
CAPS: Smoothly Transitioning to a More Resilient Web PKI
Stephanos Matsumoto
Olin College of Engineering

smatsumoto@olin.edu

Jay Bosamiya
Carnegie Mellon University
jaybosamiya@cmu.edu

Yucheng Dai
Carnegie Mellon University
yuchengd@andrew.cmu.edu

Paul van Oorschot
Carleton University
paulv@scs.carleton.ca

Bryan Parno
Carnegie Mellon University

parno@cmu.edu

ABSTRACT
Many recent proposals to increase the resilience of the Web PKI
against misbehaving CAs face significant obstacles to deployment.
These hurdles include (1) the requirement of drastic changes to the
existing PKI players and their interactions, (2) the lack of signaling
mechanisms to protect against downgrade attacks, (3) the lack of
an incremental deployment strategy, and (4) the use of inflexible
mechanisms that hinder recovery from misconfiguration or from
the loss or compromise of private keys. As a result, few of these
proposals have seen widespread deployment, despite their promise
of a more secure Web PKI. To address these roadblocks, we pro-
pose Certificates with Automated Policies and Signaling (CAPS), a
system that leverages the infrastructure of the existing Web PKI to
overcome the aforementioned hurdles. CAPS offers a seamless and
secure transition away from today’s insecure Web PKI and towards
present and future proposals to improve the Web PKI. Crucially,
with CAPS, domains can take simple steps to protect themselves
from MITM attacks in the presence of one or more misbehaving
CAs, and yet the interaction between domains and CAs remains
fundamentally the same. We implement CAPS and show that it
adds at most 5% to connection establishment latency.

CCS CONCEPTS
• Security and privacy→Web protocol security.

KEYWORDS
public-key infrastructure, HTTPS, TLS, deployment

ACM Reference Format:
Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot,
and Bryan Parno. 2020. CAPS: Smoothly Transitioning to a More Resilient
Web PKI . In Annual Computer Security Applications Conference (ACSAC
2020), December 7–11, 2020, Austin, USA.ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3427228.3427284

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’20, December 7–11, Austin, TX, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12. . . $15.00
https://doi.org/10.1145/3427228.3427284

1 INTRODUCTION
HTTPS is fundamental for secure Web communication. When a
user Alice wishes to securely access Bob’s site bob.com, HTTPS
allows Bob to serve his site over a secure communication channel
that provides secrecy and integrity. To establish this channel, Alice
and Bob perform the Transport Layer Security (TLS) handshake
protocol [33], which allows Bob to use his public keyKB to establish
a shared secret key with Alice, which they can subsequently use
for encrypted communication.

To convince Alice that KB should be associated with bob.com,
however, HTTPS relies on the Web public-key infrastructure (PKI).
A trusted third party called a certificate authority (CA) checks that
Bob owns both bob.com and the private key corresponding to KB ,
and issues a digitally signed certificate that vouches for this binding.
CAs thus play a crucial role in secure Web communication: the
failure of any CA due to error, compromise, or coercion can lead
to a certificate that binds bob.com to a different public key KM .
If for example this key belongs to an adversary Mallory, she can
impersonate Bob to Alice in a man-in-the-middle (MITM) attack,
one of the main problems that a PKI aims to solve.

Unfortunately, the current Web PKI is demonstrably fragile. Ex-
isting certificate databases [11, 26] indicate that Web browsers and
operating systems provided by Mozilla, Apple, and Microsoft di-
rectly or indirectly trust more than 1,500 CA signing keys across
more than 600 organizations worldwide. Little prevents any of these
CAs from issuing an unauthorized certificate for any site, resulting
in weakest-link security for most sites: the compromise of any CA
can threaten the security of all Web domains, and by extension, all
clients visiting sites on those domains. Recent years have seen a
plethora of incidents where misbehaving CAs issued unauthorized
certificates, both accidentally [37] and intentionally [42].

As we describe in Section 2, previous work has made progress
towards protecting clients and domains against the misbehavior of
trusted entities such as CAs, and some of this work has seen increas-
ingly widespread deployment. Unfortunately, no proposed solution
offers both preemptive, robust protection against misbehaving CAs
and a feasible deployment strategy. In particular, while systems like
Google’s CT project [25, 26] enjoy relatively widespread deploy-
ment, they only enable detection, not prevention, of unauthorized
certificate issuance. Systems that do prevent unauthorized issuance
(1) require drastic changes to certificate issuance [22], (2) require
domains to deploy complex new infrastructure [20, 41], (3) increase
latency and communication [45], (4) require all domains to increase
their security level at once [3], or (5) render a domain inaccessible
if misconfigured [32].

https://doi.org/10.1145/3427228.3427284
https://doi.org/10.1145/3427228.3427284

ACSAC ’20, December 7–11, Austin, TX, USA Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot, and Bryan Parno

To address these shortcomings, we propose Certificates with
Automated Policies and Signaling (CAPS), a system that provides a
practical roadmap for transitioning to a more resilient Web PKI. In
CAPS, domains can take simple steps to protect themselves from
MITM attacks in the presence of one or more misbehaving CAs.
CAPS also provides an incremental deployment strategy. Interac-
tions between domains and CAs remain unchanged in the vast
majority of cases, and simple misconfigurations do not cause do-
mains to become inaccessible. CAPS provides immediate benefits to
domains and clients who deploy it, but does so in a way that does
not penalize non-deploying domains. CAPS also protects clients
from downgrade attacks such as TLS stripping [28]. Finally, the
bulk of the deployment effort of CAPS occurs at a small handful
of participants, namely browser vendors and public logs, who are
better equipped to make these changes than domains or CAs that
have historically been reluctant to deploy major changes.

The design of CAPS relies on four observations.
B1. Our near-complete view of the modern Web PKI can serve

as a low-effort channel for domains to communicate information.
Fast, Internet-wide scanning [12] and browser-based Web PKI stan-
dards [38] have produced large databases of TLS certificates [11].
This view provides domain information, including CA informa-
tion and public keys, without domains taking any additional action
beyond obtaining certificates (which they already do).

B2. A viable deployment strategy must signal both deployment of
HTTPS and deployment of PKI enhancements to clients. The Web PKI
encompasses a vast set of domains with diverse security needs, and
it is highly unlikely that any change to the PKI will be universally
adopted overnight. Therefore CAPS provides a signaling mechanism
that conveys (1) whether a domain supports HTTPS, and (2) if so,
whether it supports CAPS. Without the first bit of information, TLS
stripping can occur, causing the client to ignore even the existing
PKI. With this bit, the remaining signaling information can be com-
municated as an extension to the standard TLS handshake. Previous
approaches have required operational changes to domains [2, 20]
or significant storage overhead (Section 2.2). CAPS uses a global
view of the Web PKI along with data compression techniques and
compact data structures to locally store at each client a succinct
summary of nearly the entire set of domains that deploy HTTPS. In
our prototype, we summarize over 64 million domain names with
<150 MB of storage (and Section 6.2 discusses tradeoffs that reduce
this overhead to <35 MB).

B3. Any domain that supports HTTPS has obtained a certificate
using an existing issuance process, and can use this process to ob-
tain certificates from further CAs. Domains in CAPS use multiple
independent certificate chains for the same public key to establish
one or more “authoritative” public keys (Section 4.2). By commu-
nicating only the number of independent chains that denote an
authoritative key, CAPS makes it easy for a domain to recover from
the loss or compromise of a private key or from a misconfiguration.
The domain simply obtains an equal or greater number of chains
for a new public key to establish it as authoritative. Moreover, the
CAPS’ global view allows it to automatically keep this number up
to date with no changes to current certificate issuance processes
and no additional action from domains. Even with this flexibility,
authoritative public keys in CAPS are hard to forge: if a public key

is backed by n independent chains, an adversary must forge at least
n certificates for the same public key to carry out a MITM attack.

B4. Authoritative public keys benefit both current and future Web
PKIs. These keys can be used on their own to provide greater confi-
dence in a site’s identity, or they can be used to authenticate richer
policies proposed in prior work [3, 41]. CAPS can thus simplify the
deployment of these proposed systems, whose existing deployment
and certificate issuance strategies rely on complex coordination
among domains, CAs, and public logs to certify these policies. CAPS
also enhances the recoverability of these systems, which, as origi-
nally proposed, require waiting for days to replace a policy if the
corresponding private key is lost or compromised.

Even without considering wholly new PKIs, CAPS is attractive
from a deployment standpoint. In particular, the administrative
burden of deployment for domains is limited to acquiring addi-
tional certificates, and with the use of free certificate services like
Let’s Encrypt [14], the financial burden can be minimized as well.
Furthermore, CAPS is an opt-in system, meaning that only domains
who choose to obtain additional certificates incur a cost, and this
cost is mainly for purchasing the certificates. From its initial de-
ployment, CAPS protects all domains from TLS stripping, and it
allows non-deploying domains to coexist with deploying domains
without enabling downgrade attacks on deploying domains.

In summary, we make the following contributions.
• We present the design of CAPS, which provides an incre-
mentally deployable, backwards compatible path to a more
resilient Web PKI.

• We show how a security policy based on the number of inde-
pendent certificate chains for a domain strikes a good balance
between automation, resilience to attack, and robustness to
domain errors (including private key loss).

