
How to Subvert LOCKSS
and What the LOCKSSmith Can Do About It

A Thesis presented

by

Bryan Parno

to

Computer Science

in partial fulfillment of the honors requirements

for the degree of

Bachelor of Arts

Harvard College

Cambridge, Massachusetts

April 6, 2004

Abstract

The LOCKSS (Lots Of Copies Keep Stuff Safe) project allows libraries to store and

preserve electronic journals and other archival information through a system of inex-

pensive computers arranged in an ad-hoc peer-to-peer network. We develop a more

accurate view of how the system will perform over time by simulating the system’s

behavior using a dynamic model in which peers can be subverted and repaired. This

reveals certain systemic vulnerabilities not apparent in our static simulations, so we

propose and evaluate countermeasures. One technique, Ripple Healing, performs

remarkably well. We also propose and evaluate an alternate model based on the

system administrators in the system. Finally, we develop a mathematical model of

the stealth-modification adversary’s attempts to modify system content while avoid-

ing detection. This model allows us to improve our predictions of his behavior and

analyze methods for thwarting his success.

i

Contents

1 Introduction 1
1.1 Peer-to-Peer Networks . 1
1.2 LOCKSS: A Digital Preservation System 2
1.3 Know Thine Enemy . 3

2 Background 5
2.1 LOCKSS Details . 5
2.2 Potential Adversaries . 8
2.3 Adversary Capabilities . 9

3 Related Work 11

4 Simulating Dynamic Populations 14
4.1 Motivation . 14
4.2 Experimental Setup . 15
4.3 Infection . 15
4.4 Repair . 18
4.5 Repairing Recurring Infections . 22
4.6 Fighting Infection . 27

4.6.1 Clean Start . 27
4.6.2 Ripple Healing . 27

4.7 An Alternate System Model . 30
4.8 Implications . 37

5 A Mathematical Model 40
5.1 Motivation . 40
5.2 Variable Definitions . 41
5.3 Analysis . 41

5.3.1 Setup . 42
5.3.2 Calculation . 42

5.4 Results . 45
5.5 Implications . 52

ii

6 Concluding Remarks 54
6.1 Future Work . 54
6.2 Conclusion . 55

iii

List of Figures

2.1 Voting Protocol This figure shows the messages exchanged between LOCKSS
peers participating in an opinion poll. The left side represents an inner-circle
peer, and the right side represents an outer-circle peer. Time flows from top
to bottom. 6

4.1 The Effect of Infection In this simulation, the adversary exploits a new
vulnerability that affects 30% of the unsubverted population every six months
(182 days). One sample from the static simulations is shown for compar-
ison. The solid lines indicate reference list corruption and the dashed line
indicates the percentage of subverted peers in the system. We will follow this
convention in subsequent graphs as well. 16

4.2 Healing Rates Two possible models for the rate at which computer admin-
istrators patch/fix vulnerable computers. 20

4.3 Impact of Optimistic vs. Pessimistic Healing Models Using a heal-
ing model in which most users (approximately 99%) eventually patch their
vulnerable system significantly improves the system’s performance. Repre-
sentative sample simulations shown. 21

4.4 Varying Exploit Impact Varying the percentage of peers affected by each
exploit changes the behavior of the average reference list corruption of the
good peers’ reference lists. One sample from the static simulations is shown
for comparison. The lines for the percentage of bad peers for 40% and 50%
affected have been omitted for the sake of clarity, but they follow the same
general trend as the 20% and 30% lines. 22

4.5 Varying Infection Rate Decreasing the rate of infections decreases the
average corruption of the reference lists, but the general trend towards uni-
versal reference list corruption remains. One sample from the static simu-
lations is shown for comparison. 24

4.6 Varying Initial Subversion Varying the initial subversion of the pop-
ulation has little effect on the overall growth of reference list corruption.
Unfortunately, all of the dynamic simulations tend towards systemic refer-
ence list corruption. One sample from the static simulations is shown for
comparison. 24

iv

4.7 Varying Initial Subversion - Zoomed In On a smaller time scale (the
first 60 days of the simulation), we can see that despite varying levels of
initial subversion, all of the simulations converge towards the same level of
reference list corruption by the 60th day. 25

4.8 Varying Churn Rate Increasing the percentage of peers churned into the
reference list from the friends list reduces the average level of corruption
in the reference list. One sample from the static simulations is shown for
comparison. 26

4.9 Effect of the Clean Start Technique Giving each healed peer a purified
reference list improves performance, despite oscillations. Simulations were
run with 30% initial subversion and assumed that infections occurred once
a year and affected 30% of the population. All of the good peers use a 10%
churn rate. 28

4.10 Effect of Ripple Healing The impact of Ripple Healing depends on the
number of friends each peer has, as well as the number of peers healed each
day. 31

4.11 System Administrator Abilities A few peers have highly skilled system
administrators, but the majority have mediocre ratings. The x-axis shows
the distribution of skill ratings, indicating for example that in the pessimistic
model, approximately 9% of the population has a rating of 10 or above. . . 32

4.12 Infection and Healing Based on System Administrator Abilities
This graph illustrates the effects of the optimistic and pessimistic system-
administrator-based infection and healing models. 34

4.13 Infection Plotted with Reference List Corruption This graph charts
the average corruption of the reference lists along with the number of days
that had passed since the most recent infection when the reference list cor-
ruption level was sampled (plotted on the righthand y-axis). Dips in the time
since an infection tend to correspond with spikes in the level of reference list
corruption. 35

4.14 Effects of Ripple Healing Ripple Healing provides only a marginal im-
provement using the system-administrator model, unlike the huge gains it
gives the randomized model. In the simulations shown here, we illustrate
the difference between using the randomized infection/healing model with
and without Ripple Healing, and using the system-administrator model with
and without Ripple Healing. 36

v

4.15 Randomized vs. System Administrator Systems A comparison of the
randomized and system-administrator models for various rates of infection.
In general, the system-administrator model demonstrates better performance
(i.e. less average reference list corruption). In the legend, the entries indi-
cate which model of healing/infection the system used (static population,
randomized or system-administrator) and the frequency of the infections.
For the randomized model, the infections affected 30% of the unsubverted
peers. 39

5.1 Predicted vs. Simulated Reference List Growth Mathematical pre-
dictions of reference list growth dovetail closely with simulation data. . . . 46

5.2 Predicted vs. Simulated Reference List Corruption Simulation data
detailing corruption of the reference lists, compared with predictions from
the initial mathematical model. 47

5.3 Number of Collisions for Clustered vs. Unclustered Networks The
number of collisions in the outer-circle nominations increases when the peers
do not form clusters within the network. 48

5.4 Improved Predictions vs. Simulated Reference List Corruption
Compares the simulation with the improved version of the mathematical
model. This time, we correct for clustering and various types of collisions. 49

5.5 Multiple Comparisons between Predicted Reference List Corrup-
tion and Simulated Reference List Corruption The predictions remain
extremely accurate for varying levels of initial subversion. 51

vi

Chapter 1

Introduction

1.1 Peer-to-Peer Networks

The relatively recent emergence of peer-to-peer networks has introduced a new realm

of systems research. Instead of relying on the traditional client-server model of con-

nectivity, peer-to-peer systems make all participants in the system equal and attempt

to harness the latent computing power of computers (particularly PCs) spread across

the Internet. From a security standpoint, peer-to-peer systems offer advantages and

disadvantages. By removing the concept of a central server, they eliminate any de-

pendency on a single point of failure, making it much harder to bring down the entire

system by targeting just one computer (much to the consternation of the RIAA in

its battles with music piracy [5]). However, the inherent anonymity of the Internet,

combined with the distributed trust system (which typically involves trusting a large

majority of the other participants, rather than one central organization) of peer-to-

peer systems, often leaves such networks vulnerable to subversion from within. This

class of problems encompasses everything from an adversary actively subverting oth-

erwise legitimate peers in the system to the well-known Sybil attack, in which a single

machine spawns hundreds, or even thousands, of identities within the system. In fact,

Douceur has shown that any system without a logically centralized authority figure

1

CHAPTER 1. INTRODUCTION 2

will remain vulnerable to Sybil attacks [8]. Thus, as development in the realm of

peer-to-peer systems continues, it is important to consider the unique threats posed

to such systems.

1.2 LOCKSS: A Digital Preservation System

The LOCKSS system [16] attempts to harness peer-to-peer’s decentralized security

benefits, while preventing, detecting or at least slowing attacks based on the sys-

tem’s decentralized nature. LOCKSS primarily helps libraries cope with the ongoing

digitization of scholarly materials. Traditionally, libraries have preserved magazines,

newspapers and journals by purchasing subscriptions and then storing physical copies

of each issue. With the growth of the Internet, more and more periodicals have moved

online, sometimes even to the exclusion of publishing physical copies. As publications

shift to an electronic medium, however, libraries often only receive access to material.

In other words, the libraries pay the publisher for access to the material, rather than

for possession of the actual bits. This makes them highly dependent on the pub-

lisher. If the publisher discontinues the archival service, raises its rates, or declares

bankruptcy, the libraries and their patrons lose access to the periodicals. As an even

more insidious threat, the publisher may decide to revise or delete entire portions of a

document at some later date. While this concern may sound like Orwellian paranoia,

this phenomenon already exists and has occurred in the real world.

