
69

Linear Types for Large-Scale Systems Verification

JIALIN LI, University of Washington, USA

ANDREA LATTUADA, ETH Zurich, Switzerland

YI ZHOU, Carnegie Mellon University, USA

JONATHAN CAMERON, Carnegie Mellon University, USA

JON HOWELL, VMware Research, USA

BRYAN PARNO, Carnegie Mellon University, USA

CHRIS HAWBLITZEL,Microsoft Research, USA

Reasoning about memory aliasing and mutation in software verification is a hard problem. This is especially

true for systems using SMT-based automated theorem provers. Memory reasoning in SMT verification typically

requires a nontrivial amount of manual effort to specify heap invariants, as well as extensive alias reasoning

from the SMT solver. In this paper, we present a hybrid approach that combines linear types with SMT-based

verification for memory reasoning. We integrate linear types into Dafny, a verification language with an SMT

backend, and show that the two approaches complement each other. By separating memory reasoning from

verification conditions, linear types reduce the SMT solving time. At the same time, the expressiveness of SMT

queries extends the flexibility of the linear type system. In particular, it allows our linear type system to easily

and correctly mix linear and nonlinear data in novel ways, encapsulating linear data inside nonlinear data and

vice-versa. We formalize the core of our extensions, prove soundness, and provide algorithms for linear type

checking. We evaluate our approach by converting the implementation of a verified storage system (~24K

lines of code and proof) written in Dafny, to use our extended Dafny. The resulting system uses linear types

for 91% of the code and SMT-based heap reasoning for the remaining 9%. We show that the converted system

has 28% fewer lines of proofs and 30% shorter verification time overall. We discuss the development overhead

in the original system due to SMT-based heap reasoning and highlight the improved developer experience

when using linear types.
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1 INTRODUCTION

Formal verification allows developers to prove strong functional correctness guarantees about
complex systems software. This can significantly increase software reliability, minimizing the risk
of runtime errors that can lead to data loss and potentially disastrous consequences. Although
verifying large systems is a notoriously time-consuming task [Klein et al. 2014], recent SMT-based
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verified systems have achieved reasonable run-time performance with a degree of effort feasible
for high-value systems [Hance et al. 2020a; Hawblitzel et al. 2015a].

Unfortunately, existing SMT-based verifiers interact poorly with reasoning about mutable mem-
ory in large-scale systems. Interactive proof assistants often use separation logic [Reynolds 2002]
to reason about memory and aliasing, but SMT solvers do not provide good support for separation
logic. As a result, typical SMT-based program verifiers like Dafny [Leino 2010] dispatch memory
reasoning to the SMT solver, forcing the SMT solver to reason about the disjointness of sets of
memory locations and updates to a global heap. This approach requires the developers to establish
and maintain memory invariants over all mutable objects, a burdensome task. Furthermore, over-
loading the SMT solver with memory reasoning leads to poor SMT performance (and hence poor
interactivity) and confusing error messages when a proof fails.
Linear type systems [Wadler 1990] are gaining traction in practice in Rust [Klabnik et al. 2018;

Matsakis and Klock 2014] as a mechanism for controlling and reasoning about aliasing. A growing
body of large, performant systems built in Rust [Bhardwaj et al. 2021; Boos et al. 2020; Narayanan
et al. 2020] provide evidence that linear types are practical and effective for ensuring program
safety. We argue that linear types are effective for SMT-style correctness verification as well.

In our work, we show how to integrate linear types with SMT-based verification. Our approach
demonstrates that linear types and SMT solving are complementary: linear types improve SMT
performance in the common case where objects are not aliased, and SMT solving enables more
expressive verification when aliasing is necessary. When objects are not aliased, the SMT solver
can view mutable linear datatypes as immutable mathematical datatypes, speeding solver times.
When aliasing is necessary, the SMT solver can precisely reason about the aliasing.

Our approach allows developers to freely mix linear and aliased styles, storing linear data inside
nonlinear data and vice-versa. Programs can encapsulate nonlinear, aliased data structures inside
linear data structures, using a region-based approach to modularly hide the aliased objects behind a
purely linear interface. In the other direction, programs can place linear data inside nonlinear data,
using the SMT solver to verify the correct usage of the linear values, avoiding the run-time safety
checks needed by other linearly typed languages like Rust. Our approach also supports Rust-style
lightweight borrowing of immutable references from linear data, even when the linear data is
stored inside aliased, nonlinear objects. We formalize the core of our approach, prove soundness,
and prove that the checking of types, linearity, and borrowing is decidable with a straightforward
algorithm (Section 2).

The motivation to integrate linear memory reasoning into SMT-based verification is to reduce the
cost of practical, large-scale verified development. To evaluate this goal, we introduce the linear type
system into Dafny [Leino 2010], a verification language with an SMT backend, which has been used
to verify a variety of high performance systems [Hance et al. 2020a; Hawblitzel et al. 2015a, 2014].
Then we took one such system, VeriBetrKV1 [Hance et al. 2020a], a practical verified storage system
(~24K lines of code and proof in the implementation layer), and converted it from vanilla Dafny
into our new Linear Dafny. Because Linear Dafny supports hybrid memory reasoning, we could
convert VeriBetrKV incrementally over several months, with the system remaining verified at each
step throughout the process. The final result is still a hybrid, with 9% using Dafny’s vanilla memory
reasoning for tricky object relations, and the other 91% exploiting linear memory reasoning.
We find that the linearized VeriBetrKV has 28% fewer lines of proofs, 30% shorter verification

time overall, and among slow methods, the median method’s interactive verification time is cut
nearly in half. We observe that debugging memory errors in linearized code is much simpler, with
the linear type system identifying errors at precise lines of code with actionable error messages.

1Developed, in part, by a subset of the authors of this work.
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The comparison indicates that reasoning about aliasing and mutation via linear types improves the
developer experience and reduces development cost over an SMT-only approach. We show that
by using better memory reasoning approaches, we can lower verification effort and move a step
towards making full verification a realistic engineering choice for a larger set of system software.

Our main contributions are (1) The presentation of a practical design for combining SMT-based
heap verification with linear types, as well as enhancements to an existing implementation thereof.
(2) The first formalization combining verification condition generation, linear types, and borrowing.
(3) A novel region-based mechanism to encapsulate nonlinear data inside linear data and vice-versa.
(4) A direct comparison of how SMT-based memory reasoning and the linear-SMT hybrid approach
impact the developer experience in the context of a large verified system2.

The rest of this paper is organized as follows: Section 2 introduces Linear Dafny and presents a
detailed formalization; Section 3 compares and contrasts the development experiences of VeriBetrKV
and the linearized VeriBetrKV; Section 4 discusses related work on linear type systems.

2 DESIGN AND FORMALIZATION OF LINEAR DAFNY

In this section, we present our design and formalization of the Linear Dafny language3. We originally
built Linear Dafny in support of the implementation of VeriBetrKV [Hance et al. 2020a], and its basic
features and usage are briefly mentioned in Section 5.1 of [Hance et al. 2020a]. Here we present
the complete design, including the underlying type-checking algorithm, support for algebraic
datatypes, and enhancements to the implementation. We strengthen the previous Linear Dafny
implementation with support for inout parameters and a library for region-based interoperation
between linear and nonlinear data.
We first introduce the basic ideas of adding linearity in Dafny, following earlier work by

Wadler [Wadler 1990], on the Cogent language [Amani et al. 2016], and on Rust [Klabnik et al.
2018; Matsakis and Klock 2014]. We then focus on a new region-based formalism that improves the
interaction of linear data and nonlinear data in Linear Dafny. Finally, we prove the soundness of
the formalized system and prove the soundness and completeness of an algorithm for checking
types, linearity, and borrowing in the formalized system.

Section 3 then presents a large-scale evaluation, demonstrating the application of Linear Dafny
to 91% of the VeriBetrKV implementation, compared to earlier preliminary experiments converting
two łleafž modules constituting 16% of the implementation [Hance et al. 2020a].

2.1 Basic Features of Linear Dafny

Dafny is a programming language and a verifier with both imperative programming and verification
support [Leino 2010]. Dafny supports generic classes and dynamic allocation for writing imperative
programs, and provides built-in specification constructs including preconditions and postconditions,
mathematical functions, and ghost variables for writing formal specifications. In Dafny, developers
write down specifications, proofs and methods, and then ask the verifier to check if methods
meet their specifications. Behind the scenes, Dafny translates the program into an intermediate
verification language Boogie [Barnett et al. 2006], which then generates verification conditions for
the Z3 SMT (Satisfiability Modulo Theories) solver to resolve [de Moura and Bjùrner 2008].

Linear Dafny extends the standard Dafny language with a linear type system. Linear type systems
disallow the duplication and discarding of linear variables, which helps to control aliasing: by
disallowing duplication, the type system can guarantee that a variable pointing to a memory cell
is the only variable pointing to that memory cell. In standard Dafny, variables can be ordinary

2Available at https://github.com/jialin-li/linear-veribetrkv-artifact
3Available at https://github.com/secure-foundations/dafny/tree/oopsla2022
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method M1(s1:seq<int>, s2:seq<int>)

returns(x:int)

requires |s1| >= 10 && |s2| >= 10

{

x := s1[5] + s2[5];

}

method M2(s1:seq<int>, s2:seq<int>)

returns(s3:seq<int>, s4:seq<int>, x:int)

requires |s1| >= 10 && |s2| >= 10

{

x := M1(s1, s1);

s3 := s1[5 := 100]; // copy entire seq

s4 := s2[5 := 200]; // copy entire seq

assert s3[5] == 100;

}

method M3(a1:array<int>, a2:array<int>)

requires a1.Length >= 10

requires a2.Length >= 10

requires a1 != a2

modifies a1, a2;

{

a1[5] := 100;

a2[5] := 200;

assert a1[5] == 100; // needs a1 != a2

}

method M4(shared s1:seq<int>,

shared s2:seq<int>)

returns(x:int)

{

x := seq_get(s1, 5) + seq_get(s2, 5);

}

method M5(linear l1:seq<int>,

linear l2:seq<int>)

returns(linear l3:seq<int>,

linear l4:seq<int>,

x:int)

requires |l1| >= 10 && |l2| >= 10

{

// temporarily borrow l1 as shared:

x := M4(l1, l1);

// l1 is linear again here:

l3 := seq_set(l1, 5, 100); // in place

l4 := seq_set(l2, 5, 200); // in place

assert l3[5] == 100;

}

Fig. 1. Example code in standard Dafny (left) and Linear Dafny (right)

(unannotated) or ghost. We refer to łordinaryž and ghost as two distinct usages for variables. Linear
Dafny extends Dafny’s type system with two additional usages: linear for linear variables and
shared for immutably borrowed variables. Ordinary and ghost variables can be freely duplicated,
discarded, stored in datatypes, and passed in and out of functions and methods. Ordinary, linear,
and shared variables are compiled to executable code, while ghost variables are erased before
compilation. Linear variables can be neither duplicated nor discarded, but can be stored in linear
datatypes and passed in and out of functions and methods freely. Shared variables can be duplicated
and discarded, but have restricted scope. Shared variables cannot be stored in data structures, but
data structures containing linear data can be borrowed so that their fields appear shared.
The left half of Figure 1 shows three standard Dafny methods, M1, M2, and M3, that manipulate

arrays, where the seq is Dafny’s sequence (immutable array) type and array is Dafny’s mutable
array type. Mutable arrays can be modified in place (M3), but require reasoning about aliasing
(a1 != a2) so that the SMT solver can verify assertions like a1[5] == 100. This reasoning is done
through Dafny’s dynamic frames [Kassios 2006], in which each method that modifies the heap
must provide a modifies clause that states the set of heap locations the method changes. Although
the specification of non-aliasing in this example is simple (a1 != a2), more complex programs
require increasingly elaborate specifications of disjointness for the programmer to write and the
SMT solver to reason about.
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In contrast to Dafny arrays, which are heap objects, Dafny sequences are values. Sequences are
easier to reason about than arrays, but do not support in-place updates, which means that updates
to sequences require copying the whole sequence at run-time (M2).
As shown in the right half of Figure 1, Linear Dafny supports linear datatypes such as linear

sequences. Linear datatypes provide both value semantics and in-place updates, achieving the best
of both worlds: in M5, linearity ensures that sequences l1 and l2 do not alias and linearity allows
in-place updates to the linear sequences without copying the sequence.

