attack. With this assumption, a client can store the fact that a domain uses a certain public key or CA in its authorized

certificates. A similar system called HSTS [66] was used to signal to clients that they should connect to certain

domains over HTTPS.

In terms of protecting against MITM attacks, HTTP Public Key Pinning (HPKP) stores public keys for each domain

on a TOFU basis for a period of time determined by the domain [58]. This information is sent through HTTP, and

clients connecting to the domain in the future additionally validate that the domain’s presented public key matches the

pinned one. The pinned public key can also be used for subdomains. Even if a misbehaving CA issues an unauthorized

certificate for a domain, HPKP can protect against MITM attacks for all clients that have connected to that domain

before and still have the domain’s legitimate public key pinned. Unfortunately, solutions such as HPKP will render a

domain inaccessible if the domain loses access to the private key corresponding to its pinned public key. Moreover,

an adversary can carry out a hostile pinning attack: by pinning clients to an unauthorized key for a long duration, the

adversary can continue to mount MITM attacks for all such clients even after the misissuance has been discovered. To

mitigate this, solutions such as HPKP typically set a maximum on how long any key can be pinned.

2.4 Replacing CA Authentication

In this section, I focus on approaches that aim to reduce MITM attacks by replacing traditional CA-based authentica-

tion or certificate issuance systems. Some approaches that simply aim to augment existing CA-based authentication,
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such as Perspectives or Convergence can be extended to replace traditional CA authentication, but currently still rely

on CA-issued certificates. The approaches I describe here are largely not compatible with the existing PKI.

Solutions that replace the existing CA system provide strong protection against MITM, either because they make it

difficult for a single compromised CA to enable a MITM attack, or they replace CAs entirely. Some solutions have even

gone as far to provide formal proofs of their increased security. However, to date, none of these solutions have seen

widespread deployment due to the massive operational changes required for clients, domains, and CAs. Additionally,

some solutions make larger changes that severely disrupt deployment; for example, changing the namespace from the

existing DNS presents challenges for migrating existing domains to the new namespace.

Below, I describe the two major classes of solutions that aim to replace CA authentication: those based on CAs

(but with a different issuance protocol) and those based on trusted entities that are not traditionally CAs.

2.4.1 CA-Based Solutions

To my knowledge, all of the CA-based solutions in the literature rely on public logs similar to those in CT. In AKI [75]

and its successor ARPKI [30], policy information similar to that used in PoliCert conveys information including which

CAs are authorized to issue certificates for a domain. However, in AKI and ARPKI, this information is included

in the certificates themselves. Because certificates in both AKI and ARPKI rely on signatures by multiple CAs,

the certificate issuance process must be changed, though AKI offers a slightly weaker but backwards-compatible

solution by leveraging X.509 extensions. The security guarantees provided by ARPKI are strong and formally proven:

ARPKI can prevent MITM attacks in the presence of n compromised trusted CAs, where n is a systemwide parameter.

Unfortunately, the deployment of ARPKI requires n CAs to cooperate (and in doing so, deploying ARPKI). Moreover,

both AKI and ARPKI face the signaling problem (described in Section 1.3.2.

2.4.2 Non-CA-Based Solutions

Similarly to solutions discussed in Section 2.3, solutions that aim to replace CAs with other sources of information

about a domain’s public key distribute this information via TOFU mechanisms, the domain, or external entities.

In Trust Assertions for Certificate Keys (TACK), CAs are replaced with a TOFU mechanism very similar to that of

HPKP [92]. Rather than using this mechanism to pin the public keys used in the TLS handshake, a domain specifies

a TACK Signing Key (TSK) that certifies all keys used in TLS handshakes with that domain. This effectively makes a

domain its own CA, and the pinning mechanism is used to establish this “CA key.”

In DNS-based Authentication of Named Entities (DANE), domains use DNS records to communicate information

about their public keys [67]. Domains create a record with type TLSA which contains information, including public

keys or CAs to expect from the domain. Thus DANE is compatible with the existing CA system, but also provides a
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way to “pre-pin” a public key to a domain. DANE offers strong protection against MITM attacks, since an attacker

would have to alter the TLSA record to succesfully complete any MITM attempt, and moreover, domains in DANE

that lose access to a private key can easily change their own TLSA record to avoid becoming inaccessible to clients.

However, DANE implicitly relies on DNSSEC to protect against MITM attacks, and thus its deployment implicitly

relies on that of DNSSEC as well. Because DNSSEC is not yet widely deployed, the deployment of DANE has

similarly narrow in scope.

Domains can also use a variety of external entities to convey public key information. Sovereign Keys takes a

similar “pre-pinning” approach to DANE, but rather than store the information in DNS, introduces a new entity called

a timeline server to store this information [57]. The timeline server is a precursor of public logs in CT and maintains

an append-only list of bindings between a domain’s name and a sovereign key used to certify all of the domain’s public

keys. In Namecoin1 and Blockstack [22], a domain’s public keys are stored in a blockchain. As with DANE, these

solutions rely on the deployment of their underlying technologies and thus have not seen widespread use.

Namecoin and Blockstack, which introduce a new namespace, face the challenge that particularly meaningful or

valuable names in DNS may be claimed in the new namespace by entities other than those that own the name in DNS.

Indeed, a majority of the names in Namecoin seemed to be held by speculators, and only a few names pointed to

sites with substantive content [72]. Sovereign Keys proposed using certificates or DNS records to establish TSKs,

which could also work in Namecoin and Blockstack, but this approach may then increase the occurrences of certificate

misissuance in the Web PKI, as malicious parties attempt to gain control of potentially valuable names in a new

namespace.

2.5 Realigning Incentives in the Web PKI

While the previously described solutions have focused on technical approaches to improving the Web PKI, there have

also been primarily non-technical measures that aim to understand and improve the underlying incentives of the Web

PKI. By designing mechanisms that decrease the benefit of a misissued certificate or increase the cost of successfully

mounting a MITM attack, we can naturally discourage CA misbehavior, and by decreasing the cost and work required

to deploy these mechanisms, we can naturally encourage deployment.

The need to realign incentives in the Web PKI has been documented in the literature. Economic study of the Web

PKI has shown that incentives are woefully misaligned, both from a market and a security perspective [26]. Moreover,

while simply revoking misissued certificates or misbehaving CAs can prevent MITM attacks, these approaches have

not been adopted due to insufficient incentives. PKISN is a system motivated by the “collateral damage” that occurs

when legitimate certificates issued by a misbehaving CA are invalidated because the CA was revoked as a trusted

1https://namecoin.info
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entity [125].

While the literature on incentives in the Web PKI is somewhat scant, it has produced several valuable observations

regarding the viability of improvements to the Web PKI. An early analysis of metrics for public-key authentication

proposed the use of CA-offered insurance as an incentive-oriented solution to evaluating confidence in a public-key

certificate [111]. My work on Certificates-as-an-Insurance (CaaI) examined this idea in the context of the Web PKI,

proposing the use of an insurance-like scheme to realign misaligned incentives [93]. As motivation for this approach,

I observed that CAs largely act as the arbiters of public-key validity in the Web without suffering the consequences

of MITM attacks, further corroborating the lack of incentives in the Web PKI. Regarding deployment, I qualitatively

analyzed the mutual influences among clients, domains, CAs, and browser vendors in the Web PKI, and concluded that

deployment of improvements to the Web PKI, particularly those using public logs, is best driven by browser vendors

and CAs [96]. These observations provide support for the idea that realigning incentives can be beneficial for both

security and deployment in the Web PKI.

2.6 PKIs Beyond the Web

While I have focused on research challenges in the Web PKI, other applications fundamental to the Web rely on PKIs.

The technical challenges in these PKIs offer valuable insights into general PKI design, and highlight problems that we

may have to consider as the Web PKI continues to evolve. Therefore, in this section I describe PKIs for several other

technologies: naming, routing, end-entity public-key authentication (hereafter simply end-entity authentication), and

code signing. I also discuss the challenges of unifying multiple PKI, primarily by describing SCION, a future Internet

architecture whose public-key authentication component seeks to unify PKIs for naming, routing, and end-entity

authentication.

2.6.1 Naming

By default, records in DNS are not authenticated and can thus be forged by attackers such as malicious DNS resolvers

in a class of attacks called DNS hijacking. As with the hostile pinning attack described in Section 2.3.3, DNS hijacking

can be particularly vexing because DNS responses are typically cached for performance, meaning that a hijacked

resource record could persist long after the attack is discovered, an attack called DNS cache poisoning. In an effort

to prevent these attacks, DNSSEC [23] provides new resource records [25] and modifies the DNS protocol [24] to

protect the integrity of DNS records for domains. These records include signatures on sets of resource records as

well as delegation of signing authority to others. Similarly to verification in the Web PKI, clients check a chain of

signatures on resource records, anchored at the DNSSEC root key-signing key (KSK).
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The nature of DNS has played a crucial part in the design of DNSSEC, which has highlighted several important

challenges of designing and deploying a PKI for naming. Because the Internet Corporation for Assigned Names and

Numbers (ICANN) manages the DNS root zone, it also manages the DNSSEC root KSK. Thus DNSSEC follows the

monopoly trust model, in which a system has only a single root of trust [109]. While ICANN, previously controlled by

the US Department of Commerce, has taken steps to diversify both its governance [21] and control of its root key [51],

the root KSK remains a single point of failure for DNSSEC. Because naming inherently aims to present a globally

consistent mapping to clients, it is likely that any PKI for naming will face the challenge of protecting such a root key

and providing mechanisms to recover from catastrophic loss or compromise of this key.

In both design and practice, DNS has also influenced the major challenges in the deployment of DNSSEC. Deploy-

ing DNSSEC is as simple as creating the appropriate resource records. However, the hierarchy of delegation from the

DNSSEC root KSK follows the hierarchy of DNS zones, meaning that only zones whose parent zones have deployed

DNSSEC can themselves serve DNSSEC records. While much of the global TLDs in DNS have been signed and

thus support DNSSEC in theory [119], only a tiny fraction of DNS records are actually validated with DNSSEC [43].

Moreover, the use of DNS registrars to manage DNS and DNSSEC, as well as the massive outsourcing of DNS

nameservers [110], have made support for DNSSEC mediocre at best, both for servers and clients [42].

2.6.2 Routing

Internet routing is secured by BGPsec [87], which uses chains of signatures to protect the integrity of internetwork

routes. BGPsec uses the Resource Public Key Infrastructure (RPKI) to identify the networks, or ASes, that create and

distribute these routes, and to certify ownership of public IP address space [86]. Specifically, the RPKI uses resource

certificates [70] that follow the X.509 standard and bind a public key to a set of IP addresses or to an AS number

(ASN) via certificate extensions [88]. As with DNSSEC, the root of this PKI is a branch of ICANN called the Internet

Assigned Numbers Authority (IANA). Because RPKI also follows the monopoly trust model, its root key is similarly

a single point of failure for the system.

RPKI also suffers from challenges unique to routing PKIs. To verify routes and resource certificates, ASes must

fetch additional information from RPKI repositories. However, to reach these repositories, ASes must use routes that

may be unverified, leading to a circular dependency. This problem is exacerbated by the risk of whacking, which

occurs when revocations of resource certificates invalidate entire subtrees in the RPKI hierarchy [45]. The perils of

the hierarchical nature of RPKI and its use for routing (and thus for communicating with other entities) illustrate that

routing PKIs must pay particular attention to revocation and updates of information.
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2.6.3 End-Entity Authentication

While the Web PKI is the most widely used PKI for end-entity authentication, it overlooks some challenges in design-

ing a PKI for end-entity authentication. For example, CONIKS [97] presents desirable properties of identity providers

such as those that certify users’ public keys in end-to-end messaging applications: 1. ability to monitor keys bound

to one’s own name, 2. privacy with respect to other users of the same identity provider, and 3. privacy with respect to

how many users a provider has. Thus in a system such as CONIKS, many of the solutions specific to the Web PKI,

such as those that rely on a global view of all certificates, may not be feasible. Moreover, end-entity authentication

may see a future in which many identity providers exist, leading to a system in which a user may have public keys at

many such providers and must “link” these keys in some way.

Unfortunately, work on negotiating authentication among a federated system with multiple namespaces and providers

has stagnated in recent years. Previous approaches have included constructing a path of authentication through names-

paces [34], using delegated authority to reason about a subject’s authority [79], and strategically placing peer links of

trust between hierarchies [60].

2.6.4 Code Signing

Code signing is used primarily by OS vendors to certify the identity of software publishers, thus allowing users to have

greater confidence in the software shipped by these publishers. Code-signing PKIs are thus hierarchies of certificates

rooted at a OS vendor. Unfortunately, these PKIs have long been understudied and poorly understood. Recent work

has endeavored to study security incidents that arise from incorrect behavior in these code-signing PKIs [74], but this

comes with challenges: in particular, there is no widely-known set of “root code-signing certificates” and no known

way of scanning a network device to find code-signing certificates.

2.6.5 Unifying PKIs

Scalability, Control, and Isolation On Next-generation networks (SCION) is a future Internet architecture that aims

to improve interdomain routing in the Internet [134]. SCION divides the Internet into routing units called trust do-

mains (TDs), and uses this division to prevent routing failures or misbehavior in one TD from affecting routing in

other TDs. While SCION originally aimed to provide only a PKI for routing messages, it now aims to provide public

key authentication for naming and end-entity authentication as well, unifying the trust roots of these PKIs into one

system [28]. Unfortunately, there are significant challenges to unifying PKIs for naming, routing, and end-entity au-

thentication, because as described above, these PKIs have drastically different features and requirements. In particular,

the mechanisms for updating or revoking the public keys of trust roots will need to consider the frequency and latency

requirements of all of these PKIs. Moreover, the division of the Internet into TDs means that a unified PKI for SCION
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will be a federated system in which each TD will have its own trust roots and must bridge their authentication systems

in some way. I will describe such a system in greater detail in Chapter 5.



Chapter 3

Reducing MITM Attacks through Decentralized

Automated Incentives

In this chapter, I describe how we can reduce MITM attacks by realigning incentives in the Web PKI. In particular,

I explore how we can encourage CAs to avoid misissuing certificates and how we can more quickly find misissued

certificates. As I describe in Section 1.3.1, detectors of misissued certificates are not incentivized to do so, and even

when such a certificate is publicized, distrusting the CA is the only way, however disruptive, of preventing MITM

attacks. Thus I explore how we can offer incentives for, and automated handling of, reports of misissued certificates,

to ensure that misbehaving CAs are more reliably caught and punished. This endeavor prompts several important

questions. How can we formally define what it means for a CA to behave correctly? What incentives can we offer

CAs and detectors? What mechanisms are necessary for automating the handling reports of misbehavior, and what

benefits does automation provide?

As a first step towards answering these questions, I propose the Instant Karma PKI (IKP), an automated platform

for defining and reporting CA misbehavior. IKP incentivizes CAs to correctly issue certificates and detectors to quickly

report unauthorized certificates [94]. IKP allows domains to specify policies that define CA misbehavior, and CAs to

sell insurance against misbehavior. As part of the design of IKP, I propose a formal model for incentive analysis to

show that IKP provides positive financial incentives for CAs and detectors and punishes misbehaving CAs. I further

show that with our incentive structure, rational CAs cannot profit financially from misbehavior, even when colluding

with other domains or detectors.

Concretely, for the TLS Web PKI, IKP allows participating HTTPS domains to publish domain certificate policies

(DCPs), policies that specify criteria that the domains’ TLS certificates must meet. Any violation of these policies

constitutes CA misbehavior. IKP allows participating CAs to sell reaction policies (RPs) to domains, which specify

financial transactions that execute automatically when an unauthorized certificate is reported. Domains affected by

21
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the certificate, the detector, and the CA receive payments via these transactions. The payment amounts are set such

that CAs expect to lose money by issuing unauthorized certificates, and detectors expect to gain money by reporting

unauthorized certificates. Information about CA misbehavior and RP offerings are public, allowing domains to use

this information as an indicator of how likely a CA is to maintain high security and thus protect against unauthorized

certificate issuance.

In summary, I make the following contributions in IKP:

• By building on certificate policies of previous work, I show through my design and implementation of DCPs

that IKP can detect many different types of certificate misissuance.

• By modeling and analyzing RP payouts under different scenarios of misbehavior, I show that IKP provides

incentives for rational entities that discourage misbehavior such as the misissuance of certificates, even in the

face of collusion.

• By implementing IKP in Ethereum, I show that we can provide these incentives without having to trust a cen-

tralized third party or waiting for manual handling of certificate reports.

• By evaluating the cost of computation in Ethereum, I show that the deployment and operation of IKP is inex-

pensive compared to the cost of existing certificates.

I begin this chapter by formulating the problem that I aim to solve with IKP, and explain the design of IKP in

detail. I then present an analysis of the incentives in IKP. To show how IKP can be realized in practice, I first present a

background on cryptocurrencies and smart contracts, and then describe an Ethereum-based instantiation of IKP. I then

evaluate the feasibility of deploying IKP by analyzing my implementation as well as data from the Web PKI market.

I end with a discussion of limitations and future work of IKP, as well as lessons learned from designing this system.

3.1 Problem Definition

In a nutshell, the goal of IKP is to provide incentives for correct CA behavior (i.e., due diligence when issuing certifi-

cates) and automation in processing reports of unauthorized certificates from detectors. To achieve this goal, we must

design a system that can 1. define CA misbehavior, 2. evaluate whether a given certificate constitutes misbehavior

according to the above definition, 3. specify reactions and payments that will occur in response to CA misbehavior,

4. process reports from detectors regarding unauthorized certificates, and 5. execute these reactions and payments auto-

matically after a CA has misbehaved. Achieving these goals allows us to deter CA misbehavior by choosing payments

that provide the appropriate incentives for correct CA behavior and for reporting unauthorized certificates. These in-

centives also increase the number of entities monitoring CAs and thus the probability that an unauthorized certificate

is quickly detected. Automatic execution of reactions and payments ensures “instant karma” in IKP: detectors quickly

receive rewards and CAs quickly receive punishment.
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3.1.1 Desired Properties

A system achieving the above goals should have at least the following properties:

• Public auditability: all information required to detect an unauthorized certificate is publicly accessible.

• Automation: once CA misbehavior has been reported and confirmed, reactions should automatically proceed

without requiring additional information or authorization.

• Incentivization: entities that expose CA misbehavior have a positive expected return on investment (ROI).

• Deterrence: CAs have a negative expected ROI for issuing an unauthorized certificate for a domain, regardless

of the entities they collude with.

As secondary goals, the system should achieve decentralization (i.e., the absence of a central trusted entity in the

system) and MITM prevention (i.e., the rejection of all unauthorized certificates by clients).

3.1.2 Adversary Model

Our adversary’s goal is to issue a rogue certificate while maintaining a positive expected ROI. The adversary may

access the long-term private keys of one or more CAs (and can thus issue arbitrary certificates from these CAs),

as well as those of colluding domains. The adversary may take any action within the PKI (e.g., issuing/revoking

certificates) or within IKP (e.g., issuing RPs or reporting certificates) to obtain a net positive ROI among all entities it

controls. We assume that the adversary cannot break standard cryptographic primitives, such as finding hash collisions

or forging digital signatures. The adversary also cannot compromise the private keys of arbitrary domains. In our

blockchain-based instantiation, we further assume that the adversary cannot control a majority of hashing power in the

blockchain network.

3.2 Overview

In this section, we provide an overview of the key features of IKP. We begin by introducing its main components, and

then describe the main functions of the system.

3.2.1 Architecture

IKP is an extension of the standard TLS architecture, and thus as in TLS, CAs issue certificates to domains, whose

servers carry out TLS handshakes with clients. As shown in Figure 3.1, IKP introduces two new entities: the IKP

authority and detectors.

The IKP authority is responsible for the core functionality of IKP. Specifically, the IKP authority maintains infor-

mation on CAs such as identifiers (e.g., DNS names), public keys to authenticate to the IKP authority, and financial

account information at which to receive payments. The IKP authority also stores domain certificate policies (DCPs),
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Figure 3.1: Overview of the entities and functions in IKP.

which are provided by domains and can be used to computationally determine whether a given certificate is authorized

for a domain, and reaction policies (RPs), which specify automatic reactions that occur if an unauthorized certificate

is reported. The IKP authority is responsible for executing these reactions. The IKP authority also maintains a balance

called the global fund, which can send and receive payments in IKP.

Detectors are responsible for reporting suspicious certificates to the IKP authority. They monitor certificates issued

by CAs, and report any certificates they deem to be unauthorized. Any entity, be it a CA, domain, or client, can

detect and report CA misbehavior. Each detector must have a financial account at which it can receive rewards for

successfully reporting an unauthorized certificate.

Entities in the standard TLS architecture have additional responsibilities. CAs who have registered with the IKP

authority can issue RPs, thus acting as a sort of “insurer” against CA misbehavior. Domains register DCP with

the IKP authority, providing a public policy that defines CA misbehavior (i.e., issuing an unauthorized certificate).

While Figure 3.2 shows intuitive examples of a DCP and a RP, the logic of both DCPs and RPs is determined by

machine-understandable policies specified by the domain and by the CA, respectively, providing flexibility in addition

to automation and financial incentives.

3.2.2 Operation

We now summarize the actions that occur in IKP, some of which are shown in Figure 3.2.

CA registration A CA registers its information with the IKP authority. Specifically, the CA registers its identifier,

financial account information, one or more public keys, and an update policy as shown in Table 3.1. To update its

registration, the CA must provide signatures on the update with a threshold number of its update private keys.
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Figure 3.2: Sample interactions between entities in IKP. As in Figure 3.1, yellow denotes a CA and purple denotes a
domain.

Table 3.1: Explanation of fields in a CA registration.

Field Use

CA name identify CA
Valid from specify start period of information validity
Payment account receive payments for CA
Public keys list of CA’s public keys
Update keys authorize updates to this information (default: empty)
Update threshold threshold of signatures required for updates (default: 1)

Domain registration A domain registers a DCP with the IKP authority. Specifically, the domain registers its DNS

name, one or more public keys, financial account information, and a checker program that decides whether a given

certificate is authorized for the domain.