• We combine a global view of Web certificates with tech-
niques from data compression and compact data structures
to succinctly signal HTTPS deployment.

• We demonstrate via an evaluation of a prototype that the
client-side overhead for CAPS in terms of storage, memory,
and connection-establishment latency is modest.

2 BACKGROUND AND RELATEDWORK
We provide a brief overview of the work related to the three prob-
lems we address in this paper: tracking Web certificates, enforcing
the use of HTTPS, and improving certificate authentication.

2.1 Tracking Web Certificates
Censys is a service that uses ZMap [12] to provide a search engine
of network devices and infrastructure in the IPv4 address space [11].
In the context of the Web PKI, Censys keeps records of periodic TLS
handshake attempts to the entirety of the public IPv4 address space
on port 443 (the standard port for HTTPS) dating back to 2015.
Censys provides a database of information on certificates received
in these handshakes such as validity in different operating systems.

Certificate Transparency (CT) publicizes certificate issuance [26].
CT introduces the role of certificate logs to the Web PKI, entities
that use Merkle hash trees [30] to maintain an auditable, append-
only, and tamper-proof database [7] of certificates in the Web PKI.
A domain obtains proofs from logs that its certificate has been

CAPS: Smoothly Transitioning to a More Resilient Web PKI ACSAC ’20, December 7–11, Austin, TX, USA

logged, and sends these proofs to clients during the TLS handshake
inside a TLS extension. (Two extensions may be used: a CT-specific
extension or the Certificate Status Request extension, also known
as OCSP stapling [13].) CT-enabled clients reject certificates that
are not accompanied by such a proof.

Censys and CT can be used in conjunction to provide a rea-
sonably complete view of the Web’s HTTPS ecosystem, particu-
larly the fully-qualified domain names (FQDNs) of sites deploying
HTTPS [43]. Previous work has used this view to efficiently repre-
sent the set of all revoked certificates [24].

2.2 Enforcing HTTPS
Recent work to enforce the use of HTTPS has aimed to address and
prevent MITM attacks that use TLS stripping. In a TLS stripping
attack, an adversary causes a client and server to establish a con-
nection over plain HTTP, even when they could have established a
connection over HTTPS. Since HTTP is unencrypted, this makes a
MITM attack possible by any entity between the client and server.
Below, we describe several efforts in this space.

HTTP Strict Transport Security (HSTS) is a mechanism that
allows sites to tell a client connecting over HTTP that all future
connections to the site should take place over HTTPS [19]. A site
typically does this by redirecting to HTTPS and providing a strict
transport security policy in its response specifying the time period
and subdomains for which the client should use HTTPS. HSTS
is trust-on-first-use (TOFU), meaning that the adversary can only
mount a MITM attack when a client connects to a site without
having a strict transport security policy. Web browsers (mainly
Chrome) mitigate this vulnerability with an HSTS preload list of
domains that are always treated as if they have such a policy in
place. This approach cannot scale as-is to all HTTPS sites and thus
only protects a limited set of sites.

HTTPS Everywhere is a Web browser extension that rewrites
HTTP requests to HTTPS requests for certain sites confirmed to
serve over HTTPS [17]. Because additions to the list of confirmed
HTTPS sites are typically suggested to the developers by members
of the public, there is a delay between when a site newly deploys
HTTPS and when HTTPS Everywhere enforces HTTPS connec-
tions for that site. Similarly to HSTS preload lists, this approach
cannot scale to the entire Web and thus protects a limited set of
sites (though larger than does HSTS preloading).

Smart HTTPS is a Web browser extension that simply rewrites
all HTTP requests to HTTPS requests, falling back to HTTP if it
encounters an error during the HTTPS connection attempt [21].
Thus, it adds significant latency when connecting to HTTP-only
sites, as it must first fall back to HTTP. Smart HTTPS mitigates this
weakness by using the first response to cache the domain as HTTP
or HTTPS, but this makes a MITM attack trivial: an adversary
can simply intercept and block the HTTPS request to cause Smart
HTTPS to permanently log the site as HTTP-only.

2.3 Rethinking Certificate Authentication
Recent work on improving certificate issuance and validation has
focused on providing alternate or additional mechanisms by which
domains can authenticate their public keys to clients. We focus on
two approaches: public-key pinning, and log-based authentication.

Dummy

Logs
Logs

CA

Domain

Client

Vendor

Logs

Log
Aggregators

Browser
Signaling Set

(Plugin)

Issue cert

TLS handshake
(with extension)

Fetch policy proofs

Log certs

Collect set of active certs

Provide signaling set
and updates

Provide browser
software

Certificate
Scanner

Collect scans
and certificates

Figure 1: Overview of CAPS architecture (log auditors and
monitors not shown). Dotted lines denote the browser and
its components, and italic text denotes new entities or ac-
tions in CAPS. As shown in the diagram, CAPS is currently
implemented as a browser plug-in, but we envision it would
become a standard browser component.

Public-key pinning is a TOFU approach that, rather than only
enforce the use of HTTPS, enforces the use of specific public keys
for a site. HTTP Public Key Pinning (HPKP) allows a domain to
specify hashes of public key information for one or more certificates
in the domain’s certificate chain [15], while Trust Assertions for
Certificate Keys (TACK) allows a domain to specify a public key that
the client should treat as a trust anchor for the domain [29]. For se-
curity, both approaches deliberately make it difficult to prematurely
remove or update a pin for a domain, but this approach can easily
make a domain inaccessible due to misconfiguration or malicious
behavior. In 2017, HPKP was removed from Google Chrome due in
part to these pitfalls [32], and TACK was never widely adopted.

Log-based authentication extends the functionality of CT to
enable logs to provide or authenticate public-key information for a
domain. AKI [22], its successor ARPKI [3], and CIRT [34] have logs
directly provide public-key information for domains and use log
proofs to efficiently prove this information. PoliCert [41] allows
domains to specify a rich set of policies that can emulate systems
such as public-key pinning or AKI. While these systems can provide
strong security guarantees (ARPKI, for example, formally proves
protection against MITM attacks despite the failure of n CAs), they
require significant changes to the certificate issuance process. These
systems can require multiple CAs to coordinate to issue a certificate
or easily make a misconfigured domain inaccessible. Moreover,
the deployment of these systems may require a “flag day” when
issuers switch to the new system or allow adversaries to downgrade
handshakes to the current, vulnerable PKI.

3 CAPS OVERVIEW

Goals. CAPS primarily aims to enable a smooth transition from the
Web’s existing PKI to an improved PKI (which can range from an

ACSAC ’20, December 7–11, Austin, TX, USA Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot, and Bryan Parno

extension of the existing PKI to a new PKI altogether). We assume
that during this transition, both the existing and improved PKIs
will coexist, and that the improved PKI will make MITM attacks
more difficult to carry out. Hence, CAPS must prevent downgrades
to the old PKI as well as TLS stripping. More precisely, if a client
and server both support the improved PKI, then when they per-
form a handshake, they should negotiate a session key based on the
domain’s public key as certified in the improved PKI. As secondary
objectives, we also seek to prevent domains from becoming inac-
cessible due to misconfiguration, private key loss, or private key
compromise, and to minimize the changes to existing interactions
between clients, domains, and CAs.

Adversary Model. We consider a MITM adversary, who has full
control of the network during the TLS handshake; that is, the ad-
versary can intercept, drop, or modify all messages sent among all
entities described below. We assume the adversary cannot break
standard cryptographic primitives.

Architecture. Fig. 1 illustrates the CAPS architecture and how
CAPS achieves our goals. Since CAPS transitions from the current
Web PKI, it necessarily includes the entities in the current PKI:

• Domains serve webpages to clients. Each domain has a name
such as example.com.

• CAs issue certificates to domains. Each certificate binds a set
of names to a single public key.

• Clients connect to domains over HTTP or HTTPS, and in
the latter case, verify the binding between a domain’s name
and public key.

• Browser/OS vendors (hereafter simply vendors) provide the
software by which clients connect to domains and verify
domains’ certificates.

• Public logs maintain a publicly auditable, append-only data-
base of certificates, such as those used in CT.

CAPS introduces a new entity, the log aggregator, a high-availability
entity that uses publicly available data to maintain a database of do-
mains that have deployed HTTPS and/or the improved PKI. As our
figure shows, there may be multiple independent log aggregators.
While throughout this section we assume that the log aggregator is
separate from other entities and that there is a globally accepted set
of known and trusted log aggregators, in Section 7 we discuss how
we can relax these assumptions, namely, by arguing that browser
vendors should take on this responsibility.

As shown in Fig. 1, most interactions between entities in the cur-
rent PKI remain the same in CAPS. CAs remain entirely unchanged;
they issue certificates to domains and log newly-issued certificates
as they do in the current PKI (with CT). Clients and domains es-
tablish an encrypted communication channel through the standard
TLS handshake, and vendors provide clients with browser software.

To prevent an adversary frommanipulating an attemptedHTTPS
connection into an HTTP connection (and thus bypassing TLS com-
pletely), the log aggregators use data from public logs to construct a
signaling set, which succinctly represents the set of all domains that
support HTTPS. The log aggregators build this set by downloading
the set of all currently valid (i.e., non-expired) certificates from the
logs and extracting all domains named in these certificates. The log
aggregators then make this set, as well as updates to this set over

time, available to client browsers. When connecting to a server, the
browser first checks whether the server is in the signaling set; if it
is, then the browser will refuse to engage in an HTTP connection.