In addition, Linear Dafny allows temporary borrowing of linear variables in the style of Wadler’s
łlet!ž [Wadler 1990] and Rust’s immutable borrowing. When calling M4, the method M5 temporarily
demotes l1 from linear usage to shared usage. While l1 is shared, it can be duplicated, allowing
M5 to pass l1 as an argument twice to M4. Like Rust, and unlike Wadler’s łlet!ž [Wadler 1990] and
Cogent [Amani et al. 2016], Linear Dafny automatically infers where borrowing occurs, so no
explicit programmer annotation is needed to share l1 in the call to M4. Section 2.6 describes how
Linear Dafny performs this inference.
For soundness’s sake, Linear Dafny must ensure that borrowing is only temporary, so that no

copies of a shared reference survive after a variable becomes linear again. Otherwise, a value could
be viewed as both linear and shared simultaneously, allowing a program to deallocate the value
through the linear usage while still reading the value through the shared usage. Like Cogent, Linear
Dafny ensures this by disallowing any shared references from being returned out of the scope of a
borrow (see Section 2.2 for the precise rules). As long as they don’t escape past a borrow, though,
shared references can be freely passed in and out of expressions and functions. For instance, like
Cogent, Linear Dafny allows functions to return shared references:

method M(b:bool, shared s1:seq<int>, shared s2:seq<int>) returns(shared ret:seq<int>) {

if b {

ret := s1;

} else {

ret := s2;

}

}

The method M5 consumes its original linear parameters l1 and l2 and produces new linear
values l3 and l4 (which are actually the original sequences l1 and l2, updated in place). Rather
than forcing programmers to manually pass all linear values in and out of methods, Linear Dafny
also supports inout method parameters, so that M5 can be more concisely written as:

method M5(linear inout l1:seq<int>, linear inout l2:seq<int>) returns(x:int)

requires |l1| >= 10 && |l2| >= 10

{

x := M4(l1, l1);

l1 := seq_set(l1, 5, 100);

l2 := seq_set(l2, 5, 200);

assert l1[5] == 100;

}

Arguments to inout parameters can be fields of linear datatypes stored in linear variables or
referenced by the inout parameters of the enclosing function. This allows mutably borrowing
datatype fields so that programs can efficiently update those fields in place.
Finally, Linear Dafny supports linear algebraic datatypes, which may contain ordinary fields

and linear fields. In the List datatype below, the data field is ordinary and the tail field is linear.
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When a linear datatype is borrowed as shared, all of its linear fields appear as shared. This allows
the while loop shown above to traverse the list without consuming it.

linear datatype List<A> = Nil | Cons(data:A, linear tail:List<A>)

// ghost function definining length of List:

function Length<A>(ghost list:List<A>):int {

match list {

case Nil => 0

case Cons(data, tail) => 1 + Length(tail)

}

}

method GetLength<A>(shared list:List<A>) returns(n:int)

ensures n == Length(list)

{

n := 0;

shared var iter := list;

while !iter.Nil?

invariant n + Length(iter) == Length(list)

decreases iter

{

n := n + 1;

iter := iter.tail;

}

}

In addition to value-based types (sequences and algebraic datatypes), Dafny supports reference-
based heap objects (class objects and mutable arrays). Currently, Linear Dafny always treats
reference-based heap objects as ordinary rather than shared or linear. It would be straightforward
to also allow linear reference-based heap objects, but we didn’t have a compelling reason to do
so, since linearity already enables mutation of sequences and algebraic datatypes, making linear
reference-based heap objects somewhat redundant. Instead, Linear Dafny uses reference-based heap
objects for nonlinear data structures, and focuses on enabling interoperation between nonlinear
reference-based heap objects and linear value-based types.

2.2 Formalization

This section introduces the syntax and typing rules for a simple model of Linear Dafny. The goal is
not to capture all the features of Linear Dafny, but instead to illustrate and clarify the key ideas in
Linear Dafny and prove their soundness. We then use the formal model to extend and improve
Linear Dafny by breaking Linear Dafny’s monolithic heap into regions. This region-based approach
yields three novel improvements, all illustrated in our formal model:

(1) Regions allow proper encapsulation of nonlinear data structures stored inside linear data
structures, so that any modifications to nonlinear data stay private and are not leaked via
Dafny’s modifies clauses.

(2) Regions enable an elegant form of borrowing for linear data stored inside nonlinear data,
replacing the clumsy attribute-based mechanism described in [Hance et al. 2020a].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA1, Article 69. Publication date: April 2022.



Linear Types for Large-Scale Systems Verification 69:7

variable 𝑥

integer 𝑖 ::= . . . ,−2,−1, 0, 1, 2, . . .

location ℓ

struct name S
struct instance 𝑠 ::= S(𝑣1, ..., 𝑣𝑛)
region name r
region data 𝑑 ::= {ℓ1 ↦→ 𝑠1, . . . , ℓ𝑛 ↦→ 𝑠𝑛}

region value r𝑑
usage 𝑢 ::= linear | shared | ordinary

𝑢 ls ::= linear | shared

𝑢 lo ::= linear | ordinary

type 𝜏 ::= int | ref(S) | region | ⟨𝑢 lo
1
𝜏1, . . . , 𝑢

lo
𝑛 𝜏𝑛⟩

value 𝑣 ::= 𝑖 | ℓ | null | r𝑑 | ⟨𝑣1, . . . , 𝑣𝑛⟩

expression 𝑒 ::= 𝑣 | 𝑥 | 𝑒1 + 𝑒2 | 𝑒1; 𝑒2 | let 𝑢 𝑥 = 𝑒1 in 𝑒2
| ⟨𝑒1, . . . , 𝑒𝑛⟩ | 𝑒.𝑖 | let ⟨𝑥1, . . . , 𝑥𝑛⟩ = 𝑒1 in 𝑒2
| new_region() | free_region(𝑒) | alloc S(𝑒1, . . . , 𝑒𝑛) @ 𝑒0
| read(𝑒1.𝑖) @ 𝑒0 | write(𝑒1.𝑖 := 𝑒2) @ 𝑒0 | swap(𝑒1.𝑖 := 𝑒2) @ 𝑒0

location typing L ::= {ℓ1 ↦→ S1, . . . , ℓ𝑛 ↦→ S𝑛}

region typing R ::= {r1 ↦→ 𝑢 ls
1
, . . . , r𝑛 ↦→ 𝑢 ls

𝑛 }

variable typing X ::= {𝑥1 ↦→ 𝑢1 𝜏1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛 𝜏𝑛}

combined typing C ::= L; R; X

Fig. 2. Syntax of Formal Model

(3) Our regions take advantage of SMT solving to avoid the need for region variables, universal
region quantification, and existential region quantification.

Figure 2 shows the syntax of the formal model. Usages 𝑢 include linear, shared, and ordinary
(we omit Linear Dafny’s ghost usage for simplicity). Types 𝜏 include integers, references, regions,
and linear tuples. We start by describing the basic features for integers and linear tuples, leaving
regions and references for 2.4.
Expressions 𝑒 for integers include integer constants 𝑖 and integer addition 𝑒1 + 𝑒2. Linear tuple

types ⟨𝑢 lo
1
𝜏1, . . . , 𝑢

lo
𝑛 𝜏𝑛⟩ describe the usage 𝑢𝑖 and type 𝜏𝑖 of each field 𝑖 in the tuple. Fields of linear

tuple types cannot have usage shared, since this would allow hiding shared data inside linear data,
and thereby escaping the scoping restrictions on shared data. (We use the notation 𝑢 lo to indicate a
usage that can only be linear or ordinary.) Expressions for linear tuples include:

• tuple construction ⟨𝑒1, . . . , 𝑒𝑛⟩, which creates a tuple of type ⟨𝑢1 𝜏1, . . . , 𝑢𝑛 𝜏𝑛⟩.
• tuple selection e.i, which selects field 𝑖 from a tuple of type ⟨𝑢1 𝜏1, . . . , 𝑢𝑛 𝜏𝑛⟩.
• tuple deconstruction let ⟨𝑥1, . . . , 𝑥𝑛⟩ = 𝑒1 in 𝑒2, which deallocates a linear tuple 𝑒1 and places
its fields in variables 𝑥1 . . . 𝑥𝑛 .

Here is an example program that allocates two tuples 𝑥 and 𝑦, placing 𝑥 inside 𝑦, and then
deconstructs 𝑦 and 𝑥 :

let ordinary𝑎 = 10 in
let linear𝑥 = ⟨⟩ in
let linear𝑦 = ⟨𝑥, 𝑎⟩ in
let ordinary𝑏 = 𝑦.2 + 𝑦.2 in
let ⟨𝑥 ′, 𝑎′⟩ = 𝑦 in
let ⟨⟩ = 𝑥 ′ in
𝑎 + 𝑎′ + 𝑏
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The type checking rules use an environment X = {𝑥1 ↦→ 𝑢1 𝜏1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛 𝜏𝑛} that maps variables
to their types and usages. The notation X = X1 # X2 means that X is split into two parts, X1 and
X2, which share the same nonlinear mappings but contain disjoint linear mappings. With this
notation, we can write simple type checking rules for integer addition and linear tuple construction
(considering, for moment, only 2-tuples for simplicity):

X1 ⊢ 𝑒1 : ordinary int X2 ⊢ 𝑒2 : ordinary int

X1 # X2 ⊢ 𝑒1 + 𝑒2 : ordinary int

X1 ⊢ 𝑒1 : 𝑢1 𝜏1 X2 ⊢ 𝑒2 : 𝑢2 𝜏2

X1 # X2 ⊢ ⟨𝑒1, 𝑒2⟩ : linear ⟨𝑢1 𝜏1, 𝑢2 𝜏2⟩

When type checking ⟨𝑥, 𝑎⟩ in the example above, both X1 and X2 will contain the nonlinear
mapping 𝑎 ↦→ ordinary int, but only X1 will contain the linear mapping 𝑥 ↦→ linear ⟨⟩. As is
standard in formal presentations of linear type systems [Wadler 1990], the typing rule does not
directly determine how to split X into X1 and X2. Section 2.6 presents a simple algorithm for
deciding this split.

Formal presentations of borrowing are less common and generally either rely onWadler’s explicit
let! notation [Amani et al. 2016; Wadler 1990] or are based on Rust’s more complex rules, as in
RustBelt [Jung et al. 2017] and Oxide [Weiss et al. 2019]. Here, we introduce rules for borrowing
that are simpler than Rust’s rules and do not rely on let!. We illustrate this approach with the rule
for sequencing expressions 𝑒1; 𝑒2:

𝑢1 ≠ linear X1, shared(X𝑏) ⊢ 𝑒1 : 𝑢1 𝜏1 X2, linear(X𝑏) ⊢ 𝑒2 : 𝑢2 𝜏2

(X1 # X2), linear(X𝑏) ⊢ 𝑒1; 𝑒2 : 𝑢2 𝜏2

The notation X = X1,X2 means that X is split into two parts, X1 and X2, which contain disjoint
mappings, both for linear and nonlinear mappings. The notation linear(X) denotes an environment
in which all usages are linear, while the notation shared(X) denotes the same environment as
linear(X), except that all usages are shared. In the rule above, this has the effect of splitting out
zero or more linear mappings linear(X𝑏) from the overall environment, and then viewing them as
shared mappings when checking expression 𝑒1 ś in other words, borrowing zero or more linear
mappings as shared within 𝑒1. As with the split betweenX1 andX2, the typing rule does not directly
determine which X𝑏 to split out. Section 2.6’s algorithm also decides this split.

