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Abstract
Web browsers ostensibly provide strong isolation for

the client-side components of web applications. Unfor-
tunately, this isolation is weak in practice; as browsers
add increasingly rich APIs to please developers, these
complex interfaces bloat the trusted computing base and
erode cross-app isolation boundaries.

We reenvision the web interface based on the notion
of a pico-datacenter, the client-side version of a shared
server datacenter. Mutually untrusting vendors run their
code on the user’s computer in low-level native code con-
tainers that communicate with the outside world only via
IP. Just as in the cloud datacenter, the simple semantics
makes isolation tractable, yet native code gives vendors
the freedom to run any software stack. Since the datacen-
ter model is designed to be robust to malicious tenants, it
is never dangerous for the user to click a link and invite
a possibly-hostile party onto the client.

1 Introduction
A defining feature of the web application model is its

ostensibly strong notion of isolation. On the desktop, a
user use caution when installing apps, since if an app
misbehaves, the consequences are unbounded. On the
web, if the user clicks on a link and doesn’t like what she
sees, she clicks the ‘close’ button, and web app isolation
promises that the closed app has no lasting effect on the
user’s experience.

Sadly, the promise of isolation is routinely broken, and
so in practice, we caution users to avoid clicking on “dan-
gerous links”. Isolation fails because the web’s API, re-
sponsible for application isolation, has simultaneously
pursued application richness, accreting HTTP, MIME,
HTML, DOM, CSS, JavaScript, JPG, PNG, Java, Flash,
Silverlight, SVG, Canvas, and more. This richness intro-
duces so much complexity that any precise specification
of the web API is virtually impossible. Yet we can’t hope
for correct application isolation until we can specify the
API’s semantics. Thus, the current web API is a battle
between isolation and richness, and isolation is losing.

The same battle was fought—and lost—on the desk-
top. The initially-simple conventional OS evolved into a
rich, complex desktop API, an unmanageable disaster of
complexity. Is there hope? Or do isolation (via simple
specification) and richness inevitably conflict?

There is, in fact, a context in which mutually-
untrusting participants interact in near-perfect auton-
omy, maintaining arbitrarily strong isolation in the face

of evolving complexity. On the Internet, application
providers, or vendors, run server-side applications over
which they exercise total control, from the app down
to the network stack, firewall, and OS. Even when ven-
dors are tenants of a shared datacenter, each tenant au-
tonomously controls its software stack down to the ma-
chine code, and each tenant is accessible only via IP.
The strong isolation among virtualized Infrastructure-as-
a-Service datacenter tenants derives not from physical
separation but from the execution interface’s simplicity.

This paper extends the semantics of datacenter rela-
tionships to the client’s web experience. Suspending dis-
belief momentarily, suppose every client had ubiquitous
high-performance Internet connectivity. In such a world,
exploiting datacenter semantics is easy: The client is
merely a screencast (VNC) viewer; every app runs on
its vendor’s servers and streams a video of its display to
the client. The client bears only a few responsibilities,
primarily around providing a trusted path, i.e., enabling
the user to select which vendor to interact with and pro-
viding user input authenticity and privacy.

We can restore reality by moving the vendors’ code
down to the client, with the client acting as a notional
pico-datacenter. On the client, apps enjoy fast, reliable
access to the display, but the semantics of isolation re-
main identical to the server model: Each vendor has au-
tonomous control over its software stack, and each ven-
dor interacts with other vendors (remote and local) only
through opt-in network protocols.

The pico-datacenter abstraction offers an escape from
the battle between isolation and richness, by deconflating
the goals into two levels of interface. The client imple-
ments the client execution interface (CEI), which is dedi-
cated to isolating applications and defines how a vendor’s
bag of bits is interpreted by the client. Different ven-
dors may employ, inside their isolated containers, differ-
ent developer programming interfaces (DPIs). Today’s
web API is stuck in a painful battle because it conflates
these goals into a single interface [11]: The API is simul-
taneously a collection of rich, expressive DPI functions
for app developers, and also a CEI that separates vendors.
The conflated result is a poor CEI that is neither simple
nor well-defined. Indeed, this conflation explains why it
took a decade to prevent text coloring from leaking pri-
vate information [63], and why today’s web allows cross-
site fetches of JPGs or JavaScript but not XML [67]. The
semantics of web app isolation wind through a teetering
stack of rich software layers.



We deconflate the CEI and DPI by following the pico-
datacenter analogy, arriving at a concrete client archi-
tecture called Embassies.1 We pare the web CEI down
to isolated native code picoprocesses [25], IP for com-
munication beyond the process, and minimal low-level
UI primitives to support the new display responsibilities
identified above.

The rich DPI, on the other hand, becomes part of the
web app itself, giving developers unparalleled freedom.
This proposal doesn’t require Alice, a web app devel-
oper, to start coding in assembly. When she writes a
geotagging site, she codes against the familiar HTML,
CSS, and JavaScript DPI. But, per the datacenter model,
that DPI is implemented by the WebKit library [62] that
Alice’s client code links against, just as her server-side
code links against PHP. Because Alice chooses the li-
brary, browser incompatibilities disappear.

Suppose a buffer overflow is discovered in libpng [50],
a library Alice’s DPI uses to draw images. Because Al-
ice links WebKit by reference, as soon as the WebKit
developers patch the bug, her client code automatically
inherits the fix. Just like when Alice fixes a bug in libphp
on her server, the user needn’t care about this update.

Later, Alice adds a comment forum to her application.
Rendering user-generated HTML has always been risky,
often leading to XSS vulnerabilities [29]. But Alice
hears about WebGear, a fork of WebKit, that enhances
HTML with sandboxes that solve this problem robustly.
DPI libraries like WebGear can innovate just as browser
vendors do today, but without imposing client browser
upgrades; Alice simply changes her app’s linkage.

Ultimately, independent development of alternative
DPIs outpace WebGear, and Alice graduates to a .NET
or GTK+ stack that is more powerful, or more secure, or
more elegant. Alice chooses a feature-full new frame-
work, while Bob sticks with WebBSD, a spartan frame-
work renowned for robustness, for his encrypted chat
app. Taking the complex, rich semantics out of the
CEI gives developers more freedom, while making cross-
vendor isolation—the primary guarantee established by
the client—more robust than today’s web API.

Via the pico-datacenter model, we develop a CEI with:
• a minimal native execution environment,
• a minimal notion of application identity,
• a minimal primitive for persistent state,
• an IP interface for all external app communication,
• and a minimal blit-based UI semantically equivalent

the screencast (VNC) model discussed above.
Such an ambitious refactoring of the web interface is

necessary to finally resolve the battle between rich DPIs

1An embassy is an autonomous enclave executing the will of its
home country; the host territory enables multiple embassies to operate
side-by-side in isolation.

and a simple, well-specified CEI. While it’s difficult to
prove such a radical change unequivocally superior, this
paper aims to demonstrate that the goal is both realistic
and valuable. It makes these contributions:

• With the pico-datacenter model, we exploit the
lessons of autonomous datacenter tenancy in the
client environment (§3), and argue that the collat-
eral effects of the shift are mostly harmless (§8).

• We show a small, well-defined CEI specification
(§3) that admits small implementations (§6.1) and
hence suggests that correct isolation is achievable.

• With a variety of rich DPI implementations running
against our CEI, we demonstrate that application
richness is not compromised but enhanced (§6.2).

• We show how to replace the cross-app interactions
baked into today’s browser with bilateral protocols
(§4), maintaining familiar functionality while obey-
ing pico-datacenter semantics.

• We implement this refactoring (§5) and show that it
can achieve plausible performance (§6.3, 6.4).

2 Trends in Prior Work
Embassies is not the first attempt to improve web app

isolation and richness, and indeed prior proposals im-
prove on one or both of these axes. However, they do not
provide true datacenter-style isolation — they incorpo-
rate, for reasons of compatibility, part or all of the aggre-
gate web API inside their trusted computing base (TCB).