To give domains more control over their public keys than in the
current PKI, log aggregators use data from public logs to construct
a set of CAPS policies, which allows each domain to establish one
or more authoritative public keys in the current Web PKI. CAPS
policies take a simple and intuitive approach: treat any public key
backed by a maximal number of independent certificate chains1 in
the current PKI as authoritative. A domain wanting to increase
client confidence in one of its public keys can obtain additional
independent certificates for that key, and the log aggregators will
automatically update their CAPS policies for that domain.

Intuitively, log aggregators simply provide signed pairs of the
form (name, c)where name is a domain name and c is the CAPS policy
value, i.e., the number of independent certificate chains backing an
authoritative key for name. In case of a tie, name may have more
than one authoritative key: if public keysK1 andK2 are both backed
by three independent chains then both public keys are treated as
authoritative for name. To prevent an adversary from downgrading
handshakes in the improved PKI to a handshake in the existingWeb
PKI, each log aggregator indicates which domains in its signaling
set have a CAPS policy value (c) greater than 1.

When establishing an HTTPS connection with a server, clients
use the signaling set to check if the domain has a CAPS policy value
that is exactly one or greater than one. In the former case, the client
connects to the domain using the standard TLS handshake, but in
the latter case, the client requests policy information from the do-
main using a TLS extension similar to ones under consideration for
IETF standardization [4, 40]. Domains obtain the information from
log aggregators and forward it to the client; if a client receives and
verifies a policy of (name, c), it will expect to receive c independent
certificate chains from the server. If it receives fewer chains, or if
any fail to validate, the client aborts the connection.

The current PKI actually supports three classes of certificates:
standard domain-validated (DV) certificates, organization-validated
(OV) certificates, and extended validation (EV) certificates [16]. EV
certificates require domains to undergo more rigorous screening
than the other two. Hence, the actual CAPS policy value is a pair
(cEV , c!EV). For a given domain, CAPS will treat as authoritative a
public key with the largest observed cEV , with ties broken based
on the largest value of c!EV , which represents the policy value of
all non-EV certificates for the domain.

4 CAPS DETAILED DESIGN
In this section, we describe CAPS in detail, including how it sig-
nals which domains have deployed HTTPS and improvements to
the Web PKI (Section 4.1), how it provides stronger public-key
authentication over the existing Web PKI (Section 4.2), and how
clients establish secure end-to-end connections with servers (Sec-
tion 4.3). We conclude by describing how CAPS thus enables the
bootstrapping of more advanced policies (Section 4.4).

1This term means that the certificate chains share no public keys except at the leaf.

CAPS: Smoothly Transitioning to a More Resilient Web PKI ACSAC ’20, December 7–11, Austin, TX, USA

4.1 Building the Signaling Set
The signaling set represents (1) a set of FQDNs (hereafter names)
known to have deployed HTTPS (by virtue of having a valid public-
key certificate appear in a public log), and (2) the subset of names
that have adopted CAPS (by virtue of having multiple indepen-
dent certificate chains (MC) for the same public key). Formally, the
signaling set is a pair (SHTTPS, SMC) where SHTTPS and SMC are
unordered sets of valid names in ASCII2 and SMC ⊆ SHTTPS. The
set supports a query operation, formally defined as query : Σ∗ →
{no_https, one_cert,multi_cert} where Σ∗ is the set of all ASCII
strings and no_https, one_cert, and multi_cert are values indicat-
ing whether a string is a name known to have no HTTPS certificate,
a public key backed by one certificate chain, or a public key backed
by multiple independent certificate chains, respectively.

To build its signaling set, a log aggregator must first determine
SHTTPS and SMC, which it can achieve using the set of all certificates
in the Web PKI. The log aggregator maintains a database of current
certificates by using information from public sources, namely, (1)
public logs that collect Web certificates (e.g., CT and Censys – see
Section 2.1), (2) CRLs such as those published by CAs [6] or browser
vendors [18, 23], and (3) revocation information retrieved from
OCSP responders [36]. The log aggregator updates this database
regularly (e.g., each day), thus maintaining a list of certificates valid
on a given day.3

The log aggregator extracts the names from the currently valid
certificates in its database; the resulting set of distinct names is
SHTTPS. The log aggregator also analyzes the certificate chains in
this set to determine SMC, a procedure we describe in Section 4.2.
The log aggregator then creates a representation of the signaling
set and makes it available to client browsers.

Because the signaling set must be available to each client that
supports CAPS, the log aggregator must succinctly represent this
set to minimize the bandwidth and storage burdens on each client.
However, simply minimizing the storage burden is insufficient;
clients must store the signaling set in memory to minimize connec-
tion latency overhead. Thus the log aggregator must also represent
this set in such a way that clients can query the set with acceptably
small latency and memory.

We considered several approaches when determining how to
represent the signaling set. A Bloom filter [5] supports efficient set
membership queries, but has false positives (which for this appli-
cation would result in incorrectly flagging a site as under attack)
and for the scale of data we consider, results in too large a storage
burden (Section 6.1). A filter cascade [35] would eliminate false pos-
itives, but has the virtually impossible prerequisite of knowing all
names in the DNS namespace, which requires the cooperation of all
TLD operators (including many national governments). Finally, us-
ing an existing data compression utility (e.g., zpaq) with aggressive
compression parameters could minimize the required storage space,
but would also require decompression and lookup each time a client

2A valid name is a Unicode or ASCII string up to 253 bytes in length overall, with no
label longer than 63 bytes [31]. We further add the requirement that the name has
a top-level domain (TLD) that is a current global TLD according to ICANN. We use
ASCII here because we can encode names in Punycode.
3A certificate is valid on a given day if the signature on it is valid, it chains to a
recognized root certificate store, and that day falls between the certificate’s notBefore
and notAfter fields [6].

Set
ca.foo

com.bar
com.baz
com.foo

0 1

10

11

2

3

4

5

6

7

8

9
o

m b a.

a
. f

f

o o

c r z

0 1

4

5

2

3

fc r z
a.f

om.
ba

oo

Generate standard
DAFSA Compact long edges

Figure 2: The first stages of our DAFSA construction. Each
stage modifies the DAFSA to ultimately minimize the size
of its binary representation.

tried to connect to a site whose HTTPS deployment status was not
known, resulting in significant latency overhead (Section 6.4).

In our log aggregator prototype, we ultimately chose to represent
the signaling set as a data structure known as a deterministic acyclic
finite-state automaton, which succinctly stores a set of strings, sup-
ports efficient membership queries in this set, and supports efficient,
compact construction [8]. As shown in Fig. 2, a DAFSA takes ad-
vantage of both common prefixes and suffixes that appear in a set
of strings; since such patterns are frequent in a large set of do-
main names, much of the redundancy in SHTTPS can be removed
with this approach. Additionally, DAFSAs can also be represented
succinctly, using an approach we summarize below [9]. Given the
characteristics of our input set as described in Section 6.2, we make
an additional design change, path compaction, to our DAFSA repre-
sentation that further reduces its size.

Formal DAFSA Definition. To precisely describe these changes,
we begin by presenting a formal framework to describe DAFSAs.
Formally, a DAFSA is a tuple (Σ, S, s0,δ , F) where (1) Σ is a set of
possible input symbols, (2) S is a set of states, (3) s0 is an initial state
where s0 ∈ S , (4) δ : S × Σ → S is a partial function called the state
transition function that maps a state-symbol pair to a new state,
and (5) F is a set of accept states where F ⊆ S . The DAFSA also has
the restriction that the state transition function is acyclic, that is,
there is no sequence of states and symbols (s1, . . . , sn), (σ1, . . . ,σn)
where δ (si ,σi) = si+1 for 1 ≤ i < n and δ (sn ,σn) = s1.

We represent queries to the signaling set within the DAFSA
as follows: let Σ contain a unique symbol µ that is not present in
any name in SHTTPS. Then, if there exists a sequence of states and
symbols (s0, . . . , sn), (σ1, . . . ,σn) that satisfies (1) δ (si ,σi+1) = si+1
for each i where 0 ≤ i < n, (2) σ1∥ . . . ∥σn−1 = name, (3) σn = µ,
and (4) sn ∈ F , we say that query(name) = multi_cert. Otherwise, if
(1) δ (si ,σi+1) = si+1 for each i where 0 ≤ i < n, (2) σ1∥ . . . ∥σn =
name, and (3) sn ∈ F , then query(name) = one_cert. Otherwise,
query(name) = no_https.

DAFSA Representation. We begin by building the DAFSA as
described in previous work [8] (Fig. 2). Though this previous work
assumes transitions based on a single character, we consider the
possibility of multi-character symbols and thus our symbol set

ACSAC ’20, December 7–11, Austin, TX, USA Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot, and Bryan Parno

consists of strings of length up to 253 characters:4 Σ≤253 =
⋃253
i=0 Σ

i ,
where Σ is the set of all ASCII characters allowed in domain names,
and Σi indicates strings of length i .