To help understand the rule above, consider a slight variation of the earlier example, where we
use ł;ž to discard the result of 𝑦.2 + 𝑦.2; rather than putting the result in a variable 𝑏:

. . .

let linear𝑦 = ⟨𝑥, 𝑎⟩ in
𝑦.2 + 𝑦.2;

let ⟨𝑥 ′, 𝑎′⟩ = 𝑦 in . . .

When we apply the typing rule for 𝑒1; 𝑒2, we use 𝑒1 = 𝑦.2 + 𝑦.2 and 𝑒2 = let ⟨𝑥 ′, 𝑎′⟩ = 𝑦 in . . .

and linear(X𝑏) = {𝑦 ↦→ linear𝜏𝑦} and shared(X𝑏) = {𝑦 ↦→ shared𝜏𝑦}, where we define 𝜏𝑦 =

⟨linear ⟨⟩, ordinary int⟩. Because 𝑦 is shared in shared(X𝑏) rather than linear, it may be duplicated
in the expression 𝑦.2 + 𝑦.2. After the borrowing finishes, 𝑦 reverts to its original linear usage in
the remaining expression 𝑒2. This is safe because 𝑒1 completely evaluates to a value, which is then
discarded, before 𝑒2 begins evaluation, so the program’s execution never observes 𝑦 as both shared
and linear simultaneously.
The same reasoning allows for borrowing in let expressions:

𝑢1 = shared ⇒ X𝑏 = ∅ X1, shared(X𝑏) ⊢ 𝑒1 : 𝑢1 𝜏1 X2, linear(X𝑏), 𝑥 ↦→ 𝑢1 𝜏1 ⊢ 𝑒2 : 𝑢2 𝜏2

(X1 # X2), linear(X𝑏) ⊢ let 𝑢1 𝑥 = 𝑒1 in 𝑒2 : 𝑢2 𝜏2
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Here, the result of evaluating 𝑒1 is not discarded, but the rule prohibits returning a shared result from
𝑒1 if any borrowing occurs. This restriction, which is also made by Cogent’s let! expression [Amani
et al. 2016], prevents borrowed values from leaking back out through the bound variable 𝑥 , so that
values borrowed by 𝑒1 can flow into 𝑒1 but not out. More generally, the places where borrowing
occurs are barriers that block all borrowed variables from flowing out.
As with Wadler’s original let! expression, the rule above requires that 𝑒2 consume any bor-

rowed linear variables. At first, this may appear to disallow expressions like łlet ordinary 𝑧 =

𝑦.2 + 𝑦.2 in 𝑧 + 1ž that use a borrowed 𝑦 without consuming 𝑦. However, in such cases, the borrow-
ing simply happens in a larger scope. For instance, the borrowing of 𝑦 occurs in the let for 𝑏 rather
than the let for 𝑧 in the following example:

. . .

let ordinary𝑏 = (let ordinary 𝑧 = 𝑦.2 + 𝑦.2 in 𝑧 + 1) in
let ⟨𝑥 ′, 𝑎′⟩ = 𝑦 in . . .

Once an expression has borrowed a linear tuple as a shared tuple, it can select fields from the tuple:

X ⊢ 𝑒 : shared ⟨𝑢1 𝜏1, . . . , linear𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛⟩

X ⊢ 𝑒.𝑖 : shared 𝜏𝑖

X ⊢ 𝑒 : shared ⟨𝑢1 𝜏1, . . . , ordinary𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛⟩

X ⊢ 𝑒.𝑖 : ordinary 𝜏𝑖

Note that the result of selecting a linear field from a shared tuple is itself shared.
Figure 3 shows the complete type checking rules, including rules for regions that will be described

in Section 2.4. The rules include the environment X that maps variables to their types and usages,
as well as environments L for references to locations and R for regions. The notation C = L; R; X

represents the combined typing environment, !C selects the nonlinear mappings from C, and ¡C
selects the linear mappings from C. Borrowing is allowed in three different rules: sequencing 𝑒1; 𝑒2,
let expressions, and tuple deconstruction. This highlights the fact that in Linear Dafny, as in Rust,
borrowing is ubiquitous, rather than being restricted to a special expression like let!.

2.3 SMT Solving and Weakest Preconditions

Linear Dafny programs are checked with both a type checker and an SMT solver. To help demon-
strate the balance and interplay between type checking and SMT solving, we include a simple SMT
checking process in our formal model. In particular, we show:

(1) Since the type system handles linearity checking, the SMT solver can view linear datatypes
as simple mathematical datatypes, without worrying about the linearity.

(2) The SMT solver can statically check the correct usage of linear values stored inside nonlinear
objects, which Rust needs run-time checks for (Section 2.5).

(3) The SMT solver can track the relation between regions and references into regions, without
needing region variables and quantification over region variables (Section 2.4).

Linear Dafny uses Dafny’s built-in verification condition generator to verify Linear Dafny
code. To model Dafny’s verification condition generator, Figure 5 defines a verification condition
generator wp(𝑒, 𝑥 . 𝑓 ) that computes a weakest precondition for any expression 𝑒 and postcondition
𝑓 . The postcondition may use the variable 𝑥 to refer to the final value computed by 𝑒 . To prove
that 𝑒 evaluates to 4, for instance, we can ask an SMT solver to prove the validity of the formula
wp(𝑒, 𝑥 . 𝑥 = 4). The definition of wp(𝑒, 𝑥 . 𝑓 ) shows that wp(let ordinary 𝑧 = 2 in 𝑧 + 2, 𝑥 . 𝑥 = 4) is
equal to 2 + 2 = 4, which is an easy formula for an SMT solver to prove. For convenience, some of
the definitions in Figure 5 use ∀ quantifiers to introduce temporary variables; an SMT solver can
easily eliminate these using Skolemization since they appear only in positive positions.

Note that wp(𝑒, 𝑥 . 𝑓 ) ignores linearity completely. Operations on linear tuples, for example, are
translated directly into operations on SMT tuples, with no concerns about linearity or borrowing.
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Well-typed expression C ⊢ 𝑒 : 𝑢 𝜏

!C, 𝑥 ↦→ 𝑢 𝜏 ⊢ 𝑥 : 𝑢 𝜏 !C ⊢ 𝑖 : ordinary int !C, ℓ ↦→ S ⊢ ℓ : ordinary ref(S)

!C ⊢ null : ordinary ref(S)
𝑢 ≠ ordinary domain(𝑑) = {ℓ ∈ domain(L) | RegionOfLoc(ℓ) = r} L; R ⊢ 𝑑 : 𝑢

L; R # {r ↦→ 𝑢}; !X ⊢ r𝑑 : 𝑢 region

𝑢1 ≠ linear C1, shared(C𝑏 ) ⊢ 𝑒1 : 𝑢1 𝜏1 C2, linear(C𝑏 ) ⊢ 𝑒2 : 𝑢2 𝜏2

(C1 # C2), linear(C𝑏 ) ⊢ 𝑒1; 𝑒2 : 𝑢2 𝜏2

𝑢1 = shared ⇒ C𝑏 = ∅; ∅; ∅ C1, shared(C𝑏 ) ⊢ 𝑒1 : 𝑢1 𝜏1 C2, linear(C𝑏 ), 𝑥 ↦→ 𝑢1 𝜏1 ⊢ 𝑒2 : 𝑢2 𝜏2

(C1 # C2), linear(C𝑏 ) ⊢ let 𝑢1 𝑥 = 𝑒1 in 𝑒2 : 𝑢2 𝜏2

𝑢 ≠ ordinary C1 ⊢ 𝑒1 : share_as(𝑢,𝑢1) 𝜏1 . . . C𝑛 ⊢ 𝑒𝑛 : share_as(𝑢,𝑢𝑛) 𝜏𝑛

C1 # . . . # C𝑛 ⊢ ⟨𝑒1, . . . , 𝑒𝑛⟩ : 𝑢 ⟨𝑢1 𝜏1, . . . , 𝑢𝑛 𝜏𝑛⟩

C1 ⊢ 𝑒1 : ordinary int C2 ⊢ 𝑒2 : ordinary int

C1 # C2 ⊢ 𝑒1 + 𝑒2 : ordinary int

C ⊢ 𝑒 : shared ⟨𝑢1 𝜏1, . . . , 𝑢𝑖 𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛⟩

C ⊢ 𝑒.𝑖 : share_as(shared, 𝑢𝑖 ) 𝜏𝑖

C0, shared(C𝑏 ) ⊢ 𝑒0 : linear ⟨𝑢1 𝜏1, . . . , 𝑢𝑛 𝜏𝑛⟩ C𝑥 , linear(C𝑏 ), 𝑥1 ↦→ 𝑢1 𝜏1, . . . , 𝑥𝑛 ↦→ 𝑢𝑛 𝜏𝑛 ⊢ 𝑒𝑥 : 𝑢𝑥 𝜏𝑥

(C0 # C𝑥 ), linear(C𝑏 ) ⊢ let ⟨𝑥1, . . . , 𝑥𝑛⟩ = 𝑒0 in 𝑒𝑥 : 𝑢𝑥 𝜏𝑥

!C ⊢ new_region() : linear region
C ⊢ 𝑒 : linear region

C ⊢ free_region(𝑒) : ordinary int

StructType(S) = (𝑢1 𝜏1, . . . , 𝑢𝑛 𝜏𝑛)

C0 ⊢ 𝑒0 : linear region C1 ⊢ 𝑒1 : 𝑢1 𝜏1 . . . C𝑛 ⊢ 𝑒𝑛 : 𝑢𝑛 𝜏𝑛

C0 # C1 # . . . # C𝑛 ⊢ alloc S(𝑒1, ..., 𝑒𝑛) @ 𝑒0 : linear ⟨ordinary ref(S), linear region⟩

StructType(S) = (𝑢1 𝜏1, . . . , 𝑢𝑖 𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛) C0 ⊢ 𝑒0 : shared region C1 ⊢ 𝑒1 : ordinary ref(S)

C0 # C1 ⊢ read(𝑒1 .𝑖) @ 𝑒0 : share_as(shared, 𝑢𝑖 ) 𝜏𝑖

StructType(S) = (𝑢1 𝜏1, . . . , ordinary𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛)

C0 ⊢ 𝑒0 : linear region C1 ⊢ 𝑒1 : ordinary ref(S) C2 ⊢ 𝑒2 : ordinary 𝜏𝑖

C0 # C1 # C2 ⊢ write(𝑒1 .𝑖 := 𝑒2) @ 𝑒0 : linear region

StructType(S) = (𝑢1 𝜏1, . . . , linear𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛)

C0 ⊢ 𝑒0 : linear region C1 ⊢ 𝑒1 : ordinary ref(S) C2 ⊢ 𝑒2 : linear 𝜏𝑖

C0 # C1 # C2 ⊢ swap(𝑒1 .𝑖 := 𝑒2) @ 𝑒0 : linear ⟨linear𝜏𝑖 , linear region⟩

Well-typed struct instance C ⊢ 𝑠 : S containing 𝑢 ls and region data: L; R ⊢ 𝑑 : 𝑢 ls

StructType(S) = (𝑢1 𝜏1, . . . , 𝑢𝑛 𝜏𝑛)

C1 ⊢ 𝑣1 : share_as(𝑢
ls, 𝑢1) 𝜏1 . . . C𝑛 ⊢ 𝑣𝑛 : share_as(𝑢ls, 𝑢𝑛) 𝜏𝑛

C1 # . . . # C𝑛 ⊢ S(𝑣1, ..., 𝑣𝑛) : S containing 𝑢ls

L; R1; ∅ ⊢ 𝑠1 : L(ℓ1) 𝑢
ls . . . L; R𝑛 ; ∅ ⊢ 𝑠𝑛 : L(ℓ𝑛) 𝑢

ls

L; R1 # . . . # R𝑛 ⊢ {ℓ1 ↦→ 𝑠1, . . . , ℓ𝑛 ↦→ 𝑠𝑛} : 𝑢
ls

Fig. 3. Type Checking Rules (See Figure 4 for definitions of notation)
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(L1; R1; X1), (L2; R2; X2) = L1,L2; R1,R2; X1,X2 where ł,ž splits into pieces with disjoint domains.