2.1 Better Browsers for the Same API
Chrome and IE8+ both shift from a single process

model to one that encapsulates each tab in a separate host
OS process. This increases robustness to benign failures,
but these modifications don’t change the web interface—
multiple apps still occupy one tab, and complex cross-
app interactions still occur across tabs—hence isolation
among web apps is still weak. OP’s browser refactor-
ing [20] is also constrained by the web API’s complex
semantics.

Given this constraint, IBOS pushes the idea of refac-
toring the browser quite far [55]. It realizes the idea of
sites as first-class OS principals [26, 57], and container-
izes renderers to improve isolation. IBOS must still in-
clude HTTP to define 〈scheme, host, port〉 web prin-
cipals, and must use deep-packet inspection on HTML
and MIME to partially enforce the Same-Origin Policy
(SOP) [67]. IBOS cannot enforce the full SOP, such as
the restriction on image fetching (§3.1.4).

The Gazelle browser [58] treats sites and browser
plug-ins as principals to improve isolation, but like the
above systems, it maintains the existing web interface.
The follow-on Service OS project [59] extended this
work to encompass desktop apps, flexible web princi-
pals [45], device access, and resource management [44].



All of these systems restructure the browser to im-
prove isolation, but they are hampered by adherence
to the complex web interface, in which the isolation
boundary is defined in part by images, JavaScript ex-
ecution [67], and fonts [4, 63]. In contrast, the pico-
datacenter model imposes a new interface that makes the
isolation boundary obvious and sustainable.

2.2 Changing the Web API
Many have observed that the HTML DPI isn’t the best

API for all web apps. An early alternative was Java [19]:
a new execution and isolation model. However, because
the execution model was new, and no conventional li-
braries worked with it, Java’s CEI had to incorporate a
new batch of rich interfaces and functionality, starting
with the AWT GUI library. These libraries expanded the
CEI (and hence the TCB), weakening the promise of iso-
lation. The practical need for a rich DPI combined with
a non-native execution model led to CEI bloat.

Atlantis [41] replaces the web’s DPI with a lower-level
CEI. Its executes a high-level language, and hence prac-
tical deployment of the model faces the same constraints
as Java: Either it offers a limited DPI until a massive
effort ports existing libraries to the new language, or it
caves in and admits rich native libraries as part of the
CEI (such as its renderGUIWidget call).

Our pico-datacenter proposal naturally evokes
Tahoma [9], which defines the CEI as a hardware-
compatible virtual machine. However, the Tahoma CEI
isn’t minimal; it includes all of HTTP and XML to
specify app launch, and full hardware virtualization is
needlessly broad, including x86 intricacies such as I/O
ports and APICs that are irrelevant to web apps. More
importantly, apps interact locally through “bins,” but
Tahoma doesn’t explain how to use them to replace con-
ventional web-style interactions without expanding the
CEI (cf. §4), or even how to download big applications
without adding a trusted cache to the CEI (cf. §3.1.3).

Various browser plug-ins, such as Flash and Sil-
verlight, expand the existing web API to give develop-
ers options other than HTML and JavaScript. Xax [25]
and Native Client [66] introduced the idea of native
code web plug-ins. NaCl’s SFI-based isolation requires
architecture-specific reasoning, significant changes to
DPI toolchains, and runtime overhead. Xax uses OS
page tables, an approach that our CEI maps naturally to.

While the technologies above improve various aspects
of the web, the broad approach of unioning a new inter-
face onto the existing web API does nothing to decon-
flate the web’s DPI and CEI and may actually introduce
to security vulnerabilities [28, 60].

Mobile app platforms, such as Android, introduce an
app model competitive with the web’s click-anything
model. But Android’s permissions are closer in spirit

to the desktop’s model: the device and its data are sa-
cred; installing an app explicitly welcomes the app into
that sacred domain. In practice, users incorrectly trust
app stores to vouch for app fidelity [31]. Our inter-
application protocols (§4) evoke Android’s Intents, but
Embassies communication uses IP, emphasizing that a
message’s local origin implies nothing about its author-
ity. At a low level, Android isolation is implemented
with Linux user IDs [46], a subtle isolation specification
wound throughout a complex kernel.

At the architectural level, our proposal employs the
principle of a native, low-level interface to execution and
I/O, similar to the Exokernel [30]. The Exokernel, how-
ever, aimed to expose app-specific performance oppor-
tunities; in Embassies, the low-level interface serves to
maximally enforce isolation boundaries among vendors.
The Exokernel project said little about how to restore
inter-app functionality in a principled fashion.

3 Embassies: A Client’s Pico-Datacenter
Section 1 proposed a model in which the client be-

comes a pico-datacenter hosting mutually distrusting
apps. This section describes a specific instantiation of
that idea (Fig. 1), starting with the basic execution en-
vironment offered by the pico-datacenter (§3.1). The
whole reason for running an app on the client (rather than
in a real data center) is proximity to the UI; to exploit
this, the pico-datacenter provides each app with a mini-
mal pixel blitting interface (for transferring pixel arrays
to the screen), and the primitives needed for app-to-app
display management (§3.2).

The resulting CEI (Fig. 2) has only 30 system calls,
each with very simple semantics. There are no deep re-
cesses of functionality hiding behind ioctls, making the
implementation, or client kernel, quite small (§6.1).

3.1 Execution Environment
In the datacenter, each vendor defines its own app

down to native code. Applying the pico-datacenter
metaphor, our proposed CEI defines an application as a
process started from a boot block of native code, running
in isolation in a native environment with access to ba-
sic, microkernel-like services such as memory, synchro-
nization and threads. An app communicates with remote
servers and other local apps via IP packets, and it boot-
straps storage from a single simple CEI call.
3.1.1 Execution: Native Code

Our client-side pico-datacenter is inspired by the suc-
cess of server-side Infrastructure-as-a-Service (IaaS) sys-
tems, wherein mutually distrusting server apps occupy a
shared datacenter. Server-side developers can build apps
atop their choice of standard virtual machine images, or
they can fine-tune or even replace the entire OS, mak-
ing it easier to port existing apps. Platform-as-a-Service
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Figure 1: The Embassies Pico-Datacenter. A minimal native client execution interface (CEI) admits a diverse set of developer
programming interfaces (DPIs), from the web’s HTML to .NET, Qt, or Gtk. Each app communicates with other servers and client
apps using IP. Any protocols above IP, from TCP to HTTP to decoding a JPEG, are implemented in libraries selected by each app.
Each app renders its own UI on a private framebuffer, which the client kernel blits to the screen (Fig. 3).
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Figure 2: The Complete Embassies CEI. All 30 functions are
non-blocking, except futex wait, which can be used to wait
on events that signal the completion of long-running calls.

(PaaS) layers elegantly and efficiently on top of IaaS. Be-
cause of the simplicity of the IaaS interface, it can clearly
deliver on its promise of inter-tenant isolation. Indeed,
both Google [18] and Microsoft [43] started with PaaS
but then shifted to IaaS.

By analogy, our model allows vendors to build client-
side apps atop their choice of standard DPIs, including
high-level languages, or they can fine-tune or replace
them as desired. This reduces the pressure to bloat the
CEI with new features (§2.2), since the apps can link to
new feature libraries, above the level of the CEI.

While the CEI executes native-code instructions, de-
velopers obviously won’t be writing code in assembly
(§1). A developer writes to a high-level DPI, and the DPI
implementation emits native code, including the machin-
ery to assemble the app from a boot block.

In particular, for web apps written against the current
web DPI, the functions described in this section are hid-
den from the developer. These functions are used by a
code module called the web runtime (§5.2.5), which im-
plements the web DPI.

3.1.2 Identity: Public Keys
The pico-datacenter identifies its tenants the same way

entities anywhere on the open Internet are robustly iden-
tified: by associating each process with the public key
of the vendor responsible for it. In other words, Em-
bassies’s principals are public keys, so an app may con-
sist of multiple processes running different code, but Em-
bassies will treat them all as a single principal.