In its March 2nd, 1998 issue, Time magazine published an essay by George Bush

Sr. and Brent Scowcroft describing the reasoning behind the United States’ decision

not to remove Saddam Hussein from power in Iraq during the first Gulf War. Among

their reasons, they mention the enormous cost, the lack of multilateral support, and

the likelihood that Iraqis would view American troops as occupiers - all of which

CHAPTER 1. INTRODUCTION 3

remain applicable today. While the article originally appeared on Time’s website

along with the rest of the issue, it has since disappeared. In fact, the article has been

expunged from the online table of contents as well, leaving no hint of its existence.

Fortunately, the Memory Hole noted the omission [31], but it seems reasonable to

hope for a better system of historical preservation than reliance on observant web

surfers.

LOCKSS’ operation closely mirrors Thomas Jefferson’s proposal: “...let us save

what remains: not by vaults and locks which fence them from the public eye and use

in consigning them to the waste of time, but by such a multiplication of copies, as shall

place them beyond the reach of accident” [13]. LOCKSS attempts to achieve long-

term information preservation by constructing a peer-to-peer system that connects

libraries with one another. Given the perennial budget shortfalls at libraries [4],

LOCKSS operates on the assumption that the system will run on cheap PC’s, making

luxuries such as large RAID arrays and redundant power supplies unavailable. Instead

of relying on expensive hardware, each LOCKSS peer maintains a digital copy of the

electronic resource in question and cooperates in “opinion polls” to detect and repair

damage done to the copy. By limiting the rate at which polls are conducted, the

system generates inertia that resists an adversary’s rapid attempt to infiltrate the

system. LOCKSS also avoids any dependence on long-term secrets and instead relies

on its polling mechanism to select random samples from the entire population of

the system, so that the adversary can only corrupt the archives by subverting an

overwhelming number of peers in the system.

CHAPTER 1. INTRODUCTION 4

1.3 Know Thine Enemy

Following Sun-Tzu’s admonition [29], this paper approaches the examination of the

LOCKSS stealth-modification adversary from two complementary directions. First,

we look at the development of increasingly sophisticated simulations that incorporate

the possibility of multiple bugs and/or vulnerabilities in the system, as well as human

factors that influence the rate at which peers are repaired, particularly the system

administrator’s level of responsibility. These new simulations more accurately reflect

the behavior of a system in the real world. Then, we take the opposite approach and

develop a purely mathematical model of the adversary’s infiltration of the system.

Both approaches offer a better understanding of how LOCKSS will perform over the

long term and provide us with stronger mechanisms to ensure its continued viability.

Chapter 2

Background

2.1 LOCKSS Details

In the LOCKSS system, peers divide their digital collections into archival units (AUs),

typically consisting of one year’s run of a journal. For simplicity, we will consider the

system’s operation with only one AU, though in actual practice it would maintain

hundreds or even thousands of separate AUs. Each library in the LOCKSS system

is assumed to begin with a list of “friends” also using the system. These friends rep-

resent entities with which the library maintains out-of-band relations. For instance,

Harvard’s library might include MIT and Stanford on its list. In general, these rela-

tionships might form clusters within the system, or they might represent a reasonably

random sampling of the population, i.e. the probability that MIT has Stanford on its

friends list is independent of the probability that MIT has Harvard on its list. To

simplify our analysis, the simulations presented will assume an unclustered approach,

except where otherwise noted.

Each peer also maintains a “reference list” containing a larger subset of the

population. The peer initializes its reference list with all of its friends, and then

periodically (currently every three months) conducts an “opinion poll” by sending

invitations to a subset of its reference list. This subset is called the inner circle (see

5

CHAPTER 2. BACKGROUND 6

Figure 2.1: Voting Protocol This figure shows the messages exchanged between LOCKSS
peers participating in an opinion poll. The left side represents an inner-circle peer, and the
right side represents an outer-circle peer. Time flows from top to bottom.

Figure 2.1). When a peer receives a poll invitation, it responds with a Poll Challenge

message, asking the initiator for a proof of effort based on the Poll Challenge in the

message. The proof of effort requires the use of memory-bound functions [1] to re-

spond to the challenge, so the protocol forces the poll initiator to exert a considerable

amount of computational effort, limiting spurious poll initiation. While the peer par-

ticipates in this poll (which currently takes approximately five hours), it ignores all

other incoming poll requests.

After the initiator has successfully responded to the challenge, the invited peers

send a vote in the form of a secure hash of the AU back to the initiator. Each peer

also nominates a set of peers from its own reference list. The initiator uses a randomly

selected subset of these nominations to form the poll’s outer circle. These outer-circle

peers are also invited into the poll, with no indication of their status in the outer

circle. We use the outer circle for discovery purposes, i.e. to expand our list of known

CHAPTER 2. BACKGROUND 7

peers in the system.

Once the initiator has received all of the votes (and assuming it has received

enough to reach a quorum), it compare each vote with a hash of its own AU. If an

overwhelming number (set as a system parameter1) of votes agree with its copy, it

assumes the copy remains undamaged, so it sets a refresh timer of three months on the

AU and goes about its normal activities. If an overwhelming number of votes disagree,

then it assumes its copy has been damaged and requests a fresh copy from one of the

inner-circle peers that disagreed with its copy. The disagreeing peer will provide a

copy only if the poll initiator has successfully participated in an earlier poll called on

that AU by the disagreeing peer. This prevents theft, i.e. illegitimately requesting

copies of AU’s that one does not own, since it requires a peer to demonstrate that it

possesses a legitimate copy of the AU before it can receive a replacement. If the vote

provides an indeterminate result, the poll initiator suspects either a malfunction or a

malicious attack and raises an Inconclusive Poll alarm, alerting a human operator to

the discrepancy. This is an expensive operation, so LOCKSS must carefully balance

the importance of security with the danger that false alarms will discredit the system

or make it impractical.

After a successful poll, the initiator updates its reference list to avoid relying

on any one set of peers. First, it removes any disagreeing inner-circle peers from

the reference list, as well as randomly removing enough agreeing inner-circle peers to

bring the total removed up to Q, the number needed to form a quorum. Second, it

inserts all of the outer-circle peers that agreed with the vote into the reference list.

Finally, it inserts a small, randomly chosen subset of peers from its friends list. We call

this operation “churning”. The first two steps prevent the long-term accumulation

of reputation. This prevents an adversary from agreeing in a few polls in order to

1Currently, the system uses 70% as the threshold for an “overwhelming” vote.

CHAPTER 2. BACKGROUND 8

worm its way into the reference list, only to cash in by attacking. The final step,

churning, helps slow the growth of the adversary’s presence in the reference list, since

the friends list tends to remain less corrupt than the general reference list. However,

we cannot strictly limit the reference list to the friends list, since this would give the

adversary a static list of target computers and undermine our goal of taking a random

sample from the population.

2.2 Potential Adversaries

The design of LOCKSS inherently necessitates the ability to defend against extremely

powerful, patient adversaries attempting to subvert the system. LOCKSS must pre-

serve data for decades, and it takes little imagination to envision potential attackers.

As Orwell notes, “Who controls the past controls the future” [19]. For example, a

tobacco company might want to alter the results of a study linking smoking with lung

cancer, or a certain Redmond-based company might wish to eliminate a pesky article

establishing a competing researcher’s patent claim.

Rosenthal et al. present some of the considerations that went into the develop-

ment of the current adversary model [25]. In doing so, they surpass a large percentage

of peer-to-peer systems that assume well-behaved, trustworthy peers or leave secu-

rity as an area for future work (see Chapter 3). In this paper, we concern ourselves

primarily with the stealth-modification, or “lurking”, adversary who wishes to alter

documents preserved by LOCKSS while remaining undetected. To accomplish this,

he attempts to infiltrate the system by compromising peers in the system, but he

continues to vote correctly in all of the opinion polls. When it comes time to rec-

ommend outer-circle peers, every compromised peer exclusively recommends other

compromised peers. Thus, over time and in the absence of counter-measures, the

CHAPTER 2. BACKGROUND 9

adversary’s presence in the unsubverted peers’ reference lists grows and eventually

reaches the point where he will have sufficient presence in the polls to convince unsub-

verted peers that they have a bad copy of the AU in question. When the unsubverted

peer requests a repair, the adversary will happily supply his own altered version.

Clearly, LOCKSS may face other types of adversaries as well. A nuisance adver-

sary might try to cause enough spurious alarms to discredit the system. An attrition

adversary might use compromised computers to launch a denial of service attack on

the system to prevent peers from successfully completing polls. With enough interfer-

ence of this sort, the AU will be lost through standard bit rot and hardware failures.

Additionally, a thief might try to obtain copies of AUs it does not rightfully own.

While these adversaries certainly pose a threat to the system, ultimately it is the

lurking adversary that truly undermines the entire motivation for LOCKSS and thus

poses the most insidious threat.

2.3 Adversary Capabilities

To ensure the long-term viability of LOCKSS, we must design the system to resist an

extremely powerful adversary. While LOCKSS may never experience an attack from

an adversary with such power, this design strategy forces us to choose conservative

techniques that will resist most forms of attack. Thus, we provide the adversary

with unlimited identities (since LOCKSS bases identity on IP address, we assume

the adversary can purchase or spoof an unlimited number of addresses), perfect work

balancing between any of the peers he controls and instant communication between

all of the subverted peers in the network. We also assume that the adversary knows

all of the system’s parameters and can instantly exploit any vulnerability he discovers.