RP issuance A registered domain negotiates the terms of a RP with a registered CA. The RP contains the domain

name, CA identifier, validity period, a reference to the domain’s DCP, and a reaction program that contains the

payments that occur in response to CA misbehavior. The domain pays the CA to issue the RP, with the IKP authority

acting as a mediator to ensure a fair exchange.

Certificate issuance A domain obtains a certificate from a CA. The CA does not have to be the same one that issued

the domain’s RP, and does not need to have registered with the IKP authority. Thus certificate issuance occurs in the

same way as in TLS.

Misbehavior report A detector sends evidence of CA misbehavior (usually an unauthorized certificate) and its

financial account information to the IKP authority. The detector must pay a small reporting fee to prevent detectors
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from reporting all certificates they see. We also use a commitment scheme to prevent frontrunning of detector reports.

The IKP authority runs the checker program on the certificate to determine whether the certificate is authorized.

Reaction If a reported certificate is unauthorized, the IKP authority triggers a reaction by running the reaction

program specified in the domain’s RP. The reaction program usually executes financial transactions, which are sent to

the financial accounts of the CA, domain, and detector as appropriate.

The use of checker programs and reaction programs provide expressivity and extensibility to policies and reactions

in IKP. As we describe in Sections 3.3 and 3.4, DCPs can provide features such as CA whitelisting, public-key pinning,

and short-lived certificate enforcement, while RPs can provide financial payouts to parties beyond the CA, domain,

and detector.

3.3 Domain Certificate Policies (DCPs)

In this section, we take an in-depth look at domain certificate policies. In particular, we describe the features and

format of DCPs, and present several examples of DCPs that enable various useful defenses against CA misbehavior.

We conclude this section by describing the relevant operations for registering and updating DCPs.

3.3.1 Design Principles

We begin by describing the fundamental principles on which we base our design for DCPs. In particular, we iden-

tify three main design principles: (1) policies are domain-specified, (2) policies offer sufficient expressiveness, and

(3) policy information is public, authenticated, and consistent. These principles help ensure that we can use DCPs

to determine certificate authorization (i.e., whether a certificate is considered authorized or not for a given domain)

securely and effectively.

1) Domain-specified policies The information used to determine certificate authorization is specified by that do-

main itself. We observe that only domains know with certainty which certificates they have and have not authorized.

Therefore, to enable others to deem certificates unauthorized as opposed to simply suspicious, domains must specify

policies governing their certificates. By adhering to this principle, we can ensure that any entity with a domain’s policy

information can be a detector and find unauthorized certificates for that domain.

2) Policy expressiveness The information used to determine certificate authorization is expressed in a Turing-

complete language and can thus represent arbitrarily complex policies. Proposed certificate policies in the litera-

ture [75, 126] allow domains to specify only a small set of parameters (e.g., governing how their certificates should be
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Domain Certificate Policy (DCP)
Domain Name: a.com
Valid From: 17 Aug 2016 0:00:00 UTC
Version Number: 1
Payout Account: AB01 2345…
Update Keys: 0xdd8cb5a2…
Update Threshold: 1
Checker Program: 0xf4956b3e…

a.com
Accounts:
• AB01 2345…

Keys:
• 0xdd8cb5a2…

Checker Program (0xf4956b3e…)
approved = [CA A, CA B]
def check(cert):
  issuer = parse(cert).issuer
  if (issuer in approved)
    return true
  else
    return false

Figure 3.3: A sample DCP with a checker program written in pseudocode.

Table 3.2: Explanation of DCP fields.

Field Use

Domain name identify domain for which the policy is active
Valid from specify start period of DCP’s validity
Version number identify version of this domain’s DCP
Payment account receive payments for domain
Checker program implement the DCP’s certificate policy
Update addresses (default empty) authorize DCP updates
Update threshold (default 1) thresh. of signatures required for DCP updates

verified or how errors in the TLS handshake should be handled). These policies cannot be changed in a backwards-

compatible way without upgrading all client browsers and possibly all existing domain policies. Moreover, such

policies do not enable the automation of reaction to CA misbehavior. IKP provides a general format for DCPs by al-

lowing domains to specify executable code that determines whether or not a given certificate is authorized and specifies

concrete reaction to misbehavior.

3) Public, authenticated, and consistent information The information used to determine certificate authorization

is stored in a publicly accessible location, is globally consistent, and its authenticity can be verified by the public.

Publicly accessible information ensures that all potential detectors can find unauthorized certificates using a domain’s

policy information. Globally consistent information ensures that all potential detectors see the same policy for a

domain and can thus determine with certainty whether a certificate for that domain is authorized.
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3.3.2 DCP Contents

We now describe the contents of a DCP. Figure 3.3 shows a sample DCP, and Table 3.2 describes the fields of a DCP.

In short, a DCP contains identifying information for the domain, (its DNS name and financial account information)

and for the policy (the Valid From and Version Number fields). A DCP also contains the policy itself, namely,

the threshold of signatures required to authorize changes to the DCPs (the update keys and update threshold) and the

checker program.

The Valid From and Version Number fields of a DCP are used in part to help determine whether or not a

certificate constitutes CA misbehavior. In particular, each RP is tied to a specific version of a domain’s DCP, and a

given certificate only triggers a RP if 1) the certificate’s validity period began after the DCP’s Valid From time, 2) the

RP’s Version Number field matches that of the DCP, and 3) the checker program deems the certificate unauthorized

(as described below). Because the DCP defines misbehavior by the output of the checker program, an update to a

DCP only increments the version number if the checker program is changed. This prevents a domain from having to

renegotiate a RP for changing DCP fields unrelated to its policy, such as its financial account information.

The update keys and update threshold protect a domain against the loss or compromise of a private key. We allow a

domain to update its DCP by authorizing the update with signatures from a threshold of its update keys. Because DCPs

are crucial to determining CA misbehavior, domains should protect against unauthorized updates with a sufficiently

high update threshold. Our recovery system is not foolproof; a domain is ultimately responsible for managing its own

recovery addresses. However, our approach provides a tunable level of security and recoverability for each domain.

In order to guard against a mass loss or compromise of its private keys, a domain can store some of its private keys

offline, with trusted peers, or even with a large group of authorities such as one provided by the CoSi protocol [124].

3.3.3 Sample Checker Programs

We now present example checker programs in IKP. These examples represent a range of existing proposals to improve

the TLS PKI and demonstrate the flexibility of IKP’s checker programs. For the following examples, we assume

the use of X.509 v3 certificates [46], but we note that checker programs can define their own formats or handle

multiple formats, allowing different certificates formats to coexist in IKP. We also assume access to a method to parse

a certificate and extract the contents of its fields.

CA whitelisting A checker program can enforce the use of certain CAs by extracting the Issuer Name field of the

certificate and checking whether the issuer is on a whitelist of CA names. In order to enforce the use of a specific set of

CA keys, the checker program can instead extract the Authority Key Identifier extension for X.509 and check

the identifier against a whitelist. In either case, the program first defines a whitelist and then performs the appropriate
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check.

Public key pinning A checker program can implement a form of public key pinning by extracting the Subject Public Key Info

field of the certificate and checking this key against a whitelist. Similarly to above, the program defines the whitelist

and performs the appropriate check. We note that unlike other key pinning solutions, no trust on first use is necessary

because DCPs are public and consistent and thus the client can simply check the domain’s DCP for the key pins.

Short-lived certificates A checker program can enforce the use of short-lived certificates [127] by checking that a

certificate’s validity period does not exceed a given maximum value. This can be done by extracting the Not Before

and Not After fields from the certificate and calculating the time difference to determine the length of the certificate’s

validity period, and checking that this length is less than a specified maximum allowable value.

Wildcard restrictions A checker program can prevent the use of wildcard certificates by simply extracting the

Subject Name field and checking that the wildcard character * does not appear.

Certificate Transparency A checker program can implement criteria similar to those of Certificate Transparency [85]

by checking for proof that the certificate has been publicly logged. The checker program first defines a list of trusted

logs. The program can then query the logs directly or take a proof from a trusted log as input in addition to the

certificate itself.

Combining checker programs An additional benefit of public consistent DCPs is that domains can see other

checker programs and model their own from these programs. We additionally allow domains to call other checker

programs. This feature allows a domain to write a checker program that simply calls a set of checker programs, thus

allowing the domain to combine existing policies. For example, a domain can specify that all criteria in the called

checker programs must be fulfilled by requiring that all referenced programs deem a certificate authorized, or specify

that some threshold of referenced programs must do so by counting the number of referenced programs that deem the

certificate authorized.

3.3.4 DCP Operations

We now describe relevant operations for a DCP. Specifically, we cover the initial registration of a domain’s DCP as

well as the update process.

DCP registration A domain D requests to initially register its DCP in the blockchain by sending a message to

the IKP authority containing its DNS name, the contents of its initial desired DCP, and information to authenticate
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itself to the IKP authority. Specifically, to authenticate itself, D provides a signature on its name and DCP with 1. its

DNSSEC [23] private key, as well as a DNSSEC signature chain to the ICANN root zone key, or 2. its TLS private

key, as well as a certificate chain from the corresponding public key to a root CA key. This authentication method,

which we call the use of a bootstrap proof, provides a way for D to show control over its identifier and public key

by leveraging an existing PKI. Because IKP is tied to TLS and hence to DNS names, we can use bootstrap proofs to

protect DCP squatting by malicious entities that do not own the names they claim.

It is safer to use DNSSEC-based bootstrap proofs, as DNSSEC has had far fewer compromises than TLS and only

requires a single root key to be stored by the IKP authority, However, in a measurement we conducted using data

from Censys [52], we found that only 649 of the top 100,000 most popular domains use both DNSSEC and HTTPS.

Therefore, few domains will be immediately able to reap the benefits of using DNSSEC-based bootstrap proofs, though

a wider deployment of DNSSEC will make this option more readily accessible to domains.

Using TLS-based bootstrap proofs requires the IKP authority to select a list of accepted root CA keys, and also runs

the risk that an unauthorized certificate can be used to register a DCP. To address the first problem, the IKP authority

could simply select a set of 28 root certificates which are present in most popular desktop and mobile operating systems

and web browsers [108]. To address the second problem, we can allow domains to override an existing registration

by submitting multiple independent bootstrap proofs. This approach makes registration easy for most domains, but

allows a domain whose registration is stolen by an adversary with an unauthorized certificate to recover by obtaining

an additional certificate.

We note that bootstrap proofs can make it more difficult for legitimate domains to register themselves with the

IKP authority, and are not foolproof. However, given the crucial role DCPs play in IKP, we need to protect them from

being easily claimed and held by adversaries. We also do not envision bootstrap proofs as a long-term solution, as

they are based on PKIs that suffer from the problems that we aim to solve with IKP. We can instead configure the IKP

authority such that as deployment increases, the bootstrap proof requirement can be relaxed or eliminated.

Updates A domain D can update its information by sending a transaction to the IKP contract with its new DCP

or registration and signatures from a threshold number of its update keys. The IKP authority verifies each of these

signatures, checks that the number of signatures is at least the threshold number required by D’s current DCP, and if

so, updates D’s DCP in its registry. Recall that the IKP authority only increments the version number of D’s DCP if

the checker program changes.
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3.4 Reaction Policies (RPs)

In this section, we take an in-depth look at reaction policies. In particular, we begin by explaining the principles

behind the design of RPs, and describe the contents of RPs. We then describe payout reaction programs, which

provide financial incentives in IKP. We conclude this section by describing the relevant operations for issuing RPs,

selecting the relevant RP for a domain, and executing a RP.

3.4.1 Design Principles

We begin by describing the design principles upon which we base our design of RPs. In particular, we identify

three main design principles for RPs: (1) certificate-independence, (2) policy-adherence, and (3) single-use. These

principles help ensure that reactions to misbehavior do not cause perverse incentives or unintended consequences. We

next discuss the three principles in detail.

1) Certificate-independence A RP should be decoupled from public-key certificates. Like certificates, RPs are

negotiated between CAs and domains. However, certificates and RPs are independent: CAs issue RPs in addition to

certificates, and therefore domains can obtain certificates and RPs from different CAs. RPs provide a relying party

with a measure of confidence in a domain’s certificates, and serve a fundamentally different role from certificates in

the IKP ecosystem. In particular, a RP protects a domain against any unauthorized certificate issuances during the

lifetime of the RP.

2) Policy-adherence A RP should be bound to a specific policy for a domain. In particular, since a DCP may change

over time, a RP should represent a reaction to violations of a specific version of a domain’s DCP. Binding a RP to

a specific DCP version ensures consistency between the criteria for certificate authorization and the reaction to the

violation of those criteria. This principle also implies that a domain must have a DCP before obtaining a RP.

3) Single-use A RP should be limited to a single instance of CA misbehavior. Because RPs may execute financial

payments for which funds must be available, enforcing single-use RPs helps ensure the availability of such one-

time resources for each instance of misbehavior. Single-use RPs also prevent adversaries colluding with domains or

detectors from repeatedly triggering a RP to obtain payouts. Thus each time a CA issues a certificate that violates a

domain’s DCP, one of the domain’s RPs is triggered and then terminated. We note that domains can have multiple

RPs at a given time to protect against multiple instances of CA misbehavior. However, we anticipate that in the vast

majority of cases, a domain will only have a single RP at a given time.
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Reaction Policy (RP)
Domain Name: a.com
Issuer: CA C
Valid From: 18 Aug 2016 0:00:00 UTC
Valid To: 17 Aug 2017 23:59:59 UTC
DCP Version Number: 1
Reaction Program: 0x5f8cde12…

DCP
Domain Name:
  a.com
Valid From:
  17 Aug 2016 0:00:00 UTC
Version Number:
  1
…

Payout Reaction Program (0x5f8cde12…)
Affected-Domain Payout: $100
Termination Payout: $10
Detection Payout: $50

Figure 3.4: A sample RP with a payout reaction program. The domain name and version number in the RP must match
those of the DCP, and the start of the RP’s validity must be after that of the DCP.

Table 3.3: Explanation of RP fields.

Field Use

Domain name identify domain for which the RP is active
Issuer CA who issued the RP
Valid from specify start period of RP’s validity
Valid to specify start period of RP’s validity
Version number version of domain’s DCP used to trigger RP
Reaction program implement a response to CA misbehavior

3.4.2 RP Contents

We now describe the contents and format of RPs. Figure 3.4 shows the format of a sample RP, and Table 3.3 describes

each field of a RP. Like a DCP, a RP contains identifying information for the domain as well as for the issuing CA.

A RP also specifies a validity period and identifies the version of the domain’s DCP for which it is active. Finally, the

reactions that take place are specified as an address to a contract.

A reaction program contains code that can be executed by the IKP authority when a certificate meeting certain

criteria is reported and the relevant domain’s checker program deems the certificate to be unauthorized. As described

in Section 3.4.3, we expect reaction programs to execute financial transactions. After a reaction to CA misbehavior is

triggered via a reaction program, the RP containing the reaction program is destroyed.

A reaction program defines the following three methods: (1) trigger, which executes when an unauthorized

certificate is reported for the domain named in the RP, (2) terminate, which executes upon request from a domain

whose CA issued an unauthorized certificate, and (3) expire, which executes upon request from a CA after the RP

has expired.

We note that a RP has a start and end time for its validity, rather than only a start time as a DCP does. A RP, like

a certificate, has a limited validity period, but can be prematurely terminated if the issuing CA misbehaves. If a RP is
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terminated for any reason, the specified amount of funds is split between the domain and the issuing CA based on the

fraction of the RP’s validity period that has passed. The exact payouts are detailed below.

3.4.3 Payout Reaction Programs

We now provide a framework for payout reaction programs, which specify a series of financial payments that execute in

response to CA misbehavior. Financial payments are important to achieving incentivization, since financial payments

be quantified and analyzed. Our goal in designing a framework for this class of reaction programs is to provide a

general model for who should receive payments under different circumstances of misbehavior.

We identify three relevant parties who may receive payments if a method from a payout reaction program is

executed: (1) the domain, which we denote by D, (2) the certificate-issuing CA, which we denote by C, and (3) the

detector, which we denote by d. As Figure 3.4 shows, a payout reaction program specifies three payouts: affected-

domain payouts, termination payouts, and detection payouts. To ensure that the IKP authority has a sufficient balance

for these payouts, an amount E is sent to the global fund when the RP is issued.

Affected-domain payouts The affected-domain payout (written a) is paid to domain D in the event that a registered

CA issues an unauthorized certificate in D’s name. The payout compensates D for the security risk it incurs by having

an unauthorized certificate that could be used in a MITM attack. The domain does not receive this payout in case of

misbehavior by an unregistered CA.

Termination payouts The termination payout (written t) is split between domain D and CA C if D terminates the RP.

The termination payout compensates D for lost trust in C after its misbehavior and contributes to the costs of obtaining

a new certificate and/or RP. The split of the termination payout between D and C is proportional to the amount of time

left in the RP’s validity. To ensure that D receives some minimum amount of funds, we set a systemwide parameter τ

that D is guaranteed to receive. Letting α ≤ 1 denote the fraction of the RP’s remaining validity, we then have

tD = α · (t− τ)+ τ (3.1)

Because 0≤ α ≤ 1, we see that tD is bounded by

τ ≤ tD ≤ t (3.2)

We note that although C does receive funds from the termination payout in spite of its misbehavior, we show in

Section 4.2 that C loses funds compared to if it had behaved correctly.
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Detection payouts The detection payout (written δ ) is the amount paid to whomever reports an unauthorized cer-

tificate to the IKP contract. The payout provides an incentive for entities to monitor CA operations in search of unau-

thorized certificates. Domains can negotiate their own detection reward; high-profile domains may choose to specify

a higher detection payout than domains for which security is less important. The RP specifies the detection payout for

misbehavior by a registered CA. If a detector reports misbehavior by an unregistered CA, the detector instead receives

a smaller payout amount m. This reduced payout deters a collusion attack that we describe in Section 4.2.

3.4.4 RP Operations

We now describe relevant operations for a RP issued in IKP. Specifically, we cover RP issuance as well as the scenarios

in which each of the reaction program’s three methods (trigger, terminate, and expire) are executed.

RP issuance When a domain D wants to purchase a RP from a CA C registered in IKP, the two parties first agree on

the terms of the RP or certificate out of band. In particular, for a RP with a payout reaction contract, D and C negotiate

the payouts a t, and δ , as well as the price ρ of the RP. IKP sets two constraints on the amounts that must hold:

t < ρ < a+ τ (3.3)

m < δ (3.4)

These constraints are justified in Section 4.2.

Once C and D have agreed on the terms of the RP, we must ensure that a domain who purchases a RP in IKP

obtains what it agreed on with the CA, and conversely, that the CA receives the appropriate payment for the RP that it

has issued. We can achieve such a fair exchange by having the IKP authority act as a third-party escrow.

Specifically, D sends the payment for the RP or certificate to the IKP authority, along with the hash of the RP

or certificate and C. In turn, C creates and sends the RP or certificate to the IKP authority. To ensure that the IKP

authority has enough funds to pay out the appropriate parties, C may also need to send additional funds to the IKP

authority (see Section 3.7).

The IKP authority then verifies that 1. the RP or certificate hashes to the value provided by D, 2. the amount of

funds that C has sent over (if necessary) is sufficient to ensure that the global fund will be able to send the payouts in

case of misbehavior, and 3. the terms of the RP meet the constraints described above. If any of these criteria do not

hold, then the domain’s fee ρ is returned and the issuance is canceled. If all of these criteria hold, ρ is transferred to C

and any funds sent with C’s message are transferred to the global fund.
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Domain RP selection The IKP authority maintains a mapping between domains and a list of their currently-active

RPs. When a domain purchases a new RP, the IKP authority adds the new RP to the domain’s corresponding list

ordered by the validity ending time. When misbehavior is reported, the IKP authority triggers the appropriate reaction

in the first policy in the list. This scheme ensures an unambiguous reaction to an instance of CA misbehavior while

also triggering the RP that expires the soonest.

RP trigger If C is found to have issued an unauthorized certificate for a domain D, then the trigger method of D’s

RP is automatically executed. For payout reaction programs, D receives the affected-domain payout a and its share

termination payout tD, the detector receives the detection payout δ , and C receives its share of the termination payout

t− tD. The IKP authority then removes the RP from the list of D’s RPs. The IKP authority also records the time at

which a detector reported misbehavior by C to handle the termination case below.

RP termination If C is found to have misbehaved, any domain D that has a RP issued by C can prematurely terminate

the RP. To do so, D sends a message to the IKP authority with the RP it wishes to terminate. The IKP authority checks

that the RP’s validity began before C’s last misbehavior and that the RP has not yet expired, and if so, executes the

terminate method. In this case, D receives its share of the termination payout tD and C receives its share t− tD.

RP expiration Once the validity period for a RP belonging to a domain D has ended, the IKP authority simply

removes the RP from the list of D’s RPs. Because doing so can reduce the liability of the issuing CA C, the IKP may

also note the reduction in liability and return funds as necessary to C’s payment account.

3.5 Analysis

In this section, we analyze the design of IKP. In particular, we model the incentives of each entity in the IKP ecosystem

by considering the flow of payments among entities for each operation (such as RP issuance). Using this model, we

demonstrate two important guarantees that hold in IKP:

1. Incentives for DCP compliance and misbehavior reporting: issuing a certificate that complies with a domain’s

DCP or reporting a certificate that violates a domain’s DCP results in a higher payout than alternative actions.

2. Disincentives against misbehavior and collusion attacks: falsely reporting a valid certificate as unauthorized or

issuing a certificate that violates a domain’s DCP does not result in a profit for a misbehaving detector or CA,

respectively, regardless of who the detector or CA colludes with.

In the course of our analysis, we derive constraints on RP terms that must hold for the above properties to be true.
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Table 3.4: List of payments sent for each event. D represents the domain, R is the CA that issues the RP, C is the CA
that issues the certificate, d is the detector, and F is the global fund. E represents the amount sent to the IKP authority
by R.