Embassies identifies the principal for a process during
process start. Each process starts from a self-contained,
native-code boot block (§3.1.1). That boot block is
signed by a private pair held by the process’ principal.
Before a process starts, the client kernel checks the sig-
nature, and henceforth it associates the new process with
the corresponding public key; §3.2 discusses how this
identity is conveyed to the user.

The CEI does not specify how the signed boot block is
acquired, leaving it up to the DPIs to define and evolve
suitable mechanisms — see §4.1 for an example.

The CEI also takes a data-center-based approach to
handling app instances, i.e., multiple processes that be-
long to the same principal (i.e., public key). When a cus-
tomer contacts a data-center tenant, e.g., Netflix, she con-
tacts the vendor, rather than directly specifying a particu-
lar virtual machine running a particular binary. Similarly,
with Embassies, the CEI does not specify how to contact
a specific process belonging to a principal. Instead, each
app vendor can choose to make all of its processes avail-
able for communication, or the vendor may choose to
use one process to dispatch requests to other processes it
controls.

This minimal notion of app identity contrasts with to-
day’s web, which distinguishes principals based on the
protocol, host, and port used to fetch the app; thus the
very specification of app identity incorporates the com-
plexity of TCP, HTTP, HTTPS, and MIME.

Embassies’s minimal definition provides a strong no-
tion of identity, making it simple to determine when a
message speaks for an application and to enable secure
communication amongst apps (§3.1.4). Many awkward
consequences of the web’s cobbled-together definition



vanish [27]; today a vendor may own two domain names
but cannot treat them as one principal, or a single do-
main may represent multiple entities (e.g., GeoCities or
MySpace) but is treated as one principal.

However, defining and verifying app identity on an
end user’s client is more challenging than for a remote
server, because it is not safe to download a vendor’s pri-
vate key to a client. For instance, Flickr uses its private
key to authenticate its server, but it would never embed
that key in the code it downloads to a client.

Our solution is based on the observation that, after ver-
ifying a vendor’s signature on a binary, the client kernel
can authoritatively state that the app speaks for [35] that
vendor on this machine. The endorse me call allows
an app to obtain such a certification for a crypto key it
generates, and other apps on the local machine can verify
this with verify endorsement, similar to authenti-
cation in the Nexus OS [54]. Since local apps already
depend on the client kernel for correctness and security,
this introduces no new dependencies.

Endorsing apps via crypto keeps the client kernel sim-
ple and makes explicit the guarantees the return value
provides. It also further emphasizes the pedagogical
point that each app should treat communications with lo-
cal apps with as much suspicion as it would treat com-
munications with remote apps.
3.1.3 Persistent State: Pseudorandom Keys

The current web interface specifies several local stor-
age services as part of the CEI: an object cache, cookies,
and local storage. Each service must be correct to pre-
serve app isolation; for instance, the cache can violate
an app’s security or correctness if it misidentifies the ori-
gin of an object. Worse, these services have complex
semantics apps cannot control; for example, the browser
delivers cookies on one app’s behalf when a different app
makes certain requests; flaws in this design lead to Cross-
Site Request Forgery (CSRF) vulnerabilities [6].

By contrast, in a shared data center, apps cannot even
assume the presence of local storage, let alone complex
storage APIs for caches or cookies. Instead, the app’s
developer uses a remote storage service, such as Ama-
zon’s S3 or Azure Storage. Even if she trusts Amazon,
a sensible developer uses SSL to connect to the storage
service, and a less trusting developer can use additional
cryptography to avoid trusting Amazon.

Hence, following the pico-datacenter analogy, our
CEI does not provide any storage services directly. In-
stead, apps bootstrap all of their storage needs via the
get app secret call, which returns a secret specific
to both the app’s identity and the client machine.

The app secret is stable, so when the app restarts later,
it gets the same secret. An app library can use the app
secret as key material to build encrypted and authen-
ticated storage from any untrusted external store, such

as a daemon on the local client machine, a server-based
cloud service, or even a peer-to-peer service. Apps use
this secure storage facility to save cookies and other app-
specific state.

In addition, mutually-distrusting apps can share an
untrusted store that acts as a common content cache
(§5.2.2); each app independently authenticates (e.g., via
a MAC with the app secret as a key) the cache’s content.

In both cases, replay or rollback attacks can be pre-
vented via standard techniques [38, 48].

Our client kernel implements this interface by storing
a symmetric key for a pseudorandom function (AES). It
applies the function to the hash of the app’s public key to
generate a secret unique to the (app, host) pair.
3.1.4 External Interface: IP Only

Today’s web API supplies an ever-expanding set of
communication primitives, including content retrieval
via HTML src attributes, form submissions, links,
JavaScript XMLHttpRequests, PostMessage, and Web-
Sockets. Each expands the complexity of the CEI.

In contrast, our pico-datacenter follows the commu-
nication model of Internet servers: It offers only IP,
with simple best-effort, non-private, non-authenticated
semantics. Using IP even for messages traveling on the
same machine sounds slow and counterintuitive. How-
ever, it imitates the physical constraints that guided the
evolution of robust inter-server protocols. Servers com-
municate only by value, not by mapping shared address
spaces; such decoupling leaves room to design robust
protocols and select robust implementations. We can
keep IP’s semantics while exposing good performance
by supporting bulk transfer with IPv6 jumbo frames, and
by exposing a zero-copy packet interface (§5).

In practice, the client kernel assigns each app an IPv6
address and a NATed IPv4 address. The client kernel’s
responsibility is that of any other Internet router: best-
effort delivery, with no particular guarantees on integrity
or privacy.

As with any other Internet interaction, to communi-
cate securely with other parties, an app uses cryptogra-
phy. For example, the app might include a server’s public
key, or a public key for the root of a PKI, and then com-
municate with the server over SSL. The CEI does not
provide cryptographic operations; the app must incorpo-
rate (e.g., via a library) any crypto code it needs. How-
ever, the CEI’s get random call provides a supply of
secure randomness for seeding cryptographic operations,
like nonce or key generation.
Communicating with Remote Servers.

In today’s web, communication with remote servers
is deeply complicated by the web’s breathtakingly am-
biguous Same Origin Policy (SOP), which refers to an
ad-hoc collection of browser behaviors that attempt to
selectively isolate sites from one another [67].



Locally, the SOP prevents most but not all
DOM-based interactions; following the pico-datacenter
metaphor, Embassies enforces a stronger, simpler policy:
strictly isolate apps, with interactions only via IP.

When communicating with remote servers, the SOP
primarily affects when the browser attaches cookies to
an outbound request, and when a webpage can fetch con-
tent from a remote server. We discard the restrictions
on cookies, since in Embassies, each app, via its DPI,
governs access to its own cookies and decides when to
include them in a request (§4.2). The CEI never adds
ambient authority [23] to an app’s communications.

The SOP’s restrictions on fetching remote content
aren’t so easily dismissed. Since a web client may be
running behind a firewall, allowing untrusted apps to
freely use its network connection creates a confused-
deputy vulnerability [23]. For example, an evil app on
a user’s web client may request content from the internal
corporate payroll server, which the server allows because
the request originates behind the firewall. The SOP ad-
dresses this with complicated rules such as allowing an
app to retrieve an image from any site and display it, but
not examine its pixels. Such rules require reasoning at a
high level to know that a retrieved file is an image.

We observe that a much simpler policy addresses the
confused-deputy threat. The threat arises from allowing
untrusted apps to inherit the web client’s privileged po-
sition on the network; thus, we disallow that privilege.
In Embassies, every app receives, either via IT network
configuration or via an explicit proxy, an IP connection
logically outside any firewall. We call this “coffee-shop
networking” (CSN), since apps use an IP connection se-
mantically equivalent to a public network, e.g., in a cof-
fee shop. An app that accesses enterprise resources can
include a VPN library. To avoid asking the user to au-
thenticate more than once, the app may choose to share
its VPN connection with other enterprise-approved apps
that it authenticates cryptographically (§3.1.2).