We succinctly represent this DAFSA as a bitvector by following
the high-level approach of previous work [9]. Intuitively, we rep-
resent the DAFSA as a sequence of state encodings, which mostly
consist of outgoing transition encodings. By our definition of δ ,
for a state s , if δ (s,σ) = t , then each outgoing transition must be
represented by an encoding of the label σ and the destination state
t . We observe that in this construction, the overall number of out-
going transitions, as well as the size of the representation of each
transition’s label and destination state, strongly influence the size
of the final bitvector. We thus leverage patterns in the underlying
data to minimize the overall size of the DAFSA representation.

Path Compaction. We extend the design of prior work with path
compaction, which minimizes the DAFSA representation by reduc-
ing the overall number of transitions. Intuitively, path compaction
removes a connected set of states from the DAFSA and replaces
transitions into or out of this set with transitions equivalent to
paths through the set. As we formalize below, we can model this
process as the transformation of one DAFSA into another and use
this model to determine how we should select a set of nodes to
ensure a minimal DAFSA representation.

Given a DAFSA (Σ, S, s0,δ , F), we define a path between s1 and
sm to be a sequence of alternating states in S and symbols in Σ,
written (s1,σ1, . . . , sm), where for all i where 1 ≤ i < m, δ (si ,σi) =
si+1. We say that a set of states T ⊆ S is a connected component if
either T ⊆ F or T ∩ F = ∅, and for any two states t ,u ∈ T , any
path between t and u contains only states inT . The upstream states
of a connected component T , written U (T), is the set of all states
s ∈ S \T for which there exists a state t ∈ T and a symbol σ where
δ (s,σ) = t . The downstream states of T , written D(T), is the set of
all states s ∈ S \T for which there exists a state t ∈ T and a symbol
σ where δ (t ,σ) = s . A path through a connected component T is
a path (s1,σ1, . . . , sm) where s1 ∈ U (T), for all i where 1 < i < m,
si ∈ T , and sm ∈ D(T).

Path compaction consists of repeatedly (1) selecting a connected
component T within the DAFSA, (2) calculating the estimated re-
duction in representation size from compacting the paths throughT ,
and (3) if the change reduces the size of the DAFSA representation,
removing these states from S and replacing the paths through T
with an equivalent set of transitions. Specifically, when removingT ,
we transform the DAFSA (Σ, S, s0,δ , F) to (Σ, S \T , s0,δ ′, F), where
for all paths (s1,σ1, . . . , sm) through T , δ ′(s1,σ1∥ . . . ∥σm−1) = sm .

Our goal is to select components that result in the greatest re-
duction in size. To determine the impact of removing a connected
component, we consider both the reduction in the number of edges
in the DAFSA and any changes to the Shannon entropy of the
distributions of symbols and destination states in the DAFSA, as
removing a component cause these distributions to change. To
quantify this change, we define several helpful variables.

For a set X ⊆ S , let τ (X) denote the set of transitions that start
or end in X , that is, the number of triples (s, t ,σ) where δ (s,σ) = t
and s or t (or both) is in X . For a connected component C , let π (C)
denote the set of paths through C . Then the change in the number

4Recall that DNS names can be a maximum of 253 characters.

a83dd0cc…

f6056ef7… 984979b9…

6ac3c336…

1fcc08c7…

2744ccd1…

769f31dc…

Figure 3: Sample certificate fingerprint graph. A → B indi-
cates that a certificate with fingerprint A is the authority
public key for a certificate with fingerprint B. Though the
leaf certificate 6ac3c336 . . . has four chains, the bolded fin-
gerprints show that only two of the chains are independent.

of edges by removingC through path compaction is |π (C)| − |τ (C)|.
By collecting the distribution of symbols in τ (S) and τ (C), as well
as the concatenated symbols in π (C) (which we can find via depth-
first search fromU (C)), we can compute the change in entropy in
symbols and similarly for destination states, which we write as
∆Hσ and ∆Hδ , respectively. Suppose that we know the original
entropies Hσ and Hδ , and that we define ∆H = ∆Hσ + ∆Hδ and
H = Hσ +Hδ . Then we can compute the difference in size between
the two DAFSAs as

|τ (S)|∆H + (|π (C)| − |τ (C)|) (H + ∆H) (1)
and only remove C if this quantity is negative.

We found several classes of components that, for our underlying
set of domain names, provided substantial reductions in the size
of the DAFSA representation. The first was to select what we call
isolated paths, that is, paths of the form (s1,σ1, . . . , sm) where for
all i such that 1 < i < m, si only had one incoming and one
outgoing transition. Using techniques from prior work [8] to build
the DAFSA results in a significant number of isolated paths. Hence
performing path compaction on all such paths results in a size
savings of nearly 10% of the original DAFSA size. We also found that
selecting a constant α and then selecting components consisting
entirely of states that had one incoming transition and α outgoing
transitions (or vice versa) yielded more modest but still nontrivial
size reductions for α = 2 and α = 3.

4.2 Building the CAPS Policy Database
The CAPS policy database represents a binding between a name and
a policy, that is, the number of independent certificate chains a client
should expect during a handshake with a server corresponding
to the name. To construct and maintain this database, each log
aggregator tracks the certificates and chains active for a domain at
any given time, using the data collected for the signaling set.

A log aggregator uses this data to maintain an internal data-
base with (many-to-many) maps of (1) certificates to names, (2)
certificates to public keys, and (3) certificates to chains. Regular
updates to this database (described in Section 4.1) ensure that the
log aggregator has a list of currently valid certificates. The log ag-
gregator can then use the database to construct a mapping of names
to policies. Specifically, the aggregator creates a graph of certificate
fingerprints as shown in Fig. 3, and computes the policy value (c),
the minimum number of CA public keys that must be compromised
for a CAPS-enabled browser to accept a fraudulent certificate for

CAPS: Smoothly Transitioning to a More Resilient Web PKI ACSAC ’20, December 7–11, Austin, TX, USA

this site. The policy value can be computed using a straightforward
approach (e.g., computing a minimal vertex separator), allowing
the log aggregator to easily construct a mapping of certificate fin-
gerprints to policy values. The log aggregator can then perform a
series of simple join operations to map each name to the maximum
policy number associated with a certificate containing the name.

The log aggregator constructs this name-to-policy mapping each
time it receives data from public sources, which occurs at regular,
scheduled intervals (recall Section 4.1). Once it has created the
mapping, the log aggregator certifies the mapping’s name–policy-
value pairs by timestamping and signing them. For auditability, the
log aggregators can additionally take an approach similar to that
of logs in CT, using a Merkle hash tree to store their policy proofs
over time in a cryptographically verifiable, append-only fashion.

A domain can now provide the information necessary for clients
to establish the domain’s authoritative public key. The domain
periodically downloads the latest policy proofs, which are signed
and timestamped name-policy pairs, from each of the log aggrega-
tors. For a name name, a policy value c , a timestamp ts, and a log
aggregator A, the policy proof is

P(A, name, c, ts) =
{
data, SignA(data)

}
where

data = A∥KA∥name∥ts∥c (2)

where KA and K−1
A denote respectively the public and private keys

ofA, and SignA(m) denotes a signature onm with K−1
A . The domain

caches these proofs and serves them to clients in the handshake
protocol described below.

4.3 Connection Establishment
To establish a connection to a domain, a client (e.g., browser) first
queries the signaling set for the domain’s name. If this query re-
turns one_cert then the client performs a standard TLS handshake
(and refuses any attempts to downgrade to plain HTTP). If the
query returnsmulti_cert, indicating the domain has more than one
certificate chain, then the client performs the CAPS-extended TLS
handshake to establish a connection with the domain. The result of
the query to the signaling set is cached until the next signaling set
update, which eliminates the need for this query in future connec-
tions. Caching is particularly effective at minimizing overhead for
operations such as session resumption [33].

The CAPS-extended TLS handshake protocol allows a client to
verify a domain’s authoritative public key. The TLS handshake
protocol [10] provides support for open-ended extensions (imple-
mented in cryptographic libraries), and thus we designed our pro-
tocol as an extension within the existing TLS handshake.

During the initial ClientHello message, the client includes a
CAPS extension message, which consists of a single integer k , in-
dicating the number of policy proofs that the domain should send
back. In an initial deployment, we expect that typically k = 1, but
allowing the use of larger values for k provides resilience against
compromised log aggregators. If the client asks for more proofs
than the domain is willing to provide, then the connection simply
fails. See Section 5.2 for further discussion.

The domain then sends back a ServerHello message that contains
cached policy proofs from k distinct log aggregators, as well as c
certificate chains. The client can then verify the domain’s policy

value and the certificate chains supporting it. Formally, suppose
a domain has hostname name and policy value c , and selects a set
of log aggregators {A1, . . . ,Ak }. Let Πi = P(A1, name, c, tsi) for
1 ≤ i ≤ k , where tsi is the timestamp of the policy proof from Ai .
The domain sends the following back in the ServerHello extension
message:

{Π1, . . . ,Πk ,C1, . . . ,Cc−1} (3)

where Cj is a certificate chain for name. In the extension message,
the domain only sends c−1 certificate chains because the remaining
chain is sent in the ServerCertificate message of the TLS handshake.

The client then checks that (1) the signature on each policy
proof is valid, (2) the timestamp for each policy proof is sufficiently
recent, (3) the name in each policy proof matches the domain name
to which the browser is connecting, (4) the policy value for each
policy is one more than the number of certificate chains sent in
the domain’s extension message, and (5) each certificate chain is
valid as specified in the X.509v3 standard [6]. If the above checks
pass, the client continues with the standard TLS handshake, which
requires the client to verify an additional certificate chain in the
ServerCertificate message and perform all other checks required
by the TLS handshake protocol.