Event From To Amount

Register CA C F rC

Register domain D F rD

Issue reaction policy D F ρ

R F E
F R ρ

Expire reaction policy F R E

Terminate reaction policy F D tD
F R E− tD

Report false misbehavior d F m

Report internal misbehavior d F m
F D a+ tD
F d δ

F R E− tD
C F a+δ

Report external misbehavior d F m
F D tD
F d m
F R E− tD

3.5.1 Model

We begin by analyzing the payments that occur within the model described by the constraints in the previous sections.

Table 3.4 summarizes the payout amounts for each action in IKP. For most of our analysis we consider a single RP

lifetime and certificate issuance, and use the following notation:

• D denotes the domain for whom a (possibly unauthorized) certificate is issued,

• R denotes the CA that issues the RP to D,

• C denotes the CA that issues the certificate to D,

• d denotes a detector who can choose whether or not to report the certificate as unauthorized, and

• F denotes the global fund.

Note that R and C may be the same entity, and d may be any entity (even one of D, R, or C).

To demonstrate the two central properties above, we consider two scenarios of CA misbehavior. In the first

scenario, which we call internal issuance, the certificate-issuing CA C is registered in IKP and in the second scenario,

which we call external issuance, C is not registered in IKP. Considering these scenarios separately simplifies our

analysis below. In both scenarios, C issues a certificate to D, and can choose whether or not to issue a certificate that

complies with D’s DCP or not. Detector d can then choose whether to report the certificate as unauthorized or not.
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For each case, we consider the payments made in the series of events that must have occurred and can determine

the net reward of each entity by summing the payments it received and subtracting the sum of the payments it made.

We note that we do not consider payments made outside of IKP, as we cannot track or constrain these transactions.

Given our model, we can prove the following properties in the two scenarios, assuming rational entities:

• Compensation of domains affected by misbehavior: a domain with a DCP for whom an unauthorized certificate

is issued should receive a higher net payout after a successful report.

• Rewards for successful detectors: a successful misbehavior report results in a higher net payout for the detector

than an unsuccessful report or no report at all.

• Deterrence of internal misbehavior: a CA that has registered in IKP and issued an unauthorized certificate for a

domain has a negative net payout.

• Collusion-proofness for external misbehavior: in the second scenario, a CA that has not registered in IKP cannot

collude with any set of other entities to gain a positive net reward from issuing an unauthorized certificate.

The last property highlights the need to consider collusion attacks in IKP. In particular, we must verify that a

misbehaving C cannot collude with other entities and sum their net rewards to gain a profit. We observe that C will

only collude with entities that receive a positive net payout on their own, but can purposely misbehave in order to

trigger RP payouts. To ensure that no possible collusion can result in a profit for C, we sum the rewards of all positive-

reward entities with those of C to find the maximum profit that C can receive.

In our analysis, we assume that the CA R (who issued the RP to D) has registered in IKP, and that the domain D

has registered a DCP. We do not consider these operations in our analysis due to the fact that they occur once and thus

should not factor into the analysis of an individual RP’s lifetime, which may occur (with its costs) many times.

3.5.2 Scenario #1: Certificate Issuance inside IKP

For the first scenario, we consider whether or not C misbehaves by issuing a non-compliant certificate, and whether

or not a detector d reports this misbehavior. We assume that the issuance has taken place and the appropriate pay-

ments have been made. We observe that if no misbehavior is reported, then the RP will eventually expire, regardless

of whether C misbehaves. Thus we consider only three cases: (1) no detector reports misbehavior, (2) C issues a

compliant certificate and detector d reports it, and (3) C issues a rogue certificate and detector d reports it.

The first section of Table 3.5 shows the results for this scenario, that is, how much is paid out to the involved

entities, according to Table 3.4, aggregated into the three cases.

Regarding the affected domain D, we observe that in the case of reported misbehavior, D receives an additional

a+ tD than it would if no misbehavior was reported. In order for D to profit, we require ρ < a+ tD. Since we know

from Equation 3.2 that tD ≥ τ and since we want a positive compensation for all values of tD, we set the slightly
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stronger constraint

ρ < a+ τ (3.5)

thus ensuring compensation of affected domains.

Regarding detector d, we observe that if d reports misbehavior correctly, it receives −m+ δ . To ensure that a

successful report is rewarded, the quantity −m+δ must be positive, and thus we set the constraint

m < δ (3.6)

which thus ensures rewards for successful detectors (and unsuccessful detectors simply lose the reporting fee m).

Regarding CA C, we make a case distinction as follows. We first consider the case C = R, that is, the same CA

has issued an RP and a certificate to domain D. In this case, we observe (after summing up the entries for R and C)

that for the CA to lose money due to a possible misbehavior, we require ρ < a+ tD +δ . Again, since tD ≥ τ and we

want a loss of money for all possible values of tD, we obtain the stronger inequality ρ < a+ τ +δ which ensures the

deterrence of internal misbehavior for this scenario. However, this constraint is subsumed by Equation 3.5, which sets

a tighter bound on ρ .

The case of C 6= R is similar. The RP-issuing CA R should still profit since it has not misbehaved, and we thus

require ρ > tD. Because of t ≥ tD from Equation 3.2, we simply let

ρ > t (3.7)

and obtain a positive incentivization for R. Regarding the misbehaving CA C, we simply require the values a and δ to

be positive, which is satisfied by definition.

Finally, to avoid collusion attacks in the first scenario, we consider the entities besides C receiving a positive

reward. We observe that although both D and d profit in the case of misbehavior, if we sum the rewards of D, d, R,

and C, the result is −m < 0, and thus a collusion between C and all other parties does not profit.

3.5.3 Scenario #2: Certificate Issuance outside IKP

In the external scenario, we assume that the certificate-issuing CA C does not register with IKP. We investigate, as

before, whether or not C misbehaves, and whether or not d reports misbehavior. We again assume that domain D has

purchased a RP from CA R, and we again observe that if no misbehavior is reported, then the RP expires and C’s

misbehavior status does not matter.

The second area of Table 3.5 shows the results for the external scenario, that is, how much is paid out to the

involved entities, according to Table 3.4, aggregated into three cases as above.
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Table 3.5: Rewards for each entity in different scenarios.

Entity Unreported Rep.+Behave Rep.+Misbehave

Scenario #1: Certificate issuance by IKP-CA C

D −ρ −ρ −ρ +a+ tD
d 0 −m −m+δ

R ρ ρ ρ− tD
C 0 0 −a−δ

F 0 m m

Scenario #2: Certificate issuance by non-IKP-CA C

D −ρ −ρ −ρ + tD
d 0 −m 0
R ρ ρ ρ− tD
C 0 0 0
F 0 m 0

We concentrate on the differences from the previous scenario. First, note that the misbehaving domain C is not

punished and thus it is not deterred from misbehavior. The reason is that external misbehavior cannot be deterred from

within IKP. On the other hand, the CA also does not receive any payments for good behavior if outside IKP. Similarly,

detectors are not rewarded for spotting external misbehavior. Handing out rewards would eventually drain the global

fund.

Regarding the affected domain D, we have to consider collusion attacks since a positive payout for an affected

domain might incentivize a malicious external CA to collude with that domain. We thus consider again the entities

besides C that make a positive reward: As C does not need to pay anything, colluding with any entity with a positive

reward results in net profit. Colluding with R does result in a net profit, but the profit is less than collusion would

yield if C behaved, and thus this is not a viable strategy for C. However, C can collude with the affected domain D if

the reward −ρ + tD is positive. To avoid this, we set ρ ≥ tD, and since tD ≤ t and we want this constraint to hold for

all values of tD, we obtain the stronger constraint ρ ≥ t which provides collusion-proofness in the external scenario.

However, this constraint is subsumed by Equation 3.7. We note that this constraint does not imply that an affected

domain is losing money. The domain receives the termination payout, which partially offsets the cost of the RP, and

additionally benefits from the fast detection offered from having a RP. For the same reason, we additionally set the

detector d’s reward to m instead of δ in the case of external misbehavior (see Table 3.4), so that the detector’s expected

reward is zero (see Table 3.5).

We observe that honest CAs issuing RPs benefit from joining IKP, as they receive rewards in any case. We

further stress that domains have no financial loss when joining IKP and purchasing RPs since they receive positive

compensation for internal misbehavior and offset their loss in case of external misbehavior. We also observe that the

constraints set by Equation 3.5, Equation 3.6, and Equation 3.7 can be easily satisfied by C, who can select ρ , a, δ ,
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and t based on the values of the constants τ and m. We explore realistic values for these parameters in Section 3.8.2.

3.6 Cryptocurrency Background

In this section, we provide a brief overview on blockchain-based cryptocurrencies, which we use to instantiate IKP.

In particular, we describe the fundamental principles underlying blockchains through Bitcoin, and then describe

Ethereum (which we use to implement IKP) and the advantages it offers over Bitcoin. For further details on all

issues related to blockchains, we refer readers to a more complete view of decentralized cryptocurrencies [36].

3.6.1 Blockchain Principles and Bitcoin

At a high level, decentralized cryptocurrencies such as Bitcoin [101] are public ledgers created and maintained through

decentralized, peer-to-peer consensus. These ledgers are most commonly implemented as blockchains, chains of

blocks linked by hash pointers to the previous blocks and containing lists of transactions. This structure provides full

history of all past transactions and prevents the transactions from being retroactively modified.

Bitcoin implements transactions with a small, limited-capability scripting language called Script [6]. The use of

Script enables a wider range of transactions such as paying to any account, to no account (thus destroying the coin), or

to the first account to solve a puzzle. Script is deliberately non-Turing-complete because nodes must process Script to

verify transactions and malicious Script transactions could otherwise cause nodes to loop forever. Script can also be

used to store non-financial transactions in the ledger, such as a key-value store (used by proposals such as Namecoin [2]

to implement a DNS-like system).

Most blockchains grow through the mining process, in which nodes in the network race to find a value v that, when

hashed with the hash of the previous block and the transactions since that previous block, results in a hash value of a

certain form [27]. In Bitcoin, the hash must be of a certain form (i.e., the computed hash value must be smaller than

a target value tuned) so that a new block is found approximately every ten minutes. Using a cryptographically secure

hash function requires a brute-force search to find v, making mining a proof-of-work scheme [54]. A node or miner

is incentivized by the block reward, a set amount of currency given to whomever extends the blockchain by recording

the new transactions, finding v, and then broadcasting the new block.

Because multiple miners may find v at different times, the blockchain can fork, resulting in different versions of the

blockchain. Miners decide on which version to mine on by Nakamoto consensus: each miner picks the chain with the

greatest length. Though multiple chains may be tied for the longest, one of the chains will eventually become longer

than the others due to the probablistic nature of mining. Nakamoto consensus also ensures that an adversary cannot

fork from a much earlier block, as the adversary would have to mine enough blocks to outrun the current longest chain,

which becomes more difficult the earlier the desired block is.
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The security of blockchain-based cryptocurrencies relies on the fact that no entity controls a majority of the hashing

power of the network. Otherwise, that adversary can reverse previous transactions (called a double-spending attack) or

selectively suppress transactions by outpacing the rest of the network’s mining power in the long run. Controlling the

network in this way is commonly called a 51% attack in the blockchain community, though recent work has shown that

with pathologically malicious behavior, controlling a smaller percentage of the hashing power is sufficient to double-

spend or to suppress transactions [59, 117, 65, 102]. Blockchain proponents argue that such an attack is unlikely to be

sustained because doing so would devalue the currency as the network loses trust in the reliability of the currency.

3.6.2 Ethereum

Ethereum [131] generalizes the ideas behind blockchains and Bitcoin Script, enabling the storage of arbitrary state and

Turing-complete computation in the blockchain. Transactions in Ethereum represent computations in the Ethereum

Virtual Machine (EVM), and the language used for these computations – in contrast to Bitcoin’s Script – is Turing-

complete. To deter malicious transactions that cause nodes to carry out expensive or nonterminating computations, the

sender of a transaction must send gas, additional funds that compensate miners for their computational and storage

costs when executing the transaction. Operations in the EVM are priced in units of gas and each transaction spec-

ifies a gas price, offering a tuneable incentive for miners to execute the transaction. Ethereum thus offers a richer

computational environment than Bitcoin does.

Code in Ethereum is stored in smart contracts, autonomous accounts that run their code upon receiving a trans-

action. A contract maintains its own data storage and balance, access to both of which is governed completely by

its code (though all contract data and balances can be publicly read on the blockchain). Contracts allow for the cre-

ation of autonomous agents whose behavior is entirely dependent on their code and the transactions sent to them, thus

providing functionality comparable to that of a centralized party in a transparent, decentralized manner. This benefit

has been utilized in such ambitious efforts such as Decentralized Autonomous Organizations (DAOs), which aim to

automate governance of a central entity using decentralized smart contracts [71]. Ethereum thus offers the possibility

of decentralized trusted entities, a feature not possible in Bitcoin.

3.7 IKP in Ethereum

We now describe our instantiation of IKP in Ethereum, whose architecture is shown in Figure 3.5. We instantiated

the IKP authority as a smart contract called the IKP contract, thus providing a decentralized authority that does not

need to be trusted. Ethereum also provides a natural computation platform for checker and reaction programs, and its

cryptocurrency Ether can be used as the currency for financial payments made in IKP.

However, Ethereum had two limitations that made instantiating IKP difficult:
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Figure 3.5: IKP architecture in our Ethereum instantiation.

1. Necessary solvency: CAs need to pay enough into the global fund to cover reaction payouts resulting from their

own misbehavior.

2. Report frontrunning: detector reports (and the corresponding detection payouts) can be stolen if an entity such

as a miner submits a detector’s report as its own.

Both of these required slight modifications to the centralized version of IKP.

In this section, we first describe the general changes we made to IKP. We then describe the techniques we used to

ensure solvency and to prevent frontrunning.

3.7.1 Modifications for Ethereum

Because all payments in our instantiation of IKP will be in Ether, the financial account information of CAs, domains,

and detectors are simply Ethereum addresses used to send and receive Ether transactions. Since Ethereum addresses

also represent public keys, we also use addresses as update keys for CAs registrations and DCPs. Using Ethereum

addresses in this way allows us to take advantage of the built-in signature verification support for messages from

addresses (i.e., transactions). We note that CA public keys (described in Table 3.1 are not Ethereum addresses, as they

represent public keys used to verify certificate signatures.

All messages to the IKP contract are sent as transactions with the appropriate funds and parameters. This includes

registration messages for CA information and for DCPs, messages sent for RP issuance, detector reports, and messages

sent to terminate a RP. Because Ethereum requires each entity to pay the gas costs of the computation that results from

the transaction, the incentives discussed in Section 4.2 may not exactly hold. However, we note that the current
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maximum that an entity would pay for a transaction is around 4 million gas, which is currently worth $3.14 USD at

the standard price, and thus with current certificate prices, the gas costs are unlikely to make a significant difference in

the incentives.

Checker programs and reaction programs are also implemented and stored as smart contracts, which we call

check contracts and reaction contracts, respectively. Because each contract is its own account, referencing a checker

program or reaction program in a DCP or RP respectively can be done by simply storing the address to the relevant

check contract or reaction contract. Similarly, combining checker programs or reaction programs can be done by

calling check contracts or reaction contracts by address.

3.7.2 Ensuring Solvency

To ensure solvency, we need to first show that CAs pay enough into the global fund to cover any reaction payouts

that may occur if they misbehave. We can achieve this by having the IKP contract maintain a balance for each CA,

keeping track of the payments that come in from the CA (most often from RP issuance). Each CA must maintain a

certain minimum balance (called the solvency threshold) in order to issue new RPs. We define the solvency threshold

for a CA C as the sum of the maximum affected-domain payout, the maximum detection payout, and the sum of all

termination payouts, computed over all of C’s currently active RPs. This threshold ensures that for any single instance

of C misbehaving, all of C’s RP customers and the detector will receive their appropriate payouts.

When C initially registers, it must pay a registration fee rC, which prevents frivolous CA registration. When C

wants to issue a new RP, it must provide sufficient funds to maintain its solvency threshold. However, C can also add

money to its balance without issuing a RP or add more than is necessary when issuing a RP. Exceeding the solvency

threshold may attract potential customer domains by giving them greater confidence that C will be held accountable in

case of misbehavior. If C issues multiple unauthorized certificates and drops below its solvency threshold, it may not

have enough funds for all of its payouts. In this case, C’s registration fee rC is used towards the payout amount until

its balance is depleted. For the remaining payout amount, the IKP contract records the debts and the entities owed,

and this record can be used as a basis for legal action against C. Thus while IKP cannot provide full protection in

all cases, it improves upon the existing ecosystem by providing some automatic reactions, and only requiring manual

intervention in extreme cases.

The IKP contract stores metrics for each registered CA, namely, the total payout value of the CA’s current RPs,

the time of the CA’s last misbehavior, the total number of RPs the CA has issued, and the total number of instances of

misbehavior for the CA. These metrics can help domains evaluate whether or not a CA is trustworthy.

When choosing a CA from whom to purchase a RP or certificate, we note that a domain can query the CA’s

balance and its outstanding liabilities (the sum of all payouts in all of its payout reaction contracts). This provides
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1: procedure PROCESS REPORT
Input: detector address d, certificate C

2: D← get subject name from C
3: DCPD← lookup D in DCP map
4: CC← get check contract address from DCPD
5: if !CC.check(C ) then
6: RPLD← lookup RP list for D
7: RP← get reaction contract address from RPLD[0]
8: RP.trigger(d)
9: delete RP from RPLD

10: end if
11: end procedure

Algorithm 1: IKP contract handling a misbehavior report.

the domain with a measure of confidence of how solvent the CA is in case of misbehavior. Moreover, the outstanding

liability amount also serves to provide the domain with a measure of the CA’s own confidence in its security of issuing

certificates.

3.7.3 Preventing Frontrunning

To report misbehavior, a detector needs to send an unauthorized certificate to the IKP contract. However, we must

ensure that misbehavior reports (each containing an unauthorized certificate) cannot be stolen via frontrunning by

blockchain miners. We achieve this by using a protocol similar to the domain registration protocol of Namecoin [9] to

report misbehavior: a detector d first sends a “pre-report” containing the reporting fee and a commitment hash H(C ‖s)

to the IKP contract, where C is the certificate to report and s is a secret known only to d. After waiting for a certain

number of blocks, d opens the commitment by sending C and s to the IKP contract. A miner or other entity that sees

a pre-report does not know s and hence cannot determine what C is until d opens the commitment. Because reporting

misbehavior requires waiting for a set number of blocks, frontrunning is not possible.

Upon receiving the detector’s report, the IKP contract checks that the certificate and secret sent by d matches the

committed value sent earlier. The contract then carries out the check shown in Algorithm 1. If the check contract

returns deems C unauthorized, the IKP contract triggers the reaction contract for the oldest of the domain’s RPs. We

note that in addition to the reporting fee, a detector d must also pay the gas costs for the work performed by the IKP

contract.

3.8 Evaluation

In this section, we investigate the technical feasibility and real-world challenges of IKP in today’s blockchains. In

particular, we detail our prototype implementation in Ethereum, and describe why the current limitations of Ethereum
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Table 3.6: Cost of various IKP operations.

Approximate Cost Approximate Cost

Operation Gas USD Operation Gas USD

Verif. cert. 31 012 $0.0238 Bootstrap proof 681 731 $0.5232
Register CA 91 400 $0.0701 Register DCP 152 579 $0.1171
Update CA 34 656 $0.0266 Update DCP 181 226 $0.1391
Order RP 49 024 $0.0376 Pre-report cert 63 951 $0.0491
Create RP 226 892 $0.1741 Report cert 149 284 $0.1146
Terminate RP 99 461 $0.0763 Send payouts 107 962 $0.0829
Expire RP 39 823 $0.0306 CA Balance 39 716 $0.0305

IKP Contract Creation 1 660 319 $1.2742

make a full-fledged deployment of IKP challenging. We also analyze real-world CA data to determine reasonable

quantities for systemwide parameters based on existing prices.

3.8.1 Prototype Implementation

We implemented IKP in 290 lines of Solidity, a high-level Ethereum language that resembles JavaScript. Our code

is available at https://github.com/syclops/ikp. We faced numerous challenges during our implementation.

In the current version of Ethereum, full X.509 certificate parsing is prohibitively expensive, exceeding the current

maximum limit on gas allowed by a single transaction. Accordingly, for the purpose of check contracts, we had to

resort to leveraging the DER-encoded format [7] of the certificates, recursively extracting type-length-value encoded

byte strings and finding the desired object identifier (OID) such as the domain’s common name (usually defined as its

DNS name).

Additionally, the current version of Ethereum does not support RSA signature verification, which hindered our

effort to determine the approximate cost of operations in IKP. We overcame this obstacle by using a modified version

of the JavaScript-based Ethereum virtual machine [31]. The modification adds RSA verification and sets its cost to be

200 gas; for comparison, the cost of verifying an ECDSA signature using the secp256k1 curve costs 3000 gas. We

obtained a roughly similar ratio of running times in comparing signature verification between these two algorithms on

our own machines. While RSA verification is not officially part of Ethereum, support for signature algorithms other

than ECDSA has been considered [32] and is currently planned for future versions of Ethereum [38].

To measure the approximate costs of running various IKP operations, we ran the functions of our prototype im-

plementation in a test Ethereum network. We measured the approximate computational steps (in Ethereum’s gas) and

approximate cost (in US dollars) for creating the IKP contract and for each operation supported by the IKP contract.

To convert the cost in gas to USD, we used the current standard price of 1.8×10−8 Ether≈ 7.67×10−7 USD per unit

of gas. For the purposes of testing, we assumed that all strings (used for domain and CA names) were a maximum of
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Figure 3.6: Empirical CDFs of certificate costs, warranties, and assessed risks from the most popular CAs [17].

32 bytes, and that the public keys for certificate verification were 2048-bit RSA keys.