Finally, the original LOCKSS paper assumes that the adversary can take over a fixed

CHAPTER 2. BACKGROUND 10

percentage of peers initially and retain control over them indefinitely [16]. Later, we

will explore the effects of altering this assumption.

Chapter 3

Related Work

The original LOCKSS team at Stanford currently supports the existing deployment

of LOCKSS at over 80 institutions worldwide, with the support of more than 50

publishers representing over 1,000 titles [21]. They are also investigating stronger

measures to combat the attrition adversary, using effort-balancing and admission-

control techniques. At Harvard, Becker, Goodell and Greenstadt are investigating

the security model of the system, analyzing the tradeoffs involved in adding public

key based authentication to the LOCKSS protocol.

In the peer-to-peer realm, systems such as PAST [26], OceanStore [14] and

Intermemory [12] attempt to provide decentralized digital storage. However, in gen-

eral, these systems provide storage to individual members of the system, rather than

collectively attempting to preserve a single document. Thus, one peer’s copy of a

document in no way benefits the integrity of another member’s copy. They also as-

sume that most of the population follows the protocols properly. Furthermore, none

of the systems plan for the long-term, at least not on the scale necessary for libraries

to preserve information for generations to come. Other papers in the peer-to-peer

realm often follow a similar pattern - if they mention security at all, it tends to come

as an afterthought with a purely qualitative analysis of the system (e.g. Chord [28],

CAN [22] and semantic overlay networks [30]).

11

CHAPTER 3. RELATED WORK 12

Several papers provide a general survey of security issues facing peer-to-peer

systems. Wallach provides an overview of such issues [32], with a focus on routing

and file sharing. Morris and Sit offer a more in-depth exploration of these issues [27],

but they limit their analysis to a mostly qualitative look at security in distributed

hash tables. These reviews focus on potential security flaws in various systems, but

they do not develop a comprehensive adversary model that combines motivation with

capabilities.

Wang et al. use an eigenvalue-based approach to study virus propagation in

various network topologies [33]. They develop a simple yet effective theory to predict

the epidemic threshold for a given network using the network’s adjacency matrix. The

epidemic threshold represents the critical state beyond which an infection becomes

endemic. They simulate propagation by assuming that at each time step, an infected

peer may spread the infection to some of its neighbors as well. In our work, we abstract

away the adversary’s method for subverting peers and assume that he subverts a

certain portion of the peers based on the models described below. We also introduce

the notion of peer-dependent infection and repair, whereas Wang’s work assumes a

universal probability of infection and repair. Additionally, we look at the effect of

infection on the overall functionality of the peer-to-peer system.

The Wayback Machine, maintained by the Internet Archive [3], takes periodic

snapshots of the Internet, largely as a way of preserving digital “cultural artifacts”

and providing access to researchers. However, the system requires hundreds of servers

with over 300 TB of data storage. The vast majority of the content is not indexed,

making it difficult to access. Given the vast amount of time that goes into each crawl,

it misses considerable amounts of ephemeral data. Also, since the site’s spider only

accesses free, publicly available sites and obeys robots.txt files requesting that sites not

be indexed, the collection only contains the most public of data, not necessarily the

CHAPTER 3. RELATED WORK 13

magazines and journals of greatest interest to scholars. Finally, the Wayback Machine

is inherently a centralized process, the direct opposite of LOCKSS’ decentralized

approach.

In a process reminiscent of Byzantine fault-tolerance schemes (e.g. [6], [7], and

[15]), LOCKSS relies on the prevailing opinion of a set of peers, some of which may

be controlled by the adversary. However, the scope of the LOCKSS project pro-

hibits the high communication costs entailed by Byzantine fault tolerance. Instead,

LOCKSS relies on its polling mechanism to select random samples from the popula-

tion, eliminating global communication and knowledge. LOCKSS also uses inertia to

slow attacks and includes mechanisms for intrusion detection.

Approaching the problem from a hardware perspective, the Rosetta Project [10]

is creating a 1,000 language corpus and using a micro-etching technique to preserve

the corpus on a nickel disk with an expected life span of 2,000 years. This technique

addresses a niche market and has neither the flexibility nor the decentralization of the

LOCKSS system. As a more mundane approach, RAID (Redundant Arrays of Inex-

pensive Disks) allows system administrators to increase the reliability of commodity

hard drives. Unfortunately, adding RAID capabilities increases costs while providing

little protection from user error, natural disaster, or malicious attacks.

Chapter 4

Simulating Dynamic Populations

4.1 Motivation

Thus far the LOCKSS simulations have assumed that the adversary starts with a cer-

tain proportion of compromised peers and that these peers remain subverted through-

out the simulation [16]. A more accurate model would incorporate a population with a

dynamic number of compromised peers. When the adversary discovers a new vulner-

ability in the system, he can exploit it to subvert an entire segment of the population,

dramatically increasing his presence in the reference lists of the remaining peers. Cur-

rently, the most common forms of exploitation use worms and viruses as vectors, so

we refer to each of these instant takeovers as an “infection,” and to the subverted

peers as “infected,” “malign” or “bad.” However, over time, we also expect system

administrators to detect problems in their systems, perform clean installations and

patch existing vulnerabilities. To continue the biological metaphor, we refer to this

process as “healing,” and to the unsubverted peers as “healthy,” “good” or “loyal.”

Incorporating these dynamics provides a more realistic simulation of the system’s

behavior in the real world.

14

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 15

4.2 Experimental Setup

To gather simulation data, we use the Narses discrete-event simulator [11]. Narses

can accurately simulate networks with a large number of peers over long time periods.

It also models the memory-bound computations that LOCKSS uses for its proofs of

effort. In the simulations, we use a population of 1000 peers. Each peer has 30 friends

and attempts to keep its reference list at a size of approximately 60 peers. Unless

otherwise noted, we use a churn rate of 10%. In each simulation, the adversary begins

with some percentage of the peers under his control. We also give the adversary

additional identities that can masquerade as legitimate peers, allowing us to model

a Sybil attack. While these attacks generally spawn thousands of IDs, the LOCKSS

system makes this much more difficult, since each ID must perform a massive amount

of computation to prove its interest in polls. This places a computational bound

on the number of useful IDs the adversary can create. We set the number of extra

identities to 200, recalling our assumption of a powerful adversary.

The simulations run for 20 years (7200 days), and the results represent the

average of 10 simulations using different random seeds. Standard deviations are less

than 2%. We present the reference list corruption as the percentage of a healthy

peer’s reference list composed of subverted peers. Several graphs present an average

result from the static simulations as a reference point. The static simulation has a

constant subversion level of 30%.

4.3 Infection

Surprisingly little documentation exists on the frequency of viruses, worms and ex-

ploits on the Internet. While openBSD boasts of “only one remote hole in the default

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 16

Figure 4.1: The Effect of Infection In this simulation, the adversary exploits a new
vulnerability that affects 30% of the unsubverted population every six months (182 days).
One sample from the static simulations is shown for comparison. The solid lines indicate
reference list corruption and the dashed line indicates the percentage of subverted peers in
the system. We will follow this convention in subsequent graphs as well.

install in more than 7 years” [18], Microsoft releases critical patches on an almost

monthly basis. Since LOCKSS is intended to run on multiple platforms, we can

assume that a given vulnerability will not affect the entire system, but it becomes

difficult to estimate the frequency with which to expect exploits. However, in general,

one would expect to see the same general behavior shown in Figure 4.1. This simula-

tion was run with an initial population of 1000 peers, with 30% initially subverted and

a churn rate of 10%. Infections occur twice a year and affect 30% of the unsubverted1

population. In the figure, the normal reference list corruption level plateaus around

1As an alternative, we could assume that the exploit affects 30% of the entire population. This
would give the adversary a smaller gain, since he would already control some portion of the affected
peers. In keeping with the LOCKSS assumption of an extremely powerful adversary, we assume
the worst-case scenario in which the adversary can actively target the unsubverted portion of the
population.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 17

63%. However, when we give the adversary the ability to exploit additional bugs and

systemic vulnerabilities, we see a dramatic rise in the level of reference list corruption

that only plateaus when virtually the entire system has been corrupted. Granted,

this simulation uses extremely pessimistic figures, but tweaking these parameters will

merely extend the system’s lifetime without fundamentally altering the behavior seen

here. Notice also that the level of reference list corruption rises faster than the per-

centage of subverted peers in the system. This results from the adversary’s lurking

strategy. Since malign peers always recommend other malign peers, while loyal peers

recommend a mixture of malign and loyal peers, the overall corruption of the refer-

ence lists should increase even faster than the number of malign peers in the system.

We can also see this effect in the static simulation, in which the reference list corrup-

tion rises even when the number of subverted peers remains constant. Nonetheless,

we may find it useful to know just how fast the number of subverted peers in the

system will grow. If we assume that a given vulnerability affects a fixed percentage,

virulence, of the unsubverted peers, then we can derive an expected growth rate for

the number of subverted peers Mt in the system after t infections using the recurrence

relation

Mt+1 = Mt + virulence ∗ (P −Mt)(4.1)

= (1− virulence) ∗Mt + virulence ∗ P(4.2)

where P represents the system’s total population. Since a recurrence relation of the

general form:

(4.3) f(t + 1) = af(t) + k

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 18

has a solution of

(4.4) f(t) = (f(0)− k

1− a
) ∗ at +

k

1− a

we expect the growth of subverted peers to follow the formula:

Mt = (M0 −
virulence ∗ P

1− (1− virulence)
) ∗ (1− virulence)t +

virulence ∗ P

1− (1− virulence)

= P − (P −M0) ∗ (1− virulence)t

= P −G0 ∗ (1− virulence)t

where M0 represents the initial number of subverted peers and G0 represents the

initial number of unsubverted peers in the system. This indicates that the number of

subverted peers rises exponentially, limited only by the size of the system.