While our current design uses a custom TLS extension, in the
future, CAPS may instead leverage recently proposed TLS exten-
sions [4, 40] designed to allow the transmission of additional cer-
tificates (primarily to facilitate content hosting by CDNs).

4.4 Bootstrapping Advanced Policies
Once an authoritative public key for a domain has been established
through the CAPS handshake, signatures made by the correspond-
ing private key are useful beyond simply improving the domain’s
security in the current PKI. In particular, a signature from the au-
thoritative public key can be used to verify the binding between a
domain and a richer set of policies. For example, in systems such
as ARPKI [3] and PoliCert [41], these policies can specify a set of
CAs that are authorized to issue certificates for the domain, or pin
specific public keys to the domain. In this way, the authoritative
public key established in CAPS can be used to bootstrap confidence
in these advanced policies while preventing downgrades to the old
PKI.

This bootstrapping approach obviates the need for logs to di-
rectly store the policies, which can be quite large in these previously
proposed systems. Moreover, in CAPS, this bootstrapping can take
place at any time during deployment. This means that in the case of
a lost private key, a domain can simply obtain c new independent
certificate chains, and in the case of a compromised private key, c+1
new independent chains. This contrasts with previous proposals,
which often rely on heavyweight manual processes.

5 SECURITY ANALYSIS
We analyze the security of CAPS, beginning with our main security
claim: an adversary must compromise a threshold number of CAs
or log aggregators to mount a successful MITM attack. We then
describe potential weaknesses not covered by our security claim.

ACSAC ’20, December 7–11, Austin, TX, USA Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot, and Bryan Parno

5.1 Main Security Claim
In making our main security claim, we assume that the client re-
quests k policy proofs and that the domain has domain name D.
We assume that the domain has a policy value of c and thus at least
c independent certificate chains, along with at least k policy proofs
for this policy value. We also assume that our adversary controls
k − 1 private keys of log aggregators and the private keys of c − 1
CAs. The adversary can also, of course, create its own public key
pairs, e.g., (KM ,K

−1
M). Recall that controlling a log aggregator’s pri-

vate key allows the adversary to forge policy proofs for any domain
with any policy value, and controlling a CA’s private key allows
the adversary to forge certificates binding any domain name to any
public key. We assume that the adversary can intercept, suppress,
replay, and modify any handshake message sent between the client
and domain, and the adversary can use its private keys to sign any
message it can construct with the information it obtains. We also as-
sume that the adversary cannot obtain a certificate bindingD toKM
from any CA besides the ones it controls. Under these assumptions,
we claim that a CAPS-enabled client will abort the handshake pro-
tocol if it receives any certificate chain containing the adversary’s
KM as the leaf public key for D. This claim supports the security of
CAPS, because to mount a successful MITM attack, the adversary
must convince the client to complete the CAPS handshake based
on a key that the adversary controls.

We first show that the adversary cannot convince the client that
that the domain has a policy value other than c . Because the client
requests k policy proofs for D, the client will abort the handshake
if the ServerHello message does not contain k independent policy
proofs. Because we assume that the adversary only has access to
k − 1 log aggregator signing keys, the adversary cannot use those
keys to generate k independent proofs. Specifically, if the adversary
sends a set of proofs and there are fewer than k valid proofs, or if
any of them fails to prove that c is the policy value for D, then the
client will abort the handshake.

From our assumption that the adversary can access the sign-
ing keys of c − 1 CAs, we know that the number of independent
certificate chains that the adversary can generate is at most c − 1.
It is straightforward to show this by induction on c , with c = 2
as the base case.5 If the adversary generates c − 1 independent
certificate chains for KM and sends these chains to the client, the
client will validate the chains, but abort the handshake when the
cth independent chain fails to arrive.

5.2 Potential Weaknesses
Our main security claim shows that under our assumptions, the
adversary cannot mount a successful MITM attack on a client and
domain. However, we did not yet address the ways in which CAs,
log aggregators, or other parties shown in Fig. 1 may fail. We now
discuss possible failures for each of these parties and how they may
affect the security of CAPS, along with potential mitigations.

CAs. Historically, all publicly known CA failures have been single-
tons (i.e., separated in time and causation from other failures), but
a systemic flaw may allow an adversary to compromise many CAs
at once. Such a widespread compromise would be quickly detected
5Note that the c = 1 case is equivalent to the current Web PKI (i.e., the domain only
provides a single certificate chain).

by public logs and certificate scanning services. Subsequently, the
browsers or CAs could issue revocations of the affected certificates
or CA keys using existing methods.

Public Logs. A misbehaving public log may record a fraudulently-
issued certificate, refuse to include a certificate in its database,
or attempt to change details of previously logged certificates. CT
expects auditors (a role anyone can adopt) to monitor logs for any
such misbehavior [26]. Recording fraudulent certificates may cause
a log aggregator to compute a policy value that is too high, making
a domain inaccessible in CAPS. However, this also requires the
failure of c CAs to mount a MITM attack, and would be quickly
detected by an auditor. Once detected, browsers and log aggregators
can simply ignore the misbehaving log.

Log Aggregators. A log aggregator’s private key may be lost or
stolen, causing it to provide incorrect policy information or signal-
ing sets. A successful MITM attack would require k aggregators to
send incorrect policy information. Clients can choose a value of k
to minimize this risk; in practice, we expect a value of 2 or 3 will
suffice. Indeed, major browsers already expect to see at least two
CT log proofs during a normal TLS handshake [1]. Clients can take
a similar approach to verify signaling sets and their updates.

A log aggregator may not provide updates in a timely manner.
Since domains provide cached policy proofs to clients, domains who
change their certificates or obtain additional certificates can ensure
that their policy proofs are up to date by fetching and caching
proofs with the correct values before proceeding to establish con-
nections with the new/additional certificates. The delay may also
affect signaling sets, but only if the policy value changes between 0,
1, and ≥ 2 independent chains. Finally, logs are held to a standard
of 99% availability [39], and doing the same for log aggregators
would minimize the risk of these failures.

Browser Vendors. A misbehaving browser vendor can ship a ma-
licious version of a browser to clients, and we consider this failure
mode outside of the scope of CAPS. A malicious browser can arbi-
trarily deviate from TLS or CAPS, insert its own root certificates,
or display arbitrary pages.

6 EVALUATION
Below, we evaluate the performance of CAPS in our prototype. All
of the code for this section, including our prototype implementation
of the core CAPS components and the scripts we used for testing,
are available at https://github.com/syclops/caps.

6.1 Signaling Set Domains
We can obtain a view of the Web PKI using data from public logs
(Section 4.1). Specifically, we obtain public-key certificates from
Censys [11] and logs in CT [26]. From Censys, we collected 1,026
scans of the IPv4 address space from September 12, 2015 to July
3, 2018. From CT, we collected all entries from known CT logs
that were not disqualified or unreachable as of July 3, 2018,6 which
totaled approximately 1.74B certificates from 26 logs from March
26, 2013 to July 3, 2018.

6https://www.certificate-transparency.org/known-logs

https://github.com/syclops/caps
https://www.certificate-transparency.org/known-logs

CAPS: Smoothly Transitioning to a More Resilient Web PKI ACSAC ’20, December 7–11, Austin, TX, USA

2013 2014 2015 2016 2017 2018
Date

0.0

0.5

1.0

1.5

Na
m

es

1e8
Censys only
Both
CT only

Figure 4: Number of unique names (including hostnames
and wildcard names) seen by Censys and CT over time.

On each of these days, we consider an “active set” of certifi-
cates consisting of all certificates that were valid on that day7 and
chained to one of the three major root certificate stores, deter-
mined by Apple, Microsoft, or Mozilla, respectively. In the Censys
dataset, because we observed a great deal of churn (i.e., certificates
disappearing and appearing in consecutive scans), we included a
certificate in the active set from the time it was first observed in our
data until its expiration. We then consider the number of unique,
valid domain names to build the signaling set.

Fig. 4 shows the number of domain names observed by Censys,
CT, and both over time. We found that CT observes vastly more
certificates (and consequently names) than Censys. It is unclear
what causes this large discrepancy. One possibility is that many
certificates are simply never deployed in public-facing HTTPS sites.
Another likely contributing factor is the increasing use of Server
Name Indication (SNI) [13], which cause Censys’ probes to be re-
jected when they do not include the correct server name.

Fig. 5 shows the size of the “active set” of certificates as observed
by our two data sources. For the most part, the trend in the number
of active certificates on a given day matches the trend in the number
of active domain names as seen in Fig. 4. There does, however,
seem to be slightly more churn in the number of active certificates
over time, particularly during 2017, in which the usage of Let’s
Encrypt was becoming increasingly widespread. We point out that
the number of names is almost consistently greater than the number
of certificates due to the fact that certificates can contain multiple
names (and many popular sites such as Google have certificates
with all of their domain names).

From Censys and CT, we obtained a total of 156,289,973 valid
domain names for which a certificate had been issued. To address
the possibility that many of these names may not be used for public-
facing sites, we performed a scan of port 443 (the default for HTTPS)
using ZGrab [11] for all of these domain names, and discarded any

7Recall our definition in Footnote 3.