Table 3.6 shows the costs of various operations in gas and USD. We observe that by far the highest cost in the

system is for checking a bootstrap proof. Much of this cost comes from simply handling data that is the size of a

standard 2048-bit certificate, since we can also see that the cost of verifying an RSA-signed certificate is relatively

low. However, since we are dealing with amounts (under $1 USD) that are drastically smaller than the cost of most

certificates, we can conclude that barring large fluctuations in the gas price, gas limit, or price of Ether, it is both

technically and financially feasible to deploy IKP in the Ethereum blockchain.
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Table 3.7: Risk upper-bounds inferred from CA certificate and warranty amounts (in US dollars) from CA websites.

CA Certificate Cost Warranty Risk

Highest-Risk

GlobalSign [12] Wildcard $849 $10,000 8.49e−2
GlobalSign DomainSSL $249 $10,000 2.49e−2
StartCom [16, 103] Ext. Validation $199 $10,000 1.99e−2
StartCom Org. Validation $119 $10,000 1.19e−2
Entrust [14] Wildcard $699 $100,000 6.99e−3
. . . . . . . . . . . . . . .
Certum [10] Commercial SSL $25 $222,000 1.13e−4
Starfield [15] Standard SSL $7 $100,000 7.00e−5
Comodo [11] EV SSL $99 $1,750,000 5.66e−5
IdenTrust [13] Multi Domain SSL $299 $10,000,000 2.99e−5
IdenTrust Standard SSL $99 $10,000,000 9.90e−6

Lowest-Risk

3.8.2 CA Certificate Offerings

To get an estimate of sample RP payout values, we collected data from the most popular CAs. In particular, we

examined each of the standard TLS certificate offerings of the 20 CAs with a market share of at least 0.1%, representing

99.9% of all TLS certificates on the Web [17]. For each certificate, we noted the cost of a 1-year certificate (ignoring

discounts for purchasing multi-year certificates) and the relying party warranty provided with the certificate. In total,

we examined 70 certificate offerings across 18 CAs (Deutsche Telekom did not specify a warranty amount, and Let’s

Encrypt does not offer a warranty because its certificates are free). For each certificate available for purchase, we also

calculated the risk as the price divided by the warranty. We note that this is an upper-bound for the actual risk that the

CAs face.

Figure 3.6 shows the CDF for the cost, warranty, and calculated risk of each of these certificates. Of the certificates

we examined, the prices ranged from $7 (Starfield’s Standard SSL) to $1999 (Symantec’s Secure Site Wildcard), and

the warranty amounts ranged from $10k to $10M. Some of these warranties, however, had caveats; for example,

IdenTrust, who offers a $10M warranty, stipulates that each transaction is covered to a maximum of $100k and each

relying party is covered to a maximum of $250k. As shown in Table 3.7, the risk for each certificate varied widely,

ranging from around 0.001% up to almost 8.5%.

To set sample RP values, we can conservatively estimate the risk of a CA to be 10%; thus the affected domain

payout could be 10 times the RP cost. Using the median cost of a certificate as a reference, we can estimate that a

standard RP will cost ρ = $299, and thus a = $2990. Similarly, we can use the risk to estimate that 10% of RPs may

be terminated early, and thus set the minimum termination payout as τ = $29.90. We can estimate the reporting fee to

be a small but non-trivial amount, such as m = $5. Given these values, we can see that the constraints from Section 4.2

are easily satisfiable, for example, ρ = $299, a = $2990, t = $150, and δ = $100.
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3.9 Discussion

In this section, we discuss the insights, various limitations and proposed future work of IKP.

Blockchain Weaknesses Blockchains have several weaknesses which have been demonstrated in practice. For

example, mining pools controlled a majority of hashing power in the network before [37], allowing double-spending

attacks and suppression of selected transactions. There are also attacks that can be mounted with less than half of the

network’s hashrate [59]. Moreover, there may be bugs in the IKP contract which could result in exploits such as the

one that plagued the DAO in Ethereum [39], and check and reaction contracts may have bugs as well. Learning to

write secure contracts is difficult [50], but we can build on existing work such as smart contract formalization [78] to

make IKP more robust.

Compelled Certificates In this work, we did not explicitly attempt to defend against nation-states who can compel

CAs to issue unauthorized certificates, as they are irrational adversaries with an effectively unlimited budget. However,

client-side extensions (described below) can prevent MITM attacks even by such adversaries and record the certificate

for out-of-band responses.

Deployment Benefits While detectors and miners can benefit financially in IKP, domains, CAs, and clients can

also benefit from deploying IKP. Beyond RP payouts, domains can be quickly alerted to CA misbehavior because of

detector payouts. IKP also protects against misbehavior by both internal and external CAs, and thus allows domains

to have greater confidence in their CAs, particularly those with good proven reputations. CAs in IKP profit from good

behavior, and selling RPs provides a value-added service by which CAs can compete with free certificate services such

as Let’s Encrypt [1]. Moreover, CAs can use IKP to prove a history of good behavior, attracting more business.

Protecting Clients In this chapter, we described ways to compensate domains affected by potential MITM attacks,

but even with RP-based payouts, clients have no protection from the use of unauthorized certificates. To protect clients,

we can extend the IKP authority to record each unauthorized certificate. A browser extension can then check this data

during the TLS handshake or maintain a local copy of unauthorized certificates and reject any certificate that IKP

has confirmed to be unauthorized. A browser extension could even contribute to this certificate blacklist, checking

certificates the client sees against the relevant domain’s DCP and reporting the certificate if the it violates the DCP.

In our Ethereum instantiation, the first browser extension could be implemented using events, which leverage the

logging functionality of the Ethereum virtual machine. Events cause a logging opcode to execute in the Ethereum VM,

storing information in the receipt of the transaction that generated the event [131]. Event information is not accessible
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to contracts, but rather is designed for use in applications that can access the blockchain history. A third-party service

or the clients themselves could then store the blockchain history to maintain the certificate blacklist.

The second browser extension could be implemented by sending certificates to the relevant domain’s check con-

tract. Because these checks do not modify any state, they do not cost any gas to execute, and can even be run locally.

The certificates also do not need to be checked synchronously. If an unauthorized certificate is discovered, the browser

extension could automatically carry out the pre-report and reporting steps. This automated reporting mechanism

provides an incentive for clients to deploy IKP and further deters CA misbehavior by increasing the chance that an

unauthorized certificate will be quickly detected.

Future Work We next plan to explore the following improvements to IKP. First, we plan to further investigate

possible designs for check and reaction contracts, such as how a system such as Town Crier [133] could be used to

allow these contracts to interface with real-world data. We also plan to implement our browser extensions described

above. Finally, we plan to leverage work in mechanism design [105, 29] to formally verify the incentive structure of

IKP.





Chapter 4

Smoothly Transitioning to a More Resilient Web PKI

In this chapter, I describe how we can reduce MITM attacks during the deployment of an improvement to the Web

PKI. In particular, I explore how we can overcome the signaling problem and the recoverability problem (described

in Section 1.3.2) to prevent downgrade attacks and make MITM attacks more difficult while avoiding pitfalls of

misconfiguration. In doing so, I tackle several important questions. First, how can we effectively prevent downgrade

attacks without imposing an undue burden on clients, domains, or CA? Second, how can we simultaneously achieve

greater confidence in the public key presented by a domain while allowing domains to easily change this key?

To address these questions, I propose Certificates with Automated Policies and Signaling (CAPS), a system that

leverages existing infrastructure in the Web PKI to signal the deployment of HTTP over TLS (HTTPS) and Web PKI

improvements and to protect against CA misbehavior with secure yet easily changed policies. CAPS uses information

from public logs and certificate databases to determine which domains have deployed HTTPS; the presence of a

certificate indicates such a domain. The set of these domain names can be represented in a compact data structure,

providing much greater coverage of domain names than existing approaches. Without this bit of information, TLS

stripping [90] can occur, causing the client to ignore even the existing PKI. With the use of this bit, the remaining

signaling information can be communicated as an extension to the TLS handshake. CAPS also uses log information to

determine one or more authoritative public keys for a domain, that is, keys that should be trusted by clients to identify

domains and to secure policies in systems such as PoliCert [126]. I show that together, these two components of CAPS

are sufficient to show that a MITM attack cannot occur as long as the TLS handshake is secure and as long as fewer

than n trusted parties (where n is set on a per-domain basis) are compromised.

Because all known instances of CA misbehavior up to this point have involved a single misbehaving CA, CAPS

allows domains to use multiple independent certificate chains to authenticate a single public key. Then, CAPS can

use log information to determine the maximum number of certificate chains for a given key, and signal the number of

such chains that clients should expect. This protects against any fewer number of misbehaving trusted parties while

51
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allowing the domain to easily change its authoritative public key by gaining another set of independent certificate

chains. Moreover, this can be done automatically by simply monitoring logs, meaning that domains do not have to

consult with CAs or logs to change their authoritative key.

Finally, we observe that such a strongly authenticated, authoritative public key for a domain is a powerful force:

it can be used on its own to provide greater confidence in a site’s identity, or it can be used to authenticate richer

policies as proposed in prior work [30, 126]. CAPS can thus simplify the deployment of these proposed systems,

whose existing deployment and certificate issuance strategies rely on complex coordination among domains, CAs, and

public logs to certify these policies. CAPS also enhances the recoverability of these systems, which, as originally

proposed, require waiting for days to replace a policy if the corresponding private key is lost or compromised.

In summary, I make the following contributions in CAPS:

• By leveraging a global view of the certificate ecosystem and extending previous work in data compression, I

demonstrate that we can prevent downgrade attacks for the vast majority of known domains with a moderate

storage and memory overhead for clients.

• By again leveraging a global view of the certificate ecosystem and extending previous theoretical work on

evaluating public-key authentication, I show that a simple certificate policy, based on the minimum number of

CAs that must be compromised, can provide resilience to CA misbehavior while enabling easy recovery in case

of misconfiguration.

• By implementing the above as well as a custom TLS extension, I show that CAPS can be deployed with minimal

changes to domains and only moderate overhead for clients.

I begin this chapter by describing the design of CAPS, in particular, the design of the signaling mechanism and

the policy database. I then analyze the security of CAPS and informally show its security as well as its potential

weaknesses. I then evaluate CAPS and estimate its cost on clients in terms of storage, latency, and bandwidth. I

conclude the chapter with a discussion of orthogonal security issues to consider when deploying CAPS, how CAPS

can be used in conjunction with other systems, and future work.

4.1 Design of CAPS

Following an overview of CAPS’s design (Section 4.1.1), we describe CAPS in detail, including how it signals which

domains have deployed HTTPS and improvements to the Web PKI (Section 4.1.2), how it provides stronger public-

key authentication over the existing Web PKI (Section 4.1.3), and how clients establish secure end-to-end connections

with servers (Section 4.1.4). We conclude by describing how CAPS thus enables the bootstrapping of more advanced

policies (Section 4.1.5).



4.1. DESIGN OF CAPS 53

Dummy

Logs
Logs

CA

Domain
Client

Vendor Logs

Log 
Aggregators

Browser

Signaling Set
(Plugin)

Issue cert

TLS handshake
(with extension)

Fetch policy proofs

Log certs

Collect set of active certs

Provide signaling set
and updates

Provide browser
software

Censys

Collect scans
and certificates

Figure 4.1: Overview of CAPS architecture (log auditors and monitors not shown). Dotted lines denote the browser
and its components, and italic text denotes new entities or actions in CAPS.

4.1.1 Overview

Goals CAPS primarily aims to enable a smooth transition from the Web’s existing PKI to an improved PKI (which

can range from an extension of the existing PKI to a new PKI altogether). We assume that during this transition, both

the existing and improved PKIs will coexist, and that the improved PKI will make MITM attacks more difficult to

carry out. Hence, CAPS must prevent downgrades to the old PKI. More precisely, if a client and server both support

the improved PKI, then when they perform a handshake, they should negotiate a session key based on the domain’s

public key as certified in the improved PKI. As secondary objectives, we also seek to prevent domains from becoming

inaccessible due to misconfiguration, private key loss, or private key compromise, and to minimize the changes to

existing interactions between clients, domains, and CAs.

Adversary Model In designing CAPS, we consider an adversary with the goal of successfully mounting a MITM

attack. We assume that the adversary has access to the signing keys for n CAs and can thus issue and revoke arbitrary

certificates under these keys. We also assume that the adversary has full control of the network during the handshake

protocol; that is, the adversary can intercept, drop, or modify all messages sent among all entities described below. We

assume that the adversary cannot mount a MITM in the improved PKI, or break standard cryptographic primitives.

Architecture Figure 4.1 illustrates the CAPS architecture and how CAPS achieves the goals stated above. Since

CAPS transitions from the current Web PKI, it necessarily includes the entities in the current PKI:

• Domains serve webpages to clients. Each domain has a name such as example.com.

• CAs issue certificates to domains. Each certificate binds a set of names to a single public key.
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• Clients connect to domains over HTTP or HTTPS, and in the latter case, verify the binding between a domain’s

name and public key.

• Browser/OS vendors (hereafter simply vendors) provide the software by which clients connect to domains and

verify domains’ certificates.

• Public logs maintain a publicly auditable, append-only database of certificates, such as those used in CT.

CAPS introduces a new entity, the log aggregator, that uses publicly available data to maintain a database of domains

that have deployed HTTPS and/or the improved PKI. As our figure shows, there may be multiple independent log

aggregators. While throughout this section we assume that the log aggregator is separate from other entities and that

there is a globally accepted set of known and trusted log aggregators, in Section 4.4 we discuss how we can relax these

assumptions, namely, by arguing that browser vendors should take on this responsibility.

As shown in Figure 4.1, many of the interactions between entities in the current PKI remain the same in CAPS.

CAs issue certificates to domains and log newly-issued certificates as they do in the current PKI (with CT); clients and

domains establish an encrypted communication channel through the TLS handshake, and vendors provide clients with

browser software.

To prevent an adversary from forcing an HTTP connection (thus bypassing TLS completely), the log aggregators

use data from public logs to construct a signaling set, which succinctly represents the set of all domains that deploy

HTTPS. The log aggregators build this set by downloading the set of all currently valid (i.e., non-expired) certificates

from the logs and extracting all domains named in these certificates. The log aggregators then make this set, as well

as updates to this set over time, available to client browsers. With the signaling set, a browser making a request to a

server can first check whether or not the server has deployed HTTPS.

To allow domains to certify their public keys more securely than in the current PKI, log aggregators use data from

public logs to construct a set of CAPS policies, which allows each domain to establish an authoritative public key in

the curent Web PKI. CAPS policies take a simple and intuitive approach: treat whichever public key is backed by the

most independent certificate chains1 in the current PKI as authoritative in the improved PKI. A domain wanting to

increase client confidence in one of its public keys can then simply obtain more independent certificates for that key,

and the log aggregators will update their CAPS policies for that domain.

Intuitively, log aggregators simply send a signed pair (name,c) where name is a domain name and c is the CAPS

policy value, the number of independent certificate chains backing an authoritative key for name.2 To prevent an

adversary from downgrading handshakes in the improved PKI to a handshake in the existing Web PKI, each log

aggregator indicates which domains in its signaling set have a key policy value greater than 1.

1This term means that the certificate chains share no public keys except at the leaf.
2name may have more than one authoritative key; if public keys K1 and K2 are both backed by three independent chains, for example, then both

of their public keys are treated as authoritative for name.
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4.1.2 Building the Signaling Set

The signaling set represents 1. a set of fully-qualified domain names (FQDNs) (hereafter names) known to have

deployed HTTPS (by virtue of having a known public-key certificate for the Web PKI), and 2. the subset of names that

have adopted the improved PKI (by virtue of having multiple independent public-key certificates for the same public

key in the Web PKI). Formally, the signaling set is a pair (SHTTPS,SMC) where SHTTPS and SMC are unordered sets

of valid3 names in ASCII and SMC ⊆ SHTTPS. The set supports a query operation, formally defined as query : Σ∗→

{no https,one cert,multi cert} where Σ∗ is the set of all ASCII strings and no https, one cert, and multi cert are

values indicating whether a string is a name known to have no HTTPS certificate, one certificate, or more than one

independent certificate, respectively. Specifically, query must satisfy

query(name) = no https ⇐⇒ name /∈ SHTTPS

query(name) = one cert ⇐⇒ name ∈ SHTTPS \SMC

query(name) =multi cert ⇐⇒ name ∈ SMC

for all name ∈ Σ∗.

To build its signaling set, a log aggregator must first determine SHTTPS and SMC, which it can achieve using the set

of all certificates in the Web PKI. The log aggregator maintains a database of current certificates by using information

from public sources, namely, 1. public logs that collect Web certificates, 2. CRLs such as those published by CAs [46]

or browser vendors [80, 62], and 3. revocation information retrieved from OCSP responders [116]. The log aggregator

updates this database regularly (e.g., each day), thus maintaining a list of certificates valid on a given day.4

The log aggregator obtains the names from the current and valid certificates in the databaseand converts inter-

nationalized domain names to ASCII using the IDNA conversion process [76]; the resulting set of distinct names is

SHTTPS. The log aggregator also analyzes the certificate chains in this set to determine SMC, a procedure we describe

in Section 4.1.3. The log aggregator then creates a representation of the signaling set and makes it available to client

browsers.

Because the signaling set must be available to each client that supports the improved PKI and may contain all

names in DNS, the log aggregator must succinctly represent this set to minimize the bandwidth and storage burdens

on each client. However, simply minimizing the storage burden is insufficient; clients must store the signaling set in

memory to minimize connection latency overhead. Thus the log aggregator must also represent this set in such a way

that clients can query the set with minimal latency and memory.

3A valid name is a Unicode or ASCII string up to 253 bytes in length overall, and has no label longer than 63 bytes [100]. We further added
the requirement that the name has a TLD that is a current global TLD according to ICANN.

4A certificate is valid on a given day if the signature on the certificate is valid and if that day falls in the certificate’s validity period as defined
by its notBefore and notAfter fields [46].
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Figure 4.2: A simple DAFSA with one-character transitions, along with the set of strings it represents and its succinct
representation as a vector of variable-length bitstrings. In this representation, each edge (gray) consists of a label
(blue) and next state (orange), along with flags indicating whether the next state is an accept state (green) and whether
the edge is the last one outgoing from this state (red).

We considered several approaches when determining how to represent the signaling set. A Bloom filter [35] sup-

ports efficient set membership queries, but has false positives (which for this application would result in flagging a

site as an attack when there is none) and for the scale of data we considered, resulted in too large of a storage burden

(Section 4.3.1). A filter cascade [115] would eliminate false positives, but has the virtually impossible prerequisite

of knowing all names in the DNS namespace, which requires the cooperation of all TLD operators (including many

national governments). Finally, using an existing data compression utility (e.g., zpaq) with aggressive compression

parameters could minimize the required storage space, but would also require decompression each time a client tried

to connect to a site whose HTTPS deployment status was not known, resulting in significant latency overhead (Sec-

tion 4.3.3).

In our log aggregator prototype, we ultimately chose to represent the signaling set as a data structure known as

a deterministic acyclic finite state automaton (DAFSA), which succinctly stores a set of strings and supports efficient

membership queries in this set, and can be efficiently constructed with minimal size [48]. As shown in Figure 4.2, a

DAFSA takes advantage of both common prefixes and suffixes that appear in a set of strings; since such patterns are

frequent in a large set of names, much of the redundancy in SHTTPS can be removed with this approach. Additionally,

DAFSAs can also be represented succinctly, using an approach we summarize below [49]. Given the characteristics

of our input set as described in Section 4.3.2, we make two additional design changes to our DAFSA representation

that further reduce its size.

Formal DAFSA Definition To precisely describe these changes, we begin by presenting a formal framework to

describe DAFSAs. Formally, a DAFSA is a tuple (Σ,S,s0,δ ,F) where 1. Σ is a set of possible input symbols, 2. S is
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a set of states, 3. s0 is an initial state where s0 ∈ S, 4. δ : S×Σ→ S is a partial function called the state transition

function that maps a state-symbol pair to a new state, and 5. F is a set of accept states where F ⊆ S. The DAFSA

also has the restriction that the state transition function is acyclic, that is, there is no sequence of states and symbols

(s1, . . . ,sn),(σ1, . . . ,σn) where δ (si,σi) = si+1 for each i where 1≤ i < n and δ (sn,σn) = s1.

We represent queries to the signaling set within the DAFSA as follows: let S contain a symbol µ . Then, if there

exists sequence of states and symbols (s1, . . . ,sn),(σ1, . . . ,σn−1) that satisfies 1. δ (si,σi) = si+1 for each i where

1 ≤ i < n, 2. s1 = s0, 3. σ1‖ . . .‖σn−1 = name, and 4. δ (sn,µ) ∈ F , we say that query(name) = multi cert. If no

such sequence exists, but one satisfying the first three conditions and sn ∈ F exists, then query(name) = one cert.

Otherwise, query(name) = no https.

DAFSA Representation We begin by building the DAFSA as described in previous work [48]. Though this previous

work assumes transitions based on a single character, we consider the possibility of multi-character symbols and thus

our symbol set Σ≤253 =
⋃253

i=0 Σi, where Σ is the set of all ASCII characters allowed in domain names.5

We succinctly represent this DAFSA as a bitvector by following the high-level approach of previous work [49].

Intuitively, we represent the DAFSA as a sequence of state encodings, which mostly consist of outgoing transition

encodings. By our definition of δ , for a state s, if δ (s,σ) = t, then each outgoing transition must be represented by an

encoding of the label σ and the destination state t. We observe that in this construction, the overall number of outgoing

transitions, as well as the size of the representation of each transition’s label and destination state, strongly influence

the size of the final bitvector. We thus focus on leveraging patterns in the underlying data to minimize the size of the

DAFSA representation.