(L; R1; X1) # (L; R2; X2) = L; R1 # R2; X1 # X2 where:
R = R1 # R2 iff !R =!R1 =!R2 and ¡R = ¡R1, ¡R2 X = X1 # X2 iff !X =!X1 =!X2 and ¡X = ¡X1, ¡X2

C = L; R; X where C1 # C2 # . . . # C𝑛 denotes C1 # (C2 # (. . . # C𝑛) . . .) for 𝑛 ≥ 1 and !C for 𝑛 = 0

!(L; R; X) = L; !R; !X and ¡(L; R; X) = ∅; ¡R; ¡X where:
!R = {r ↦→ 𝑢 ∈ R | 𝑢 ≠ linear} ¡R = {r ↦→ 𝑢 ∈ R | 𝑢 = linear}

!X = {𝑥 ↦→ 𝑢 𝜏 ∈ X | 𝑢 ≠ linear} ¡X = {𝑥 ↦→ 𝑢 𝜏 ∈ X | 𝑢 = linear}

linear(L; R; X) = (∅; linear(R); linear(X)) and shared(L; R; X) = (∅; shared(R); shared(X))

where linear(. . .) and shared(. . .) replace usages 𝑢 with linear and shared respectively:
linear(R) = {r ↦→ linear | r ↦→ 𝑢 ∈ R} shared(R) = {r ↦→ shared | r ↦→ 𝑢 ∈ R}

linear(X) = {𝑥 ↦→ linear𝜏 | 𝑥 ↦→ 𝑢 𝜏 ∈ X} shared(X) = {𝑥 ↦→ shared𝜏 | 𝑥 ↦→ 𝑢 𝜏 ∈ X}

share_as(shared, linear) = shared and share_as(𝑢1, 𝑢2) = 𝑢2 otherwise.

Fig. 4. Notation and definitions for type checking

This helps to keep the verification condition formulas small and simple, which in turn helps to
keep the SMT validity checking fast and predictable.

2.4 Regions, Part 1: Nonlinear Data Inside Linear Data

Linear typing makes it easy to express tree-shaped data structures, but is less suited to DAGs
and cyclic structures. Rust, for example, can express cycles by using a combination of reference
counting and the RefCell type, but the operations on RefCell require run-time safety checks that
can panic (abort) if the RefCell is not in the expected run-time state.

However, Linear Dafny can draw on Dafny’s standard dynamic frames, which can already reason
about non-tree data structures. Using dynamic frames, programs can allocate objects in the global
heap and can refer to the objects with ordinary references, which can be freely duplicated to create,
for example, doubly linked lists. Furthermore, since linear data structures can contain ordinary
fields, it is straightforward to combine linear data and nonlinear data by placing ordinary references
inside linear datatypes.

However, there is a snag when trying to verify linear data structures that contain heap references:
any modifications to the heap must be reported via a Dafny modifies clause. This modifies clause
cannot be hidden; if a method m modifies the heap, it must report the modifications to any callers
of m, which then must report the modifications to their callers, and so on up the call stack.
This, unfortunately, can interfere with modularity. Suppose we have a linear queue built out

of Linear Dafny’s linear sequences, with no heap operations, and therefore no modifies clauses.
Then suppose we decide to change the queue’s implementation from using sequences to using
doubly linked lists built out of heap objects. Suddenly, the queue’s public interface must change to
report all the heap modifications, even though the doubly linked list is a private implementation
detail. Worse, the callers of the queue’s public methods must propagate these heap modifications to
their callers. This is not just a hypothetical concern: in one place, instead of using heap objects,
VeriBetrKV’s least-recently-used queue represented a doubly linked list using integers to encode
pointers, in the style of old Fortran code, to avoid introducing any modifies clauses in the queue’s
public interface.
The fundamental issue is not the modifies clauses themselves, but rather that all the modifies

clauses refer to a single global heap, and any write to the global heapmight affect anyone reading the
global heap. If a queue had its own private heap, it could modify the private heap without causing
any modifications to the global heap. This is precisely what type systems for regions [Tofte and
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SMT formula 𝑓 ::= 𝑣 | 𝑥 | true | false | ∀𝑥 . 𝑓 | 𝑓1 ∧ 𝑓2 | 𝑓1 ⇒ 𝑓2 | ¬𝑓

| 𝑓1 = 𝑓2 | 𝑓1 + 𝑓2 | ⟨𝑓1, . . . , 𝑓𝑛⟩ | 𝑓 .𝑖 | let 𝑥 = 𝑓1 in 𝑓2
| name_of_region(𝑓 ) | valid_ref(𝑓1, 𝑓2) | fresh_ref(𝑓1) @ 𝑓0
| read(𝑓1 .𝑖) @ 𝑓0 | modifies(𝑓1.𝑖1, . . . , 𝑓𝑛 .𝑖𝑛) @ (𝑓0 → 𝑓 ′0 )

wp(𝑖, 𝑥 . 𝑓 ) = 𝑓 [𝑥 := 𝑖]

wp(ℓ, 𝑥 . 𝑓 ) = 𝑓 [𝑥 := ℓ]

wp(null, 𝑥 . 𝑓 ) = 𝑓 [𝑥 := null]

wp(r𝑑, 𝑥 . 𝑓 ) = 𝑓 [𝑥 := r𝑑]

wp(𝑥0, 𝑥 . 𝑓 ) = 𝑓 [𝑥 := 𝑥0]

wp(𝑒1 + 𝑒2, 𝑥 . 𝑓 ) = wp(𝑒1, 𝑥1 . wp(𝑒2, 𝑥2 . 𝑓 [𝑥 := 𝑥1 + 𝑥2]))

wp(𝑒1; 𝑒2, 𝑥2 . 𝑓 ) = wp(𝑒1, 𝑥1 . wp(𝑒2, 𝑥2 . 𝑓 ))

wp(let 𝑢 𝑥1 = 𝑒1 in 𝑒2, 𝑥2 . 𝑓 ) = wp(𝑒1, 𝑥1 . wp(𝑒2, 𝑥2 . 𝑓 ))

wp(⟨𝑒1, . . . , 𝑒𝑛⟩, 𝑥 . 𝑓 ) = wp(𝑒1, 𝑥1 . . . .wp(𝑒𝑛, 𝑥𝑛 . 𝑓 [𝑥 := ⟨𝑥1, . . . , 𝑥𝑛⟩]) . . .)

wp(𝑒0 .𝑖, 𝑥 . 𝑓 ) = wp(𝑒0, 𝑥0 . 𝑓 [𝑥 := 𝑥0 .𝑖])

wp(new_region(), 𝑥 . 𝑓 ) = ∀𝑥 .𝑓

wp(free_region(𝑒0), 𝑥 . 𝑓 ) = wp(𝑒0, 𝑥0 . ∀𝑥 .𝑓 )

wp(alloc S(𝑒1, ..., 𝑒𝑛) @ 𝑒0, 𝑥
′. 𝑓 ) = wp(𝑒0, 𝑥0 . wp(𝑒1, 𝑥1 . ...wp(𝑒𝑛, 𝑥𝑛 .

∀𝑥 ′
𝑙
.∀𝑥 ′

0
.

(valid_ref(𝑥 ′
𝑙
, name_of_region(𝑥0)) ∧ fresh_ref(𝑥 ′

𝑙
) @ 𝑥0∧

𝑥1 = read(𝑥 ′
𝑙
.1) @ 𝑥 ′

0
∧ ... ∧ 𝑥𝑛 = read(𝑥 ′

𝑙
.𝑛) @ 𝑥 ′

0
∧

modifies() @ (𝑥0 → 𝑥 ′
0
)) ⇒ 𝑓 [𝑥 ′ := ⟨𝑥 ′

𝑙
, 𝑥 ′

0
⟩]) ...))

wp(read(𝑒1 .𝑖) @ 𝑒0, 𝑥 . 𝑓 ) = wp(𝑒0, 𝑥0 . wp(𝑒1, 𝑥1 .

valid_ref(𝑥1, name_of_region(𝑥0))∧

𝑓 [𝑥 := read(𝑥1 .𝑖) @ 𝑥0]))

wp(write(𝑒1 .𝑖 := 𝑒2) @ 𝑒0, 𝑥
′
0
. 𝑓 ) = wp(𝑒0, 𝑥0 . wp(𝑒1, 𝑥1 . wp(𝑒2, 𝑥2 .

valid_ref(𝑥1, name_of_region(𝑥0))∧

(∀𝑥 ′
0
.(𝑥2 = read(𝑥1 .𝑖) @ 𝑥 ′

0
∧modifies(𝑥1 .𝑖) @ (𝑥0 → 𝑥 ′

0
)) ⇒ 𝑓 ))))

wp(swap(𝑒1 .𝑖 := 𝑒2) @ 𝑒0, 𝑥
′. 𝑓 ) = wp(𝑒0, 𝑥0 . wp(𝑒1, 𝑥1 . wp(𝑒2, 𝑥2 .

valid_ref(𝑥1, name_of_region(𝑥0))∧

(∀𝑥 ′
0
.∀𝑥 ′

2
.

(𝑥2 = read(𝑥1 .𝑖) @ 𝑥 ′
0
∧ 𝑥 ′

2
= read(𝑥1 .𝑖) @ 𝑥0∧

modifies(𝑥1 .𝑖) @ (𝑥0 → 𝑥 ′
0
)) ⇒ 𝑓 [𝑥 ′ := ⟨𝑥 ′

2
, 𝑥 ′

0
⟩]))))

Fig. 5. Weakest Precondition Rules (all introduced bound variables are fresh to avoid capturing free variables)

Talpin 1994; Walker and Watkins 2001] allow. In this section, we demonstrate how to incorporate
regions, objects, and references into a linear type system with SMT-based verification.

We define a region to be a pair of a region name r and region data 𝑑 . The region data is essentially
a small heap that maps locations ℓ to objects. Each object has a type given by a struct name S,
which defines zero or more fields. Each struct field has a type and a usage (either linear or ordinary,
as with tuple fields). We assume that there is a mapping StructType(S) from each struct’s name to
its fields:

StructType(S) = (𝑢 lo
1 𝜏1, . . . , 𝑢

lo
𝑛 𝜏𝑛)

Each object is then a struct instance 𝑠 = S(𝑣1, ..., 𝑣𝑛). Note that although struct instances contain
values, struct instances are not themselves values. Instead, struct instances of type S are referred to
by references of type ref(S), and these references are values. Using references allows the for the
creation of cyclic data structures, as in the following example, which creates two objects pointing
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to each other, and then adds the integers in the objects together to compute 𝑧 = 300:

let linear𝑥 = new_region() in
let ⟨𝑦1, 𝑥⟩ = alloc S1 (100, null) @ 𝑥 in
let ⟨𝑦2, 𝑥⟩ = alloc S1 (200, 𝑦1) @ 𝑥 in
let linear𝑥 = write(𝑦1 .2 := 𝑦2) @ 𝑥 in
let ordinary 𝑧 = read(𝑦1.1) @ 𝑥 + read(𝑦2.1) @ 𝑥 in
free_region(𝑥);
𝑧

In this example, we assume StructType(S1) = (ordinary int, ordinary ref(S1)). The example code
creates a region 𝑥 , allocates two objects in the region referred to by references 𝑦1 and 𝑦2, and stores
a reference to𝑦1 in𝑦2 (via allocS1 (200, 𝑦1)@𝑥 ) and a reference to𝑦2 in𝑦1 (via write(𝑦1.2 := 𝑦2)@𝑥 ).
The region must be provided to allocation, read, and write using the@ syntax. As shown in the
typing rules in Figure 3 and Figure 4, the allocation and writes treat the region linearly, consuming
the original region and producing an updated region. Reads treat the region as shared. Freeing a
region consumes the region completely; this prevents any further allocations, reads, or writes in
the region, since region is no longer available as linear or shared after being consumed.