2013 2014 2015 2016 2017 2018
Date

0.0

0.2

0.4

0.6

0.8

1.0

Ce
rti

fic
at

es

1e8
Censys only
Both
CT only

Figure 5: Number of unique certificates seen by Censys and
CT over time.

domain names that consistently failed to respond. This resulted in
64,050,329 names that we used for testing, as described below.

6.2 Signaling Set Representation
As described in Section 4.1, our motivation for using a DAFSA-
based representation of the signaling set was twofold: first, the
representation has no false positives or negatives, and second, it
can be searched in its compressed state, reducing client memory
usage. To evaluate the effectiveness of these design decisions, we
measured the space requirements for the signaling set in various
representations. We measured both the fully compressed size (used
when transmitting the set to the client and when stored on disk) and
the size in memory (when being used during certificate verification).

In particular, we compared the plaintext representation of the
signaling set (as of July 3, 2018) with a compressed representation
using Bloom filters, the generic compression utility zpaq [27],8 and
various configurations of our DAFSA-based representation. We also
compressed the DAFSA-based representation using zpaq to find its
size on disk and in transit.

We specifically tested a Bloom filter with false positive rates
of 0.001%, 0.01%, and 0.1%. Since the number of domain names
is on the order of 100M [44], we expect that the number of false
positives will be on the order of 1k, 10k, and 100k, respectively. We
estimate that a false positive rate of 0.001% will be sufficient for
most users. We tested zpaq using two compression methods, 1 and
5, where method 1 completes in a short amount of time (25 seconds)
but compresses the input less while method 5 takes a long time
(20 minutes) but yields excellent compression. Furthermore, with
zpaq method 5, we tested with 64 MiB and 2048 MiB blocks, where
larger blocks typically yield better compression. Finally, with our
DAFSA-based representation, we tested a plain encoding as well as
an encoding using our path-compressed DAFSA, and compressed
each of these encodings with zpaq method 5 using both block sizes.

8While we tested compression with other utilities, zpaq had the smallest size.

ACSAC ’20, December 7–11, Austin, TX, USA Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot, and Bryan Parno

Table 1: Size (on-disk or in transit) of CAPS signaling set on
July 3, 2018 (64,050,329 names) with various compression ap-
proaches. The representation size in memory is not shown.

Representation Size (MB)

Plaintext 1,509

Bloom Filter (0.001% FP, best-case) 192
Bloom Filter (0.01% FP, best-case) 153
Bloom Filter (0.1% FP, best-case) 115

zpaq (method 1, 16 MiB blocks) 286
zpaq (method 5, 64 MiB blocks) 105
zpaq (method 5, 2048 MiB blocks) 104

DAFSA 214
DAFSA w/ path compaction (PC) 190
DAFSA w/ zpaq (method 5, 64 MiB blocks) 162
DAFSA w/ zpaq (method 5, 2048 MiB blocks) 160
DAFSA w/ PC, zpaq (method 5, 64 MiB blocks) 150
DAFSA w/ PC, zpaq (method 5, 2048 MiB blocks) 148

The results are shown in Table 1. Starting from a plaintext corpus
of over 1.5 GB, the various options all achieve impressive compres-
sion ratios. However, the results also indicate that to achieve a
competitive size (i.e., 153 MB or less), Bloom filters require an un-
acceptably high false positive rate: one in every 10K sites would be
falsely signaled as supporting HTTPS and hence would be rendered
inaccessible. While zpaq does not have any false positives or false
negatives and yields excellent compression when run using method
5, its in-memory representation is simply the uncompressed set of
domains, yielding a memory requirement of 1.5 GB. Our DAFSA-
based representation captures a “sweet spot” between these two
alternatives, suffering no false positives or negatives and, in the best
case, an on-disk representation of just 148 MB with an in-memory
representation of 190 MB.

For some clients, an initial download size of 148 MB may be
too much. One approach that such clients might take to protect
themselves would be to only track sites that have more than one
certificate (i.e., sites with c > 1). This would ensure that such clients
still benefit from greater resiliency against CA compromises, partic-
ularly for “high-value” domains that take the effort to obtain extra
certificates. For these clients, this optimization would reduce disk
and memory usage, but CAPS would no longer protect such clients
from TLS stripping attacks targeting “normal” domains (those with
a single certificate). To estimate clients’ memory and disk usage in
this case, we subsampled the full set of names and computed the
size of the DAFSA with path compaction and the size of the zpaq-
compressed DAFSA (which represents the best-case disk usage).

Table 2 shows the results. If the fraction of domains that use
multiple independent certificate chains for the same name is small,
as we would anticipate, then CAPS clients significantly reduce their
memory and disk usage. For example, even if 10% of all HTTPS
websites deployed additional certificates, the compressed DAFSA
representation would require just 33 MB. Of course, at very low
levels of adoption, the advantage of the DAFSA-based approach
over a list of names decreases. This makes sense, given that the
DAFSA takes advantage of common substrings.

Table 2: Size of the signaling set in various representations
when the names are subsampled from the full set of names.

Fraction 0.01 0.05 0.1 0.2 0.5

Names (100K) 6.39 32.0 64.1 128 320

Uncompressed (MB) 15.1 75.5 151 302 755
DAFSA (MB) 5.25 22.9 41.7 73.1 140
Compressed DAFSA (MB) 4.21 18.2 33.0 58.1 112

2015-09
2016-01

2016-05
2016-09

2017-01
2017-05

2017-09
2018-01

2018-05

Date

0

20

40

60

80

100

Si
ze

 (M
B)

Uncompressed
Compressed (zpaq)
DAFSA encoding
Compressed DAFSA encoding

Figure 6: Size of update set (added name set and deleted
name set) in different formats over time.

6.3 Signaling Set and Certificate Updates
Because the signaling set will be updated over time, we experi-
mented to determine the size of updates sent to clients. An update
to the signaling set consists of the names added to the signaling
set since the most recent version, as well the names deleted due to
certificate expiration or revocation. We computed the set of added
and deleted names for our range of scans, aggregating these sets by
week. We then computed the combined sizes of these sets in four
different representations: (1) as an uncompressed text file of name
strings, (2) as a compressed zpaq archive containing the above file,
(3) as a DAFSA of the set of strings, and (4) as a compressed zpaq
archive containing the above DAFSA. For each method, we used the
variant that produced the smallest representation; e.g., we used the
zpaq method that produced the smallest archive (method 5 with 64
MiB blocks) and our DAFSA representation used path compaction.
We experimented with the full set of names.

Fig. 6 shows the results. The size of added and deleted names
is slowly increasing over time, with the set of added names con-
sistently being larger than the set of deleted names (Appendix A).
Given the relatively modest sizes of these sets compared to the full
signaling set, the most space-efficient method for representing and
transmitting these updates to clients is a zpaq-compressed archive
of the raw text file of names rather than a DAFSA-based representa-
tion. This method of transmission is also advantageous since clients
can simply add the set of added names to their existing DAFSA,

CAPS: Smoothly Transitioning to a More Resilient Web PKI ACSAC ’20, December 7–11, Austin, TX, USA

1 2 3 4 5 6
Number of Certificate Chains

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
el

ap
se

d
(s

)

Without CAPS (localhost)
With CAPS (localhost)
Without CAPS (WAN)
With CAPS (WAN)

Figure 7: Handshake latency vs. the number of certificate
chains sent by the domain. Error bars are standard error.

then build (and subsequently add to) a new DAFSA for the set of
deleted names. Our results show that updates are typically less than
3 MB per week or ∼439 KB/day; by comparison, downloading the
Google homepage requires approximately 400 KB.

Under certain circumstances, changes in a domain’s CA may
cause an incorrect policy value update. Specifically, if a domain
obtains a new independent certificate chain (e.g., by switching
CAs) for the same public key without revoking the old one, log
aggregators may report a policy value one higher than the domain
has, potentially affecting the signaling set and CAPS handshakes.
We reviewed our database for these potential cases and found this
affected only 0.11% of the overall set. This is a conservative upper
bound, containing certificates that are almost certainly from the
same issuer with slightly different issuer organization names, such
as “Gandi” and “GANDI SAS”, indicating that a good portion of this
small percentage of failures can be mitigated in a straightforward
way.

6.4 Connection Establishment
To measure the performance of connection establishment in CAPS,
we implemented the handshake as a custom TLS extension in the
OpenSSL library. For concrete evaluation of this extension, we use
nginx and curlwith minor modifications to use our TLS extension.

Additionally, we constructed sample sets of domain names based
on four parameters: (1) the number of proofs requested during
the ClientHello message (k), (2) the number of certificate chains
sent with the ServerHello message (c), (3) the average number of
certificates per chain, and (4) the average size of each certificate
chain. While varying each of these parameters, we measured the
amount of extra data sent in the CAPS handshake, and the latency
of the handshake both with and without the CAPS TLS extension.

We tested this both over the Internet (by connecting to a virtual
private server with latency varying from 30 to 300 ms), as well
as over the local loopback interface. The tests over the internet
(WAN) provide an indication of the effect of the extension on “real
world” servers, whereas the localhost tests provide a lower bound

on time added due to sending/receiving/processing extra data. For
all tests, we used a single active client at any given time to isolate
the overhead added by CAPS from factors such as load balancing.
A total of 15385 TLS connections were established for our testing:
5768 over WAN, 9617 over localhost.