Path Compaction We extend the design of prior work with path compaction, which minimizes the DAFSA repre-

sentation by reducing the overall number of transitions. Intuitively, path compaction removes a connected set of states

from the DAFSA and replaces transitions into or out of this set with transitions equivalent to paths through the set. As

we formalize below, we can model this process as the transformation of one DAFSA into another and use this model

to determine how we should select a set of nodes to ensure a minimal DAFSA representation.

Given a DAFSA (Σ,S,s0,δ ,F), we define a walk between s1 and sm to be a sequence of alternating states in S and

symbols in Σ, written (s1,σ1, . . . ,sm), where for all i where 1 ≤ i < m, either δ (si,σi) = si+1 or δ (si+1,σi) = si. A

walk where δ (si,σi) = si+1 for all i where 1 ≤ i < m is called a path from s1 to sm. We say that a set of states T ⊆ S

is a connected component if either T ⊆ F or T ∩F = ∅, and for any two states t,u ∈ T , there exists a walk between

t and u. The upstream states of a connected component T , written U(T ), is the set of all states s ∈ S \T for which

there exists a state t ∈ T and a symbol σ where δ (s,σ) = t. The downstream states of T , written D(T ), is the set of

5Recall that DNS names can be a maximum of 253 characters.
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Figure 4.3: The DAFSA from Figure 4.2 with its long edges compacted. The binary representation is more succinct
than its counterpart.

all states s ∈ S \T for which there exists a state t ∈ T and a symbol σ where δ (t,σ) = s. A path through a connected

component T is a path (s1,σ1, . . . ,sm) where s1 ∈U(T ), for all i where 1 < i < m, si ∈ T , and sm ∈ D(T ).

Path compaction consists of repeatedly 1. selecting a connected component T within the DAFSA, 2. calculating

the estimated reduction in representation size from compacting the paths through T , and 3. if the change reduces the

size of the DAFSA representation, removing these states from S and replacing the paths through T with an equivalent

set of transitions. Specifically, when removing T , we transform the DAFSA (Σ,S,s0,δ ,F) to (Σ,S\T,s0,δ
′,F), where

for all paths (s1,σ1, . . . ,sm through T , δ ′(s1,σ1‖ . . .‖σm−1) = sm.

Our goal is to select components that result in the greatest reduction in size. To determine the size reduction of

removing a connected component, we must consider both the reduction in the number of edges in the DAFSA as well

as any changes to the symbol and destination state entropy, as removing a component would cause the distributions

underlying these values to change. To quantify this change, we define several helpful variables.

For a set X ⊆ S, let τ(X) denote the set of transitions that start or end in X , that is, the number of triples (s, t,σ)

where δ (s,σ) = t and s or t (or both) is in X . For a connected component C, let π(C) denote the set of paths through

C. Then the change in the number of edges by removing C through path compaction is |π(C)|− |τ(C)|. By examining

the distribution of symbols in τ(S) and τ(C), as well as the concatenated symbols in π(C) (which we can find via

depth-first search from U(C)), we can compute the change in entropy in symbols and similarly for destination states,

which we writes as ∆Hσ and ∆Hδ , respectively. If we know the original entropies Hσ and Hδ , then we can compute

the difference in size between the two DAFSAs as

|τ(S)|(∆Hσ +∆Hδ )+(|π(C)|− |τ(C)|)(Hσ +∆Hσ +Hδ +∆Hδ ) (4.1)
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Figure 4.4: Sample certificate fingerprint graph. An arrow from A to B indicates that a certificate with fingerprint A is
the authority public key for a certificate with fingerprint B. Though the leaf certificate 6ac3c336 . . . has four chains,
only two of the chains are independent.

and only remove C if this quantity is negative.

We found several classes of components that, for our underlying set of domain names, provided substantial reduc-

tions in the size of the DAFSA representation. The first was to select what we call isolated paths, that is, paths of

the form (s1,σ1, . . . ,sm) where for all i such that 1 < i < m, si only had one incoming and one outgoing transition.

Because building the DAFSA as described in prior work resulted in a significant number of isolated paths, performing

path compaction with all such paths resulted can result in significant size savings. We also found that selecting a con-

stant α and then selecting components consisting entirely of states that had one incoming transition and α outgoing

transitions (or vice versa) yielded more modest but still significant size reductions for α = 2 and α = 3.

4.1.3 Building the CAPS Policy Database

The policy database represents a binding between a name and a policy, that is, the number of independent certificate

chains that a client should expect during a handshake with a server corresponding to the name. To construct and

maintain this database, each log aggregator must keep track of the certificates and chains active for a domain at any

given time. The log aggregators again rely on the data from public sources for this information, which includes the

data used to build the signaling set, as well as certificate chains observed by public logs.

A log aggregator uses this data to maintain an internal database with (many-to-many) maps of 1. certificates to

names, 2. certificates to public keys, and 3. certificates to chains. Regular updates to this database (described in

Section 4.1.2) ensure that the log aggregator has a list of currently valid certificates. The log aggregator can then use

the database to construct a mapping of names to policies. Specifically, the aggregator creates a graph of certificate

fingerprints as shown in Figure 4.4, and computes the policy value, the minimum number of CA public keys that

must be compromised to fraudulently issue this certificate. The policy value can be computed using a straightforward
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approach (e.g., computing a minimal vertex separator), allowing the log aggregator to easily construct a mapping of

certificate fingerprints to policy values. The log aggregator can then perform a series of simple join operations to map

each name to the maximum policy number associated with a certificate containing the name.

The log aggregator constructs this name-to-policy mapping each time it receives data from public sources (recall

from Section 4.1.2 that this occurs at regular, scheduled intervals). Once it has created the mapping, the log aggregator

certifies the name–policy-value pairs in this mapping by timestamping and signing them.6

With the policy databases of the log aggregators, a domain can provide the information necessary for clients to

establish the domain’s authoritative public key in the improved PKI. The domain periodically downloads the latest

policy proofs, which are signed and timestamped name-policy pairs, from each of the log aggregators. For a name

name, a policy value c, a timestamp ts, and a log aggregator A, we specify the policy proof to be

P(A,name,c, ts) =
{
ts,KA,Sign(K−1

A ,name‖c‖ts)
}

(4.2)

where KA and K−1
A denote respectively the public and private keys of A, and Sign(K,m) denotes a signature on m with

private key K. The domain keeps these proofs for use in the handshake described below.

4.1.4 Connection Establishment

To establish a connection to a domain, a client first looks up the domain’s name as a query to the signaling set. Due to

the way that querying occurs in the DAFSA-based implementation of the signaling set, the client can observe the state

transitions in the DAFSA and, if the symbols making up the domain name lead to a state that is not an accept state, the

client can supply µ to determine whether that transitions to an accept state (and hence the domain has a policy value

greater than 1). If this query returns one cert or multi cert, then the client performs the CAPS handshake to establish

a connection with the domain.

The CAPS handshake protocol allows a client to verify a domain’s authoritative public key. The TLS handshake

protocol [113] provides support for open-ended extensions (implemented in cryptographic libraries), and thus we

designed our protocol as an extension within the existing TLS handshake. During the initial ClientHello message, the

client includes a CAPS extension message, which consists of a single integer k, indicating a number of policy proofs

that the domain should send back. We assume that a reasonable maximum value for k is enforced; for example, a

domain may abort the handshake if k is beyond some acceptable maximum.

The domain then sends back a ServerHello message, which contains an extension message as a response to k. The

extension message contains recent policy proofs from k distinct log aggregators, as well as a number of certificate

6For efficiency, the log aggregator can sign a subset of pairs each day, and have each client consider a signature valid for multiple update
intervals. For example, the log aggregator could sign a third of the pairs each day, and clients could treat a signed, timestamp pair as valid for at
least three days.
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chains, which allows the client to verify the domain’s policy value and the certificate chains that back this value.

Specifically, a domain with hostname name and policy value c selects a set of log aggregators {A1, . . . ,Ak} and sends

back

{P(A1,name,c, ts1), . . . ,P(Ak,name,c, tsk),C1, . . . ,Cc−1} (4.3)

where tsi is the timestamp of the policy proof from Ai and C j is a certificate chain for name. In the extension message,

the domain only sends c−1 certificate chains because the remaining chain will be sent in the ServerCertificate message

of the handshake.

The client then checks that 1. the signature on each policy proof is valid, 2. the timestamp for each policy proof

is sufficiently recent, 3. the name for each policy proof equals the domain’s name, 4. the policy value for each policy

is one more than the number of certificate chains sent in the domain’s extension message, and 5. each certificate

chain is valid as specified in the X.509v3 standard [46]. If the above checks pass, the client can then continue with

the handshake, which requires the client to verify an additional certificate chain in the ServerCertificate message and

perform all other checks required by the TLS handshake protocol.

4.1.5 Bootstrapping Advanced Policies

Once an authoritative public key for a domain has been established through the CAPS handshake, signatures made

by the corresponding private key can be used to verify the binding between a domain and a richer set of policies.

For example, in systems such as ARPKI [30] and PoliCert [126], these policies can specify a set of CAs that are

authorized to issue certificate for the domain, or even make the domain a CA for itself by pinning specific public keys

to the domain. In this way, the authoritative public key established in CAPS can be used to bootstrap confidence in

these advanced policies while preventing downgrades to the old PKI.

This bootstrapping approach obviates the need for logs to directly store the policies, which can be quite large in

these systems. Moreover, in CAPS, this bootstrapping can take place at any time during deployment, which means

that in the case of a lost or compromised private key, a domain can simply obtain c + 1 new, independent certificate

chains. This contrasts with previous proposals, which often rely on heavyweight processes that involve manual CA

intervention.

The authoritative public key can also be used directly, as a way of providing clients with more confidence in the

current PKI.
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4.2 Security Analysis

In this section, we analyze the security that CAPS provides. We begin with our main security claim and informally

argue that it holds given our adversary model. We then describe two potential weaknesses of CAPS not covered by our

security claim, and argue that countermeasures (some of which are currently used) make these weaknesses difficult or

impossible to exploit.

4.2.1 Main Security Claim

In making our main security claim, we assume that the client requests k policy proofs and that the domain has a

domain name of D and a policy value of c. We assume that both the client and domain follow the handshake protocol

as described. We also assume that our adversary controls k− 1 private keys of log aggregators and the private keys

of c− 1 CAs, and we assume that the adversary is the sole entity that controls the private key corresponding to a

public key KM . We assume that the adversary can intercept, suppress, replay, and modify any handshake message

sent between the client and domain, and can sign any message it can construct with the information it has using its

private keys. We also assume that the adversary cannot obtain a certificate binding D to KM from any CA besides the

ones it controls. Under these assumptions, we claim that the client will abort the handshake protocol if it receives any

certificate chain containing KM as the leaf public key. The truth of this claim guarantees the security of CAPS because

the adversary cannot mount a MITM attack without the client completing the CAPS handshake based on a key that the

adversary controls.

We first show that the adversary cannot convince the client that that the domain has a policy value other than

c. Because the client requests k policy proofs for D, the client will abort the handshake if the extension data in the

ServerHello message does not contain k independent policy proofs. Because we assume that the adversary only has

access to k−1 log aggregator signing keys, we know that the adversary cannot use those keys to generate k independent

proofs. Specifically, if the adversary sends a set of proofs and there are fewer than k valid proofs, or if any of them

fails to prove that c is the policy value for D, then the client will abort the handshake.

Recall that the client determines c as the one plus the number of valid, independent certificate chains sent in the

extension message. We show that the adversary cannot convince the client that the KM is the domain’s public key.

From our assumption that the adversary can access the signing keys of c−1 CAs, we know that the adversary controls

at least c− 1 private keys. From this assumption, however, we also know that the number of independent certificate

chains that the adversary can generate is at most c−1. It is straightforward to show this by induction on c, with c = 2

as the base case.7 If the adversary generates c− 1 independent certificate chains for KM and sends these chains with

the policy proofs in the extension message, then the client will proceed with the handshake. However, the adversary

7Note that the c = 1 case is equivalent to the current Web PKI (i.e., the domain only provides a single certificate chain).



4.2. SECURITY ANALYSIS 63

will be unable to generate a final independent certificate chain to send with the ServerCertificate message, causing the

client to abort the handshake at that point.

4.2.2 Potential Weaknesses

Our main security claim shows that under our assumptions, the adversary cannot mount a successful MITM attack

on a client and domain. Therefore, we can conclude that the failure of log aggregators or CAs are not sufficient to

enable a MITM attack. However, we did not describe the consequence of misbehavior by the other parties shown in

Figure 4.1: the data sources (namely, public logs) or the browser vendor. We now show that while failures of these

entities can have negative consequences for the performance or security of CAPS, we consider these cases out of the

scope of this work because they are unlikely to succeed in practice or are catastrophic failures that can circumvent

almost any practical defense.

Log aggregators rely on public logs to obtain a complete view of certificates in the Web PKI. However, given

the open nature of many of these logs (i.e., the fact that anyone can submit certificates to them or otherwise make

certificates available to them), an adversary may take advantage of this openness to force the log aggregators to

increase their resource consumption. For example, an adversary who controls a CA signing key can issue millions of

certificates and make them available to the logs, causing the log aggregators to store these certificates when updating

their respective policy databases.

While CAPS provides no mechanism to stop this behavior, the issuance of these certificates produces non-repudiable

proof of the adversary’s behavior, and the requirement that newly-issued certificates be logged increases the likelihood

of someone detecting this behavior. This detection would likely lead to consequences such as the revocation of the CA

certificate by its issuing CA or by the browser vendor. Moreover, only an adversary with access to a CA signing key

can carry out this attack; while Let’s Encrypt does provide free certificates through an automatic protocol, it imposes

a rate limit per domain based on the Public Suffix List,8 thus requiring an adversary without access to a CA signing

key to obtain many domain names to carry out this attack.

Adversary control of the browser vendor is a catastrophic failure that can enable a MITM attack under almost

any circumstances, since this allows the adversary to completely control the client’s experience with the Web. In this

scenario, the adversary can arbitrarily deviate from the TLS or CAPS handshakes, insert its own root certificates, or

display arbitrary pages. Even with CAPS, an adversary-controlled vendor can also intercept and modify the result

of queries to the signaling set or rewrite HTTPS requests to HTTP requests, rendering CAPS’s protection against

downgrade attacks useless. While some countermeasures such as OS-level protections may protect the client, this

scenario is severe enough that CAPS makes no security guarantees if it occurs.

8https://publicsuffix.org/

https://publicsuffix.org/
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Figure 4.5: Certificates in the Web PKI as seen by Censys and CT.

4.3 Evaluation

In this section, we describe our evaluation of the performance and overhead of CAPS. We first describe the domains

represented by the signaling set, including how we determined these domains. Next, we compare different approaches

and optimizations for representing the signaling set. Finally, we describe the performance effects of CAPS on connec-

tion establishment.

4.3.1 Signaling Set Domains

Before building a representation of the signaling set, we need to determine which domains belong in the signaling set.

Moreover, to determine the long-term viability of our solution, we also need to understand how the size of this set of

domains may change in the future. Addressing both of these problems requires a complete and accurate view of the

Web PKI, namely, the set of domains that are accessible over HTTPS.

We can obtain a view of the Web PKI using data from public logs, as we describe in Section 4.1. Specifically, we

can obtain public-key certificates from sources such as Censys [52] and logs in CT [85]. From Censys, we collected

1,026 scans of the IPv4 address space over a period ranging from September 12, 2015 to July 3, 2018. From CT, we

collected all entries from known CT logs that were not disqualified or unreachable as of July 3, 2018,9 which totaled

approximately 1.74B certificates from 26 logs over a period ranging from March 26, 2013 to July 3, 2018.

On each of these days, we consider an “active set” of certificates consisting of all certificates that were valid on

that day and had an associated certificate chain rooted in one of the three major root certificate stores, determined

9https://www.certificate-transparency.org/known-logs

https://www.certificate-transparency.org/known-logs
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Figure 4.6: Names in the Web PKI as seen by Censys and CT.

by Apple, Microsoft, or Mozilla. In the Censys dataset, because we observed a great deal of churn (i.e., certificates

disappearing and appearing in consecutive scans), we considered a certificate as in the active set from the time it was

first observed in our data until its expiration. We then consider the number of unique, valid domain names, which we

use to build the signaling set.

Figure 4.5 and Figure 4.6 shows the number of each observed by Censys, CT, and their overlap over time. Our

results show that there are far more certificates (and consequently names and domains) observed by CT than by Censys.

It is not clear whether the names seen in CT simply never deployed HTTPS in the wild or whether Censys was not

observing certain certificates. However, to build a suitable signaling set, we performed a scan of port 443 using

ZGrab [52] for all domain names we encountered and discarded any domain names that no longer respond. From this

method, we isolated a set of 64,050,329 “valid” names that we used for testing.

4.3.2 Signaling Set Representation

As described in Section 4.1, my motivation for using a DAFSA-based representation of the signaling set was twofold:

first, the representation has no false positives or negatives, and second, it can be searched in its compressed state,

leading to a lower memory usage requirement for clients. To evaluate the effectiveness of these design decisions

against other alternatives, I conducted an experiment to measure the space requirements for the signaling set in various

representations, both on disk (when transmitted to the client) and in memory (when being used by the client during

certificate verification).

In particular, I compared the plaintext representation of the signaling set (as of July 3, 2018) with a compressed
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Table 4.1: Size of CAPS signaling set on July 3, 2018 (64,050,329 names) with various compression approaches. The
representation size in memory is not shown.

Representation Size (MB)

Plaintext 1,509

Bloom Filter (0.001% FP, best-case) 192
Bloom Filter (0.01% FP, best-case) 153
Bloom Filter (0.1% FP, best-case) 115

zpaq (method 1, 16 MiB blocks) 288
zpaq (method 5, 64 MiB blocks) 104
zpaq (method 5, 2048 MiB blocks) 104

DAFSA 185
DAFSA w/ path compaction (PC) 170
DAFSA w/ zpaq (method 5, 64 MiB blocks) 184
DAFSA w/ zpaq (method 5, 2048 MiB blocks) 145
DAFSA w/ PC, zpaq (method 5, 64 MiB blocks) 139
DAFSA w/ PC, zpaq (method 5, 2048 MiB blocks) 138

representation using Bloom filters, the compression utility zpaq,10 and various configurations of my DAFSA-based

representation. I also compressed the DAFSA-based representation using zpaq to find the size of the DAFSA-based

representation on disk (as it would be used uncompressed in memory).

I specifically tested a Bloom filter with false positive rates of 0.001%, 0.01%, and 0.1%. Since the number of

domain names is on the order of 100M [18], I expect that the number of false positives will be on the order of

1k, 10k, and 100k, respectively. I estimate that a false positive rate of 0.001% will be sufficient for most users.

I tested zpaq using two compression methods, 1 and 5, where method 1 completes in a short amount of time (25

seconds) but compresses the input less while method 5 takes a long time (20 minutes) but yields excellent compression.

Furthermore, with zpaq method 5, I tested with 64 MiB and 2048 MiB blocks, where larger blocks typically yield

better compression. Finally, with my DAFSA-based representation, which extends previous work [49], I tested a plain

encoding as well as an encoding of a path-compressed DAFSA, and compressed each of these encodings with zpaq

method 5 using both block sizes.

The results are shown in Table 4.1. Bloom filters offer high compression even with a low false positive rate, and

their in-memory representation is the same as their on-disk representation. However, they still have false positives,

which would leadto those domains becoming inaccessible. While zpaq in any configuration does not have any false

positives or false negatives and yields excellent compression, its in-memory representation of the signaling set would

simply be the uncompressed set of domains, yielding a memory requirement of 1.5 GB. My DAFSA-based representa-

tion captures a “sweet spot” between these two alternatives, offering no false positives and, in the best case, an on-disk

representation of just 138 MB with an in-memory representation of 170 MB.

10While I tested compression with other utilities, zpaq had the smallest size. Thus I used zpaq for the experiment to compare a near-best-case
compression scenario.
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Figure 4.7: Connection latency based on the number of proofs requested.

4.3.3 Connection Establishment

To measure the performance of connection establishment in CAPS, we implemented the handshake as a custom TLS

extension in the OpenSSL library. For concrete evaluation of this extension, we use nginx and curl with minor modi-

fications to use our TLS extension.

Additionally, we constructed sample sets of domain names based on four parameters: 1. the number of proofs

requested by the client during the ClientHello message (k), 2. the number of certificate chains the domain sends during

the ServerHello message (c), 3. the average number of certificates per chain, and 4. the average size of each certificate

chain. While varying each of these parameters, we measured the amount of extra data sent in the CAPS handshake,

and the latency of the handshake both with and without the CAPS TLS extension.

We tested this both over the Internet (by connecting to a virtual private server with latency varying from 30 to 300

ms, referred to as hophop), as well as over the local loopback interface (referred to as localhost). The tests over the in-

ternet to hophop provide an indication of the effect of the extension on “real world” servers, which are usually accessed

over WAN, whereas the localhost tests provide a lower bound on time added due to sending/receiving/processing extra

data. A total of 15385 TLS connections were established for our testing: 5768 over hophop, 9617 over localhost.
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Figure 4.8: Connection latency based on the number of certificate chains sent.

Our results, shown in Figures 4.7, 4.8, 4.9, and 4.10, show that in comparison to the mean time elapsed, there is

an approximately 5% increase in connection establishment time: an average of 11ms longer for hophop and 1.2ms for

localhost. However, since our TLS extension does not add any extra round-trips to the handshake, the time added is

small, especially in comparison to random measurement fluctuations, when we look at confidence intervals within one

standard deviation from the mean (shown as error bars in the figures).

The extra data sent in the CAPS handshake is directly dependent on the size and number of certificate chains,

as well as the number of proofs sent. In particular, the extra data sent from client to server is 1 byte, and the extra

data sent from server to client is (2+(292× #proofs)+ (∑chain sizeof(chain))) bytes. While this means that some

connections may result in a great deal of extra data sent, we can expect that the vast majority of domains will not send

additional certificate chains and the overhead will remain small.