4.4 Repair

Until recently, few resources existed for tracking the speed and extent of Internet

viruses and worms or the rate at which systems are patched and repaired. Work such

as the Network Telescope [9] maintained by CAIDA (Cooperative Association for

Internet Data Analysis) and the Honeynet Project [20] provide some hints of what

we can expect to see in the future. A Network Telescope consists of a portion of

routed IP space that does not expect legitimate traffic. Monitoring this space for

unexpected traffic can indicate a network attack in progress or the beginnings of a

new worm. The Honeynet Project describes an architecture that masquerades as a

normal network vulnerable to attack. Researchers preserve the ability to monitor all

network and system activity and thus can study the techniques used during an attack.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 19

Based on data collected at CAIDA, Moore et al. determined that Internet users

responded surprisingly slowly to the Code Red threat [17]. Though a patch was

released two weeks before the Code Red worm struck, Moore reports that a third of

the vulnerable computers remained unpatched even after the worm spent a month

rampaging across the Internet with a considerable amount of accompanying publicity.

Fortunately, the rate of repair was front-loaded, so that many systems were patched

within the first few days. Before dismissing this dismal performance as a Microsoft

issue, we should note Rescorla’s analysis [23] of the response to the OpenSSL remote

buffer overflow exploit announced in July 2002. Although users running OpenSSL

tend to be more security-conscious and overwhelmingly run some variant of Unix, his

data show a sluggish response rate very similar to that for the Code Red vulnerability.

Based on this data, we developed a basic exponential decay function of the form

Percent Compromised Peers = A ∗ e−B∗days elapsed + C(4.5)

Percent Healed Peers = 1− Percent Compromised Peers(4.6)

to model the rate at which machines are repaired. We consider both pessimistic and

optimistic versions of the model. For our pessimistic model, the values of A, B, and

C were chosen2 such that 33% of the peers would remain vulnerable after a month,

with this value tapering off to 20%, meaning that the system never fully recovers. For

the more optimistic model, we chose constants3 that would still leave 33% of peers

vulnerable after one month but would eventually bring the level of vulnerability close

to 0 (see Figure 4.2).

As shown in Figure 4.3, the selection of the healing model makes a significant

2A = 80, B = 0.0606, and C = 20
3A = 99.99, B = 0.0369, and C = 0.01

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 20

Figure 4.2: Healing Rates Two possible models for the rate at which computer adminis-
trators patch/fix vulnerable computers.

impact on the system’s performance. With the pessimistic model, only 80% of the

infected peers ever recover from a given infection, so every infection gives the adver-

sary a net gain in the percentage of subverted peers in the system (illustrated with

dashed lines), and the quality of the reference lists degrades rapidly. With the opti-

mistic model, the system can recover from most of the damage (approximately 99%

of infected peers recover) and thus valiantly resists the adversary’s encroachments.

We assume sufficient time elapses between infections to allow the healing to take

effect. Otherwise, the optimistic model would merely devolve into the pessimistic

model. These data demonstrate the importance of widespread deployment of patches

and repairs, since rapid deployment to a limited subset of the population provides

far less security. Fortunately, in the current LOCKSS network, team members were

able to patch 95% of the deployed systems to fix a (hypothetical) vulnerability within

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 21

Figure 4.3: Impact of Optimistic vs. Pessimistic Healing Models Using a healing
model in which most users (approximately 99%) eventually patch their vulnerable system
significantly improves the system’s performance. Representative sample simulations shown.

48 hours [24], indicating a pattern closer to the optimistic model. However, as the

system grows and evolves, it will be difficult to maintain this efficiency. Also, exam-

ining the general trends in the reference list corruption levels for both the optimistic

and the pessimistic models reveals a similar trend towards increased reference list

corruption, due to the growth in the number of subverted peers in the system. Us-

ing an optimistic model slows this growth, but the system ultimately displays the

same behavior. Taking a conservative stance, the simulations presented will use the

pessimistic model unless otherwise noted.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 22

4.5 Repairing Recurring Infections

To examine the effectiveness of repairs in the face of repeated infections, we ran

several simulations while varying the percentage of the population affected by each

exploit (Figure 4.4), the rate at which exploits occur (Figure 4.5) and the initial

level of systemic subversion (Figure 4.6). Since the authors of the original LOCKSS

paper [16] note the importance of churning (adding peers from the friends list to the

reference list), we also ran simulations to analyze the extent to which churning helped

resist the effects of infection (Figure 4.8).

Figure 4.4: Varying Exploit Impact Varying the percentage of peers affected by each
exploit changes the behavior of the average reference list corruption of the good peers’ ref-
erence lists. One sample from the static simulations is shown for comparison. The lines
for the percentage of bad peers for 40% and 50% affected have been omitted for the sake of
clarity, but they follow the same general trend as the 20% and 30% lines.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 23

Increasing the percentage of the population affected by each exploit clearly

accelerates the overall reference list corruption of the system, particularly after the

first few years. The simulations in Figure 4.4 were run with an initial subversion level

of 30%, a 10% churn rate, the pessimistic healing model and an infection once a year.

At first, due to the healing of the initial subversion, the system outperforms the static

population simulation. However, as the infections recur, the percentage of bad peers

(shown as dashed lines) increases, since the healing process never quite eradicates

all traces of subversion. Thus, the average corruption of the reference lists catches

and then surpasses the static model, with a moderate amount of variation based on

the actual percentage of peers affected by each infection. All of the reference list

corruption levels eventually slow their growth rate as they approach saturation level.

Varying the rate at which compromises occur also has a serious impact on

the system’s performance. The simulations in Figure 4.5 were run with an initial

subversion level of 30%, a 10% churn rate, the pessimistic healing model and infections

that affected 30% of the population. The frequency of infection was varied from twice

a year to once every two years, though some results have been omitted for clarity.

Once again, the percentage of subverted peers in the system (shown as dashed lines),

grows in a stepwise fashion. While the frequency of infection clearly has an impact

on the system, even the system with infections occurring only once every two years

surpasses the static population’s reference list corruption level after eight years, and by

the end of the simulation (twenty years), the corruption has completely overwhelmed

the system.

Interestingly, varying the level of subversion in the system has little impact on

a dynamic population (see Figure 4.6). For these simulations we held the rate of

infection and the percentage of the population affected constant (at once a year and

30% affected per exploit, respectively) and varied the initial subversion from 20%

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 24

Figure 4.5: Varying Infection Rate Decreasing the rate of infections decreases the av-
erage corruption of the reference lists, but the general trend towards universal reference list
corruption remains. One sample from the static simulations is shown for comparison.

Figure 4.6: Varying Initial Subversion Varying the initial subversion of the population
has little effect on the overall growth of reference list corruption. Unfortunately, all of the
dynamic simulations tend towards systemic reference list corruption. One sample from the
static simulations is shown for comparison.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 25

Figure 4.7: Varying Initial Subversion - Zoomed In On a smaller time scale (the first
60 days of the simulation), we can see that despite varying levels of initial subversion, all
of the simulations converge towards the same level of reference list corruption by the 60th

day.

to 50% without much noticeable effect. The reason for this behavior becomes clear

when we examine the initial behavior of the system on a smaller time scale, specifically

looking at the first 60 days (see Figure 4.7). Since the first new infection does not

hit immediately (until the 365th day), the system has plenty of time to heal most of

the initially subverted peers, giving each simulation a more or less identical starting

point once the infections begin recurring in earnest.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 26

Figure 4.8: Varying Churn Rate Increasing the percentage of peers churned into the
reference list from the friends list reduces the average level of corruption in the reference
list. One sample from the static simulations is shown for comparison.

As shown in Figure 4.8, increasing the rate at which peers are churned into

the reference list from the friends list reduces the average level of corruption in the

reference list. We used an initial subversion of 30%, infections that affected 30% of

the unsubverted population and a pessimistic healing model. Churning has a smaller

absolute effect when the rate of infection is increased (from once every two years

to once a year in the figure), since the churning effect is drowned out by frequent

infestations. Overall, churning certainly helps the system, but it cannot prevent

systemic reference list corruption; instead, it merely slows its growth.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 27

4.6 Fighting Infection

The results above indicate that even when we allow system administrators to patch

their systems, the average level of reference list corruption still reaches unacceptable

heights. To combat the general trend towards systemic reference list corruption, we

examine the effects of two variants of the usual healing protocol.

4.6.1 Clean Start

In the Clean Start variant, whenever a peer is healed, we alter its reference list to

include only unsubverted peers. This simulates a system administrator realizing his

system has been compromised, fixing it, and then removing any suspicious peers from

his reference list. As illustrated in Figure 4.9, Clean Start creates drastic variations

in the level of reference list corruption in the system, as the healing effects battle

with the repeated infections. In these simulations, we begin with 30% subversion and

assume infections occur once a year and affect 30% of the population. All of the good

peers use a 10% churn rate. Overall, the corruption rises much more slowly than

comparable non-Clean-Start simulations, and generally maintains a curve similar to

that of the static population, indicating that this technique does help provide an edge

to the good peers in the system. The technique has a much smaller impact when using

the optimistic healing model, largely because the optimistic model keeps the level of

corruption so tightly constrained on its own that the Clean Start mechanism can only

offer marginal improvements.