In fact, the necessary environment for CSN is emerg-
ing due to the “consumerization of IT” [47], which
encourages institutions to make logically-external con-
nections available for untrusted devices and to harden
internal servers. Windows 8 grants apps an “in-
ternetClientServer” permission, a policy equivalent to
CSN. [42]

We discuss the potential for resource abuse (e.g.,
Denial-of-Service) in §7.
Communicating with Local Applications.

In the pico-datacenter, a local app is just another server
sitting on the network, and thus intra-client communica-
tion, just as app-to-server communication, is simply IP.
This keeps the CEI simple and encourages defensive app
design; local apps appear no different than servers be-
cause they are no more trustworthy than servers.

However, communicating with local apps differs from
servers in a crucial aspect: It is reasonable to assume
that server processes are available; map.com can send a
message to flickr.com and reasonably expect a run-
ning process to receive it. In contrast, a web app cannot
safely assume any other app is currently running on the
local client.

Thus, the CEI provides the call ensure alive to
ensure a local process is indeed alive locally. We delib-
erately make the call’s semantics minimal, leaving most
of the work to the calling and target apps. The calling
app must somehow locate the target app’s binary boot
block, signed by the target app’s vendor, and pass it to
ensure alive. If no instance of the target app (as
identified by the public key that signed the boot block) is
yet running, the client kernel verifies the signature, starts
a container for the new app, and associates the vendor’s
key with the container. Thereafter, the caller app can
communicate with the target app by IP, for instance to
pass parameters to the second app.

Note how the ensure alive primitive contrasts
with a conventional OS process start: no parameters, en-
vironment, handles, or library paths. A single vendor
can use ensure alive to create multiple processes,
which may be helpful for benign fault isolation, but be-
cause each such process shares a common principal (the
vendor key of §3.1.2), there is no security isolation be-
tween such processes.

3.2 UI and Display Management
The preceding subsections carve up the client machine

into a fairly standard “shared datacenter”; however, a
pico-datacenter is interesting because it lives near the
user. Hence, unlike a traditional datacenter, we must also
specify how apps access the user interface, and how the
CEI handles display management. Our guiding princi-
ple is to reason about how remote, screencast apps (§1)
might coordinate to manage a dumb client’s UI.
User Interface. Today’s web apps specify user in-
terfaces via a complex amalgam of HTML, CSS,
JavaScript, DOM, and many other standards. Our goal
of a minimal CEI drives us to the leanest feasible inter-
face: An app may accept a rectangular viewport region
(accept viewport) and map a canvas into its ad-
dress space (map canvas) – see Figure 3. This allows
the client kernel to place it in a region of memory where
blitting is cheap; if the viewport is resized, another call
to map canvas recreates a matching framebuffer. After
painting pixels onto the canvas using the rendering stack
it prefers, the app asks the UI (via update canvas)
to blit the pixels onto the visible part of the app’s view-
port. When the user’s input focus is in the viewport, the
client kernel delivers mouse and keystroke events to the
app (receive ui event).
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Figure 3: UI Management. Sublet viewport lets the
newspaper nest the weather app’s display inside its region.
On the right, the user clicked a link on the Bing app, which
used transfer viewport to convert its viewport (access
to the screen) into a deed (a secret capability), and sent the
deed in a message to the kitchen app. The kitchen app will use
accept viewport to redeem the deed for its own viewport.

As with the choice of native code, this refactors rich
UI features into the apps, simplifying the CEI while en-
abling virtually any UI a DPI-developer can imagine (we
discuss GPUs in §8). Indeed, because Embassies exe-
cutes native code, we can employ a variety of mature UI
stacks (§5.2) as DPI-supported UIs for web apps.

The client kernel labels app windows with the app’s
identity, so the user can select a window and know which
app he is communicating with. The CEI does not use
cryptographic keys directly as labels, because such keys
are difficult for users to interpret. Instead, the CEI maps
keys to hierarchical DNS-style labels (e.g., bing.com),
based on and compatible with the DNSSEC PKI2. Be-
fore an app can accept a viewport (and hence appear on
screen), the app must gather a certificate chain authenti-
cating its label and call verify label.

Naming, labeling, and visual ambiguity are hard prob-
lems; users manage to ignore most cues [52]. Our client
kernel provides the minimal facility described above to
address this problem, consistent with the best known
methods [16, 53, 65], but we recognize that progress on
this problem [10] may require CEI evolution.
Display Management. Much of today’s browser func-
tionality, such as linking, embedding, navigation, history,
and tabs, are basically mechanisms for display manage-
ment. To adhere to the remote screencasting abstraction
(§1), we designed a viewport-management interface with
capability semantics. This interface has five calls and
primitive semantics; the rich browser-like functionality
is built up by apps themselves (§4).

2Experience with SSL/TLS illustrates that deploying a large-scale
PKI is challenging. Security is undermined by hundreds of certificate
authorities baked into common browsers. Thus, we choose a DNSSEC-
style PKI with few trust anchors and scoped naming authority.

Our CEI supports the transfer of a viewport from one
app to another via transfer viewport, which ac-
cepts a viewport and returns a deed, a secret capability
that can be passed to another app via a network mes-
sage. The receiving app can call accept viewport
to redeem the deed for a viewport it can draw in. Trans-
forming a viewport into a deed destroys the viewport,
and accepting a deed into a viewport destroys the deed;
thus only one app has access to a viewport at a time.

Rather than transfer an entire viewport, an app may
wish to delegate control over a rectangular sub-region
of its viewport via sublet viewport. This creates
a deed that can be passed to another app. It also yields
a handle to the sublet region, with which the parent app
can resize or move the region via modify viewport,
or revoke it with repossess viewport.

To allow communication (e.g., changes in viewport
size) between the app that sublets a viewport (the land-
lord) and the app that accepts it (the tenant), our CEI
provides each landlord-tenant pair with a fresh sym-
metric key that can be used to authenticate and option-
ally encrypt viewport-related communication. Since the
key provides secrecy, integrity, and authenticity, apps
may use anonymous communication mechanisms (e.g.,
anonymous broadcast from a random IP address) to bet-
ter protect the user’s privacy.

4 Refactoring Browser Interactions
§3 introduced a CEI with minimal support for hosting

pico-datacenter apps and enabling them to share the UI.
This section shows how we can build up equivalent func-
tionality inside the apps to restore the rich cross-app in-
teractions familiar in the classic browser. Less browser-
specific interactions, such as copy-and-paste, can be han-
dled via techniques from related work (e.g., [51]).

Rather than bake these rich interactions into the client,
each interaction is reconstructed as a bilateral protocol
between cooperating apps. This refactoring gives appli-
cation vendors the autonomy to make security/function-
ality tradeoffs, for example by choosing a more robust
implementation of a given protocol, implementing only
a subset of it, or even refusing it altogether.

More importantly, refactoring interactions as protocols
clarifies the underlying semantics, whereas in today’s
web, complex feature interactions lead to surprising se-
curity implications. For example, refactoring provides
new perspective on Cross-Site Request Forgery (CSRF)
(§4.2) and policies for visited-link coloring (§4.5).

4.1 Linking
When a classic web app includes a link to another app,

it is prepared to transfer control of its screen real estate in
response to the user’s click. In the current web API, the
hyperlink is a high-level function, bundling name reso-



lution, app fetch, app start, app window labeling, param-
eter passing, cookie transmission, and screen real-estate
transfer into a single browser feature. In contrast, the
pico-datacenter model partitions these tasks mostly be-
tween the app that contains the link and the app being
linked to; the client kernel provides minimal support.

Consider caller.net, an Embassies app written in
a classic HTML DPI, containing a hyperlink:

<a href="target.org/foo?x=5&y=10">
When a user clicks the link, the caller app identifies and
contacts the target app. First, it translates target.org
into a strong identity, perhaps by resolving it, via DNS
or some stronger PKI, into a public key for the target app
(§3.1.2) — §8 discusses legacy servers. Second, it con-
tacts a local instance of the target app via local broadcast.