4.4 Discussion

In this section, I discuss two issues to consider when deploying CAPS. In particular, I discuss security issues surround-

ing the integrity of the data sources used in CAPS. I also describe an avenue of further exploration that may reduce
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Figure 4.9: Connection latency based on the number of certificates in a chain.

the size of the DAFSA-based signaling set representation.

4.4.1 Data Source Integrity

CAPS relies on the integrity of the data sources (in our current prototype, Censys, and in the long term, the CT logs).

Therefore, a CA who issues and publicizes an unauthorized certificate for a domain that does not deploy HTTPS can

cause the domain to be included in the signal set and thus render the domain inaccessible. This fragility effectively

allows an adversary to “poison the well” that CAPS relies on, and execute a denial-of-service attack of indefinite

duration with just a single unauthorized certificate.

Unfortunately, recovering from such an attack requires immediate action. The affected domain could request that

the CA revoke the certificate if the CA issued the certificate in error. If the CA deliberately misissued the certificate,

the browser vendor could treat the certificate as revoked (though such action is unlikely unless the domain is popular).

The affected domain could also upgrade to HTTPS, obtaining enough certificates to override the misissued certificate.

In the event that the domain wishes to remain without HTTPS, we can allow domains to set a policy flag that signals

that the domain will communicate over HTTP. The domain, however, must still send this policy and proof during
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Figure 4.10: Connection latency based on the average size of the certificate chain.

connection establishment.

4.4.2 Transition Compaction

To further minimize the size of the DAFSA encoding, we can extend the design of prior work [49] using transition

compaction, which aims to minimize the DAFSA representation by reducing the representation size of each transition.

A transition in the representation consists of a symbol and destination state. In our testing, we found that both the

symbols and destination states had a long-tailed distribution, so a variable-length encoding, particularly a Huffman

code, could be used to further reduce the size of each transition. In practice, simply Huffman encoding each symbol

may not be sufficient, as we also found that most symbols appear only once in the DAFSA, and thus encoding every

symbol would actually increase the size of the representation. We may be able to add a signaling bit to indicate that a

symbol is Huffman encoded and only encode symbols that appear more than once.

For the destination state, previous work examined the use of ordering the states of the DAFSA and indicating

transitions to the immediate next state in the ordering using a special bit [49]. Finding an optimal ordering for such an

approach is a hard problem, but there are several approximations that may work well. For example, we can consider
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the difference between the source and destination states with respect to their positions in the ordering and encode

the integer value of the difference (i.e., a number of states forward or backward in the representation) using variable-

length integer coding. Again, finding the optimal ordering of states for this approach is difficult, with the problem

being related to finding a vertex separator in a graph. However, we may be able to apply techniques for efficiently

finding a vertex separator or an approximation thereof to our approach.





Chapter 5

Secure Public-Key Authentication in a Federated

Web PKI

In this chapter, I describe how we can reduce MITM attacks in a broader range of PKIs. In particular, I explore

how we can design a PKI that is resilient to compromised trusted parties in a holistic, federated environment. By

holistic, I mean that a PKI can authenticate multiple types of information with different requirements; in this chapter,

I specifically examine the authentication of names, routes, and end-entity public keys. By federated, I mean that a

system consists of multiple PKIs that have different trust roots but certify the same type of information; for example,

different companies may produce messaging applications that bind public keys to personal identities. This environment

prompts several important questions. What challenges with respect to MITM attacks do PKIs face in a holistic and

federated environment that they did not in the Web PKI? What properties should a PKI achieve in such an environment

to minimize these attacks? How might we begin to transition the Web PKI to a holistic and federated system?

As a first step towards answering these questions, I propose the Scalable Authentication Infrastructure for

Next-generation Trust (SAINT), a proposal for a holistic and federated PKI [95]. SAINT considers a federated,

holistic environment by imagining the Internet as a set of realms of authentication called isolation domains (ISDs),

similar to TDs in SCION (described in Section 2.6.5). In SAINT, I tackle the problem of designing a unifying PKI for

naming, routing, and end-entity public-key authentication, handled today by DNSSEC, RPKI/BGPsec, and the Web

PKI, respectively.

I observe that PKIs in the current Internet follow one of two models: monopoly (the entire system has a single trust

root) and oligarchy (the system has many trust roots of equal authority). Unfortunately, both of these models suffer

from shortcomings. The monopoly model unrealistically expects users to trust a single global root, and while this is

currently the case for systems like DNS, it is not clear that this state of affairs will persist indefinitely. The oligarchy

model, on the other hand, gives all trust roots equal, global authority, leading to weakest-link security, as is the case in

73
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the current Web PKI.

A holistic and federated PKI thus needs to provide several core guarantees. First, an isolation property should

contain the damage that a compromised trust root can do. Moreover, users should have trust agility [91], the ability to

easily select their trust roots. To recover quickly from misbehavior, the PKI should also support update efficiency. The

PKI should allow authentication as in the current PKI with two related properties: global verifiability should guarantee

that these trust roots can be used to authenticate any other entity, and trust mobility should enable trust roots to be used

anywhere in the world.

In SAINT, I observe that routing information contains implicit trust information that can be used to bootstrap PKIs

for naming and end-entity authentication. Using SCION, which provides a PKI for routing, I can instantiate SAINT in

a way that provides isolation in the form of ISDs and quick updates of trust root information in the form of trust root

configuration (TRC) files. I then show that the design and instantiation of SAINT provides the properties above.

While SAINT addresses problems with the PKI that arise in a holistic, federated environment, it does not aim

to address the problems of deployably reducing or preventing MITM attacks within an ISD, since this problem can

be addressed by deploying IKP (using the mechanism outlined in CAPS) within the ISD. Instead, SAINT focuses on

MITM attacks enabled by exploiting the interconnection of PKIs for different purposes (such as naming and routing) or

the use of different trust roots among communicating entities. We can thus use elements of IKP to further improve the

resilience of SAINT to misbehavior or misconfiguration within an ISD, but for clarity, I will present SAINT without

these features.

In summary, I make the following contributions in SAINT:

• By extending the concept of TDs in SCION, I propose my design of ISDs and show that it can isolate risks of

MITM attacks caused by a compromised trust root.

• By utilizing SCION’s routing infrastructure to distribute trust root information in the form of TRC files, I show

that trust root information can be updated efficiently in a federated PKI environment.

• By building on the inherent business relations that underlie peering links among ISDs, I show that the separation

of routing authentication from other types of authentication enable properties such as global verifiability and

trust mobility in a holistic PKI environment.

• By implementing and evaluating a prototype of SAINT, I show that SAINT incurs only a moderate latency

overhead.

I begin this chapter by describing the problem of designing a holistic PKI in greater detail. I then provide an

overview of SAINT. I describe several aspects of SAINT in detail: ISDs, TRC files, cross-signing of trust roots, and

the separation of authentication types. I then provide an in-depth example of public-key authentication in SAINT. I

describe the implementation and evaluation of SAINT, along with a proposed deployment strategy. I finally conclude

with a discussion of several non-technical issues and possible extensions to SAINT.
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5.1 Problem Definition

Our goal is to design a global infrastructure allowing a user (Alice) to authenticate routes, names, and end-entity

certificates (such as TLS certificates) for a server (Bob) in the Internet. In a global environment such as the Internet,

Alice does not trust all trust roots in the environment, and she and Bob may not even have any trust roots in common.

The trust roots may differ in functionality and scope: some may authenticate routes and others names, and some may

be global and some local. We want to minimize global authority, allow trust agility and mobility while maintaining

global verifiability, and allow Alice to evaluate the trustworthiness of information being authenticated.

Desired properties In order to effectively address the above authentication problems, a network architecture should

have the following properties:

• Isolated authentication. The compromise of a trust root should be limited in scope. In particular, if Alice and

Bob share trust roots for some information, no other trust root should be able to affect authentication of that

information.

• Trust agility. Alice should have a clear, understandable choice over her trust roots. This choice should be easily

modifiable at any time, with changes taking effect immediately (within seconds).

• Trust mobility. Alice’s trust decisions should remain the same no matter where she is in the network. In other

words, moving to different locations in the network should not require Alice to change her trust roots.

• Global verifiability. As in the current Internet, Alice should be able to authenticate any entity in the Internet

that can be reached and has authentication information such as a name or end-entity certificate, even if its trust

decision differs from hers.

• Transparent authentication. Alice should know when trust roots other than her own are certifying information

that she verifies. In particular, for a chain of signatures Alice should be able to determine which trust roots are

responsible for each signature.

• Update efficiency. Changes to trust root information (e.g., new keys and revocations) should take effect quickly

(within minutes). In particular, Alice should be able to detect and obtain new information without requiring

software updates.

Other assumptions In order for Alice to successfully verify authentication information, she must also be able to

verify a set of trusted public keys which can then be used to bootstrap trust in other keys used during authentication.

We therefore assume that users like Alice can verify an initial set of public keys through an out-of-band mechanism.
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5.2 Overview

In this section, we highlight important features of SAINT. We provide intuitive explanations of how these features

accomplish the desired properties mentioned in Section 5.1 and how they fit into the overall SAINT architecture.

5.2.1 Isolation Domains (ISDs)

The Internet consists of a diverse assortment of groups, or domains, each with its own set of trusted parties and

individual policies regarding routing, naming and end-entity certification. We make these differences a central part of

the SAINT architecture in order to achieve isolated authentication. SAINT groups hosts, routers, and networks into

ISDs, such as those shown in Figure 5.1. SAINT’s ISDs are inspired by SCION’s trust domains [134] and leverage

SCION’s routing infrastructure. However, SAINT’s ISDs provide additional authentication mechanisms for naming

and end-entity certification.

An ISD is a collection of ASes with a common set of trust roots (see Figure 5.3). These trust roots manage

authentication within their ISD, including management of routing, naming, and end-entity certification policies, but

are not authorities outside of the ISDs. The structure of ISDs attempts to model existing trust relationships between

humans by grouping those with similar trust decisions together and by protecting users from misconfigurations or

breaches of trust outside these “circles of trust” where other trust decisions and policies hold. Thanks to ISDs, Alice

can select her roots of trust and when communicating within her own ISD, she can stay protected from compromised

trust roots outside of her ISD. Section 5.3 describes the structure of ISDs in more detail.

In practice, ISDs can represent groups of various scales, such as companies, conglomerates, or countries. ISD-level

policies will vary greatly by the scale of the ISD, since corporate policies often contain much more detail than country-
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wide laws. In this chapter we use countries as examples of ISDs for several reasons: (1) international boundaries

approximately map to DNS naming boundaries, which are also separated in SAINT, (2) national data privacy laws

provide a reasonable example of security policies in top-level ISDs, and (3) the resulting set of domains represents an

easily-understood choice among possible sets of trust roots, since users can more easily understand what it means to

evaluate and trust a country (representing a set of trust roots) rather than doing so with individual trust roots.

5.2.2 Trust Root Configuration (TRC) Files

Trust root management in SAINT is handled by TRC files, which contain information about an ISD’s trust roots,

such as their public keys (see Section 5.4.2 for more details). TRC files are disseminated as network messages along

the same channels as routing messages and DNS responses (see Section 5.4.3), providing update efficiency. Because

routing messages are required to maintain connectivity, new TRC files can quickly propagate throughout the network

in case a trust root is compromised. This mechanism allows Alice to quickly obtain up-to-date trust root information.

In addition to the above distribution mechanisms, TRC files can also be downloaded and chosen by the users as

a new set of trust roots. Since a TRC file contains all of the necessary trust root information, a user like Alice can

easily switch to a different set of trust roots by simply obtaining and selecting a different TRC file. In essence, SAINT

provides trust agility by allowing users to easily modify their trust decisions at any time.

TRC files contain trust root information for a given ISD and thereby enable transparent authentication. Namely,

when a trust root signs the information of another ISD’s trust root (as explained below), it does so by signing the TRC

file of the other ISD. Thus a chain of signatures clearly indicates domain boundaries by design. Alice can use this

knowledge of ISD boundaries to evaluate the trustworthiness of this signature chain and determine whether or not to

accept the authenticated information.

5.2.3 Cross-Signing Trust Roots

If we consider ISDs as countries, then we can clearly see that not all ISDs’ trust roots will cross-certify one another,

and it is unrealistic to expect countries to do so. Rather, we only require the trust roots of two ISDs to cross-certify

one another if they share routing links, that is, if they are physically connected and route traffic through one another.

This requirement ensures that the existence of a routing path implies the existence of a chain of signatures for a name

or end-entity certificate, providing global verifiability by allowing Alice to verify this information for any entity she

can reach (see Section 5.5 for more details).

This cross-signing requirement also helps to provide mobility: no matter where users are located, they can au-

thenticate service information (names and end-entity certificates) starting from their own trust roots (named in their

“home” TRC file) to the ISD of the entity whose information they are verifying. Thus as long as Alice can reach her



78 CHAPTER 5. SECURE PUBLIC-KEY AUTHENTICATION IN A FEDERATED WEB PKI

home ISD from the ISD in which she is located, she can use her existing trust decision for authentication anywhere in

the world.

5.2.4 Separation of Authentication Types

SAINT separates routing authentication from service authentication (which certifies names and end-entity certificates).

Because authentic routes are required to fetch necessary information during name lookups and end-entity certificate

handshakes, we treat routing as a separate authentication mechanism. Moreover, we note that authentication of routes

cannot rely on fetching external information, as this would itself require authentic routes and thus create a circular

dependency.

The separation of routing and service authentication also helps provide trust mobility in SAINT. We observe that

users’ physical locations indeed influence their routing authentication; in particular, a route from Alice to Bob must be

authenticated by trust roots of the ISDs in which Alice and Bob are located. However, this requirement does not hold

for service authentication; thus Alice can use the trust roots of an ISD of her choosing to completely bypass the ISD

in which she is located to authenticate names or end-entity certificates, providing trust mobility and greater resilience

against MITM attacks.

5.3 Isolation Domains

We now discuss isolation domains in more detail. We begin by describing the physical layout of ISDs along with the

structure of the namespace and the address space in SAINT. We then present the concept of trust anchor ISDs, which

provide starting points for the authentication of routes, names, and end-entity certificates.

5.3.1 ISD Structure

An ISD is made up of multiple networks, or ASes, as shown in Figure 5.1, with ISDs connecting to one another to

enable Internet-wide connectivity. Similarly to trust domains in SCION, SAINT arranges ASes hierarchically within

an ISD by customer-provider relationships. The ASes in the top tier (those with no providers) are referred to as the

ISD core and serve as the trust roots for routing (see Figure 5.3 and Section 5.4.1 for more details).

The connectivity of ASes in SAINT is similar to the current Border Gateway Protocol (BGP)-based relations: ISDs

are primarily connected by links between ISD core ASes (similar to BGP transit links between tier-1 Internet service

providers (ISPs)), but can also be connected by links between lower-tier ASes (similar to BGP provider-customer

links and peering links). Paths between ISD cores are determined by a simple routing protocol among the core ASes

of each ISD. Based on our analysis of the current Internet (Section 5.10), we expect that there will be on the order of
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several hundred core ASes in total. Therefore, in running such a protocol we do not worry about significant overhead

or scalability.

5.3.2 DNS Namespace

Each ISD has the autonomy to manage its own namespace. We structure SAINT’s global namespace as a collection

of top-level domains (TLDs) bound by an inter-domain web of trust [135] (as shown in Figure 5.2), rather than by a

global root zone as is done in DNSSEC. However, SAINT’s name resolution process is similar to that of DNSSEC.

Each SAINT DNS root server answers queries for hosts within its ISD. An ISD’s namespace supports one of two

top-level domain types:

• Regional TLDs in SAINT correspond to a specific ISD. In the example of Figure 5.2, the TLD .us represents

the United States ISD, whereas .uk represents the United Kingdom ISD. In order to provide transparency, the

DNS server responsible for a regional TLD guarantees that any address record (similar to A records in DNS)

maps to an address within the corresponding ISD.

• Generic TLDs such as .com and .org, by contrast, are not bound to any specific ISD, and can thus name an

entity located anywhere in the world. However, a name in a generic TLD can only map a redirection to another

name, thereby ensuring that only names under regional TLDs map to addresses (and only within the TLD’s

corresponding ISD). This guarantee provides domain transparency during DNS lookups.

We expect that today’s ccTLDs such as .us and .uk will continue to operate as regional TLDs under SAINT.

Countries such as Tuvalu (whose ccTLD is the popular .tv) may choose to operate as a generic TLD and continue to

sell names that map all over the world, but must do so through redirections to other names.
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5.3.3 Address Space

We define an address in SAINT as a 3-tuple of the form (I ,A,e), where I represents an ISD identifier, A represents

an AS identifier (ASID), and e represents an endpoint identifier endpoint identifier (EID). For example, if Alice wants

to reach Bob, who has the EID 42ac6d in AS 567 and ISD I , she would contact the address (I ,567,42ac6d). In

contrast to the current Internet, AS numbers and EIDs do not have significance outside of their respective ISDs and

ASes, and thus can have any format. An EID, for example, can be an IPv4, IPv6, MAC, or self-certifying address.

Registry servers in ISDs (described in Section 5.4.1) assign ASIDs to ASes, and similar servers in each AS issue

EIDs to endhosts. Due to the local significance of ASIDs and EIDs, (I ,A,e) and (J ,A,e) are distinct addresses even

though both have the same ASID and EID. This addressing scheme allows full address to be globally unique while

giving ISDs and ASes the autonomy to manage addressing as well as names within their own realm of control.

The above addressing system also allows for interoperability with the current IP addressing and AS numbering

schemes while simultaneously enabling local deployments of other proposed addressing schemes. For example, some

ISDs may choose to retain the current AS numbering and IP addressing schemes, while others may opt to provide

ASes with human-readable identifiers and endpoints with IPv6 addresses.

Similarly to ASIDs, endpoint addresses (since only used locally in intra-AS routing) do not need to be globally

allocated like the current IP address space. Since the routing authentication infrastructure only handles inter-AS routes,

SAINT does not bind the endhost address space to public keys as RPKI does. Instead, forwarding from an edge router

to an endpoint address is resolved and handled entirely within an AS.

5.3.4 Trust Anchor ISDs

Trust anchors in the current Internet, such as IANA for RPKI and BGPsec, ICANN for DNSSEC, and root CAs

in TLS, represent starting points for authenticating information. Similarly, trust anchor ISDs are starting points for

authenticating routes, names, and end-entity certification in SAINT. Due to the separation of authentication by type,

Alice can anchor her trust for authenticating routing and service information in separate ISDs.

As discussed in Section 5.2.4, for routing purposes the trust roots of the ISD’s in which Alice is currently located

must certify all of her routes. However, Alice can select the trust roots of any ISD to authenticate service information

(names and end-entity certificates). We call this ISD Alice’s trust anchor ISD. Alice choice of this ISD can be easily

changed at any time (as described in Section 5.4.3). An example of such trust bootstrapping is provided in Section 5.7.

5.4 Trust Roots

In this section, we cover what entities serve as trust roots and how trust roots are configured for an ISD. We also discuss

how we update trust root information using network-level messages, and how this incorporation of trust management
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into the network allows for fast updates of trust root information. Finally, we describe our scheme of separating trust

roots by ISD, and how separated categories of authentication enable trust agility.

5.4.1 Trusted Parties

Trust roots sign authentication information for routes, names, or end-entity certificates, and set policies governing

the ISD. These policies may include information such as preferences for certain encryption or signature algorithms

or constraints on certificate validity. A trust root is an authority for either routing or service authentication (see

Figure 5.3).

Because a trust root is only an authority in its own ISD, a compromised trust root cannot enable the impersonation

of servers in other ISDs. Scoping trust root authority to the ISD level protects Alice and Bob’s communication from

many compromises in other ISDs and provides guarantees to Alice about authentication in her trust root ISD.

We classify trust roots into routing and service trust roots. The routing trust roots consist of the following parties:

• The core ISPs are responsible for sending out route announcements, which are propagated from providers to

customers and establish cryptographically signed paths from the recipient to the core.

• The path server stores and provides a lookup service for mappings between an ASID and the AS’s down-paths.

These paths are registered by the ASes at the core. The path server is co-located with and operated by the core

ISPs.

• The registry server issues and stores AS certificates binding an ASID to its public key (called its AS key), which

are used to verify the signed paths provided by the path server. Like the path server, the registry server is

co-located with and operated by the core ISPs.

The service trust roots consist of the trust roots for naming and for end-entity certification. The DNS root is
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the starting point for verifying all names in the ISD’s namespace. The DNS root also sets ISD-wide naming policies

such as reserved or forbidden domain names and allowed signature algorithms to sign records. Because the failure

of the DNS root can block user connectivity in an ISD, the DNS root should be highly robust and available, using

mechanisms such as distributed anycast schemes and placing servers in the ISD core where they can be reached

through highly available top-tier ASes.

The root CAs are the starting points for verifying end-entity certification information in an ISD. Root CAs in

SAINT serve the same purpose as they do in today’s PKIs by signing TLS public-key certificates. However, they are

restricted to only signing end-entity certificates in ISDs in which they are root CAs. They can also sign intermedi-

ate CA certificates as in today’s TLS PKI. If the ISD uses other public-key infrastructures such as CT or AKI (see

Section 5.11), then the trust roots for end-entity certification also include public logs and auditors/validators.

5.4.2 Trust Root Configuration (TRC) Files

As mentioned in Section 5.2.2, a TRC file specifies the trust roots for an ISD, the public keys of those trust roots, and

the authentication policies of the ISD. It also specifies the locations of the DNS root and TRC servers (described in

Section 5.4.3) to allow users to reach these servers without performing DNS lookups. TRCs are created and managed

by an ISD’s trust roots and distributed through the routing mechanism. Specifically, a threshold of trust roots is

required to sign a new or updated TRC file, and the core ISPs distribute the TRC file within the ISD through a

broadcast mechanism that we describe below.

The quorum of trust roots required to update the TRC file is specified in the TRC file itself, providing the trust

roots with the autonomy to set their own threshold for altering the TRC file. A higher threshold is more secure to a

compromise of multiple trust roots, but also reduces the efficiency in updating TRC files. The TRC file also specifies a

quorum of trust roots that must sign a cross-signing certificate to authenticate another ISD’s trust roots. Cross-signing

certificates are described in more detail in Section 5.5.