4.6.2 Ripple Healing

The other modification we investigated, Ripple Healing, initially seems quite similar.

Whenever a peer discovers that it has been compromised (using the normal discovery

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 28

Figure 4.9: Effect of the Clean Start Technique Giving each healed peer a purified
reference list improves performance, despite oscillations. Simulations were run with 30%
initial subversion and assumed that infections occurred once a year and affected 30% of the
population. All of the good peers use a 10% churn rate.

mechanism dictated by either the optimistic or the pessimistic healing model), it

keeps the same reference list as before, but it adds all of the peers on its friends list

to a quarantine list. The next day, we examine the list and heal any subverted peers,

though they do not add their friends lists to the quarantine. This simulates a system

administrator realizing his system has been compromised and alerting his friends that

they should investigate their systems too. We omit a graph for this case, since even

with 60% initial subversion and the pessimistic healing model, the Ripple Healing

cured 100% of the peers within three days of an infection, leaving the adversary

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 29

without any foothold within the system. On the one hand, this approach exaggerates

the communicativeness and responsiveness of system administrators (as explored in

Section 4.7). On the other hand, it offers a powerful argument in favor of distributed,

automated threat detection systems that would allow computer networks to recognize

a compromise and instantly alert the rest of the network to it. However, any system

of this sort must guard against manipulation by the adversary, particularly in the

form of false alarms. Convincing one or more peers that a vulnerability exists, even

if it does not, could set off a flood of warnings and updates throughout the network.

To gain further insight into this technique, we develop a mathematical model

to describe the number of subverted peers in the system. We define the following

variables:

• Mt = number of subverted peers at time t

• P = total population

• F = size of friends list

• H = number of peers healed in the normal healing model in one unit of time

Each of the H peers to be healed has F friends, and assuming an even distribution of

subverted peers, F ∗ Mt

P
of the friends have been subverted. Ripple Healing will heal

them all, so we can create a recurrence relation such that:

(4.7) Mt+1 = Mt −H ∗ F ∗Mt

P
= (1− HF

P
)Mt

For this analysis, we focus on the impact of Ripple Healing, so we ignore the effects

of the normal healing process (which would subtract an additional H peers from the

righthand side of Equation 4.7). Drawing on our work from Section 4.3, we know

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 30

that a recurrence relation of this form has the solution:

(4.8) Mt = M0(1−
HF

P
)t

Using the standard approximation that (1− 1
m

)n ≈ e−
n
m , we can rewrite this as:

(4.9) Mt = M0 ∗ e−
HF
P

t

For a fixed population size, this equation indicates that when the system uses Ripple

Healing, the number of subverted peers decays exponentially, with a speed based

on the number of peers healed each day and the number of friends the average peer

possesses. Figure 4.10 illustrates the effect of varying these two parameters. All of the

variations shown heal virtually the entire system in less than three weeks. Given that

in the real system each peer has an average of 30 friends, and even in the pessimistic

model, the system heals an average of 30 peers per day for the first three weeks, we

can begin to understand the dramatic impact of Ripple Healing. Intuitively, Ripple

Healing mimics the technique used by the worms and viruses to spread the original

infection, so the technique can repair the damage almost as quickly as it can be

inflicted.

4.7 An Alternate System Model

In the preceding simulations, we have assumed that both the probability of becoming

infected and the probability of being healed are independent of the peers involved.

In other words, at each stage, we decide a certain portion of the peers will be in-

fected/healed and then randomly select those peers from the appropriate portion of

the population. However, this system may not provide the best model of real world

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 31

Figure 4.10: Effect of Ripple Healing The impact of Ripple Healing depends on the
number of friends each peer has, as well as the number of peers healed each day.

behavior. In practice, some system administrators remain constantly vigilant, check-

ing on the latest system patches and monitoring their systems’ behavior for suspicious

activity. Presumably peers with such active administrators will prove less susceptible

to virus attacks and more likely to detect and repair infections when they occur. Con-

versely, those administrators lacking the time, interest or skill to properly administer

their systems will have peers that become infected more often and remain infected for

longer periods of time. Unfortunately, as Rescorla [23] and Arbaugh [2] note, the vast

majority of system administrators tend to fall into the latter rather than the former

category. Systems remain unpatched for known vulnerabilities for months or even

years after the initial announcement, even when features like Microsoft’s Automatic

Update attempt to download and install patches in the background.

In our new model of the world, we assign each peer a system-administrator rating

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 32

Figure 4.11: System Administrator Abilities A few peers have highly skilled system
administrators, but the majority have mediocre ratings. The x-axis shows the distribution
of skill ratings, indicating for example that in the pessimistic model, approximately 9% of
the population has a rating of 10 or above.

(with a high rating representing a skilled administrator), following a distribution

that gives a few peers a high rating and the vast majority a relatively low rating

(see Figure 4.11). In other words, we assign a skill level for each peer by randomly

selecting a value on the x-axis and then assigning the corresponding rating from

the y-axis. Once again, we experimented with both an optimistic and a pessimistic

model. To test the impact of these ratings, we repeated a selection of the previous

experiments with both models. Initially, we used the system-administrator rating

only to determine the probability on any given day that a subverted peer discovers it

has been infected, using the formula:

(4.10) Pdiscovery =
sys admin rating

100

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 33

This means that in our optimistic model, most peers have a probability of discovering

they have been infected within 5 days of infection (since they have a rating of 20 on

average, they will have Pdiscovery = 1
5
). Given the preceding discussion, this figure

seems closer to an ideal world than the real one. The pessimistic model comes closer

to reality, since most peers have a rating of 0.274 ≈ 100
365

, indicating that most peers

only heal once a year (since this rating provides Pdiscovery = 1
365

on any given day).

We then ran further simulations in which the probability of infection during a

given attack also depended on the system administrator’s rating, such that:

(4.11) Pinfection =
100− sys admin rating

100

The graph in Figure 4.12 compares a sampling of the results. We ran the simulations

with infections occurring once per year and affecting 30% of the population (in the

simulations that did not use the system administrator’s rating to determine infec-

tions). The system started with 30% of the population subverted and used a 10%

churn rate. Once again, we show the average reference list corruption level of a static

population as a baseline. Looking at the optimistic cases, we see that the reference

list corruption remains extremely low. Given that in this case even the worst system

administrators heal their peer every five days, this does not seem unreasonable. The

anomalous spikes that occur at certain days (e.g. Day 5850 and Day 6210) occur

because we only sample the corruption every 90 days, and these data points happen

to catch the system almost immediately after an infection, before the healing process

has a chance to take effect. The graph in Figure 4.13 illustrates the correspondence

between the spikes in the corruption rate and the proximity of an infection for a

simulation run using the pessimistic model.

However, while the reference list corruption level with optimistic healing remains

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 34

Figure 4.12: Infection and Healing Based on System Administrator Abilities
This graph illustrates the effects of the optimistic and pessimistic system-administrator-
based infection and healing models.

remarkably low, it does slowly increase, which seems surprising in light of the fact that

the entire population heals itself within 5 days. The explanation lies in the adversary’s

ability to spoof additional identities. Remember that in addition to starting with

control of a portion of the peers in the population (30% in this case), we also give

the adversary an additional 200 identities that can masquerade as legitimate peers.

To confirm this explanation, we repeated the optimistic simulation without the extra

identities, and in this case, the reference list corruption level does indeed go to zero

(except for the extraneous spikes near an infection). This emphasizes the importance

of designing a system to defend against a Sybil attack, since even if the adversary

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 35

Figure 4.13: Infection Plotted with Reference List Corruption This graph charts
the average corruption of the reference lists along with the number of days that had passed
since the most recent infection when the reference list corruption level was sampled (plotted
on the righthand y-axis). Dips in the time since an infection tend to correspond with spikes
in the level of reference list corruption.

cannot control any other peer in the system, he can still subvert the process by using

multiple identities to influence the voting.

In the pessimistic case, it takes the peers much longer to heal after an infection,

so the spikes become larger and more pronounced, no longer a transitory phenomenon.

Obviously, the pessimistic case performs worse than the optimistic (though still better

than the static case), but more interestingly, the simulation that bases infection on

the system administrator’s abilities shows more reference list corruption than the

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 36

Figure 4.14: Effects of Ripple Healing Ripple Healing provides only a marginal im-
provement using the system-administrator model, unlike the huge gains it gives the random-
ized model. In the simulations shown here, we illustrate the difference between using the
randomized infection/healing model with and without Ripple Healing, and using the system-
administrator model with and without Ripple Healing.

randomized model of infection. Intuitively, this makes sense, since in the system-

administrator model, the peers most vulnerable to infection are also the ones least

likely to heal themselves, so each successive infection should have a larger impact

on the system’s level of subversion and hence on the average level of reference list

corruption.