Since the target app may not be running locally, the
caller uses ensure alive (§3.1.4) to ensure that the
target app has a presence on the client (in the local pico-
datacenter). This requires caller.net to fetch a signed
boot block matching the web runtime’s ISA; it finds it
as it found target.org’s public key. Target.org’s tiny
bootstrap executable retrieves and verifies the rest of its
code and data, by its own means. Once target.org’s
web runtime calls verify label (§3.2), the vendor
has a presence on the client.

From its client presence, target.org responds to
caller.net’s broadcast via unicast IP. The two web run-
times have their public keys endorsed by the client ker-
nel (§3.1.2), and use them to create a secure communi-
cation channel. Caller.net’s web runtime then transforms
its viewport into a deed (§3.2), and sends a message to
target.org containing the deed and the entry point
parameter /foo?x=5&y=10. If target.org wishes
to pass the request to its server, it does so itself (§4.2); the
client kernel has no notion of HTTP. If target.org
wishes to include a client-stored cookie, it fetches and
forwards its own cookies (§3.1.3); the client kernel has
no notion of HTTP cookies.

While the above process may sound heavyweight,
much of it is simply a refactoring of the work done today
by the browser. Furthermore, our results (§6.3) show that
the overhead of app start is quite reasonable.

4.2 Cross-Domain Communication
Today’s web offers many communication mecha-

nisms, such as XMLHttpRequest, script and image inclu-
sion, PostMessage, and third-party cookies. Refactoring
them into explicit app-implemented protocols is easy.

XMLHttpRequest and HTML script and image
tags use app libraries that employ TCP, HTTP, and XML
libraries to reproduce standard functionality internal to
the app, relying on the CEI only for IP (§3.1.4). The
simplicity stems from Embassies’s handling of confused-
deputy problems at the IP level (§3.1.4).

PostMessage lets one local client app send messages
to another. In Embassies, these messages simply become
IP packets, optionally protected cryptographically.

Automatic HTML cookie semantics mixed with im-
perative code lead to cross-site scripting vulnerabilities;
the HttpOnly attribute attempts to curtail the complexity
enough to mitigate the threat [5]. In Embassies, an app
can only manipulate a cookie belonging a separate ven-
dor via an explicit IP request to the cookie’s owner. The
owner enforces policies on which cookies are exposed
and to whom.

This refactoring reveals how CSRF threats can now be
addressed by individual vendors. CSRF occurs when a
malicious app dupes the browser into sending a request
to a valuable app’s server that’s indistinguishable from
a legitimate request: It looks like the user submitted a
form, and it contains the valuable app’s cookies. In the
refactored relationship, it is straightforward for the valu-
able app to implement separate mechanisms for its user
interactions versus its invocations from other apps.

4.3 Embedding
Visually embedding another app, such as in

an iframe, is just like navigation, except the
landlord uses sublet viewport rather than
transfer viewport. When a sublet viewport
is transferred to another app, three parties cooperate in
the transfer: the old tenant, the new tenant, and the land-
lord. At the conclusion of the transfer, the new tenant
but not the old tenant has access to the viewport, and the
new tenant can communicate with the landlord without
revealing its identity. The parties achieve this with a
three-way protocol that performs an atomic transfer. A
failed party can violate liveness, but the landlord can
recover after a timeout with repossess viewport.

4.4 Favorites
Classic browsers allow the user to bookmark favorite

pages. This interaction becomes a protocol in Embassies:
One client app acts as the user’s bookmark repository.
A user gesture tells an app to send a bookmark to the
repository, consisting of the app’s identity and an opaque
entry-point parameter the app can use to reconstruct the
user’s state. This refactoring makes it clear that the
repository gets to know which vendors the user has ex-
plicitly bookmarked, and nothing more.

4.5 Navigation Threading and History
A classic web browser tracks the user’s history, en-

abling different views of the link graph the user tra-
versed: the back button walks a path in the graph, history
records the graph’s nodes (i.e., sites the user visited), and
link coloring displays the nodes via the current app’s out-
bound links.



One could implement these functions in an Embassies
ecosystem by declaring a trusted repository app, and
adding to the linking protocol (§4.1) a step that submits
a “bookmark” for the linked page to the repository.

Such a refactoring indicates that the repository is en-
trusted with quite a trove of private data. Further-
more, implementing link coloring reveals the reposi-
tory’s knowledge to every app. One could band-aid the
damage by having the repository render links as embed-
ded displays (§4.3) on behalf of apps, to avoid reveal-
ing the node graph to adversarial apps. This is essen-
tially how the classic browser, which acts a trusted his-
tory repository, protects user privacy. Achieving privacy
has been a long, complex battle [4]. In Embassies, such
a relationship is at least well-defined.

However, we find the relationship too promiscuous.
Instead, we deliberately abandon global history. For link
coloring, we accept downgraded behavior, leaving indi-
vidual applications to record their own outgoing clicks.
For example, Bing can remember which links you have
clicked on from Bing, and color such links purple. If
you’ve arrived at embarrassing.com via some other
path, but never from Bing, then the link to that site re-
mains blue on Bing’s results page. This provides weaker
semantics than the classic web, coloring links as edges
rather than nodes, but has simple privacy implications.

The back button requires each app only to know its lo-
cal neighborhood of the graph. An app can provide inter-
nal navigation itself. To span apps, the linking protocol
(§4.1) is extended to carry an app identity and an opaque
blob, a “bookmark” for the reverse edge. When the user
backs out of the target app, the target invokes the book-
mark with the linking protocol to replace its display with
the prior app. This allows an app to cause the back but-
ton to go to unexpected sites, break, or vanish entirely.
In the classic web, the complexity of redirects and au-
tomatic navigation can cause similar mischief, rendering
the browser’s back button similarly problematic.

This scheme reveals the identity of the caller app to the
target app, just as Referrer headers do today. The alter-
natives are to have a trusted, centralized store of the navi-
gation graph (the classic browser’s behavior, an approach
we dislike), or to let apps create anonymous proxy iden-
tities to hide their identity from those they link to.

4.6 Window Management and Tabs
Managing overlapping windows or tabs is achieved

using the same primitives that manage sublet viewports
(§3.2). Thus an ordinary application, typically the first
one Embassies starts, provides window resizing han-
dles and tabs, treating the enclosed content as embedded
iframes (§4.3). As with any such UI relationship in Em-
bassies, the window manager cannot violate the privacy
or integrity of the apps whose windows it manages.

The landlord controls the z-order of its tenants
(presently unimplemented). The client kernel provides
no support for transparency; if separate apps wish to im-
plement it, they must expose their pixels to some app
they trust to implement the blending.

5 Implementation
To evaluate the minimality and simplicity of the CEI,

we implement three instantiations (§5.1). To evaluate the
richness offered to developers, we port three full DPIs to
Embassies (§5.2). All the code is available [1].

5.1 CEI
We have built a complete CEI implementation for

Linux and a nearly complete one for the L4 microker-
nel [24]. For debugging purposes, we built, but omit for
space, a complete non-isolating Linux implementation.
5.1.1 The Linux KVM Monitor

The measurements in §6 all run on our linux kvm
monitor, which relies on Linux KVM [32] to provide a
virtual CPU for each app. For memory, the client ker-
nel allocates a large contiguous block of virtual memory,
and gives pieces of it to the app in response to mem-
ory requests. The client kernel performs thread schedul-
ing, and it maintains a table of futex queues to block app
threads performing futex wait. It also directly im-
plements the clock, timer, and crypto primitives.