The weakest precondition definition (see Figure 5) can be used to verify that the example above
uses references safely and computes a final value of 300. For verifying region operations, the key
elements of weakest preconditions are the modifies predicate, the fresh_ref predicate, and the
valid_ref predicate.

The modifies(ℓ1.𝑖1, . . . , ℓ𝑛 .𝑖𝑛) @ (r𝑑 → r𝑑 ′) predicate is our per-region equivalent of Dafny’s
global-heap modifies clause. It says that region r𝑑 ′ is the same as r𝑑 , except that it may contain new
allocations and it may contain modifications in the listed fields of the listed locations ℓ1.𝑖1, . . . , ℓ𝑛 .𝑖𝑛 .
In the example above, the allocations and write preserve the integer fields, modifying only the 𝑦1.2
field, thus allowing the SMT solver to conclude that read(𝑦1 .1) @ 𝑥 + read(𝑦2.1) @ 𝑥 = 300.
The fresh_ref(ℓ) @ r𝑑 predicate says that ℓ is not in the domain of 𝑑 . When the expression

alloc S(𝑒1, . . . , 𝑒𝑛) @ r𝑑 allocates a new object in region r𝑑 , it ensures that the object’s location
ℓ is fresh (fresh_ref(ℓ) @ r𝑑). In the example above, this ensures that the locations 𝑦1 and 𝑦2 are
distinct.

The valid_ref(ℓ, r) predicate says that the reference ℓ is a valid reference into the region named
r, which is true iff ℓ was allocated in region r using alloc . . .@ r. Note that since the valid_ref(ℓ, r)
predicate refers only to the region name r, not the region data 𝑑 , the predicate remains valid forever,
even as the region data 𝑑 changes, and even after the region r𝑑 is freed. This makes valid_ref(ℓ, r)
ideal for an SMT solver’s classical logic, in which a true fact remains true forever. This also leads to
a clear division of labor between the SMT solver, which handles valid_ref(ℓ, r), and the type system,
which checks that the region is still alive during any read or write to ℓ . These two checks together
ensure that ℓ points into r and that r is still alive. This division of labor contrasts with traditional
type systems for regions [Fluet et al. 2006; Grossman et al. 2002; Walker and Watkins 2001], which
use region variables to ensure that ensure that ℓ points into r, and thus require universal and/or
existential quantification of region variables. By offloading the valid_ref(ℓ, r) check to the SMT
solver, our system avoids such quantification. In a language like Dafny that already supports SMT
solving, this is a significant simplification for the language and for the programmer. For example,
Rust supports universal quantification of lifetime variables, but does not yet support existential
quantification, making it difficult to encapsulate lifetimes inside data structures.
By contrast, our system can simply use an SMT solver’s existing features, including equality,

function application, negation, conjunction, and existential quantification, to encapsulate region
names inside data structures. Suppose we wanted to encapsulate the cyclic pair of objects 𝑦1, 𝑦2
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from the example above as an abstract linear value. We can define a type 𝜏 and a well-formedness
predicate𝑤𝑓 (𝑎 : 𝜏) that ensures that the pair forms a cycle and that the references in the pair are
valid:

𝜏 = ⟨linear region, ordinary ref(S1)⟩
𝑤𝑓 (𝑎 : 𝜏) = let 𝑥 = 𝑎.1 in

let 𝑦1 = 𝑎.2 in
let 𝑦2 = read(𝑦1.2) @ 𝑥 in
valid_ref(𝑦1, name_of_region(𝑥)) ∧
valid_ref(𝑦2, name_of_region(𝑥)) ∧
¬(𝑦1 = 𝑦2) ∧

𝑦1 = read(𝑦2 .2) @ 𝑥

The type 𝜏 contains the region 𝑥 and the head pointer𝑦1. The four conjuncts of𝑤𝑓 (𝑎 : 𝜏) ensure that
𝑦1 is valid, that𝑦2 is valid, that𝑦1 ≠ 𝑦2, and that𝑦2 points to𝑦1. (The SMT formula name_of_region(x)
returns the region name r of a region 𝑥 = r𝑑 , and the SMT formula read(ℓ .𝑖) @ 𝑥 returns the value
stored in field 𝑖 of the object referenced by ℓ in the region’s data 𝑑 .)
Dafny makes it straightforward to define types like 𝜏 and predicates𝑤𝑓 (𝑎 : 𝜏), and to hide the

definitions of 𝜏 and𝑤𝑓 (𝑎 : 𝜏) behind a module interface. Such a module can also define methods
that write to the region stored in 𝜏 . These writes will change the value of the region stored in 𝜏 ,
and this change will be captured by a predicate modifies(. . .) @ (𝑥 → 𝑥 ′). However, this predicate
is simply local information that the method can use if it desires; the method is under no obligation
to report the modification to the method’s callers:

type t = ...

predicate wf(a:t) { ... }

method m(linear inout a:t)

requires wf(a)

ensures wf(a)

// does not modify the global Dafny heap, so no modifies clause here

{

... write to a, optionally taking advantage of region modifies(...) @ (...) ...

}

Thus, the region-based approach successfully encapsulates modifications to objects behind a
linear interface. Using this approach, we have developed a Linear Dafny library for regions with ML-
style ref cells, and we have used this to re-implement VeriBetrKV’s doubly linked list using region
objects and references4, rather than integer łpointersž. Note that this approach does not require
physically switching an implementation to region-based memory management. In fact, since Dafny
already includes automated memory management based on garbage collection (when compiling
Dafny to C#) and reference counting (when compiling Dafny to C++), our region library uses a
purely ghost representation of regions where new_region() and free_region() have no runtime
effect. In this approach, the region primitives are just a way to assist verification by applying linear
and shared access control to groups of related nonlinear objects.

2.5 Regions, Part 2: Linear Data Inside Nonlinear Data

The previous section discussed storing nonlinear data inside linear data, but the opposite direction
is also useful. For example, Rust’s type RefCell<T> can be used in conjunction with reference
counting (Rc<RefCell<T>>) to create multiple pointers to a single value of type T, while still
guaranteeing that the T value is used linearly or borrowed immutably. However, Rust depends on

4Details are available at https://github.com/jialin-li/linear-veribetrkv-artifact/tree/master/formalization
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run-time checks to make this guarantee, and can panic if the RefCell<T> is not in the expected
state. In particular, RefCell’s immutable borrowing operation, borrow, panics if the RefCell

is currently mutably borrowed, and the mutable operations borrow_mut and swap panic if the
RefCell is currently mutably or immutably borrowed. These run-time checks add time and space
overhead, and introduce places where the entire program may fail because of a panic.

To avoid these overheads and failures, our language uses two techniques that carry no run-time
overhead and do not fail at run-time: reading linear values from regions that are shared, and
swapping linear values in regions that are linear. The first of these integrates into the type checking
rules quite naturally. Consider Figure 3’s rule for tuple field selection:

C ⊢ 𝑒 : shared ⟨𝑢1 𝜏1, . . . , 𝑢𝑖 𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛⟩

C ⊢ 𝑒.𝑖 : share_as(shared, 𝑢𝑖 ) 𝜏𝑖

This rule combines the two rules from Section 2.2 by using Figure 3’s share_as(shared, 𝑢2) function,
which demotes 𝑢2 from linear to shared and leaves shared and ordinary unchanged. The rule for
reading from region objects is essentially the same, except that instead of requiring a shared tuple,
it requires a shared region:

StructType(S) = (𝑢1 𝜏1, . . . , 𝑢𝑖 𝜏𝑖 , . . . , 𝑢𝑛 𝜏𝑛) C0 ⊢ 𝑒0 : shared region C1 ⊢ 𝑒1 : ordinary ref(S)

C0 # C1 ⊢ read(𝑒1 .𝑖) @ 𝑒0 : share_as(shared, 𝑢𝑖 ) 𝜏𝑖

Using this rule, a program can read a linear field (𝑢𝑖 = linear) as shared (share_as(shared, 𝑢𝑖 ) =
shared), for as long as the region remains shared. Since mutations of the region require a linear
region, not a shared region, and since a program can never see a region as linear and shared
simultaneously, there is no danger of the program mutating the field while the shared field is in use.
Section 5.1 of [Hance et al. 2020a] also presented a way to borrow a linear value stored in-

side a nonlinear object, but the mechanism relied on a rather awkward special attribute named
caller_must_be_pure with special rules to check that no heap modifications occurred within the
scope of the borrowing. This special treatment was necessary because [Hance et al. 2020a] could
store nonlinear objects only in the global Dafny heap, not in regions, and the global Dafny heap is
not a first class linear value like regions are, so there is no natural way to view the heap as a shared
value. Furthermore, forcing the entire global heap to be read-only while borrowing is excessively
restrictive; using fine-grained regions allows for some regions to be read-only while other regions
are mutated.
Figure 3 also shows the rule for swapping linear values in a region object. This rule requires

that the region be linear, not shared. In this way, the rule ensures that when the swap happens,
the program is not simultaneously viewing the linear field as shared, and in contrast to to Rust’s
RefCell swap operation, this guarantee requires no run-time overhead.
Using swap, a region-based program can implement the Take and Give operations described

in [Hance et al. 2020a] for regions: these support retrieving (Take) a linear value from nonlinear
data in order to mutate it, and replacing it (Give) afterwards. To do this, the program stores the
type Maybe<T> rather than T in a field, where Maybe<T>may either be Some value of type T or None.
Whether the value is Some or None is a ghost property that carries no run-time overhead, and the
program must prove, using SMT solving, that the value is Some to extract the underlying T value.
SMT verification helps avoid run-time time and space overhead, and avoids unexpected run-time
failures (encountering a None when a Some is expected).

2.6 Type Checking Algorithm

As described in Section 2.2, Figure 3’s typing rules use nondeterministic splitting of typing environ-
ments to check subexpressions. Fortunately, the programmer does not have to specify this splitting
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explicitly. Instead, a very simple and commonly used algorithm for linear type systems computes
the splitting lazily. If the type checker needs to split X = X1,X2 to check 𝑒1 in X1 and 𝑒2 in X2,
the algorithm first checks 𝑒1 using the entire environment X and tracks which linear variables 𝑒1
actually consumes; these consumed variables go into X1, and the remainder may be placed in X2.