TRC format A TRC file is encoded as an XML file with the fields shown in Table ??. The version number and

timestamp ensure that users can verify information using recent policies and trust root information. The public keys

of the ISD’s trust roots provide starting points for verifying routes, names, and end-entity certificates. The TRC file

may also contain the public keys of additional entities (e.g., public logs in CT [85] or In order to allow users to easily

reach the DNS root of an ISD, the TRC also contains one or more addresses for the ISD’s DNS root.

Policies A TRC file can also specify additional policies related to ISD management. For example, these policies

might specify a minimum key length or required encryption algorithms for all end-entity certificates in the ISD.
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Table 5.1: Fields in a TRC file.

Field Description

isd ISD identifier
version Version of TRC file
time Timestamp
coreISPs List of core ISPs and their public keys
registryKey Root registry server’s public key
pathKey Path server’s public key
rootCAs List of root CAs and their public keys
rootDNSkey DNS root’s public key
rootDNSaddr DNS root’s address
trcServer TRC server’s address
quorum Number of trust roots that must sign new TRC
trcQuorum Number of trust roots that must sign an ISD cross-signing cert
policies Additional management policies for the ISD
signatures Signatures by a quorum of trust roots

Systems such as PoliCert [126] have proposed similar policies on a per-domain basis; we leave a detailed design of

additional ISD-wide policies to future work.

Updating the TRC file In the event that a TRC file needs to be updated, the trust roots confer out of band to

determine what changes need to be made to the TRC file. Once they have decided to update a TRC file, the trust roots

sign the new TRC file. Each of these signatures is appended to the signatures section of the new TRC file, and

sent when a quorum of trust roots signs the TRC file. The trust roots can also use group signatures [41] or threshold

signatures [120] to update the TRC file.

5.4.3 TRC Distribution and Management

Obtaining an initial TRC file. We envision that Alice will most commonly obtain a initial TRC file of her provider’s

ISD when forming a service agreement. If Alice wants to obtain a different ISD’s TRC file, she can contact the TRC

server of that ISD, a server that stores the TRC files and cross-signing certificates (see Section 5.5) of other ISDs. The

TRC server’s address is in the TRC file of the ISD, allowing Alice to directly query the server for other TRC files. In an

extreme case where Alice does not trust the provider or ISD, she may download a TRC file from a publicly-accessible

mirror site or obtain one in person from a trusted colleague or organization. Alice can also obtain a TRC file a priori

if she plans to join such an ISD with a new device.

Obtaining updated TRC files ASes and users in an ISD are informed of the latest version of the TRC file with

each routing announcement and DNS response. Thus, as long as Alice has an Internet connection and performs DNS

lookups, she can quickly detect and obtain a new TRC. The version number is part of each routing announcement,
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Figure 5.4: Distribution mechanism for updated TRCs. Arrows indicate sent network messages.

and a timestamped message signed by the trust roots accompanies each DNS answer (to avoid re-signing every DNS

record in the ISD upon updating the TRC file). When Alice detects a new TRC file, she can fetch the new file from

the provider or DNS root (see Figure 5.4).

Changing trust anchor ISDs Besides the ability to select trust roots as described in Section 5.3.4, trust agility also

provides the ability to easily and quickly modify this selection. The above methods of obtaining TRC files provide

this notion of trust agility, as Alice can change trust anchor ISDs by simply obtaining a new TRC file. Under normal

circumstances Alice can simply download a new TRC file from her trust anchor ISD’s TRC server, but if for example

she discovers that her trust anchor ISD has been conducting state-level surveillance, she can instead obtain the TRC

file manually or from an external server as described above.

5.5 Cross-Signing

In this section, we provide a detailed discussion of cross-signing in SAINT. We begin by describing cross-signing

certificates, and then detail how these are used to enable inter-ISD authentication and global verifiability. We then

discuss the tradeoff between global verifiability and the trustworthiness of authenticated information, and how the

authentication policies expressed in an ISD’s TRC file fits in this tradeoff.

5.5.1 Cross-Signing Certificates

In order to enable global verifiability, we require ISDs to issue cross-signing certificates for its neighboring ISDs,

that is, ISDs with which they share routing links. The resulting web of cross-signing between ISDs ensures that by

following a route from Alice’s ISD to Bob’s ISD, a corresponding chain of signatures from Alice’s trust roots to
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Bob’s trust roots will exist, forming a chain of signatures from Alice’s trust roots to Bob. ISDs without direct routing

connections can also issue cross-signing certificates to one another, forming further chains of signatures to enable

authentication between different ISDs directly.

A cross-signing certificate issued by I for J ’s trust roots contains (a) a timestamp, (b) I , (c) the current version

number of TI , (d) J , (e) the current version number of TJ , (f) a hash of TJ , and (g) a signature by a quorum of

I ’s trust roots (see Table 5.2 for an explanation of notation). The version numbers of the TRC files ensure that the

trust roots’ public keys can be checked against the appropriate versions of the TRC files.

The ISD stores these certificates in its TRC server for its users and also propagates the certificates along its inter-

ISD routing links to provide each ISD with the necessary information to form a chain of signatures to a given destina-

tion ISD. Alice can then query her trust anchor ISD to obtain these chains of signatures and select one to authenticate

information in Bob’s ISD.

5.5.2 Inter-ISD Authentication

When Alice, whose trust anchor ISD is K , wants to authenticates Bob, who is in another ISD M , she needs to obtain

cross-signing certificates to form a chain of signatures from K to M . While verifying Bob’s routes, name, and end-

entity certificate, she obtains the appropriate cross-signing certificates from K ’s TRC server. If Alice is in an ISD I ,

then every route from her to Bob will have a chain of signatures starting at K , proceeding to the trust roots of I , then

to the trust roots of M , and finally to Bob’s AS.

If K and M do not share routing links but have issued cross-signing certificates to each other, Alice can verify

Bob’s name and end-entity certificate using K ’s cross-signing certificate for M . These cross-signing “shortcuts”

allow Alice to authenticate Bob’s information with fewer ISDs authenticating information “in transit,” providing fewer

opportunities for a compromised trust root to disrupt authentication.

No matter where M is, Alice is guaranteed to find a chain of signatures to M and to Bob if she can find a route to

Bob. Since she must be able to contact K from I to obtain the appropriate cross-signing certificates, she has a route

between K and I and can thus obtain cross-signing certificates from K to I , and similarly for I and M . Though

a chain of signatures may cross many ISDs, Alice is guaranteed to find at least one such chain.

Note that cross-signing certificates do not necessarily indicate a trust relationship between ISDs; a cross-signing

certificate instead only states: “These are the public keys of the trust roots for the following ISD.” It is therefore up to

Alice to determine the trustworthiness of a chain of signatures before accepting the information it certifies as authentic.
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5.5.3 Authentication Policies

The above cross-signing requirement ensures that Alice can authenticate Bob’s information regardless of which ISD he

is in. While a compromised trust root on a chain of signatures from Alice to Bob can adversely affect authentication by

certifying false information, Alice’s trust anchor ISD K can mitigate this risk through the use of ISD-wide policies in

the TRC file. These policies can also blacklist public keys, such as those contained in known unauthorized certificates

or those of compromised trusted authorities. Using such policies, K can protect Alice from compromises in other

ISDs. If others with K as their trust anchor ISD frequently contact Bob or other destinations in M , then K may

form a cross-signing relationship with M to minimize the risk of compromised trust roots in other ISDs.

ISDs face a tradeoff between enabling global verifiability and protecting their users from compromises in other

domains. The default behavior in SAINT is to provide global verifiability. As illustrated above, an ISD must explicitly

state any exceptions to this behavior in the policy field of its TRC file. The ability to restrict the authentication of

known false information through policies provides a mechanism by which an ISD can protect not only its own users,

but also users for whom a chain of signatures passes through the ISD.

5.6 Separated Authentication

In this section, we describe how SAINT separates routing and service authentication. We first describe our motivation

for separating these two types of authentication, and then discuss how this separation provides Alice with trust mobility.

5.6.1 Routing and Service Authentication

Authentication in SAINT is classified and separated into routing and service authentication. We make this separation

in part because we observe that the authentication of route information fundamentally differs from the authentication

of service information. In particular, routing authentication cannot assume the existence of secure routes to obtain any

external information, and therefore an entity must rely on pre-verified paths or be able to verify paths without fetching

external information. By contrast, service authentication assumes the existence of authentic routes and thus allows

contacting external entities to obtain authentication information.

Routing messages in SAINT propagate beginning from the ISD core and follow provider-customer AS links.

Unlike in RPKI and BGPsec, all necessary information (e.g. AS certificates) are sent with the routing message,

allowing an AS to verify routing messages upon arrival. Moreover, information such as AS certificates are short-lived,

eliminating the need to propagate revocation information for AS keys.

By contrast, a DNS lookup, which falls under service authentication, must use a route to reach one or more

nameservers and fetch the appropriate information for verifying a name-to-address mapping. TLS features such as

OCSP also require contacting an external entity to determine the validity of an end-entity certificate. Due to this
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dependence, Alice must verify routes to the ISD core of her current ISD I , and form and verify routing paths from

I to Bob’s ISD M before she can authenticate Bob’s service information.

5.6.2 Trust Mobility

Separating routing and service authentication also enables trust mobility. Suppose that Alice checks into a hotel in

Oceania, a known surveillance state, and attempts to connect to her hotel’s wireless Internet. If the Oceanian trust

roots are compromised by the government, then it is inevitable that the government can see her packets themselves, as

her physical location in Oceania enables the government to examine her packets. In other words, Oceanian trust roots

must certify her routes out of the Oceanian ISD and thus these trust roots must be on the chain of signatures for routes

from Alice to any destination in the Internet.

With SAINT, however, Alice can choose K as her trust anchor ISD for service authentication, since SAINT

separates routing and service authentication. Moreover, this choice does not depend on Alice’s current location and

thus applies wherever Alice is in the Internet. In our example, this means that Alice does not have to rely on signatures

from the Oceanian trust roots to verify Bob’s name or end-entity certificate, even if she is connecting to the Internet

from an Oceanian hotel.

5.7 Authentication Example

We now discuss the complete authentication process in SAINT. We first describe setup steps for a server, such as

joining an ISD and registering domain names, routing paths, and end-entity certificates. We then describe how Alice

(the client) checks the information that she receives about Bob (the server). We use a to denote Alice and b to denote

Bob. As previously mentioned, Alice’s trust anchor ISD is K . Bob is part of the AS B in Mythuania M , whose

ccTLD is .my. Table 5.2 provides a list of the notation used.

5.7.1 AS Setup

Figure 5.5 depicts the steps of the AS setup process for AS B in the Mythuanian ISD M :

1. RSM assigns the ASID B to Bob’s AS.

2. B creates an AS key pair (AKB,AK−1
B ).

3. B sends {B,AKB} to RSM .

4. RSM issues B an AS certificate ACB.

5. B receives the TRC file TM from its parent AS.

6. B receives SCION routing messages from its parent.

7. B selects a set of paths PB (signed with AK−1
B ) and sends {PB,ACB} to PSM .
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Table 5.2: Notation.

Notation Name Use

Identifiers

X AS AS with ASID X
y Endhost an end-entity such as a client or server
ey EID locate endhost y within its AS and ISD
Z ISD ISD with identifier Z

Certificates

ACX AS cert bind X to AKX (signed by RS of X’s ISD)
ECy End-entity cert store CA-signed public key information during connection setup
DCy CERT RR store CA-signed DNS binding between y and DKy

Keys

AKX AS key sign paths that can be used to reach X
DKy DNSKEY RR sign DNS resource records in DNSSEC
EKy End-entity key set up secure end-to-end connections, e.g., via TLS
K−1

y Private key private key for public key Ky

Servers

PSY AS Path server contact ISD path server for clients in Y
PSZ ISD Path server maintain database of signed paths for ASes in Z
RSZ Registry server assign ASIDs and AS numbers in Z

Messages

PX Signed path set sent to PS of X’s ISD to register paths to reach X
TZ TRC file provide trust root information for Z

B
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Figure 5.5: Diagram for AS setup steps (Section 5.7.1).

5.7.2 Server Setup

Figure 5.6 shows the steps of the server setup process for Bob:

1. AS B assigns Bob the EID eb, making his address (M ,B,eb).

2. Bob chooses the name b.my and creates a domain-name key pair (DKb,DK−1
b ).
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Figure 5.6: Diagram for server setup steps (Section 5.7.2).
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Figure 5.7: Diagram for obtaining a TRC file (Section 5.7.3).

3. Bob sends b.my and DKb to the .my operator to register his name and key.1

4. The .my operator creates a delegation signer (DS) record to point to DKb from the .my zone, as well as a record

mapping b.my to Bob’s nameserver.

5. Bob creates a mapping of www.b.my to (M ,B,eb), DKb, and resource record signature (RRSIG) record of the

mapping signed with DK−1
b .

6. Bob creates an end-entity key pair (EKb,EK−1
b ).

7. Bob sends {b,EKb} to a CA in M .

8. The CA issues Bob an end-entity certificate ECb = {b,EKb}K−1
CA

.

9. Bob creates a certificate DCb = {b.my,DKb}EK−1
b

, and stores DCb along with ECb as a CERT record in his

nameserver.
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Figure 5.8: Client lookup and verification of server’s name, route, and end-entity certificate (Section 5.7.4).

5.7.3 Client Setup

In order for Alice to verify information, she must first possess a TRC file to configure her set of trust roots. Even if

she does not have a TRC file, we assume that she can verify a TRC file from her trust anchor ISD K . In fact, she can

verify this TRC file in any ISD I — even if she does not trust I . As illustrated in Figure 5.7, after connecting to the

Internet in I , Alice does the following to obtain and verify a TRC file:

1. Alice’s ISP (AS C) assigns her the EID ea, making her address (I ,C,ea). C also sends her the latest TRC file

TI for the ISD I .

2. Alice requests from PSC a path to the TRC server TSI of I or TSK of K (if she knows the address).

3. PSC returns to Alice the path she requested.

4. Alice now contacts either TSI (4a in Figure 5.7) or TSK (4b) and requests TK . In the case of 4b, Alice also

requests a cross-signing certificate for I from TSK to ensure that all authentication (even for routes) begins

from TK .

5. If Alice contacted TSI , she receives TK (5a). Otherwise, she receives TK and the cross-signing certificate for

I from TSK (5b).

We assume that Alice verifies the authenticity of TK through an out-of-band mechanism, e.g., if she makes plans

to travel to I and considers it a “hostile” ISD, then Alice can obtain a hash of the public keys of K ’s trust roots a

priori, or she can obtain this information in an embassy of K within I .
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5.7.4 Client Verification

Figure 5.8 illustrates the complete process that Alice executes to authenticate Bob. We assume that Alice has completed

the client setup process and thus has TK to use as the starting point for authenticating Bob. The authentication process

is as follows:

1. Alice begins by looking up www.b.my, and thus first obtains TM . She contacts PSC to obtain a path to TSK .

2. PSC returns to Alice a set of paths that she can use to reach TSK .

3. Alice contacts TSK to request TM .

4. TSK returns TM and a cross-signing certificate for M .

5. Alice contacts PSC to request a path to the DNS root of M , whose address she has from TM .

6. PSC returns to Alice a set of paths to M ’s DNS root.

7. Alice contacts M ’s DNS root to query www.b.my.

8. Alice performs DNSSEC resolution to obtain (M ,B,eb) as well as Bob’s domain and end-entity certs DCb and

ECb.

9. Alice requests a path to Bob’s address from PSC.

10. PSC returns to Alice B’s AS certificate ACB and a set of paths PB to reach B.

11. Alice contacts Bob to initiate the TLS handshake.

12. Bob sends Alice his end-entity certificate ECb.

Alice verifies that Bob’s end-entity public key EKb contained in the end-entity certificate she obtained from M ’s

DNS root matches the end-entity public key she receives during the TLS handshake. If the keys match, she proceeds

with the TLS handshake to establish a secure end-to-end connection with Bob.

Throughout this process, Alice verifies that valid authentication paths exist for each entity she contacts: PSC, TSK ,

M ’s DNS root, B, and Bob. When she receives information signed by the trust roots of an ISD other than K , Alice

uses the appropriate cross-signing certificate to verify the public keys of the ISD’s trust roots, thus ensuring that all

authentication ultimately begins with trust roots listed in the TRC of her trust anchor ISD K .

Error handling A verification failure at any stage in the authentication process will prevent Alice from authenticat-

ing and establishing a connection to Bob. In the event that the verification of a routing path fails, Alice will not be able

to reach Bob or entities such as DNS roots and TRC servers. However, Alice likely cannot detect this failure from her

browser. In the event that the verification of Bob’s name-to-address mapping fails, Alice will not know the address at

which she can reach Bob. While most modern browsers indicate such a failure, Alice cannot proceed with verification

after such a failure. From the perspective of Alice’s browser, a failure to verify Bob’s end-entity certificate is the most

1In practice, Bob will create multiple key pairs and use one of the private keys to sign the others, but for simplicity we assume here that Bob
uses DKb both to sign his DNS zone information and to self-sign DKb.
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informative, as most modern browsers display the type of error that occurred and in some cases provide the option to

continue with the connection anyway.

5.8 Analysis

In this section, we present a formal model of SAINT and analyze how our model achieves the desired properties

presented in Section 5.1.

5.8.1 Model

In our model, we associate an ISD I with a set of trust roots TR(I ), a set of neighbors N(I ), and a set of cross-

signing neighbors CN(I ). The set of neighbors of I is the set of all ISDs to which I has a direct routing connection

exists, and the set of cross-signing neighbors of I is the set of all ISDs J such that a cross-signing certificate

CSC(I ,J ) exists from I to J .

Assumptions We assume that routing connections are symmetric, so that I ∈ N(J ) implies that J ∈ N(I ).

We also assume from Section 5.5 that cross-signing certificates exist wherever routing connections exists, and hence

N(I ) ⊆ CN(I ) for all I . We further assume that cross-signing certificates are symmetric, that is, I ∈ CN(J )

implies that J ∈ CN(I ). Because the existence of a cross-signing certificate CSC(I ,J ) is equivalent to J ∈

CN(I ) by definition, we can also say that the existence of CSC(I ,J ) implies the existence of CSC(J ,I ).

For the purposes of obtaining routes, names, and certificates, we use two types of sequences of ISDs. We first

define a path as follows:

Definition 1. A path from X1 to Xn is a sequence of ISDs denoted (X1, . . . ,Xn) where for all 1≤ i < n, there exists

a direct routing link between Xi and Xi+1. We call X1 and Xn the source and destination of the path, respectively.

We can also define a similar sequence of ISDs called a certificate chain as follows:

Definition 2. A certificate chain from X1 to Xn is a sequence of ISDs denoted 〈X1, . . . ,Xn〉 where for all i such that

1 ≤ i < n, CSC(Xi,Xi+1) exists and is valid in the sense that the signature CSC(Xi,Xi+1) can be verified using the

public keys of TR(Xi).

As with paths, certificate chains also have the concept of a source and destination identical to the one presented in

Definition 1.

Clients have two notable relations to ISDs. The first is the concept of being physically located in an ISD:

Definition 3. We say that a client A is located in an ISD I if for any destination ISD D , all routing paths along which

A can send packets to D have the source I . We call I the routing source ISD of A.
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In order to formalize the second relation, we first define the concept of a client evaluating a certificate chain:

Definition 4. Let C be a certificate chain. We define the evaluation function of A as a function evalA : {C } → {0,1}

where in any protocol step where A receives a certificate chain C , evalA(C ) = 0 implies that A immediately aborts the

protocol. When calculating evalA(C ), we say that A evaluates C . If evalA(C ) = 1 then we say that A accepts C , and

if evalA(C ) = 0 then we say that A rejects C .

Suppose that evalA(C ) = 1 if and only if C has the ISD T as its source. Then we call evalA sound. Furthermore,

we say that A anchors its trust in T , and we call T the trust anchor ISD of A.

Intuitively, to accept a certificate chain C with destination D means behaving as if any route, name, or EE certifi-

cate signed by TR(D) is correct. Thus a client A who accepts a certificate chain with destination D will, for example,

negotiate a session key with a destination B located in D to communicate confidentially with B.

We now prove two lemmas that will be used in our analysis of SAINT’s desired properties.

Lemma 1. The existence of a path (X1, . . . ,Xn) implies the existence of a certificate chain 〈X1, . . . ,Xn〉.

Proof. By definition of a path, for all i such that 1≤ i < n, Xi+1 ∈N(Xi). Since N(Xi)⊆ CN(Xi), Xi+1 ∈ CN(Xi).

This implies that for all i such that 1≤ i< n, CSC(Xi,Xi+1) exists. Thus the certificate chain 〈X1, . . . ,Xn〉 exists.

Lemma 2. Paths are closed under the substring operation, symmetric, and transitive. That is, for all paths (X1, . . . ,Xm)

and (Y1, . . . ,Ym), the following statements hold:

1. for all i and j where 1≤ i≤ j ≤ n, (Xi, . . . ,X j) is a path.

2. (Xm, . . . ,X1) is a path.

3. if Xm = Y1, then (X1, . . . ,Xm,Y2, . . . ,Yn) is a path.

Proof. We prove this by examining each statement separately.

1. Consider k such that i ≤ k < j. Then 1 ≤ i ≤ k, and thus 1 ≤ k. Also, k < j ≤ n, and thus k < n. Since for all

values of k we have 1≤ k < n, Xk+1 ∈ N(Xk). Since this holds for all k where i≤ k < j, (Xi, . . . ,X j) is also

a path.

2. Consider i such that 1≤ i < m. We know that Xi+1 ∈ N(Xi), and this implies that Xi ∈ N(Xi+1). We can thus

say that for all m≥ j > 1, X j−1 ∈ N(X j). Therefore, (Xm, . . . ,X1) is a path.