A single central coordination process manages a con-
nection to an X display, our UI mechanism. It also im-
plements a logical IP subnet for routing packets between
apps and to the Internet. Each app communicates with
the coordinator using sockets. To connect to the Inter-
net, the coordinator injects and intercepts packets at the
IP layer using tun. To provide NAT, it employs the ipt-
ables functionality built into the Linux IP router. When
a client is behind a firewall, it routes packets over an IP
tunnel to a CSN proxy. For performance when moving
large data between apps, it provides a zero-copy path for
IPv6 jumbo frames, using shared memory.
5.1.2 The L4/Genode Monitor

We have also implemented the CEI on an
L4::Pistachio microkernel [24], building on the
Genode OS [14, 17] framework’s memory allocation,
RPC abstractions, and Nitpicker UI [15]. It runs all of
the rich-DPI applications the Linux KVM monitor does.
5.1.3 Alternatives

While the linux kvm monitor depends on hardware
virtualization, the CEI doesn’t require it. It supports any
computer with an MMU [25], perhaps using OS mecha-
nisms like seccomp [36] or PTRACE SYSEMU.

5.2 DPIs
We have linked three full DPIs against Embassies:

classic web, Gnome/Gtk, and KDE/Qt. The classic web



DPI is built from a Webkit-based [62] browser, Mi-
dori [56], which is itself built on Gtk libraries. The
KDE/Qt toolkit is almost entirely distinct, but it shares
its bottom layers (X, libc) with Gtk. In addition, we built
a minimal DPI (§5.2.1) that runs native C code and ac-
cesses CEI facilities directly. Each DPI is a stack of soft-
ware that talks to the CEI at the bottom layer.
5.2.1 POSIX Emulation

Embassies’s POSIX emulation layer (EPE) lies at the
bottom of each DPI we implemented. It supports the
POSIX-facing libc, which in turn supports Gtk and Qt.
For instance, libc implements its malloc function by
calling brk or mmap, and EPE converts these into an
allocate memory call to our CEI.

Because POSIX identifies system resources via the
filesystem namespace, EPE includes a virtual in-process
filesystem (VFS) implementation, with several underly-
ing filesystems. Implementing facilities as VFSs is often
easier than modifying app logic in higher layers [25].
5.2.2 Virtual Filesystems

EPE includes a read-only filesystem that holds an im-
age of the applications’ executable and data files. EPE
also contains entry-point code, which maps a copy of the
dynamic loader ld and calls it with the path to the app
executable in the read-only filesystem.

This read-only filesystem accesses data from a stor-
age service (§3.1.3) via an FTP-like protocol. Files are
identified by their hash values, which are computed us-
ing Merkle trees [40] to facilitate content-based block
sharing with other apps. If the service doesn’t have a
requested block, the read-only filesystem contacts the
app’s origin server. Fetching files incurs costly round
trips, so the read-only filesystem initially prefetches a
tar-file of the app’s startup files. Requests that fail in the
tar-file fall through to individual cache requests.

To store an app’s temporary files, EPE provides a
RAM-disk VFS. For intra-app communication, EPE pro-
vides access to pipes and sockets via another VFS.
EPE translates app reads from /dev/random into
get random CEI calls. Reads from /proc are par-
tially emulated within EPE, e.g., to provide the stack
layout to garbage-collection libraries. A VFS provides
a filesystem for securely storing persistent data (§3.1.3),
e.g., cookies; these employ a local storage service. An-
other VFS provides access to a server-side store.
5.2.3 Xvnc

All our DPIs are currently based on X graphics. Our
implementation satisfies X requests via a modified Xvnc
library. Xvnc speaks the X protocol at the top and the
VNC remote-frame-buffer protocol at the bottom. We
replace the bottom with code that uses our CEI’s view-
port/canvas instead. This modified about 350 SLoC.

5.2.4 Gtk and Qt
Once these layers are in place, getting a much richer

toolkit in place is surprisingly straightforward, even
though these toolkits consist of 50–100 libraries. Some
Gnome-based applications were insistent that a Dbus ob-
ject broker be present; we satisfy them by simply spin-
ning one up within the app. Other apps, such as Gimp,
draw numerous toolboxes. We load a twm window man-
ager alongside Gimp to enable the user to manipulate the
toolboxes on a single Embassies viewport.
5.2.5 libwebkit and Midori

For our HTML DPI, we started with Midori [56], a
browser based on the libwebkit HTML DOM implemen-
tation [62]. Midori and Webkit are in turn Gtk apps, so
most of their requirements are satisfied by the techniques
above. We implemented a tab manager (§4.6) and in-
serted hooks in Webkit’s link, GET, and iframe mecha-
nisms to connect them to the linking (§4.1), navigation
(§4.5), and embedding (§4.3) protocols. For example,
in the link case, the hook retrieves the tenant viewport
from Xvnc, converts it into a deed, and forwards it to the
destination app. We have not yet implemented window
management, favorites, or history management, though
these should be straightforward, since window manage-
ment is a subset of tab management, and favorites and
history are handled by normal apps.
5.2.6 Alternative DPIs

Drawbridge ports Windows and .NET to a “picopro-
cess” interface close to our CEI, making it a good candi-
date for a web DPI [49].

5.3 Architectures
We have only implemented an x86-32 variant of the

CEI. Nothing in the CEI depends on the ISA; other archi-
tectures would be straightforward. The x86 CEI variant
inherits an ISA quirk: all popular x86 software frame-
works abuse an x86 segment register as a thread-local
store pointer to reduce pressure on the paltry x86 register
file. We support this by adding a x86 set segment
call to the x86 CEI variant. The call has trivial semantics
and no security impact; supporting it lets most library
binaries run unmodified, greatly easing porting effort.

6 Evaluation
This evaluation answers four questions: Does the CEI

achieve its goal of minimality (§6.1)? Does it support
diverse, rich DPIs (§6.2)? We shift the burden for ap-
plication bootstrapping onto apps themselves; how big is
the performance cost (§6.3)? When each app brings its
own DPI, is the memory burden acceptable (§6.4)?

We test with an HP z420 workstation with a four-core,
3.6GHz Intel Xeon E5-1620 CPU and 4GB of RAM.



Client Kernel SLoC Underlying TCB
linux kvm 28,138 Linux (millions)
linux dbg 21,445 Linux (millions)
bare iron 16,714 Genode, L4 (˜70K)
Firefox 4,561,642 Linux (millions)
Chrome 6,722,375 Linux (millions)

Figure 4: TCB. Unlike today’s web API, the Embassies CEI
admits modest implementations.

Figure 5: Diverse DPIs. Native code as CEI enables diverse
DPIs. This screenshot shows apps Craigslist (Webkit/HTML),
Gimp (Gtk), Marble (KDE/Qt), Inkscape (Gtk), and Gnumeric
(Gtk) running on the Embassies CEI. Not shown are Abiword
(Gtk), Gnucash (Gtk), or Hyperoid (EPE).

6.1 Minimality/Simplicity of the CEI
CEI minimality both improves isolation by reducing

TCB size, and leaves richness up to the app’s libraries.
Figure 4 counts the client-kernel code sizes [64], which
represents the amount of code all apps must trust. Each
CEI implementation depends on some underlying OS.
Although Linux is huge, CEI safety depends only on a
subset of its semantics, memory management and the
kvm driver. Likewise, the display uses X, but only pixel
rectangles, not X’s security model. The L4 implemen-
tation further supports the hypothesis that the Embassies
CEI can be implemented with relatively little code.

Any application running on the CEI may include mil-
lions of lines of code, but the vendor controls which lines,
and none of this code increases the TCB of any other app.

6.2 Diversity of DPIs
We have demonstrated half a dozen applications run-

ning on three major DPIs—Gtk, Qt, and Webkit—
comprising 143 MB of binary in 200 libraries (Fig. 5).

6.3 Performance
We consider it worthwhile to spend some performance

for a richer, more secure web. How much performance
are we spending?

CPU Overhead. We ran a subset of the SunSpi-
der JavaScript benchmark [61] on both Linux and Em-
bassies. We also ran Gimp image rotations as a native
macrobenchmark. Unsurprisingly, in both cases the dif-
ference is negligible: results are within 2% with stan-
dard deviations of 1%. These results confirm that a
well-designed, low-level CEI need not add any additional
CPU overhead to such computations.