This section demonstrates that this simple, common algorithm can be extended to infer borrowing
in a very straightforward way. Given that Rust also automatically infers borrowing, it should not
be surprising that such inference is possible. But in case anyone implementing a linear type system
is intimidated by the complexity of Rust’s inference algorithm, we want to reassure them that even
a simple algorithm can be sound and complete for a simple linear type system with borrowing (and
we want to encourage them to implement such an algorithm rather than requiring programmers to
write explicit let! expressions). We have implemented this inference algorithm as part of Linear
Dafny’s type checker.
Like the common algorithm for linear type systems without borrowing, our algorithm checks

subexpressions using all linear variables, and then tracks which linear variables the subexpressions
consume. However, our algorithm also tracks which linear variables the subexpressions borrow:

X ⊢ c 𝑒 : 𝑢 𝜏 borrows(𝐵) consumes(𝐶)

where 𝐵 and 𝐶 are sets of variables that are borrowed and consumed. For example, the algorithm’s
rule for 𝑒1; 𝑒2 is:

X ⊢ borrow 𝑒1 : 𝑢1 𝜏1 borrows(𝐵1) consumes(𝐶1)

X ⊢ c 𝑒2 : 𝑢2 𝜏2 borrows(𝐵2) consumes(𝐶2)

𝑢1 ≠ linear 𝐶1 ∩𝐶2 = ∅ 𝐶1 ∩ 𝐵2 = ∅

X ⊢ c 𝑒1; 𝑒2 : 𝑢2 𝜏2 borrows((𝐵1 \𝐶2) ∪ 𝐵2) consumes(𝐶1 ∪𝐶2)

This rule allows 𝑒1 and 𝑒2 to consume non-disjoint sets of variables𝐶1 and𝐶2, as in a standard linear
type checker without borrowing. It also allows 𝑒1 to borrow variables 𝐵1 ∩𝐶2 that are consumed by
𝑒2. Finally, 𝑒1 and 𝑒2 may borrow additional variables (𝐵1 \𝐶2) ∪ 𝐵2 that must be consumed later.

The one non-obvious aspect of the algorithm is that it relies on an expected łconsumptionž c that
is passed into each expression’s type checking, along with the environment X and the expression 𝑒 :

c ::= borrow | consume

If c = borrow, then a linear variable will be borrowed, and if c = consume, then a linear variable
will be consumed. For shared variables and ordinary variables, c is ignored. Fortunately, for every
expression 𝑒 in Figure 2 (and in Linear Dafny in general), it is unambiguous which c to use for each
of 𝑒’s subexpressions. For example, for 𝑒 = free_region(𝑒1), the algorithm chooses c = consume
for 𝑒1, since 𝑒1 must be linear, not shared, and thus if 𝑒1 is a variable, the variable is consumed,
not borrowed. Similarly, in 𝑒0 .𝑖 , the subexpression 𝑒0 must be shared, so the algorithm chooses
c = borrow for 𝑒0. One limitation of the algorithm is that it relies on the programmer’s 𝑢 annotation
in let 𝑢 𝑥 = 𝑒1 in 𝑒2 to choose c for 𝑒1. On the other hand, this 𝑢 annotation serves as useful
documentation, so it is reasonable to require programmers to provide this information. (Note that
Linear Dafny assumes a variable is ordinary if not annotated with linear or shared, so ordinary
variables need no annotation.)

We have proven that this algorithm is sound and complete4:

Theorem: Type Inference Soundness. For any c, if
X ⊢ c 𝑒 : 𝑢 𝜏 borrows(∅) consumes(domain(¡X)) then ∅; ∅; X ⊢ 𝑒 : 𝑢 𝜏 .
Theorem: Type Inference Completeness. For any c, if ∅; ∅; X ⊢ 𝑒 : 𝑢 𝜏 , and 𝑢 = linear =⇒ c =
consume, and𝑢 = shared =⇒ c = borrow, thenX ⊢ c 𝑒 : 𝑢 𝜏 borrows(∅) consumes(domain(¡X)).
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evaluation context 𝐸 ::= [·] | 𝐸1 + 𝑒2 | 𝑣1 + 𝐸2 | 𝐸1; 𝑒2 | let 𝑢 𝑥 = 𝐸1 in 𝑒2
| ⟨𝑣1, . . . , 𝑣𝑖 , 𝐸 𝑗 , 𝑒𝑘 , . . . , 𝑒𝑛⟩ | 𝐸.𝑖 | let ⟨𝑥1, . . . , 𝑥𝑛⟩ = 𝐸1 in 𝑒2
| free_region(𝐸) | alloc S(𝑒1, . . . , 𝑒𝑛) @ 𝐸0
| alloc S(𝑣1, . . . , 𝑣𝑖 , 𝐸 𝑗 , 𝑒𝑘 , . . . , 𝑒𝑛) @ 𝑣0
| read(𝑒1 .𝑖) @ 𝐸0 | read(𝐸1.𝑖) @ 𝑣0 | write(𝑒1.𝑖 := 𝑒2) @ 𝐸0
| write(𝐸1.𝑖 := 𝑒2) @ 𝑣0 | write(𝑣1.𝑖 := 𝐸2) @ 𝑣0
| swap(𝑒1.𝑖 := 𝑒2) @ 𝐸0 | swap(𝐸1 .𝑖 := 𝑒2) @ 𝑣0
| swap(𝑣1.𝑖 := 𝐸2) @ 𝑣0

𝑒 → 𝑒 ′

𝐸 [𝑒] −→ 𝐸 [𝑒 ′]
𝑖1 + 𝑖2 → 𝑖3 where 𝑖3 is sum of 𝑖1, 𝑖2 𝑣1; 𝑒2 → 𝑒2 let 𝑢 𝑥 = 𝑣1 in 𝑒2 → 𝑒2 [𝑥 := 𝑣1]

⟨𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛⟩.𝑖 → 𝑣𝑖 let ⟨𝑥1, . . . , 𝑥𝑛⟩ = ⟨𝑣1, . . . , 𝑣𝑛⟩ in 𝑒0 → 𝑒0 [𝑥1 := 𝑣1, . . . , 𝑥𝑛 := 𝑣𝑛]

new_region() → r∅ where r is fresh free_region(r𝑑) → 0 read(ℓ .𝑖) @ r (𝑑, ℓ ↦→ S(𝑣1, . . . , 𝑣𝑛)) → 𝑣𝑖

write(ℓ .𝑖 := 𝑣 ′𝑖 ) @ r (𝑑, ℓ ↦→ S(𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛)) → r (𝑑, ℓ ↦→ S(𝑣1, . . . , 𝑣
′
𝑖 , . . . , 𝑣𝑛))

swap(ℓ .𝑖 := 𝑣 ′𝑖 ) @ r (𝑑, ℓ ↦→ S(𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛)) → ⟨𝑣𝑖 , r (𝑑, ℓ ↦→ S(𝑣1, . . . , 𝑣
′
𝑖 , . . . , 𝑣𝑛))⟩

alloc 𝑠 @ r𝑑 → ⟨ℓ, r (𝑑, ℓ ↦→ 𝑠)⟩ where ℓ is fresh and RegionOfLoc(ℓ) = r

Fig. 6. Operational semantics

2.7 Semantics and Soundness

Figure 6 shows the operational semantics of the formal model. When allocating fresh locations ℓ
for objects, we assume a function RegionOfLoc(ℓ) that maps locations to region names such that
each region name r has an infinite number of locations ℓ that satisfy RegionOfLoc(ℓ) = r. This is
used in the type checking rules in Figure 3 and we define the SMT formula valid_ref(ℓ, r) to mean
RegionOfLoc(ℓ) = r.

Using the operational semantics, type checking rules, and weakest precondition rules, we have
proven the soundness of the formal language (see supplemental materials for proofs and further
details):

Theorem: Type Preservation. If L; R; X ⊢ 𝑒 : 𝑢 𝜏 and 𝑒 −→ 𝑒 ′, then there is some L′ and R′

such that L′; R′; X ⊢ 𝑒 ′ : 𝑢 𝜏 .
Theorem: WP Preservation. If L; R; X ⊢ 𝑒 : 𝑢 𝜏 and 𝑒 −→ 𝑒 ′ and wp(𝑒, 𝑥 . 𝑓 ) is valid, then
wp(𝑒 ′, 𝑥 . 𝑓 ) is valid.
Theorem: Progress. If L; R; ∅ ⊢ 𝑒 : 𝑢 𝜏 and wp(𝑒, 𝑥 . 𝑓 ) is valid and 𝑒 is not a value 𝑣 , then there
is some 𝑒 ′ such that 𝑒 −→ 𝑒 ′.
The operational semantics treat regions as values rather than keeping the region data in a

separate global mutable heap. This simplifies the semantics and emphasizes that during verification,
the SMT solver views regions as values, so that the weakest preconditions do not need to read
and write to any global heap. However, there is a slight danger in this approach that the formal
semantics could fail to correspond to the real Linear Dafny implementation, since the semantics
creates copies of regions during borrowing (via substitution), while the implementation passes
regions by reference, not by copy. Therefore, we have proven an additional theorem4 that all copies
of any region r contain exactly the same data, and can therefore be safely implemented by reference
rather than by copy:

Theorem: RegionAgreement Preservation. IfL;R;X ⊢ 𝑒 : 𝑢 𝜏 and 𝑒 −→ 𝑒 ′ and |versionsr (𝑒) | ≤
1, then |versionsr (𝑒

′) | ≤ 1 and if r was not chosen as a fresh region name during 𝑒 −→ 𝑒 ′, then
|versionsr (𝑒

′) | ≤ |versionsr (𝑒) |.
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Here, versionsr (𝑒) collects the set of all copies of the region named r appearing in 𝑒 , so that if
the cardinality of this set is less than or equal to 1, there is at most one version of the region, and
therefore the region can safely be implemented by reference rather than by copy.

3 CASE STUDY

The previous section showed how our linear type system flexibly nests nonlinear data inside linear
data and vice versa. We assert that this mixing exploits the common case of linear data with a
fallback when linearity is too restrictive, leading a better development experience. Here we evaluate
that assertion via an apples-to-apples comparison of both approaches in a large-scale case study. We
evaluate the development experience in terms of proof burden (Section 3.4), interactive performance
(Section 3.5), and the interpretability of error messages (Section 3.6).

3.1 VeriBetrKV

The experiments herein were performed on the code base from VeriBetrKV [Hance et al. 2020a], a
publicly-available large-scale key-value storage system designed for high performance. VeriBetrKV
is a verified crash-safe key-value store built around a write-optimized B𝜖 -tree [Bender et al. 2015].
Verification is worthwhile for a novel storage system design because users are otherwise reluctant
to entrust their valuable data to a system that may contain bugs that can corrupt or lose that data.
VeriBetrKV comprises 44K lines of code and proof in total (~24K in the implementation level),
producing 31K lines of generated C++ code.

We evaluate our linear type system on the VeriBetrKV code artifact because its size and complexity
are representative of future verification-driven software development. Because VeriBetrKV is
intended for real use, not just research, it prioritizes performance and maintainability. Performance
demands integration of complex components, including a cache, a performant cache-eviction policy,
a journal, asynchronous disk I/O, and an efficient disk-write scheduling policy that preserves
crash-recovery semantics. Performance also demands the developers exercise explicit control over
memory allocation and layout, and when necessary, object mutability and aliasing.

Because the system is complex, and because performance optimization demands code evolution,
the system also requires a maintainable software engineering strategy, including maintenance of
the proof artifact. VeriBetrKV’s correctness argument is organized using a conventional refinement
hierarchy of state machine models [Lamport 2002]. Models high in the hierarchy are purely
functional models that abstract away details to focus on higher-level arguments like crash safety
and the equivalence of the rich B𝜖 -tree data structure to dictionary semantics. The bottom layers of
the hierarchy introduce imperative code, mutable data structures, and bounded uint64 integers.

3.2 Challenges with SMT-Based Memory Reasoning

Section 1 introduced the three key challenges with mutable memory reasoning in the SMT-based
verification setting, and now we elaborate on them.

The first is proof burden: Explicitly-managed dynamic frames are powerful enough to capture
arbitrary aliasing relations, but most often that is more power than necessary. Given the common
case of unaliased objects, the developer spends many lines of specification describing uninteresting
memory invariants.
Second is verification time: A verification developer iterates between attempting proof fixes

and waiting for feedback from the verifier. The proofs of dynamic frames invariants do not lend
themselves to the heuristic automation in the SMT solver, leading to slow verifier response times
and hence poor interactivity.

Third is the need for decipherable error messages: When memory invariants are insufficient,
they manifest as verification errors in later assertions or postconditions about program logic.
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Verification developers are accustomed to diagnosing logic errors by trying to understand the
logical premises that lead to them. In the presence of memory errors, an assertion failure might
mean a logical assertion is actually wrong, or an overlooked alias causes the logical assertion to
fail. The latter is a much bigger search space for the human developer to investigate.