3. Due to the existence of the route (Y1, . . . ,Yn) we can say that for all i such that 1≤ i < n, Yi+1 ∈ N(Y1). Since

Xm = Y1, we know that Y2 ∈ N(Xm). Then, combining this with the fact that for all i such that 1 ≤ i < m,

Xi+1 ∈ N(Xi) and for all j such that 2≤ j < n, Y j+1 ∈ N(Y j), we can conclude that (X1, . . . ,Xm,Y2, . . . ,Yn)

is a path.

We thus conclude that paths are closed under the substring operation, symmetric, and transitive.
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We can combine Lemmas 1 and 2 to show that certificate chains are also closed under the substring operation,

symmetric, and transitive.

5.8.2 Analysis of Desired Properties

We now analyze our model in terms of the desired properties presented in Section 5.1. We present precise definitions

for all properties except transparent authentication, and proofs of global discoverability and isolated authentication.

For the remaining properties, we argue that our design of SAINT provides these properties.

Global discoverability Intuitively, the global discoverability property states that for a given client A with routing

source ISD S and trust anchor ISD T , A can obtain a certificate chain from T to any destination ISD D that has a

route from S .

Definition 5. Let A be a client with routing source ISD S and trust anchor ISD T . We say that global discoverability

holds if for any destination ISD D where there exists a route from S to D , A can obtain a certificate chain with source

T and destination D .

We can show that if a client A knows a path to its trust anchor ISD T , the A knows a certificate chain from T to

D , i.e., A can authenticate D .

Theorem 1. Let A be a client with a routing source ISD S and trust anchor ISD T . Then for all domains D that

have a route from S , if A knows a route from S to T , A can construct a certificate chain from T to D .

Proof. We observe that there exist routes from S to T and from S to D . By symmetry of routes (Lemma 2), there

exists a route from T to S . Then by transitivity of routes (Lemma 2), we conclude that there exists a route from T

to D . Then by Lemma 1, a certificate chain from T to D exists.

We note that A does not need to communicate with T at all in this process—with paths to T and D from S , A

has all it needs to construct the certificate chain. If A can reach T from S , then it may be able to obtain a shorter

certificate chain than one going through S . Finally, even if A cannot reach T from S , it may be able to obtain or

construct a certificate chain from T to D , using an out-of-band method or by using cached cross-signing certificates.

Without making assumptions about the graph of ISDs, we cannot prove global discoverability, but we argue that given

network connectivity today, A can likely reach T and thus obtain a certificate chain to D .

Isolated authentication Intuitively, the isolated authentication property states that given a client A and a certificate

chain C , an ISD M can produce a signature that would cause A to reject C if and only if M ∈ C . In other words, any

M /∈ C cannot cause A to reject C . We can thus formalize isolated authentication as follows.
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Definition 6. Let A be a client and C = 〈X1, . . . ,Xn〉 be a certificate chain. We say that isolated authentication holds

if for an ISD M , the trust roots of M can produce a signed message that causes A to reject the chain if and only if

M = Xi for some i where 1≤ i < n.

In SAINT, a client simply accepts a certificate chain if evalA is sound. We show that this implies isolated authen-

tication in SAINT.

Theorem 2. Let A be a client where evalA is sound with respect to an ISD T . Then isolated authentication holds for

all ISDs in the SAINT network.

Proof. Suppose that an ISD M is not on a certificate chain C = 〈X1, . . . ,Xn〉, that is, for all i in 1≤ i≤ n, M 6= Xi.

Then no signature or certificate by the trust roots of M will appear in C . Since A only looks at the certificates on C

to determine whether or not the chain is valid, M cannot produce a message that will cause A to reject the chain.

Suppose on the other hand that M is on the chain, that is, M =Xi for some i where 1≤ i < n. Then we know that

CSC(M ,Xi+1) exists. A will validate the chain C , and evalA(C ) = 0 if M signs an invalid cross-signing certificate,

such as one containing the wrong keys of TR(Xi+1). We note that A rejects C in this case, and thus M can cause A

to reject C .

We thus conclude that a very simple method for computing evalA(C ) can provide isolated authentication. While

we expect that in practice other methods could be used (such as those that rely on multiple certificate chains), we

consider these methods out of the scope of our analysis, and instead propose challenges for future work to investigate

these methods.

Trust agility Intuitively, the trust agility property states that A has a choice of trust root ISDs to verify a destination

ISD and that A can easily modify this choice at any time. More precisely, A should be able to download the TRC file

for any ISD T and begin using it as a trust anchor ISD.

Definition 7. Let D be the set of ISDs in the SAINT network, and let A be a client. We say that trust agility holds if

for all T ∈D , A can obtain and verify the TRC file of T .

When analyzing trust agility in SAINT, we consider whether or not A has an existing trust anchor ISD T0, and

whether or not A has a path to T . We thus analyze four cases:

1. If A anchors its trust in T0 and has a path to T , then by Theorem 1 A can verify a certificate chain from T0 to

T .

2. If A anchors its trust in T0 but does not have a path to T , then A can obtain the TRC file of T from T0’s TRC

server, or contact other ISDs that A can reach to obtain the TRC file.
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3. A has no existing trust anchor but has a path to T , then A can trust its routing source ISD by default to verify

its route to T , and in the process obtain a certificate chain to T that can be verified.

4. If A has no existing trust anchor and no path to T , then A must obtain T ’s TRC file out of band.

As with global discoverability, we note that A may rely on cached cross-signing certificates or out-of-band com-

munication to obtain and verify T ’s TRC file. As stated in Section 5.4.3, A can obtain an initial TRC file in a variety

of ways. In fact, how A obtains the TRC file is irrelevant, and in the absence of any certificate chains to verify the TRC

file, A can rely on out-of-band information for the verification as well.

Update efficiency Intuitively, update efficiency means that a client automatically obtains the latest trust root infor-

mation. The purpose of providing update efficiency is so that relying parties such as clients, servers, and ISDs can

have the latest trust root information when verifying a route, name, or EE certificate. We observe, however, that a

relying party does not need to have the latest trust root information until it must use the information for verification.

We can thus concretely define update efficiency in the following manner:

Definition 8. Let A be a relying party. We say that update efficiency holds if A processes at most one route, name

record, or EE certificate each with outdated trust root information.

We can argue that this definition holds in SAINT if A performs a single request for a route, name, or EE certificate

at a time (i.e., A does not request multiple routes, names, or certificates at once). Upon receiving a route, name, or

certificate with a newer TRC version, A simply performs an additional round trip to its parent or to its trust anchor ISD

to obtain the latest TRC file.

Transparent authentication Since the idea of transparent authentication is simply that a client can determine what

ISD’s trust roots are responsible for a part of the certificate chain, we present a simple argument to show that SAINT

provides transparent authentication. We can observe that a client can simply start with its trust root ISD and traverse

the certificate chain. For each cross-signing certificate observed, the client can conclude that the ISD whose trust

roots are authenticated in the cross-signing certificate is now responsible for all subsequent certificates until the next

cross-signing certificate is observed.

5.9 Implementation and Evaluation

In this section, we describe our prototype implementation of SAINT. We used this implementation to evaluate the

performance of authentication and trust root management functions; we also discuss our evaluation results here.
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Figure 5.9: Architecture for endhost implementation.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600

F
ra

c
ti
o

n
 o

f 
A

S
e

s

Time from propagation (ms)

Figure 5.10: CDF of the percentage of vantage point ASes using a new TRC after propagation from the core ISPs.

5.9.1 Implementation

We implemented the endhost side of SAINT Figure 5.9). The main component of our implementation is the SAINT

daemon, which acts as a gateway between applications and the network. The SAINT daemon includes SCION layer

support for packet encapsulation and decapsulation, a path engine for route management and verification, a name

lookup engine for SAINT name queries, and a TRC engine, which allows users to obtain and verify TRC files.

Traffic generated by the applications is delivered to the SAINT daemon by the NetFilter queue, allowing legacy

applications to deploy SAINT without requiring any changes. We ran our simulation on an Intel Core i5-3380M CPU

at 2.90 GHz, 16 GB of RAM, Python 3.4, and gcc 4.8.2. We used ed25519 [33] as our signature scheme for name and

path verification, and RSA-2048 for TLS certificates.

5.9.2 TRC Updates

We measured the efficiency of TRC distribution and updates by simulating the propagation through the current AS

topology. We used the CAIDA inferred AS relationships dataset from October 2014 [40] as our model of the current
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Measurement Min Max Med Avg

DNS resolution 199 967 557 500
Path verification 348 1 691 691 652
Certificate validation (TLS) 210 1 123 222 233
Certificate validation (TLS+CRL) 401 1 775 440 460

Table 5.3: Evaluation results (in microseconds).

topology, and used traceroutes from iPlane datasets2 to estimate inter-AS latency. From each of iPlane’s vantage

point ASes (distributed throughout the world), we identified the latency (half of the RTT) to each of the top-tier ASes

identified using the CAIDA-based topology.

Our evaluation demonstrates that more than half of our vantage point ASes receive a new TRC file within 100 ms

of the file being sent from the core ISPs (see Figure 5.10). Moreover, all vantage point ASes receive the new TRC

file within 600 ms. Our vantage point ASes included stub ASes (that is, ASes with no customer ASes), demonstrating

that end users around the world can quickly receive updated TRC files. These results show that our TRC propagation

mechanism is significantly more efficient than the current trust root update mechanisms in browsers (which typically

occur on the order of days).

5.9.3 Authentication Overhead and Performance

To test the actual latency of authentication in SAINT, we measured 300 end-to-end secure connection establishments

on a sample SCION topology of virtual machines. Table 5.3 shows the timing results, which only reflect the crypto-

graphic verifications and do not take into account network delay, since a full network deployment of SCION is not

available at this time. However, our results give us an insight into the overhead of SAINT. In particular, all functions

take less than 1 ms on average, which is significantly less than the end-to-end round trip time in an actual connection

establishment.

As a baseline, we measured end-to-end connection establishments to 100 HTTPS sites on the current Internet

randomly selected from httpsnow.org. We observed 418 separate TLS connection establishments. Using DNSSEC,

BGPsec, and TLS, we measured the latency of the total page loading time, which included blocking of the connection

request, the DNS lookup, the connect, send, and wait, and receive times, and the TLS handshake. The observed

latencies ranged from 15 ms to 7 969 ms, with an average of 534 ms and a median of 1 811 ms. For SAINT, we

assumed that a path lookup has an equivalent latency to a DNS query (one round trip), fast cryptography is used in

verification (ed25519), and an average of 8 keys are authenticated during the DNS and routing lookups. In this setting,

we observed latencies ranging from 19 ms to 7 974 ms, with an average of 586 ms and a median of 1 863 ms. These

2http://iplane.cs.washington.edu/data/data.html
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latencies are not based on a full deployment of SAINT, but indicate a reasonable 10% increase in connection latency

on average as compared to the current Internet.

5.10 Deploying SAINT

We now discuss several deployment challenges for SAINT and propose several solutions to facilitate the deployment

of SAINT in the current Internet. Specifically, we discuss SAINT’s interoperability with the current Internet, and

describe how ISDs can be initially deployed. We then propose a method for the initial distribution of TRC files.

The Legacy ISD To facilitate the incremental deployment of SAINT, we propose a special ISD called the legacy ISD

L , which represents the set of all domains that have not yet joined a SAINT ISD. For example, suppose that a.com

maps to the IP address 1.2.3.4 in the current Internet, which is located in AS 567, which has not yet deployed SAINT.

The domain a.com would then correspond to the address (L ,567,1.2.3.4). The security guarantees for names, routes,

and end-entity certificates in the legacy ISD are only as strong as they are in today’s Internet.

One challenge we face in practice is that names in SAINT’s generic TLDs may already exist in the legacy ISD.

Not only do such collisions cause a problem for name resolution, but they also create vulnerabilities to downgrade

attacks in SAINT’s name lookup mechanism, since an adversary could simply return an unsecured DNS response in

the legacy ISD for a query with a name collision. We therefore require SAINT name resolvers to query the legacy ISD

as a last resort, and only with a proof of the name’s absence in the SAINT namespace (such as an NSEC3 record).

Interoperability SAINT is designed with a focus on incremental deployability. ISDs can be deployed among in-

dividual networks, since the remainder of the Internet that has not yet deployed SAINT joins the the legacy ISD.

The naming infrastructure is interoperable with that of the current Internet in that it can query the legacy DNS name-

servers as is done today. Routing between two physically separated domains in SCION can utilize IP tunneling to

communicate over the legacy ISD.

In order to maintain connectivity to the current Internet, servers and clients must support legacy authentication.

In particular, clients and servers must continue to support DNSSEC, BGPsec, and TLS. Additionally, when servers

receive incoming connections from the legacy ISD, they should not respond with SAINT-specific messages such as

signed path sets or cross-signing certificates. However, TRC files will be made available through the legacy ISD in

order to support the initial bootstrapping of trust roots.

ISD Deployment SAINT offers benefits even for early deployers of ISDs. A single-ISD deployment of SAINT

provides isolation of compromises within that ISD. Additionally, the legacy ISD will be protected from compromised

trust roots in every ISD deploying SAINT. Moreover, ISDs deploying SAINT enjoy greater flexibility in their choice
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of alternative PKIs by enabling the benefits of the PKIs without requiring their global deployment. In the policy field

of the TRC file, an ISD would specify its choice of the underlying PKI, which would prevent protocol downgrade

attacks.

If using countries as ISDs, then a newly-deploying ISD can simply attach to the existing namespace at its corre-

sponding ccTLD. This construction allows the DNS to provide a scaffolding during the deployment of SAINT and

also allows the DNS in SAINT to distribute TRC files.

However, we recognize the challenges that come with using countries as ISDs. In particular, the deployment of

such a scheme would require the core ISPs, root CAs, and Internet registries in each country to create a federation of

trust roots. In practice, we may see corporations rather than countries form ISDs. In this case, ISDs would have to

form IP tunnels in order to form inter-ISD routing relationships. Additionally, since there are far more corporations

than countries, cross-signing relationships may not scale to this number of ISDs. However, because most corporations

do not form many business relationships relative to the number of corporations that exist, we do not expect that the

number of cross-signing relationships will grow to an unsustainable scale.

TRC Distribution The initial distribution of TRCs must occur securely since TRCs are the starting point for all

authentication in SAINT. Many trust roots in the current Internet may continue to serve as trust roots in SAINT, and

thus may be able to “inherit” user trust in SAINT that they already have in the current Internet. However, SAINT will

likely result in the creation of new trust roots, and thus must have a mechanism for bootstrapping trust in the initial

public keys of these roots.

To address this challenge, we suggest to perform the initial distribution of SAINT TRC files through DNSSEC.

Since ISDs can deploy by attaching to specific ccTLDs in the current DNS namespace, an ISD can create a reserved

domain name such as trc.us, whose DNS record contains the TRC (e.g., in a TXT record). Clients can then fetch

the TRC by looking up the appropriate domain name. Additional work has been done in distributing authentication

information through out-of-band means such as over public radio [118], but these strategies are beyond the scope of

this project.

5.11 Discussion

Feasibility of country-based ISDs In order to determine the feasibility of having countries as ISDs in SAINT as

described in Section 5.2.1, we mapped AS numbers to countries and examined the resulting inter-ISD relationships.

We used the AS relationships database from CAIDA [40] and Team Cymru’s IP to AS number mapping tool,3 to map

AS numbers to countries. We identified 228 “countries” in total, including the EU and ZZ (indicating that the AS’s

country was unknown). We identified 2 636 unique country pairs between which an inter-AS link existed. These links
3http://www.team-cymru.org/Services/ip-to-asn.html
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signify direct routing connections, and thus we expect cross-signing for each ISD pair. The most prolific cross-signing

ISDs were the US (196), the EU (135), and the UK (124), but half of the ISDs cross-sign on the order of tens of other

ISDs.

Political Concerns Given concerns over governmental nation-wide surveillance, readers may worry about central-

izing trust roots in a large ISD. While we acknowledge that states may compromise these entities on a large scale,

SAINT’s trust agility allows users to protect themselves from the interception of sensitive connections. Additionally,

our efficient method of updating trust root information allows ISDs to quickly recover from a compromised CA.

Another concern we anticipate is that SAINT encourages fragmentation in the Internet. While this is true, SAINT

is designed to preserve global reachability while simultaneously protecting users through the use of ISDs and trust

agility. We thus structure inter-ISD authentication to provide users with the best of both worlds.

Sub-ISDs To add further scalability to SAINT, we propose the use of sub-ISDs, i.e., ISDs being completely con-

tained in other ISDs. A sub-ISD can be used to provide additional policies and finer-grained control of trust roots

in an ISD, and can additionally enable isolated authentication within an ISD. For example, governments or medical

organizations may use their own network within a country ISD to ensure data privacy and further scope the authority

of their trust roots.

A sub-ISD structurally resembles a top-level ISD, but authenticates to other sub-ISDs in the same parent ISD

using the core of the parent ISD, and has its trust roots of a certified by its parent ISD via a cross-signing certificate.

Connections within an ISD could then be negotiated using the lowest-level common ISD. For example, two hospitals

in an ISD would share data about a patient using the medical sub-ISD rather than the general ISD.

Some details regarding authentication for sub-ISDs still remain, however. For example, compromised trust roots

could also affect authentication entirely within a sub-ISD due to the requirement that parent ISDs certify the trust

roots of their sub-ISDs. Furthermore, users cannot select sub-ISDs as their trust anchor ISDs without also trusting the

corresponding parent ISDs. We hope to investigate these challenges in future work.

Optimizations As described in Section 5.7, the authentication process involves six round-trip connections from

Alice. Each communication with the path server requires verification of the path server’s signature, the signed set of

routing paths returned by the path server, the destination AS certificate, and possibly cross-signing certificates for the

path server and destination AS’s ISDs. To contact a destination outside her trust anchor ISD, Alice must also obtain

and verify a cross-signing certificate. Contacting the DNS server requires verification of at least the DNS root key,

server DNS key, and signed DNS record, and contacting the server (Bob) requires verification of at least the server

certificate.
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However, in practice many of these verifications may not be necessary. Caching cross-signing certificates, for

example, eliminates the need to reach a TRC server and to verify a cross-signing certificate with each end-to-end

connection establishment. Additionally, some of these verifications can be handled by entities other than the client; for

example, paths can be verified by the client’s AS, and DNS records by a trusted DNS stub resolver. Since ASes and

stub resolvers serve multiple clients, caching verification results can further reduce the connection latency, especially

for popular names, routes, and end-entity certificates.

In order to further decrease the size of messages sent in the network, we can also split the TRC file into routing and

a service TRC files. The routing TRC can then be propagated along AS links, and the service TRC can be obtained

from the TRC server. This scheme ensures that users only receive the portion of the TRC that they need for a particular

type of authentication, thus reducing the size of TRC files sent in the network.
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Conclusion

My work on IKP, CAPS, and SAINT shows that minimal changes to existing or emerging technologies can be used

to build deployable solutions that reduce MITM attacks in the Web PKI. Each of these systems has helped advance

the state of effective and practical improvements to the Web PKI and opened new avenues of exploration to further

improve the resilience of PKIs against compromised trusted parties while being easy to use and deploy.

With IKP, I used incentives to encourage good CA behavior and the reporting of CA misbehavior while preventing

large-scale abuse of these incentives. By designing a decentralized, incentivized platform to handle this reporting

and to handle responses to CA misbehavior, I ensured that misbehaving CAs could be swiftly detected and punished

without having to trust a centralized entity. My model and analysis of the incentives show that IKP is effective in

deterring MITM attacks, and my implementation in Ethereum shows that deployment, even with a rich set of possible

policies, is simple and inexpensive. My work on IKP highlights that there is still work to be done in exploring the

incentives behind CA actions and in how the risk of different trusted parties can be more rigorously calculated. IKP

also illustrates both the advantages and the challenges of building an incentivizing system on a platform such as

Ethereum. However, IKP provides a concrete first step toward the goal of securing the Web PKI through incentives.

With CAPS, I used automated, global certificate monitoring to quickly and easily protect against MITM attacks in

the current Web PKI. By using public logs to track HTTPS deployment and certificates for each domain, I ensured that

domains could protect against the concerted misbehavior of multiple CAs while avoiding downgrade attacks and much

of the perils of misconfiguration or loss of a private key. My approach to representing domains’ HTTPS deployment

status and certificates is efficient from both theoretical and practical standpoints. Furthermore, though certificate

policies in CAPS are simple, they are easy to update in the current PKI in case of catastrophic misbehavior at either

the domain or at CAs. My work on CAPS highlights that our view on the global certificate system is still incomplete

and can be improved, but that the current view of certificates is sufficient to stop many of the MITM attacks in the Web

PKI. CAPS also highlights that deploying complex certificate policies in the current Web PKI is difficult, but offers a
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stepping stone to stronger improvements to the Web PKI.

With SAINT, I used the inherent business relationships underlying routing connections to explore desriable prop-

erties in a federated PKI system. The network of routing channels provides a basis for isolated domains for au-

thentication, providing flexibility and resilience in the public-key authentication process. By distributing trust root

information as network messages, I enable users to quickly obtain up-to-date information about compromised or up-

dated trust roots. By mandating cross-signing relationships based on routing connections, I ensure that users can

authenticate information throughout the Internet. By separating routing and service authentication, I allow users’ trust

root decisions to apply anywhere in the world. While there is still much exploration to be done in the design space of

federated PKIs, my work on SAINT highlights fundamental and desirable properties that any global PKI should strive

to achieve.

Through the work presented in this thesis and through continued research in this space, I hope that one day, misbe-

having CAs will cease to be catastrophic to the Web PKI. Through carefully chosen incentives, practical deployment

strategies, and sound design principles, we can move towards PKIs in which MITM attacks are rare, and in which

users can have a rigorous basis for confidence in a domain’s public key. Though much work remains to be done to this

end, my work has advanced the Web PKI towards this goal. I hope that I can continue to improve the Web PKI and

other PKIs—one certificate at a time.
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