Finally, given the extremely successful use of Ripple Healing in the randomized

healing model (Section 4.6), we ran experiments using the system administrator’s

rating to determine the effect of the Ripple Healing. We followed the same procedure

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 37

outlined above, but when the newly healed peer cycles through its friends list alerting

his friends about the infection, the friends respond with a probability based on the

system administrator’s rating. In other words, good system administrators will im-

mediately respond to such an alert, whereas poor system administrators may simply

ignore it. The results differ significantly in comparison with the randomized model

(see Figure 4.14). Indeed, in the system-administrator model, the Ripple Healing

technique provides a marginal improvement at best. In the randomized system, every

peer responded instantly, whereas in the system-administrator model, the average

peer will typically ignore the warning. Furthermore, the peers most likely to respond

to an alert (those with high system administrator ratings) will also be the ones most

likely to have already healed themselves, and similarly, the peers least likely to heal

themselves are also those least likely to respond to an alert.

4.8 Implications

The results in the previous two sections illustrate the importance of accounting for

human factors in analyzing the behavior of systems in the real world. Assuming

a universal pattern of behavior for the entire population of users in a peer-to-peer

network may not necessarily create an accurate model of the world. Furthermore,

the choice of model decisively influences the system’s observed behavior. In addition

to its more realistic configuration, the system-administrator model generally tends to

perform better than the randomized model. (Figure 4.15 shows the average corruption

of the reference lists for varying rates of infection in both models. We began with

30% of the population subverted and used a 10% churn rate. In the simulations using

the randomized model, each infection affected 30% of the unsubverted peers). This

clearly results from the targeted nature of the system-administrator model. The core

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 38

group of competent system administrators continues to resist or heal the infections

indefinitely, whereas in the randomized model, everyone eventually succumbs. On the

other hand, the Ripple Healing technique performs significantly worse in the system-

administrator model, for the reasons given above. Thus, selecting an appropriate

model for the system will help determine both the expected behavior of the system

and the techniques that may successfully combat reference list corruption within the

system. Furthermore, these results emphasize one of the more unique aspects of

peer-to-peer networks: the inherently interdependent nature of the peers within the

system. Unlike traditional systems in which a system administrator can concern him-

or herself exclusively with his or her own machine’s defenses, in a peer-to-peer network

each peer necessarily depends on the other members of the network, so a system

administrator must worry about the security of all of the other peers in the system.

As illustrated above, failure to widely deploy patches for known vulnerabilities can

lead to systemic subversion, making the network unreliable even for peers that have

successfully patched the vulnerability.

CHAPTER 4. SIMULATING DYNAMIC POPULATIONS 39

Figure 4.15: Randomized vs. System Administrator Systems A comparison of the
randomized and system-administrator models for various rates of infection. In general,
the system-administrator model demonstrates better performance (i.e. less average reference
list corruption). In the legend, the entries indicate which model of healing/infection the
system used (static population, randomized or system-administrator) and the frequency of
the infections. For the randomized model, the infections affected 30% of the unsubverted
peers.

Chapter 5

A Mathematical Model

5.1 Motivation

Thus far, the vast majority of the work examining potential LOCKSS adversaries

relies on simulation results. While these results certainly offer hope that the LOCKSS

protocol will remain secure, this approach has several drawbacks. Aside from the time

and computational effort expended on each simulation, the accuracy of the results

depends on a faithful representation of the protocol in code and offers little in the

way of guarantees. A mathematical model, on the other hand, allows us to make

stronger security guarantees. It also facilitates an analysis of exactly which variables

factor into the adversary’s success, allowing us to develop stronger safeguards against

systemic damage by changing system parameters or adjusting the voting protocol.

As a motivating example, we have developed a model of the lurking adversary that

attempts to predict the growth of corruption in the reference list, allowing us to

determine the probability that the adversary will cause permanent damage to the

system. For now, we limit ourselves once again to a static population, leaving aside

the complications introduced by a dynamic population.

40

CHAPTER 5. A MATHEMATICAL MODEL 41

5.2 Variable Definitions

We begin by defining the variables necessary for a rough view of the system.

• C = churn rate

• Q = number of inner-circle votes needed for a quorum

• Lic = number of loyal inner-circle peers

• Mic = number of malign inner-circle peers

• N = number of peers in the inner circle

• V = number of inner-circle peers that respond to a poll invitation

• T = target reference list size (currently 3 ∗N - this gives the peer a buffer, so
that the reference list rarely becomes depleted)

• X = number of peers in the outer circle

• P = total number of peers in the population

• M0 = the initial number of malign peers in the population

• F = size of friends list

• MF = number of malign peers in the friends list

• Moc = number of malign peers in the outer circle

• Rt = size of reference list at time t

• Mrt = number of malign peers in the reference list at time t

5.3 Analysis

Given M0, P , F , C, etc., we want to find a general solution for Mrt.

CHAPTER 5. A MATHEMATICAL MODEL 42

5.3.1 Setup

As initial conditions, we know that the initial corruption of both the reference list

and the friends list is proportional to the subversion of the population as a whole.

Mr0 =
M0

P
R0(5.1)

MF =
M0

P
F(5.2)

5.3.2 Calculation

Intermediate Steps

Inner-Circle Corruption

Assume that at some time t, we know the average size of the reference lists, Rt, and

the current level of corruption in the reference lists, Mrt. We would like to calculate

these statistics at the next unit of time, i.e. we would like to find Rt+1 and Mr(t+1).

Assuming we choose inner-circle peers from the reference list at random, we have:

Mic =
Mrt

Rt

N(5.3)

Lic = N −Mic(5.4)

Outer-Circle Nominations

When we request outer-circle nominations, we will assume:

1. All peers send agreeing votes

2. Each malign peer will only nominate other malign peers

3. All reference lists are corrupted at the same rate

CHAPTER 5. A MATHEMATICAL MODEL 43

Based on these assumptions, both the malign and the loyal peers will contribute to

the number of malign peers in the outer circle. We want to invite enough peers,

X, to achieve our target reference list size, i.e. Rt + X = T ⇒ X = T − Rt. To

account for the Q peers that we remove from our list at the end of the round, we will

actually set X = target − Rt + Q. We choose target to account for the peers that

we will churn in from our friends list, so target = T
(1+C)

. The X outer-circle peers

will be chosen evenly and at random from the various inner-circle nominations, so

each inner-circle peer will contribute X
N

peers to the outer circle. Since we assume

each malign peer will recommend only malign peers, the malign peers in the inner

circle will contribute Mic ∗ X
N

malign nominations. A loyal inner-circle peer will also

(inadvertently) contribute some number of malicious peers. If we assume that the

proportion of malicious peers in its reference list is also Mrt

Rt
, then the loyal inner-circle

peers will collectively nominate Lic ∗ X
N
∗ Mrt

Rt
.

Thus, the number of malicious peers in the outer circle will be:

(5.5) Moc = Mic ∗
X

N
+ Lic ∗

X

N
∗ Mrt

Rt

Reference List Updates

We have assumed that everyone cooperates and agrees with our copy of the AU,

meaning V = N . Let us further assume that there are no collisions, i.e. we never

attempt to insert a peer into our reference list if it is already present. We perform

three updates to the reference list:

1. Remove a random Q peers (in the protocol, we remove (Q − #disagreeing)
peers, but we have assumed everyone agrees with us, so #disagreeing = 0)

2. Add all outer-circle peers that agreed (in this case, all X of them)

3. Insert C ∗Rt peers from the friends list (churn the reference list)

CHAPTER 5. A MATHEMATICAL MODEL 44

We can now look at the effect these updates have on the number of malign peers

in our reference list:

1. Remove Mic

N
∗Q malign peers

2. Add Moc malign peers

3. Add C ∗Rt ∗ MF

F
malign peers

Combining these effects, we should have

(5.6) Mr(t+1) = Mrt −
Mic

N
∗Q + Moc + C ∗Rt ∗

MF

F

malign peers in our reference list. This gives us an average reference list corruption

level of
Mr(t+1)

Rt+1
, where Rt+1 is:

(5.7) Rt+1 = Rt −Q + X + C ∗Rt

Granted, these are recurrence relations, but even in this form they can be useful, and

if necessary, they can be solved to provide a closed-form solution. For example, if we

recall that X = T
1+C

−Rt + Q, then we can rewrite Equation 5.7 as:

(5.8) Rt+1 = C ∗Rt +
T

1 + C

Again, drawing on our work in Section 4.3, we can eliminate the recurrence and

express Rt as:

(5.9) Rt = (F − T

1− C2
) ∗ Ct +

T

1− C2

CHAPTER 5. A MATHEMATICAL MODEL 45

Since 0 ≤ C < 1, Equation 5.9 indicates that Rt eventually converges to a stable size

of T
1−C2 .

5.4 Results

When compared with actual simulation results, the formulas above give a reasonable

approximation of the growth of the reference lists over time (see Figure 5.1), as well

as the growth of the corruption in the reference lists themselves (see Figure 5.2). The

discrepancy between the predicted corruption and the simulated corruption arises in

large part from our assumption that there are no collisions during the course of the

protocol. In the actual simulation, if two peers nominate the same peer for the outer

circle, it counts as only one nomination, not two. Since we give the adversary near-

omniscience (i.e. the power to coordinate knowledge across all subverted peers), he

can coordinate his outer-circle nominations to ensure that such collisions do not occur.