These problems are compounded by the system’s scale. Object types gain more fields to reference
the many data structures that describe the system’s state, and tracking sets of accessible objects and
their disjointness becomes more complex, compounding the tedium of managing their invariants.
As methods interact with complex objects, each simple logical assertion is competing with a
compounding number of heap-related invariants that may result in confounding aliasing failures.
This manifests as poor interactivity, as well as unhelpful error messages from proof failures.

While developing VeriBetrKV, we discovered that these problems become a bottleneck at
scale [Hance et al. 2020a]. We dealt with the second problem, poor interactivity, by splitting
implementations into tiny methods, following an only-partly-joking łrule of three semicolonsž: if
you need more than three heap mutating statements in a method, it is time to split it up.
We addressed the third challenge by introducing a łmodel-implementation splitž: we inserted

a second-lowest layer into our refinement hierarchy with a high-fidelity functional model of the
bottom-layer implementation. Because it is functional, the model dispatches all logical reasoning
while avoiding all of the challenges above. Because the functional model is high-fidelity, the next
implementation layer only addresses mutability and hence memory and aliasing reasoning. So an
assertion failure in this layer can only refer to a memory invariant or an equivalence problem.
Both mitigation strategies create more tedious overhead.
Our key hypothesis is this: We sometimes want the flexibility of SMT-based memory reasoning,

but in most cases we do not need it. Most objects are unaliased; for those objects, memory reasoning
can be simple. Integrating linear types into Dafny exploits that simplicity, relieving the burden.

3.3 The VeriBetrKV Conversion Process

To test this thesis, we began with a publicly available version of VeriBetrKV [Hance et al. 2020b]
that is entirely based on dynamic frames, and converted it into Linear Dafny. We refer to the
dynamic-frame-based system as VeriBetrKV-DF and the linearized system as VeriBetrKV-LT.
In our original work on VeriBetrKV, we presented a small-scale (16.5% of the implementation

layer) linear integration study with a primitive version of Linear Dafny [Hance et al. 2020a].
Here we present an enhanced Linear Dafny and a hybrid system, VeriBetrKV-LT, that consists of

91% linearized and 9% nonlinear code and proof in the implementation layer. By fully integrating an
advanced linear type system into VeriBetrKV-DF, we can confirm that most system components are
amenable to linear types, and can evaluate the development experience of a largely-linear hybrid
system.
The conversion only addresses mutable heap reasoning, and thus has no effect on the higher

layers of model and refinement (~20K lines) as they only manipulate functional objects. Hence in this
analysis we only contrast the implementation layer of VeriBetrKV-DF (~24K lines of the high-fidelity
functional model and the imperative implementation) and VeriBetrKV-LT. All improvements stated
in the following sections are based on the implementation layer of the code base.
The conversion involves two stages: First, linearization converts unaliased data types to linear

types and removes all code and proof used for heap reasoning. Second, the removal of the high-
fidelity functional models. With linear types in place, the implementation now has a clean separation
between memory reasoning dispatched by the type checker and logical conditions dispatched by
the SMT solver, obviating the high-fidelity models. Whenever a model is eliminated, we move its
correctness proofs into the implementation.
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Fig. 7. Figure (a) counts the lines of code and proof in the implementation layer of VeriBetrKV-DF and

VeriBetrKV-LT, highlighting the reduction in proof text that improves the proof-to-code ratio. Figure (b)

breaks those counts down by how each method was converted. When the complete overhead of nonlinear

types is accounted for, such as high-fidelity models, we observe a reduction of 56% in proof text.

When we observe methods with only one caller, we sometime merge the method into its caller,
as this artificial split is often a result of the "rule of three semicolons" described above. We did not
systematically target this case, however.

The conversion process proceeded incrementally, module-by-module and datatype-by-datatype,
keeping the whole system type checking and verifying all the while. This incremental conversion
was feasible because our type system supports linear data inside nonlinear data (Section 2.5).

By converting an existing system rather than building a hybrid system from scratch, the study
enjoys a direct comparison. Because it inherits an existing proof structure designed for dynamic
frames, however, the comparison underestimates the benefits of the hybrid approach.

3.4 Proof Burden

With this context, we first evaluate the effects on proof burden. Proof is all the lines of text a
developer has to write, beyond the program itself and its specification, to satisfy the verifier that the
program meets its specification. Proof burden comprises both lines of proof text and the effort the
developer spends arriving at that text. Since it is difficult to measure the developer’s effort, we use
the line count of the final proof text as a proxy for the overall burden. This proxy indirectly measures
the trials and errors of proof development and predicts how much proof the next developer will
need to understand when extending the system with new features.

Figure 7a shows that the implementation layer of VeriBetrKV-LT has 28% fewer lines of proof
than VeriBetrKV-DF. Since the two systems have nearly identical implementations, they have
comparable amounts of executable code; therefore, the proof-to-code ratio improves by the same
ratio, from 5:1 to 3.5:1.

Figure 7b breaks down Figure 7a bymethod into four groups. Linearized comprises data structures
and methods that were converted into linear types, but the high-fidelity model was left in place
because merging it would be too invasive. This category enjoyed an 18% reduction in proof text.
Linearized & No Models comprises data structures and methods that were converted into linear
types, and then their high-fidelity models were merged into the implementation. This category
enjoyed a 56% reduction in proof text.

The Replaced Impl. category comprises data structures that were entirely restructured in VeriBetrKV-
LT, and thus comparisons are not particularly meaningful. The Nonlinear category comprises data
structures that remain in the dynamic frames paradigm in VeriBetrKV-LT. The modest improvement
in proof burden was an artifact of unrelated refactoring while adapting to an upstream Dafny
upgrade.
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Fig. 8. SMT-solving and type checking time for each module in VeriBetrKV-DF and VeriBetrKV-LT. The size

of each module is shown in the format (lines of text in DF, lines of text in LT). Linear type checking typically

increases type checking time in exchange for substantially reducing solver time.

The conversion accounts for 90% of the overall proof reduction; the other 10% came from proof
enhancement during the conversion development process.
While 91% of the implementation layer was amenable to linearization, we only merged models

for 27% of the implementation, where the merge was noninvasive to the proof structure. If the
linear type system had been available at the beginning of VeriBetrKV development, we would
have created a different proof structure that did not rely on high-fidelity models. Thus the overall
improvement of 28% likely underestimates the benefit; working from scratch might extract the
benefits shown in the Linearized & No Models category across most of the system.

3.5 Verification Time

Short verification times provide a responsive, usable developer experience. Here we look at the time
it takes to verify the entire implementation layer and to verify individual methods in VeriBetrKV-DF
and VeriBetrKV-LT. Dafny type checks the program before running SMT queries, so we include
both type checking and SMT-solving time as the verification time.
Despite identical functionality and nearly identical implementation, VeriBetrKV-LT’s overall

verification time is reduced by 30%. Figure 8 breaks down those changes by subcomponent. Some
VeriBetrKV-LT modules, such as TreeOps experience increased type checking time due to the
additional linear type checking pass. The increases are offset by significant reductions in the
SMT-solving time.
In addition to the overall verification time, the interactivity of the verifier also plays an impor-

tant role in a developer’s experience. To evaluate interactivity, we collect the verification time
of individual methods. Predicate, function and lemma definitions are unchanged or omitted in
VeriBetrKV-LT and hence omitted from these measurements. Of the 353 methods measured, 284
verify within 5 seconds in VeriBetrKV-DF and exhibit no significant difference in verification time
using Linear Dafny. These methods verify in a speedy manner and do not block developers. Thus
we restrict our analysis to those 69 methods that take over 5 seconds in VeriBetrKV-DF.

Figure 9 shows the change in the verification time of the 69 methods as a cumulative distribution.
A quarter of VeriBetrKV-LT methods take less than a third of their VeriBetrKV-DF verification time,
half of the methods take about half of their previous verification time, and 90% verify at least as
fast as VeriBetrKV-DF. Not only do most methods see a reduction in verification time, the methods
also package more inlined proofs and code, eliminating the boilerplate of inter-method signatures.
To the right of 𝑥 = 100%, we see eight methods that verify slower in VeriBetrKV-LT. Three of

the eight are within 1 second of their VeriBetrKV-DF counterparts. Two inline additional proofs
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Fig. 9. Cumulative distribution of VeriBetrKV-LT methods’ verification time relative to their counterparts in

VeriBetrKV-DF for methods taking at least 5s. The vast majority have 𝑥 ≤ 100%, indicating that they verify

faster in VeriBetrKV-LT.

and are within 2ś4s of their counterparts. The remaining three methods increase by 10ś30s and
warrant further discussion.

The first outlier increases from 7s to 20s due to inlined correctness proofs; if we add in the time
to verify the correctness lemma, VeriBetrKV-DF takes 19s to verify 74 lines of code and proof, while
VeriBetrKV-LT takes 20s to verify 28 lines of code and proof. The other two outliers follow the
same pattern: One goes from 26s for 77 lines to 37s for 33 lines; the other from 24s for 104 lines to
33s for 33 lines. In every case, the VeriBetrKV-LT implementation trades off verification time to
achieve a lower proof burden by inlining proofs.

Above are examples where the developer converting VeriBetrKV-LT collapsed multiple methods
into a single method. Some methods collapse model proof into implementation methods. These
improvements in proof burden suggest that the analysis understates the available improvement to
verification time.

3.6 Decipherable Error Messages

Short verification times help developers by providing quick iterations. Accurate and decipherable
verifier error messages help developers by reducing the number of iterations, and by precisely
indicating what remediation is required. The verifier can fail this goal two ways (Section 3.6.1): by
timing out and providing no error message, or by providing misleading error messages that suggest
a logic error where a memory error is responsible. Linear types address both issues: they reduce
solver complexity (Section 3.5), and they separate memory errors from logic errors (Section 3.6.2).

3.6.1 Causes of Poor Error Messages. Solver timeouts provide no useful error message, and often
arise from complex disjointness invariants. For data structures that hold a dynamic number of
heap objects, when heap invariants are insufficiently strong, we frequently observe the SMT solver
timing out while repeatedly and ineffectually attempting to instantiate the necessary quantifiers.
For example, VeriBetrKV-DF’s MutCache class contains a map from Reference to Node and a

ghost Repr set that tracks all heap-allocated objects the cache holds: all heap-allocated Nodes plus
the MutCache object itself. The methods of MutCache export postconditions that are used for the
implementation layer and for refinement. If we try to verify one such method when MutCache’s
heap-related invariants are too weak, the verifier remains inconclusive for over 60 seconds.
Analysis using a custom SMT profiler identifies repeated quantifier instantiations of Dafny

axioms related to the heap, which in turn point to a missing invariant related to the disjointness of
all entries in the Repr set. However, the only information we immediately receive from the timeout
is that the solver is likely failing to prove the postcondition, which at first sight may incorrectly
appear to be related to a logic failure or an insufficient proof.
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Indeed, memory errors emitted by the solver often masquerade as logic errors. When heap invari-
ants or memory reasoning proofs are incomplete, we often observe Dafny report assertion failures
that appear unrelated to memory reasoning. For example, we encountered this with VeriBetrKV-
DF’s MutBucket, a data structure that uses a B-tree to store keys and messages. MutBucket tracks
the root node of its B-tree, a Repr set containing itself and the content of the B-tree, and Bucket, a
high-level representation of the MutBucket for refinement purposes.

1Class MutBucket {

2var tree: BTreeNode; ghost var Repr: set<object>; ghost var Bucket: Bucket;

3predicate Inv() reads this, Repr { /* ... */ }

4method Insert(key: Key, value: Message)

5requires Inv()

6modifies Repr

7ensures Inv() && Bucket == old(Bucket[key := value]) && /* ... */ {

8tree := BTree.Insert(tree, key, value); // modifies tree.Repr

9assert Bucket == old(Bucket[key := value]); // Bucket has the new key-value

10// ...