Communication. To evaluate the overhead of IP com-
munication between local apps, we measured the time
Midori takes to fetch its cookies from an untrusted store
(§3.1.3). This involves not only IP latency, but the cryp-
tographic overhead of decrypting and verifying the in-
tegrity of the data. Nonetheless, we find that Midori can
read or write a cookie in under a millisecond; refactoring
interactions into protocols adds negligible overhead.

As discussed below, we use zero-copy data transfers
and caching to reduce the overhead of transferring large
amounts of data (e.g., DPI images) between apps.

App Start. The most significant impact of our refactor-
ing is that, rather than intimately sharing a monolithic
browser’s heap, each app bootstraps its own DPI layers.
How much does this increase the latency between when
a user clicks a link and when the app launches?

The very first time the client ever encounters a new
DPI, she must, of course, download it, just as she would
if she selected a new browser. Subsequently, the DPI’s
files can be served rapidly out of a local, untrusted cache
(E-Hot in Figure 6). Indeed, clever caches will likely
preload popular DPIs to avoid even the first-time down-
load. In a “patched” start (E-Patch, Fig. 6), the app’s
image is absent from the cache, but another app based
on a similar DPI is present, and the Merkle tree reveals
that only a delta is needed (§5.2.2). Thus, deviation from
popular DPIs will result in an initial app load time pro-
portional to the amount of deviation. One reason a ven-
dor might deviate from a popular DPI is to fix a broken
library. For example, libpng patched an overflow vulner-
ability in February 2012 [50]. In this case, the “patched”
Midori is 76MB but differs from the cached Midori only
by the 0.5MB repaired libpng library. Once the delta has
been fetched, subsequent fetches by any other vendor us-
ing the patched libpng also hits the cache.

To reduce bootstrap time, we start each app from a tar
file, so the entire image is transferred from the untrusted
cache in one packet (§5.2.2), reducing overhead and en-
abling zero-copy optimizations. The first time an app
runs, its loader verifies the hash (SHA-1) of the tar file;
to save time on future loads, the app uses its platform-
specific secret key (§3.1.3) to MAC the tar file and stores
the MAC value in untrusted storage. MACs such as
VMAC [33] can be verified faster than a hash.



Po
six

E-H
ot

E-P
at

ch
Po

six
E-H

ot

E-P
at

ch
Po

six
E-H

ot

E-P
at

ch
Po

six
E-H

ot

E-P
at

ch
E-H

ot

E-H
ot

0

100

200

300

400

500

600
M

e
a
n

 W
a
ll
 C

lo
c
k
 T

im
e
 (

m
s
)

Other
DPI Start
App Load

Craigslist Ebay Microsoft Reddit HyperSplash

Figure 6: App Startup Latency. Four web apps, a native
game (Hyperoid), and a splash screen. For the web apps “App
Load” is the time to fetch and render the HTML content. Error
bars show standard deviations of total time over 10 runs.
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Figure 7: DPI Start Breakdown. Fetching the DPI from the
cache costs more in the warm case, due to fetching upstream
blocks and the need to hash rather than MAC for integrity.
Mean of 10 trials.

Figure 6 assumes zero network delay to avoid bury-
ing Embassies’s overheads in high network latencies.
Our untrusted cache only supports UDP, incurring many
RTTs hidden by this zero-delay assumption, but in de-
ployment, it would pipeline blocks with TCP, incurring
RTTs typical of HTTP transfers.

We load a set of popular websites in Midori on Linux,
which takes 102–373 ms. In contrast, a hot start on Em-
bassies takes 314–529 ms, and a patched start takes 335–
551 ms. Unsurprisingly, the app load (i.e., web page
fetch and render) step is similar in both cases. Em-
bassies’s overhead comes primarily from the need to
fetch, verify, and boot the Midori DPI. Most of that time
(Fig.7) comes from starting Midori from scratch, which
even on Linux requires 130 ms (σ = 7). This is un-
surprising, since Midori app starts are assumed rare, and
hence unoptimized. This overhead could be mitigated
by checkpointing to avoid library relocation [12, 39],
by applying Midori-specific tuning (e.g., not loading ev-
ery available font on startup), or by displaying a splash
screen until the app achieves interactivity. Figure 6
shows that Embassies can display such a splash screen
(1.5MB) in 15 ms (σ = 1). As an example of optimized
start time, we ported a game, Hyperoid, to Embassies. It
starts in 102 ms (σ = 15) when cached.
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Figure 8: Memory. Embassies DPI implementations consume
virtual memory comparable to their POSIX progenitors.

These costs are within the ballpark of a page load, but
further improvements are possible. A hot app can remain
resident to avoid a start altogether. The tar file is captured
at file granularity, but many files are barely touched; page
granularity would reduce the 76MB image to 33MB.

In summary, while the 177–300 ms overhead of our
prototype is a non-trivial delay, there are plenty of op-
portunities to improve it; our refactoring makes those op-
portunities accessible to vendors. Overall, we are glad to
exchange the challenges of security and app richness for
the ordinary task of systems performance tweaking.

6.4 Memory Usage
If every vendor’s application loads its own copy of a

DPI implementation, will memory usage be overwhelm-
ing? Prior work shows that this style of statically linked
code need not cost significantly more memory than tra-
ditional shared code implementations [8, 22].

Figure 8 contrasts virtual memory usage of POSIX im-
plementations with those in Embassies. Since it incorpo-
rates the Xvnc rasterizer and other libraries, Midori in
Embassies uses 12MB (8%) more virtual memory than
its POSIX equivalent. Another DPI instance, Marble
running on Qt, shows similar growth, 11MB (5%).

In a conventional browser, one instance of the browser
serves many applications, amortizing fixed costs of both
libraries and some heap structures. The zero-copy IP
router in Embassies affords the same opportunity for
libraries—the untrusted cache could send the same pay-
load to multiple applications—but our prototype does
not yet implement copy-on-write. With regard to the
heap, more modern browsers (IE9 and Chrome) launch
one process-per-tab, creating more heaps; in Embassies,
process-per-app incurs additional heap costs.

7 Security Analysis
Embassies improves security by specifying such a

small, simple CEI that implementations thereof stand a
reasonable chance of truly fulfilling the web’s promise
of app isolation. The client kernel’s small TCB (§6.1)
means that the amount of code all apps must trust is



tiny, and hence each vendor can independently choose
the right tradeoff between complex functionality and se-
curity. A gaming app can use a rich, full-featured DPI,
while a banking app may choose a conservative DPI en-
hanced with the latest security protections. One app’s
insecurity never undermines the security of other apps.
Finally, since the pico-datacenter model deconflates the
CEI from the DPI, Embassies provides an ecosystem that
resists pressure to expand the CEI, since developers can
achieve arbitrary richness inside their picoprocesses.

In contrast, in today’s web, many corporations still
run Internet Explorer 6 for the sake of a single business-
critical app. This compromise endangers all other apps
on the client and the client system itself. In Embassies,
the business app uses the Internet Explorer 6 DPI, which
is no more (or less) dangerous to the client or her apps
than a website that uses an old server-side library.