The good peers do not have this luxury, and thus collisions occur disproportionately

amongst the loyal outer-circle nominations, creating a net increase in the adversary’s

presence in the reference lists. Similarly, when churning in peers from the friends list,

the current simulation code does not check for duplicates, so an attempt to churn

in friends may select peers already present in the reference list, negating any benefit

from this action. Indeed, simulation data shows that most collisions occur early on

during the clustered simulations, since at that stage, each peer only knows about its

friends, so that collisions happen frequently (see Figure 5.3). After enough time has

elapsed, a peer has filled in its reference list with nominations from other peers, and

so nominating peers from the reference list tends to cause fewer collisions.

To account for the collision effect, we model the nomination process as a balls-

and-bins problem. Each bin represents a peer in the population, and we treat the

CHAPTER 5. A MATHEMATICAL MODEL 46

Figure 5.1: Predicted vs. Simulated Reference List Growth Mathematical predic-
tions of reference list growth dovetail closely with simulation data.

nominations as balls thrown into the bins at random. Thus, we can adjust for the

effect of colliding nominations by calculating the difference between the number of

nominations (balls thrown), and additions to the reference list (the number of bins

containing at least one ball) as follows:

Let m represent the number of bins and n represent the number of balls thrown.

For a given bin, the probability of a ball landing in it is 1
m

, so the probability that

none of the balls land in the bin is:

(5.10) Pempty = (1− 1

m
)n ≈ e−

n
m

CHAPTER 5. A MATHEMATICAL MODEL 47

Figure 5.2: Predicted vs. Simulated Reference List Corruption Simulation data
detailing corruption of the reference lists, compared with predictions from the initial math-
ematical model.

So for the general population, we have:

(5.11) Expected Bins With Balls = (1− Pempty) ∗m = (1− e−
n
m) ∗m

Relating this back to our mathematical model, we find that we need to adjust

our loyal nominations, Nomloyal, such that:

(5.12) Nomloyal = (1− e−
Nomloyal

P) ∗ P

However, we must also account for the fact that some of the nominated peers

may already be in our reference list and/or our inner circle. The probability that a

peer is in our reference list is R
P
, and the probability that a peer is in our collection

CHAPTER 5. A MATHEMATICAL MODEL 48

Figure 5.3: Number of Collisions for Clustered vs. Unclustered Networks The
number of collisions in the outer-circle nominations increases when the peers do not form
clusters within the network.

of nominations is N
P

. For modeling purposes, we can consider these two probabilities

independent, so the number of peers that are in our reference list and in the list of

nominations, overlap, is

(5.13) overlap = (
R

P
∗ N

P
) ∗ P =

R ∗N

P

Subtracting overlap from Nomloyal and performing a similar adjustment based on the

size of the inner circle accounts for most of the collisions that take place.

CHAPTER 5. A MATHEMATICAL MODEL 49

As shown in Figure 5.4, adding this correction (and a similar correction for col-

lisions during churning) improves the model’s predictive powers, cutting the average

error from 25% to under 10%. In this figure, we show two sets of simulation results.

As discussed earlier, the LOCKSS system by default attempts to approximate the real

structure of the Internet by clustering peers together (currently in groups of 30). The

friends lists are then initialized such that the vast majority of entries in each peer’s

friends list come from within the peer’s cluster, with the assumption that peers tend

to befriend those “closer” in the network. Using this setup contradicts our analysis

above, which assumed random choices distributed evenly across the population of

peers. Since it is not entirely obvious that such a clustering provides the best model

of network/social configurations, the simulation results in Figure 5.4 also show data

from non-clustered simulation runs.

Figure 5.4: Improved Predictions vs. Simulated Reference List Corruption Com-
pares the simulation with the improved version of the mathematical model. This time, we
correct for clustering and various types of collisions.

CHAPTER 5. A MATHEMATICAL MODEL 50

As expected, eliminating the clusters and accounting for collisions significantly

decreases the gap between predicted and simulated results. Interestingly, eliminating

clusters actually increases the number of collisions in the early stages of the simulation

(as shown in Figure 5.3). While this may seem counter-intuitive, the elimination of

clusters provides a better random distribution over the population as a whole. Peers

are more likely to have reference lists peers in common, due in large part to the

effects of the birthday paradox. The clustering actually prevents global reach by

partitioning the network into smaller sections, so after the initial set of collisions with

friends, peers come into contact with peers from the opposite side of the network and

the number of collisions drops rapidly.

As a final adjustment, we note that the LOCKSS protocol dictates that a peer

involved in a poll (whether calling or participating) refuses any additional poll re-

quests. Since the adversary will never need to ask for a replacement copy of the AU,

he will never call a poll, and so he will never be too busy to respond to a poll request.

However, if a loyal peer invites another loyal peer already occupied with a poll, then

the poll initiator loses a potential loyal peer and the proportion of malign peers par-

ticipating in the poll rises. As a rough estimate of the effect of “busy collisions”, let

us suppose that each poll consumes pollT ime hours of a peer’s time and that each

peer conducts a poll every Z months. As a further simplification, assume that every

poll starts on a pollT ime boundary, i.e. polls start on discrete intervals rather than

across a continuous spectrum. In that case, we only need to consider the probability

that two polls start the same time. In a given year, one peer will call 12
Z

polls, so

altogether, the system will experience 12
Z
∗ P polls over the course of the year. Each

year has approximately 12·30·24
pollT ime

poll slots available, so assuming polls are randomly

CHAPTER 5. A MATHEMATICAL MODEL 51

Figure 5.5: Multiple Comparisons between Predicted Reference List Corruption
and Simulated Reference List Corruption The predictions remain extremely accurate
for varying levels of initial subversion.

distributed across the slots, there will be:

(5.14) pollsPerSlot =
12
Z
∗ P

12·30·24
pollT ime

=
P ∗ pollT ime

720Z

In the current system, pollT ime ≈ 5 hours and Z = 3 months, so pollsPerSlot ≈ 1.5.

Since the peer’s poll counts towards occupying the poll slot, we expect a poll to collide

with 0.5 other polls each round on average. Adding this adjustment to our calcula-

tions produces the line labeled “Final Math Predictions” in Figure 5.4. The figure

clearly shows that this final adjustment brings our predictions into alignment with

the simulation results, and indeed the numbers demonstrate an average error of less

CHAPTER 5. A MATHEMATICAL MODEL 52

than 1%. As shown in Figure 5.5, these predictions remain remarkably stable across

varying initial conditions (less than 2% error in all three of the simulations). This

suggests that the corrected mathematical model serves as an accurate and reliable

predictor of long-term system behavior.

5.5 Implications

Developing a mathematical model in this fashion illustrates several important points.

First, a sophisticated system such as LOCKSS involves complicated interactions that

may have unexpected effects. For instance, the original LOCKSS design does not con-

sider recommendation collisions, and yet we have seen that such collisions noticeably

increase the corruption of the reference lists and make accurate modeling difficult.

Some of these effects can be avoided. The collisions that occur during churning could

be eliminated by churning in friends not already in the reference list. This would

ensure that peers receive the full benefits of churning.

Next, the equations we developed suggest ways of improving the system’s per-

formance. We can simplify Equation 5.5 by reducing the number of variables involved,

with the result that:

(5.15) Moc = X ∗ Mrt

Rt

∗ (2− Mrt

Rt

)

Substituting this into Equation 5.6 and simplifying, we have:

(5.16) Mr(t+1) = −(
X

Rt
2) ∗M2

rt + (1− Q

Rt

+
2 ∗X

Rt

) ∗Mrt +
C ∗Rt ∗Mr0

P

This suggests several logical ways of improving the system’s performance. Increasing

the size of the population, P , will decrease the third term and hence will reduce the

CHAPTER 5. A MATHEMATICAL MODEL 53

growth of reference list corruption, since the adversary must subvert a larger absolute

number of peers to have the same impact on the system. Similarly, increasing the

number of votes necessary for a quorum, Q, will decrease the second term. Since

X = T
1+C

− Rt + Q, this will also increase the magnitude of the second-order term,

further reducing the growth of reference list corruption. Intuitively, a larger quorum

size means that more peers participate in each poll, and so the adversary must control

even more peers in the system to infiltrate the reference lists. Finally, while we might

hope that increasing the size of the reference list would improve our results, the

equations indicate that the effect will be significantly more complicated and difficult

to predict. It will depend in large part on the values of the other constants. Overall,

these equations help highlight key design considerations not otherwise apparent and

allow us to rapidly examine the long-term behavior of the system.

Chapter 6

Concluding Remarks

6.1 Future Work

Clearly, additional data on the frequency and severity of viruses, worms and other

system compromises in the real world will benefit both the simulations and the analy-

sis of the effects of a dynamic population on the system’s performance. As researchers

refine their monitoring techniques, we can incorporate their findings into our models

and provide better predictions of LOCKSS’ performance. In addition, the remarkable

success of the Ripple Healing mechanism suggests that further investigation into dis-

tributed and automated exploit tracking and repair could significantly improve the

performance of LOCKSS.

The mathematical model of the adversary also requires further refinement and

could be extended to other aspects of the adversary’s behavior, or even to some of the

other adversaries described in Section 2.2 - the nuisance adversary, the attritionist,

etc. In general, developing a rigorous model of these adversaries may reveal additional

vulnerabilities and suggest alternative remedies.

54

CHAPTER 6. CONCLUDING REMARKS 55

6.2 Conclusion

In this work, we have developed more realistic simulations that incorporate the dy-

namic nature of real-world systems and hence provide more realistic results. While

we have focused on the LOCKSS protocol, many of the results can be extended

to other peer-to-peer systems. Our data indicate that any peer-to-peer system in

which the adversary can exploit multiple vulnerabilities will tend to break down.