When verifying Insert, Dafny reports errors related to parts of Inv that enforce logical invariants
(seemingly unrelated to memory reasoning), and an assertion failure indicating the bucket does not
have the correct content (line 9). At first glance, these failures seem related to possibly incompatible
postconditions for the BTree.Insert method. However, the root cause is actually a missing heap
invariant that ensures the disjointness between the MutBucket object itself and the nodes in the
tree. Without this, in Dafny’s dynamic frames model, updating fields in MutBucket could in theory
corrupt the tree.

Assertion failures like this appear related to incorrect program logic, and mislead the developer
who does not immediately consider broken heap reasoning.

3.6.2 Linear Types Provide Unambiguous Errors. In contrast to the experiences above, when we
convert code to linear types, the verifier’s diagnostics point directly to the root cause and directly
guide resolution. We demonstrate this with LMutCache, a cache with the same functionality as
MutCache. It uses a linear hash map as a data store, and it does not need a Repr set or any heap
invariant, as the disjointness between objects is already captured in the type system.

linear datatype LMutCache = LMutCache(content: LinearHashMap<Reference, Node>)

The heap invariant that was missing in Section 3.6.1 is implicitly enforced by having the linear
LMutCache and a linear LinearHashMap which holds linear nodes. We demonstrate other common
memory reasoning errors in the Insert member method of LMutCache:

1linear inout method Insert(ref: Reference, linear node: Node)

2requires Inv() && /* ... */

3ensures Inv() && content[ref] == node && /* ... */ {

4shared var replaced :=

5LinearHashMap.Insert(inout content, ref, node); // error (1)

6node.FreeNode(); // error (2)

7// ...

LinearHashMap.Insert takes in a linear Node that will be inserted at ref and returns a linear
handle to the Node previously associated with ref. Line 4 tries to assign this result to a shared
variable replaced, but this would leak the associated allocation, as there would be no owning
linear variable for the returned data.
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This error is immediately caught by the type checker with two error messages: line 4: variable
ńreplacedż must be linear and linear variable [the linear data returned by Insert]must be unavailable

at end of block, addressing both the incorrect usage and the memory leak.
With the previous error fixed, line 6 incorrectly tries to free node instead of replaced, even

though LinearHashMap.Insert already took ownership of node on line 5. If undetected, there
would now be two aliased variables referencing the same linear data: the linear variable node and
the value for ref in the content map. The type checker identifies this immediately and provides
a clear error message: linear variable ńnodeż is unavailable here. This prevents the aliasing and
ensures that node is not freed while referenced by content.

Both errors are generated in seconds (after type checking and before SMT solving), point to the
exact line causing the issue, and have immediately actionable messages.

3.7 Limitations in Linear Dafny

Linear Dafny has various limitations in its expressivity when compared to an advanced language
with linear types like Rust [Klabnik et al. 2018]. Although the conversion went smoothly overall,
we ran into some of these limitations when porting the cache module.

The cache module is responsible for storing in-memory nodes of the B𝜖 -tree, providing clients
with basic operations like get, insert, remove, and replace. In VeriBetrKV-DF, the clients of the
cache would get a reference to the node of interest and operate directly on it. In VeriBetrKV-LT,
since the cache module is linearized, clients of the cache get an inout reference to it. Linear Dafny
does not allow calling methods that borrow the inout cache to obtain a mutable or shared reference
to a node when the reference is then stored in a variable. Returning a mutable reference is currently
unsupported, and while it is possible to return shared references, as described in Section 2, their
use is limited because Linear Dafny has to restrict their scope to ensure that no copies survive
after the borrow. As a result, we added pass-through methods inside the cache to perform node
operations on behalf of its clients.
An alternative solution is to remove a node from the cache for client uses, and the client can

insert it back in afterwards. What complicates this is that the overall system state changes when
the cache is modified. For example, one of our system’s state invariants requires that the cache
content is consistent with the Least Recently Used (LRU) queue. Removing nodes from the cache
would cause inconsistency in the LRU queue and violate the system invariant, which clients often
need for their operations. If instead we update both the LRU queue and the cache, we will then
need to prove that previously proven properties of the system are unaffected by these changes and
do so for all clients.

Another solution for clients is to manually delimit the shared borrow scope by adding an extra
method that takes the cache as a shared reference. Within this new method, the client can perform
cache operations using the shared reference to the cache and can safely retrieve shared references
to nodes. This would have partly relieved the need for pass-through methods but it would also
introduce bloat in the client due to redundant function specifications.
One other limitation we encountered was that Linear Dafny does not support storing shared

references in datatypes. In VeriBetrKV-DF, iterators for successor queries maintain a reference to
the nodes they iterate over. In VeriBetrKV-LT, these iterators are only able to store a non-linear
(ordinary) data-structure that mirrors the data in the underlying node. It is often the case that this
immutable representation needs to be constructed from the underlying linear node just to be able
to store it in the iterator. If Linear Dafny supported storing shared references, the iterators could
directly access the node instead.
Rust [Klabnik et al. 2018] has a sophisticated łborrow checkerž that tracks the relationship of

lifetime variables associated with shared and mutable borrows. Thanks to the borrow checker Rust
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supports returning shared and mutable references from methods, and storing them in variables
and datatypes. Modern Rust also allows non-lexical lifetimes and does not require borrows to start
and end at the boundary of lexical scopes. If we similarly enriched Linear Dafny with lifetime
variables and reasoning, and added support for these features, we would be able to remove the
pass-through methods in the cache module and reduce its size by 55% (242 lines of code) and could
avoid unnecessarily copying data in successor queries.

4 RELATED WORK

Inspired by Girard’s linear logic [Girard 1987], various linear type systems have provided different
mechanisms to express whether a variable is linear or nonlinear, and have provided different rules
for how linear and nonlinear variables interact. Linear Dafny uses a very direct and strict approach:
the annotation linear declares a variable linear, and linear variables are strictly segregated from
ordinary variables, so that programs cannot assign one to the other. (This direct approach was also
taken by CIVL [Hawblitzel et al. 2015b], although CIVL did not support borrowing.) This allows
Linear Dafny to support both linear and nonlinear usages of the same type, in contrast to other
systems like Cogent [Amani et al. 2016] and Rust [Klabnik et al. 2018; Matsakis and Klock 2014].
For example, a seq<T> type in an ordinary variable may be duplicated, but not updated in place,
but a seq<T> type in a linear variable may be updated in place. Both usages of seq<T> are encoded
identically in the SMT solver and may be used as ghost seq<T> values in the same way.
Wadler [Wadler 1990] distinguished linear and nonlinear variables based on the types of the

variables. Cogent [Amani et al. 2016] and Rust [Klabnik et al. 2018; Matsakis and Klock 2014] follow
this approach, where Cogent uses kinds to distinguish linear types and Rust uses a trait named
Copy to mark nonlinear types. Linear Haskell follows Girard’s original approach, where parameters
of function types A -o B are linear and parameters of function types A -> B are nonlinear. In
contrast to Linear Dafny, Cogent, and Rust, nonlinear variables may be assigned to linear variables
in Linear Haskell, which makes the type system more flexible but does not guarantee that all linear
variables are unaliased, which means that in-place mutation is not safe for types that may be
used non-linearly, such as the Haskell list type. Rust and Cogent support borrowing, while Linear
Haskell does not. Rust’s & and &mut borrowing correspond roughly to Linear Dafny’s shared and
inout, although inout does not yet support all the abilities of &mut, and Linear Dafny does not yet
support Rust’s lifetime variables (&'a and &'a mut), as discussed in Section 3.7.

Cogent supports verification using an interactive theorem prover. Although Rust does not have
verification support built in, the Prusti tool [Astrauskas et al. 2019] leverages SMT solving and
Rust’s advanced linear type system to support verification of Rust code. Prusti encodes Rust’s
ownership and borrowing information as memory constraints in the verifier’s logic, alleviating
the need for user-provided memory invariants in the surface syntax, similar to Linear Dafny. This
encoding relies on the separation logic features (permissions, magic wand) of the Viper [Müller
et al. 2016] verification infrastructure, and is different from Linear Dafny’s more direct encoding in
Boogie of linear code as mathematical values and expressions. Prusti also supports Rust’s more
advanced borrowing and partial ownership transfer features, including the ability to return mutable
references and store them in variables, which could have been useful to address the difficulties
discussed in Section 3.7. Prusti introduces łpledgesž: a specification construct for functions that
return a mutable reference obtained by mutably borrowing one or more of the parameters. Pledges
allow a function to specify properties of the borrowed values passed as arguments when the borrow
expires. A similar construct would be necessary for Linear Dafny to support returning mutable
references.
Both Cogent and Prusti have strong support for verifying linear data structures and borrowed

data structures, but have less support for nonlinear data structures like doubly linked lists. We
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believe that our novel region-based approach to nonlinear data structures would be applicable to
both Cogent and Rust, and perhaps could provide a way to manage Rust’s RefCell type without
requiring reasoning about a global heap.
RustBelt [Jung et al. 2017] can be used to formally reason about unsafe Rust code, which is a

subtle and difficult task. Our hope is that by providing an SMT-based verification system with
strong support for nonlinear data structures, we can avoid the need for unsafe code in many cases.
For example, Linear Dafny can verify doubly linked lists and encapsulate doubly linked lists inside
linear data, without requiring extra run-time checks and without relying on unsafe code.
Walker and Watkins [Walker and Watkins 2001] and Fluet, Morrisett, and Ahmed [Fluet et al.

2006] use linear type systems to manage regions. These systems still require explicit region variables,
along with universal and existential quantification over those variables, which our approach avoids
by relying on SMT solving.

GhostCell [Yanovski et al. 2021] uses linear ghost tokens to apply a single permission to multiple
objects, such as all of the nodes in a doubly linked list. This is similar to our use of regions to
control access to multiple nodes of a data structure, but with some differences. First, GhostCell
ensures just type safety, whereas our approach addresses correctness, which means we have to
deal with postconditions, invariants, and modifies clauses. Second, GhostCell builds on Rust’s
lifetime variables, which is both an advantage and a disadvantage: an advantage because Rust
already implements the necessary type checking rules for lifetime variables, but a disadvantage
because Rust limits what programs can do with lifetime variables. In particular, the doubly linked
list example in [Yanovski et al. 2021] has to expose the GhostToken lifetime variables to the clients
of the doubly linked list, since Rust currently lacks existential lifetime variable quantification,
whereas our Linear Dafny doubly linked list can hide the use of regions from clients.

Systems like Viper [Müller et al. 2016], SLAyer [Berdine et al. 2011], and Steel [Fromherz et al.
2021; Swamy et al. 2020] combine separation logic with SMT solving. Separation logic can express
nonlinear data structures like doubly linked lists more easily than linear type systems can. Viper,
SLAyer, and Steel all rely on heuristics to manipulate separation logic formulas and to manage the
heap, since the SMT solver does not handle these tasks automatically. By contrast, our approach uses
a linear type system, with a complete checker, to check linearity automatically. When pure linearity
is insufficient, Linear Dafny programs can still fall back on nonlinear datatypes via modifies clauses
and regions.

5 CONCLUSION

Linear types make a valuable complement to an SMT-based verification engine by streamlining
common-case memory reasoning. We present the design, formalization, and soundness proof for a
hybrid linear type system extension to Dafny that enables explicit dynamic frame reasoning and
linear type memory reasoning to symbiotically coexist. Conversion of a large-scale verified systems
project from explicit dynamic frame reasoning to mostly-linear reasoning provides a straight-across
comparison showing a 27% reduction in proof burden, faster verification of most methods, and
clearer error messages.
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