In addition to ecosystem-wide improvements, Em-
bassies’s design addresses specific web threats.
Cross-Site Request Forgery (CSRF). Today’s CSRF at-
tacks rely on the adversary’s ability to trick the browser
into sending out an app’s cookies inappropriately (§4.2).
The Embassies CEI never adds ambient authority [23] to
an app’s communications, so a banking app need never
fear that the browser will blindly hand out its cookies.
Cross-Site Scripting (XSS). XSS flaws spring from
poor library interfaces that fail to starkly distinguish
data from the code that contains it; they are a client-
side equivalent of server-side SQL-injection flaws. Em-
bassies enables the vendor to migrate to rendering li-
braries that safely encapsulate tainted input, just as smart
vendors use SQL libraries that safely encapsulate tainted
input in WHERE clauses.
Clickjacking. Embassies resists clickjacking in the spa-
tial domain by ensuring that each display region belongs
to one viewport managed by only one app (§3.2). Ven-
dors concerned about clickjacking in the temporal do-
main can implement client-side defenses, e.g., by ignor-
ing inputs until 200ms after painting the display.
Side Channels. As in modern data centers, Embassies’s
pico-datacenter does not take steps to prevent side chan-
nels; i.e., one vendor may be able to infer another ven-
dor’s presence from the kernel’s scheduling decisions or
shared cache effects [2]. Current browsers face the same
threats. Reducing the web’s security problems to the ex-
istence of such side channels would be valuable progress.
Hosted Denial-of-Service. Embassies’s minimality pre-
cludes it from reasoning about the Same-Origin Policy’s
content-based network restrictions; instead, Embassies
addresses the underlying threats with CSN (§3.1.4). The
consequence is developer freedom in network communi-
cation, but malefactors may abuse it to mount a denial-
of-service (DoS) attack or a spam campaign. Today’s
web already allows such botnet-like attacks [34]; for ex-

ample, to DoS a web server, the malefactor need only
include a file (e.g., an image or JavaScript) in a popular
website. Nonetheless, Embassies further enables such
attacks. One mitigation would be for the client kernel to
include a basic pushback mechanism [3] to allow remote
hosts to squelch outbound traffic to the victim.

8 Discussion
Indexing and Mashups. Because the current web’s CEI
is so high-level, a vendor can easily create an app that
interacts with other apps without their deliberate partic-
ipation. A prominent example is web indexing, which
works because the “internals” of most web content is in
HTML. While Embassies permits vendors to use propri-
etary or obfuscated software, such behavior already oc-
curs (e.g., Gmail’s JavaScript code); baking HTML into
the CEI does not guarantee hackability. In Embassies,
HTML isn’t required, but as with any popularity distribu-
tion, most apps will use one of a few popular DPI frame-
works, and hence will allow third-party inspection. Be-
cause indexing is now so valuable, all popular DPI stacks
will likely export an explicit indexing interface.

The “mashup” captures a broader category of
serendipitous innovative reuse, such as data streams dis-
played on a map. Again, mashups interpose on the un-
obscured client-server traffic of ancestor applications;
since those apps are likely to use popular frameworks,
the same possibilities will be open. Ecosystem diver-
sity is not enough to foil opportunistic extension; inten-
tional obfuscation is required, a hurdle no less present in
HTML than in Embassies.
Ad Blockers. Today, users can install browser exten-
sions that interpose on apps. In Embassies, cooperating
vendors could speak a bilateral protocol to a repository of
extensions, but some extensions, like ad blockers, repre-
sent an adversarial relationship between user and vendor.
Every user wants it, but no vendor does.

Since our CEI gives full control of an app to its the
vendor, it confounds users who want to alter it in an
unintended fashion. This tradeoff is deep. The client
system cannot distinguish between an enhancement and
a Trojan. Allowing extensions requires asking users to
make that distinction, a responsibility few users can ex-
ercise correctly. We consider it worth giving up the ad
blocker in exchange for a web where clicking links is al-
ways safe. Although this philosophy is new for the web,
proprietary platforms such as the iPhone and Windows
Phone deny unilateral app modifications.
Accessibility. Responsibility to provide accessibility
falls to the vendor of each app, just as all aspects of app
behavior do. However, we expect many vendors to write
their applications against a higher-level DPI. Any mature
DPI already incorporates accessibility features; thus any
app built on such a DPI will be accessible.



Cross-Architecture Compatibility. Since our CEI
specifies native-code execution, it does not solve the
architecture portability problem in the CEI. We argue
that architecture portability is a problem that can—and
should—be solved in the vendor’s software stack. One
solution is to use a managed language (Java or .NET) or
a portable representation (LLVM [37]) as a DPI.

DPIs based on unmanaged languages such as C or C++
can emit binaries for multiple architectures, as Linux
distributions routinely do; this requires access to library
source code (or recompiled libraries) as well. App ven-
dors then face only the minor burden of hosting multiple
binaries, a task easily automated, and less burdensome
than dealing with today’s browser incompatibilities.

On the rare occasion when a hardware company de-
ploys a new Instruction Set Architecture (ISA), that ISA
defines a new instance of the CEI. Until app vendors pro-
duce native binaries for the new ISA, the ISA company
can implement, in their client kernel, an emulator for a
popular ISA, as Apple did when it migrated its product
line from 68K to PPC and again from PPC to x86.
GPUs. Today’s web exploits the GPU by baking in fur-
ther complexity, e.g., OpenGL or DirectX. Embassies’
long-term solution is to treat the GPU as a CPU [7, 13,
21]. In the medium term, most deployed GPUs use seg-
mented memory architectures adequate to isolate shader
programs at GPU-load time without the client kernel un-
derstanding shader semantics. At present, even the CPU
alone is pretty satisfying: Marble’s CPU-rendered spin-
ning globe (Fig. 5) is impressive.
Peripherals. Classic browsers expose printers and GPS.
Does extending Embassies to include local devices erode
the idea of the pico-datacenter? We think not.

Consider printing: Today, users can send photos from
the Flickr app to the Snapfish app; Snapfish is a web ser-
vice that includes a (remote) printer. Google Cloud Print
extends the same semantics to a nearby printer. Indeed,
many standalone printers already have IP interfaces. We
can treat printers not as PC peripherals, but as applica-
tions that have a physical presence.

The same principle applies to other peripherals. A
GPS with an IP interface need not be a PC peripheral;
it may as well be an app like any other, one that gives the
user control over which vendors see it. Of course, no IP
hardware is required; the GPS can use a picoprocess on
the client to host its IP stack.

Local storage is even simpler. Section 3.1.3 describes
how apps employ a local untrusted storage service to se-
curely store MACs and cookies. We have only imple-
mented a RAM-based untrusted local store and a cloud-
storage VFS module so far, but a disk could easily be
exposed: Just a single vendor can manage the printer,
Seagate might own the disk and offer untrusted, low-
reliability storage, perhaps without even a UI.

Of course, we have described Embassies as a browser
replacement, implying an underlying host OS; how does
it interact with the host file system? Ultimately, we envi-
sion rich Embassies apps as a viable alternative to desk-
top OS apps. In the meantime, we envision exposing the
host file system as another service, just as Google Cloud
Print exposes the host printer as a service.
Deployment. Deploying a new web architecture is hard.
However, Embassies apps can facilitate incremental de-
ployment by providing a fallback for “legacy” HTTP
links. With reference to Section 4.1, if caller.net’s web
runtime cannot resolve the name target.org using
the PKI, it obtains and launches a web runtime which
target.org might specify in a browser.txt file, or the
caller app may supply a default.

This web runtime fetches and renders target.org’s con-
tent via standard HTTP and HTML. However, the web
runtime does not have a certificate chain for the label
“target.org”. Instead, the web runtime passes its own
label (e.g., “mozilla.org”) to verify label. Thus,
client kernel strongly authenticates the web runtime,
which then attests, e.g., via its own intra-window dec-
oration, that it is rendering content from target.org.

9 Conclusion
We propose to radically refactor the web interface to

turn the client into a pico-datacenter in which app ven-
dors run rich applications that are strongly isolated from
each other. We described and implemented Embassies,
a concrete, minimal CEI to support this vision, and we
rebuilt existing browser-based app interactions atop the
CEI. Our implementation and evaluation indicate that the
CEI offers a significantly reduced TCB, yet supports a
diverse set of DPIs. App and protocol performance is
comparable to the existing web; app start time and mem-
ory usage is still higher than we would like, but there are
clear paths towards improving them. Once native DPIs
are available, and conventional apps can run in a web-like
deployment, the Embassies architecture may become a
compelling model for desktops or mobile platforms.
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