Our results were similar in each case, with a representative
example shown in Fig. 7 (others in Appendix B). In comparison
to the mean time elapsed, there is an approximately 5% increase
in connection establishment time: an average of 11ms longer for
WAN and 1.2ms for localhost. Since our TLS extension does not
add any extra round-trips to the handshake, the time added is small
compared to random measurement fluctuations (i.e., the error bars).

7 DEPLOYMENT CONSIDERATIONS
We now discuss potential issues related to the deployment of CAPS
in practice, and propose possible ways to address them.

Candidates for Log Aggregators. Our design of CAPS does not
require specific entities to serve as log aggregators. However, from
our analysis in Section 5.2, we conclude that log aggregators should
have high availability and bewidely known.We believe that browser
vendors or public logs would be particularly suited for these roles.
Both already take an active role in “policing” the Web PKI. Both
offer high availability, with logs being held to a minimum of 99%
availability, minimizing the risk of synchronization issues. Finally,
lists of major browser vendors and logs are already widely known,
making it easy to present clients with a list of available log aggre-
gators to provide policy proofs.

Independent Certificate Chains. In Section 4.2 we described
how we can use a graph of certificate fingerprints to compute the
policy value for a domain. Specifically, we compute the policy value
as the minimum number of CA private keys that would need to be
compromised to create an independent set of certificate chains for
an adversary’s public key. However, this value does not necessarily
result in truly independent certificate chains, as many CAs control
multiple private keys. If a single CA with poor issuance practices
possesses multiple private keys, an adversary may gain fraudulent
certificates from multiple private keys in a single attack. If these
certificates are in multiple independent chains, then an adversary
may be able to mount a MITM attack.

One solution to this vulnerability is to use the certificate’s is-
suer organization name to differentiate CAs, but the success of this
approach depends on the CA itself. As we describe in Section 6.3,
we found certificates that are likely from the same issuer, but have
slightly different issue organization names. Furthermore, one CAs
may own another and use similar security practices. If these CAs do
not certify one another, their certificate chains may be considered
independent by log aggregators. While we leave deeper exploration
of this area to future work, we can easily configure CAPS to deter-
mine the independence of certificate chains by the issuer key or
organization name, and this is likely to provide sufficient security
for the vast majority of cases.

CAPS in the Modern Web. The use of HTTPS has increased sig-
nificantly over the past years (Section 6.1), in part due to the advent
of services such as Let’s Encrypt. Despite this increase, we antici-
pate the storage and memory overhead of the CAPS signaling set

ACSAC ’20, December 7–11, Austin, TX, USA Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot, and Bryan Parno

to remain manageable for three reasons. First, Table 2 suggests
a sublinear growth in the size of the signaling set relative to the
number of names. Second, despite Fig. 4 showing a large increase
in certified names, Fig. 6 suggests that the growth of names that
are accessible on the public Web is much slower. Finally, the cost of
disk space and memory falls over time, offsetting CAPS’s overhead.

Many Web clients are now mobile devices with limited computa-
tional, memory, and storage resources, but we can still deploy CAPS
on these devices. Smaller forms of the signaling set (Section 6.2)
can provide some protection against MITM attacks on resource-
constrained devices. Moreover, Fig. 7 shows the added latency of
CAPS is small compared to the overall latency, and is mostly due
to validating additional certificate chains or policy proofs.

8 CONCLUSION
We described how CAPS provides for a secure, smooth transition
to a more resilient Web PKI. Using a global view of Web certifi-
cates, CAPS prevents TLS stripping and downgrade attacks with
modest overhead, thanks to data compression and existing TLS
functionality. CAPS’ flexible policy approach simplifies incremental
deployment and recovery from errors. While room for improve-
ment remains, CAPS addresses critical challenges and provides an
important step towards a resilient Web PKI.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for valuable feedback. Stephanos
Matsumoto was supported, in part, by a CyLab Presidential Fel-
lowship. Paul Van Oorschot is supported by an NSERC Discovery
Grant. Work at Carnegie Mellon University was supported in part
by the NSF under Grant No. CNS 1900996, the Alfred P. Sloan Foun-
dation, and the CONIX Research Center, one of six centers in JUMP,
a Semiconductor Research Corporation (SRC) program sponsored
by DARPA.

REFERENCES
[1] Apple. 2019. Apple’s Certificate Transparency policy. https://support.apple.com/

en-us/HT205280.
[2] Roy Arends, Rob Austein, Matt Larson, Dan Massey, and Scott Rose. 2005. DNS

Security Introduction and Requirements. RFC 4033.
[3] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse, and

Pawel Szalachowski. 2014. ARPKI: Attack Resilient Public-Key Infrastructure. In
ACM SIGSAC Conference on Computer and Communications Security (CCS). ACM,
382–393.

[4] M. Bishop, Nick Sullivan, and M. Thomson. 2019. Secondary Certificate Authen-
tication in HTTP/2. IETF Internet Draft https://tools.ietf.org/html/draft-ietf-
httpbis-http2-secondary-certs-05.

[5] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13, 7 (July 1970), 422–426.

[6] David Cooper, Stefan Santesson, Stephen Farrell, Sharon Boeyen, Russell Housley,
and Tim Polk. 2008. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC 5280.

[7] Scott A. Crosby and Dan S. Wallach. 2009. Efficient Data Structures For Tamper-
Evident Logging. In USENIX Security Symposium. 317–334.

[8] Jan Daciuk, Stoyan Mihov, Bruce W. Watson, and Richard E. Watson. 2000. Incre-
mental Construction of Minimal Acyclic Finite-State Automata. Computational
Linguistics 26, 1 (March 2000), 3–16.

[9] Jan Daciuk and Dawid Weiss. 2012. Smaller Representation of Finite State Au-
tomata. Theoretical Computer Science 450, 7 (September 2012), 10–21.

[10] Tim Dierks and Eric Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246.

[11] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J. Alex
Halderman. 2015. A Search Engine Backed by Internet-Wide Scanning. In ACM
SIGSAC Conference on Computer and Communications Security (CCS).

[12] Zakir Durumeric, EricWustrow, and J Alex Halderman. 2013. ZMap: Fast Internet-
wide Scanning and Its Security Applications. In USENIX Security Symposium,
Vol. 8. 47–53.

[13] Donald Eastlake. 2011. Transport Layer Security (TLS) Extensions: Extension
Definitions. RFC 6066.

[14] Let’s Encrypt. [n.d.]. http://letsencrypt.org.
[15] Chris Evans, Chris Palmer, and Ryan Sleevi. 2015. Public Key Pinning Extension

for HTTP. RFC 7469.
[16] CA/Browser Forum. 2018. Guidelines for the Issuance and Management of

Extended Validation Certificates, Version 1.6.8.
[17] Electronic Frontier Foundation. [n.d.]. HTTPS Everywhere. https://www.eff.org/

https-everywhere.
[18] Mark Goodwin. 2015. Revoking Intermediate Certificates: Introducing

OneCRL. https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-
certificates-introducing-onecrl/.

[19] Jeff Hodges, Collin Jackson, and Adam Barth. 2012. HTTP Strict Transport
Security (HSTS). RFC 6797.

[20] Paul Hoffman and Jakob Schlyter. 2012. The DNS-based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698.

[21] Smart HTTPS. [n.d.]. https://mybrowseraddon.com/smart-https.html.
[22] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson, and

Virgil Gligor. 2013. Accountable Key Infrastructure (AKI): A Proposal for a
Public-Key Validation Infrastructure. In International World Wide Web Conference
(WWW). 679–690.

[23] Adam Langley. 2012. Revocation checking and Chrome’s CRL. https://www.
imperialviolet.org/2012/02/05/crlsets.html.

[24] James Larisch, David Choffnes, Dave Levin, Bruce M. Maggs, Alan Mislove, and
Christo Wilson. 2017. CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers. In IEEE Symposium on Security and Privacy (S&P).

[25] Ben Laurie. 2014. Certificate Transparency. Commun. ACM 57, 10 (Sept. 2014).
[26] Ben Laurie, Adam Langley, and Emilia Kasper. 2013. Certificate Transparency.

RFC 6962.
[27] Matt Mahoney. 2019. ZPAQ: Incremental Journaling Backup Utility and Archiver.

http://www.mattmahoney.net/dc/zpaq.html.
[28] Moxie Marlinspike. 2009. New Tricks for Defeating SSL in Practice. http://www.

thoughtcrime.org/software/sslstrip/.
[29] Moxie Marlinspike and Trevor Perrin. 2013. Trust Assertions for Certificate Keys.

https://tools.ietf.org/html/draft-perrin-tls-tack-02, (work in progress).
[30] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption

Function. Advances in Cryptology (CRYPTO) (1988), 369–378.
[31] Paul Mockapetris. 1987. Domain Names – Implementation and Specification.

RFC 1035.
[32] Chris Palmer, Rich Baldry, Andrew Meyer, Jochen Eisinger, Ryan Sleevi, Rick

Byers, Phillip Hallam-Baker, Ryan Lester, and Joe Medley. 2017. Intent to
Deprecate and Remove: Public-Key Pinning. Chromium mailing list, https:
//groups.google.com/a/chromium.org/forum/#!topic/blink-dev/he9tr7p3rZ8.