In LOCKSS, the average reference list corruption skyrockets, allowing the stealth-

modification adversary to dominate the system. Furthermore, our experiments with

the system-administrator model indicate that users of a peer-to-peer network must

concern themselves not only with the security of their own system but also with the

security of the other computers in the network. In a peer-to-peer network, no peer is

an island.

Mathematical modeling provides an example of an underutilized approach to

studying peer-to-peer adversaries. As our results studying LOCKSS illustrate, the

rigorous analysis imposed by a mathematical model can lead to significant improve-

ments in protocol design and system performance. A model can also provide a more

intuitive understanding of the various factors that contribute to the system’s overall

behavior, revealing otherwise obscure vulnerabilities. Additionally, a mathematical

model allows us to quickly examine long-term trends in the system’s performance and

make stricter security guarantees.

Finally, the concept of using automated patch and/or repair systems also offers

significant security benefits for peer-to-peer systems. While models of human behav-

ior are necessarily inexact, our rough model for system-administrator responsibility

indicates that patches and repairs need additional automation to ensure widespread

distribution. As one possibility, the Ripple Healing technique draws on the same viral

CHAPTER 6. CONCLUDING REMARKS 56

infection pattern employed to attack the network and uses it to drastically improve

the security of the system. Such distributed repair techniques fit naturally with the

peer-to-peer philosophy.

Acknowledgments

This work would not have been possible without the guidance, experience and insights

of my advisor, Professor Mema Roussopoulos. Discussions with the other members

of the LOCKSS team - Charles Duan, Geoffrey Goodell, Rachel Greenstadt, and Ian

Becker - also facilitated the development of my work. Professor Michael Mitzenmacher

offered advice on the balls-and-bins portion of the mathematical model, and the EECS

staff at Harvard provided assistance with hardware and software.

Finally, I would like to extend a special thanks to Diana Seymour for providing

her assistance, editing skills, unwavering support and constant encouragement.

57

Bibliography

[1] Mart́ın Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. Moderately Hard,
Memory-bound Functions. In Proceedings of the 10th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, USA, February 2003.

[2] William A. Arbaugh, William L. Fithen, and John McHugh. Windows of Vulnerability:
A Case Study Analysis. IEEE Computer, 33:52–59, December 2003.

[3] The Internet Archive. The Internet Archive Wayback Machine. http://www.archive.
org/.

[4] Association of Research Libraries. ARL Statistics 2000-01. http://www.arl.org/
stats/arlstat/01pub/intro.html, 2001.

[5] Brooks Boliek. U.S. music industry sues song swappers. http://www.reuters.co.uk/
newsArticle.jhtml?type=internetNews&storyID=4643035§ion=news.

[6] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In OSDI:
Symposium on Operating Systems Design and Implementation. USENIX Association,
Co-sponsored by IEEE TCOS and ACM SIGOPS, 1999.

[7] Miguel Castro and Barbara Liskov. Proactive Recovery in a Byzantine-Fault-Tolerant
System. In Fourth Symposium on Operating Systems Design and Implementation
(OSDI), San Diego, CA, October 2000.

[8] John Douceur. The Sybil Attack. In Proceedings of IEEE International Symposium
on Peer-to-Peer Systems, IPTPS 02, Cambridge, MA, March 2002. IEEE Computer
Society.

[9] Cooperative Association for Internet Data Analysis. Telescope Analysis. http://www.
caida.org/analysis/security/telescope/.

[10] The Long Now Foundation. The Rosetta Project. http://www.rosettaproject.org/.

[11] TJ Giuli and Mary Baker. Narses: A Scalable, Flow-Based Network Simulator. Techni-
cal Report arXiv:cs.PF/0211024, Computer Science Department, Stanford University,
Stanford, CA, USA, November 2002.

[12] Andrew Goldberg and Peter N. Yianilos. Towards an Archival Intermemory. In Proceed-
ings of IEEE Advances in Digital Libraries, ADL 98, pages 147–156, Santa Barbara,
CA, 1998. IEEE Computer Society.

58

http://www.archive.org/
http://www.archive.org/
http://www.arl.org/stats/arlstat/01pub/intro.html
http://www.arl.org/stats/arlstat/01pub/intro.html
http://www.reuters.co.uk/newsArticle.jhtml?type=internetNews&storyID=4643035§ion=news
http://www.reuters.co.uk/newsArticle.jhtml?type=internetNews&storyID=4643035§ion=news
http://www.caida.org/analysis/security/telescope/
http://www.caida.org/analysis/security/telescope/
http://www.rosettaproject.org/

[13] Thomas Jefferson. Thomas Jefferson to Ebenezer Hazard, Philadelphia, February 18,
1791. Thomas Jefferson: Writings: Autobiography, Notes on the State of Virginia,
Public and Private Papers, Addresses, Letters, 1984.

[14] John Kubiatowicz, David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakr-
ishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westly Weimer, Christopher Wells,
and Ben Zhao. OceanStore: An Architecture for Global-scale Persistent Storage. In
Proceedings of ACM ASPLOS. ACM, November 2000.

[15] Dahlia Malkhi and Michael Reiter. Byzantine Quorum Systems. The Journal of Dis-
tributed Computing, 11(4):203–213, October 1998.

[16] Petros Maniatis, Mema Roussopoulos, TJ Giuli, David S. H. Rosenthal, Mary Baker,
and Yanto Muliadi. Preserving Peer Replicas By Rate-Limited Sampled Voting in
LOCKSS. Technical Report arXiv:cs.CR/0303026, Stanford University, March 2003.

[17] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. Code-Red: A case study on the spread and victims of an Internet
worm. In Internet Measurement Workshop, Marseille, France, September 2002.

[18] OpenBSD. OpenBSD Site. http://www.openbsd.org/.

[19] George Orwell. 1984. New American Library, New York, New York, 1977.

[20] Honeynet Project. Know Your Enemy: GenII Honeynets. http://project.honeynet.
org/papers/gen2/.

[21] LOCKSS Project. LOCKSS Home Page. http://lockss.stanford.edu/.

[22] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
Scalable Content Addressable Network. In Proceedings of ACM SIGCOMM 2001, San
Diego, CA, August 2001.

[23] Eric Rescorla. Security Holes... Who cares? In Proceedings of the 12th USENIX
Security Symposium, pages 75–90, Washington, DC, August 2003.

[24] David S. H. Rosenthal. LOCKSS Security. http://lockss.stanford.edu/
locksssecurity.html.

[25] David S. H. Rosenthal, Petros Maniatis, Mema Roussopoulos, TJ Giuli, and Mary
Baker. Notes on the Design of an Internet Adversary. In Adaptive and Resilient
Computing Security Workshop, November 2003.

[26] Antony Rowstron and Peter Druschel. Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility. In Proceedings of the 18th ACM
SOSP’01, Lake Louise, Alberta, Canada, October 2001.

[27] Emil Sit and Robert Morris. Security Considerations for Peer-to-Peer Distributed Hash
Tables. In International Workshop on Peer-to-Peer Systems, March 2002.

59

http://www.openbsd.org/
http://project.honeynet.org/papers/gen2/
http://project.honeynet.org/papers/gen2/
http://lockss.stanford.edu/
http://lockss.stanford.edu/locksssecurity.html
http://lockss.stanford.edu/locksssecurity.html

[28] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan.
Chord: A Scalable Peer-To-Peer Lookup Service for Internet Applications. In Proceed-
ings of the 2001 ACM SIGCOMM Conference, pages 149–160, San Diego, CA, August
2001.

[29] Sun-Tzu. The Art of War. Oxford University Press, London, England, 1963.

[30] Chunqiang Tang, Zhichen Xu, and Sandhya Dwarkadas. Peer-to-Peer Information
Retrieval Using Self-Organizing Semantic Overlay Networks. In Proceedings of the
2003 ACM SIGCOMM Conference, Karlsruhe, Germany, August 2003.

[31] The Memory Hole. Reasons Not to Invade Iraq. http://www.thememoryhole.org/
mil/bushsr-iraq.htm.

[32] Dan S. Wallach. A Survey of Peer-to-Peer Security Issues. In Proceedings of Interna-
tional Symposium on Software Security, Tokyo, Japan, November 2002.

[33] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. Epidemic
Spreading in Real Networks: An Eigenvalue Viewpoint. In Proceedings of IEEE In-
ternational Symposium on Reliable Distributed Systems, SRDS 03, Florence, Italy,
October 2003. IEEE Computer Society.

60

http://www.thememoryhole.org/mil/bushsr-iraq.htm
http://www.thememoryhole.org/mil/bushsr-iraq.htm

	Introduction
	Peer-to-Peer Networks
	LOCKSS: A Digital Preservation System
	Know Thine Enemy

	Background
	LOCKSS Details
	Potential Adversaries
	Adversary Capabilities

	Related Work
	Simulating Dynamic Populations
	Motivation
	Experimental Setup
	Infection
	Repair
	Repairing Recurring Infections
	Fighting Infection
	Clean Start
	Ripple Healing

	An Alternate System Model
	Implications

	A Mathematical Model
	Motivation
	Variable Definitions
	Analysis
	Setup
	Calculation

	Results
	Implications

	Concluding Remarks
	Future Work
	Conclusion