[33] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446.

[34] Mark D Ryan. 2014. Enhanced Certificate Transparency and End-to-End En-
crypted Mail. In Network and Distributed System Security Symposium (NDSS).

[35] Kamil Salikhov, Gustavo Sacomoto, and Gregory Kucherov. 2014. Using cascading
Bloom filters to improve the memory usage for de Brujin graphs. Algorithms for
Molecular Biology 9, 2 (February 2014).

[36] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Carlisle Adams. 2013. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP. RFC 6960.

[37] Ryan Sleevi. 2015. Sustaining Digital Certificate Security. https:
//googleonlinesecurity.blogspot.com/2015/10/sustaining-digital-certificate-
security.html.

[38] Ryan Sleevi, Doug Beattie, Bruce Morton, and Peter Bowen. 2016. Announce-
ment: Requiring Certificate Transparency in 2017. https://groups.google.com/a/
chromium.org/forum/#!msg/ct-policy/78N3SMcqUGw/ykIwHXuqAQAJ.

[39] Ryan Sleevi and Devon O’Brien. 2017. Certificate Transparency Log Policy.
https://github.com/chromium/ct-policy/blob/master/log_policy.md.

[40] Nick Sullivan. 2019. Exported Authenticators in TLS. IETF Internet Draft https:
//tools.ietf.org/html/draft-ietf-tls-exported-authenticator-10.

[41] Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. 2014. PoliCert:
Secure and Flexible TLS Certificate Management. In ACM SIGSAC Conference on
Computer and Communications Security.

[42] Filippo Valsorda. 2015. Komodia/Superfish SSL Validation is Broken. https:
//blog.filippo.io/komodia-superfish-ssl-validation-is-broken/.

[43] Benjamin VanderSloot, Johanna Amann, Matthew Bernhard, Zakir Durumeric,
Michael Bailey, and J Alex Halderman. 2016. Towards a Complete View of the
Certificate Ecosystem. In ACM Internet Measurement Conference (IMC). 543–549.

[44] Verisign. 2017. The Verisign Domain Name Industry Brief. https://www.verisign.
com/assets/domain-name-report-Q42016.pdf.

[45] Jiangshan Yu, Vincent Cheval, andMark Ryan. 2016. DTKI: ANew Formalized PKI
with Verifiable Trusted Parties. Comput. J. 59, 11 (November 2016), 1695–1713.

https://support.apple.com/en-us/HT205280
https://support.apple.com/en-us/HT205280
https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs-05
https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs-05
http://letsencrypt.org
https://www.eff.org/https-everywhere
https://www.eff.org/https-everywhere
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://blog.mozilla.org/security/2015/03/03/revoking-intermediate-certificates-introducing-onecrl/
https://mybrowseraddon.com/smart-https.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
https://www.imperialviolet.org/2012/02/05/crlsets.html
http://www.mattmahoney.net/dc/zpaq.html
http://www.thoughtcrime.org/software/sslstrip/
http://www.thoughtcrime.org/software/sslstrip/
https://tools.ietf.org/html/draft-perrin-tls-tack-02
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/he9tr7p3rZ8
https://groups.google.com/a/chromium.org/forum/#!topic/blink-dev/he9tr7p3rZ8
https://googleonlinesecurity.blogspot.com/2015/10/sustaining-digital-certificate-security.html
https://googleonlinesecurity.blogspot.com/2015/10/sustaining-digital-certificate-security.html
https://googleonlinesecurity.blogspot.com/2015/10/sustaining-digital-certificate-security.html
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/78N3SMcqUGw/ykIwHXuqAQAJ
https://groups.google.com/a/chromium.org/forum/#!msg/ct-policy/78N3SMcqUGw/ykIwHXuqAQAJ
https://github.com/chromium/ct-policy/blob/master/log_policy.md
https://tools.ietf.org/html/draft-ietf-tls-exported-authenticator-10
https://tools.ietf.org/html/draft-ietf-tls-exported-authenticator-10
https://blog.filippo.io/komodia-superfish-ssl-validation-is-broken/
https://blog.filippo.io/komodia-superfish-ssl-validation-is-broken/
https://www.verisign.com/assets/domain-name-report-Q42016.pdf
https://www.verisign.com/assets/domain-name-report-Q42016.pdf

CAPS: Smoothly Transitioning to a More Resilient Web PKI ACSAC ’20, December 7–11, Austin, TX, USA

2015-09
2016-01

2016-05
2016-09

2017-01
2017-05

2017-09
2018-01

2018-05

Date

0

10

20

30

40

50

60

70

Si
ze

 (M
B)

Uncompressed
Compressed (zpaq)
DAFSA encoding
Compressed DAFSA encoding

Figure 8: Sizes of the set of added names over time in differ-
ent representations.

2015-09
2016-01

2016-05
2016-09

2017-01
2017-05

2017-09
2018-01

2018-05

Date

0

5

10

15

20

Si
ze

 (M
B)

Uncompressed
Compressed (zpaq)
DAFSA encoding
Compressed DAFSA encoding

Figure 9: Sizes of the set of deleted names over time in dif-
ferent representations.

A UPDATES TO THE SIGNALING SET
In Section 6.3, we showed that the size of updates to the signaling
set were slowly increasing over time. To better understand how the
size of the signaling set may change over time, we also considered
the additions and deletions to the signaling set separately.

Figs. 8 and 9 show the sizes of these sets over time. We see that
the set of added names is almost consistently larger than the set
of deleted names, which matches the upward trend in the number
of domain names in the Web PKI over time. We also note that
beginning in 2017, in which Let’s Encrypt issuance became more
widespread, that the number of deleted names begins to trend
upwards at a greater rate. This is likely due to the fact that Let’s
Encrypt certificates are issued for only 90 days at a time, and the
increased frequency in certificate expiration causes names to be
purged from the active set at a greater rate.

0 1 2 3 4 5 6
Names 1e7

0

200

400

600

800

1000

1200

1400

1600

Si
ze

 (M
B)

0.010.050.1
0.2

0.5

1.0Uncompressed
DAFSA encoding
Compressed DAFSA encoding

Figure 10: Size of the signaling set given subsampling from
the full set of names. The labels above each distinct value on
the x-axis denote the fraction of the full set that was sam-
pled.

1 2 3 4 5 6 7 8 9
Number of Proofs Requested

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ti
m

e
el

ap
se

d
(s

)

Without CAPS (localhost)
With CAPS (localhost)
Without CAPS (WAN)
With CAPS (WAN)

Figure 11: Handshake latency versus the number of policy
proofs sent by the domain. Error bars represent standard er-
ror.

Despite the increase in the number of names (and hence in the
size of the signaling set) over time, we argued in Section 7 that
this increase would be outweighed by the sublinear growth of the
signaling set size and falling cost of storage and memory. We can
see the trend in the signaling set size especially well in Fig. 10, a
graphical representation of Table 2.

B DETAILED PERFORMANCE
MEASUREMENTS

In Section 6.4, we showed that the connection latency overhead
in using CAPS is approximately 5%. Figs. 11, 12, and 13 show this
overhead given the number of policy proofs request, the number

ACSAC ’20, December 7–11, Austin, TX, USA Stephanos Matsumoto, Jay Bosamiya, Yucheng Dai, Paul van Oorschot, and Bryan Parno

1 2 3 4 5 6 7 8 9
Average Number of Certificates per Chain

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ti
m

e
el

ap
se

d
(s

)

Without CAPS (localhost)
With CAPS (localhost)
Without CAPS (WAN)
With CAPS (WAN)

Figure 12: Handshake latency versus the number of certifi-
cates per chain sent by the domain. Error bars represent
standard error.

0 1000 2000 3000 4000 5000 6000 7000 8000
Average Size of Chain (bytes)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ti
m

e
el

ap
se

d
(s

)

Without CAPS (localhost)
With CAPS (localhost)
Without CAPS (WAN)
With CAPS (WAN)

Figure 13: Handshake latency versus the average certificate
chain size sent by the domain. Error bars represent standard
error.

of certificates per chain, and the average size of each certificate
chain, respectively. In almost every case, the variance in network
latency resulted in error bars that far exceed the difference in latency
between using the existing Web PKI and using CAPS.

Given the way we structured the messages in our CAPS TLS
extension, the extra data sent in the CAPS handshake is directly
dependent on the size and number of certificate chains, as well as
the number of proofs sent. In particular, the extra data sent from
client to server is 1 byte, and the extra data sent from server to
client is (2 + (292 × #proofs) + (

∑
chain sizeof(chain))) bytes.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Tracking Web Certificates
	2.2 Enforcing HTTPS
	2.3 Rethinking Certificate Authentication

	3 CAPS Overview
	4 CAPS Detailed Design
	4.1 Building the Signaling Set
	4.2 Building the CAPS Policy Database
	4.3 Connection Establishment
	4.4 Bootstrapping Advanced Policies

	5 Security Analysis
	5.1 Main Security Claim
	5.2 Potential Weaknesses

	6 Evaluation
	6.1 Signaling Set Domains
	6.2 Signaling Set Representation
	6.3 Signaling Set and Certificate Updates
	6.4 Connection Establishment

	7 Deployment Considerations
	8 Conclusion
	Acknowledgments
	References
	A Updates to the Signaling Set
	B Detailed Performance Measurements

