
Bryan Parno • Jonathan M. McCune • Adrian Perrig

Bootstrapping Trust
in Modern Computers

Permission granted by the authors to review this work; do not distribute.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Library of Congress Control Number: 2011936127

Springer New York Dordrecht Heidelberg London

ISBN 978-1-4614-1459-9 e-ISBN 978-1-4614-1460-5
DOI 10.1007/978-1-4614-1460-5

© The Autho 2011

ISSN 2191-5768 e-ISSN 2191-5776

r s()

USA

Jonathan M. McCune
CyLab

Bryan Parno
Microsoft Research
Redmond, WA

parno@microsoft.com

CyLab
Adrian Perrig

Carnegie Mellon University
Pittsburgh, PA

jonmccune@cmu.edu

Carnegie Mellon University
Pittsburgh, PA
USA

USA

adrian@ece.cmu.edu

Permission granted by the authors to review this work; do not distribute.

For Diana, Kathleen, and Andrea

Permission granted by the authors to review this work; do not distribute.

Acknowledgements

In May of 2010, we presented a paper entitled Bootstrapping trust in commodity
computers at the IEEE Symposium on Security and Privacy [152]. There, we were
pleased to hear from a number of people that our review paper had taught them a
great deal about the area as a whole, or that they planned to distribute it to their stu-
dents. Their gracious comments inspired us to expand our review into the form you
see here. We hope that it will be of service to the security and privacy community.

The authors are especially grateful to our collaborators, Virgil Gligor, Mike Re-
iter, Arvind Seshadri, Leendert van Doorn, and Amit Vasudevan, whose insights and
enthusiasm greatly enriched our work. The authors are also grateful to David Chal-
lener, Ron Perez, Reiner Sailer, and Josh Schiffman for their insightful comments,
which greatly improved the present work.

This research was supported in part by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389, MURI W 911 NF 0710287, and W911NF-09-1-0273 from
the Army Research Office, and grants CNS-0831440 and CCF-0424422 from the
National Science Foundation. The views and conclusions contained here are those
of the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either express or implied, of ARO, CMU, CyLab,
Microsoft, NSF, or the U.S. Government or any of its agencies.

vii

Permission granted by the authors to review this work; do not distribute.

Contents

1 Introduction . 1
2 What Do We Need to Know?

Techniques for Recording Platform State . 3
2.1 Recording Code Identity . 3
2.2 Recording Dynamic Properties . 9
2.3 Which Property is Necessary? . 10

3 Can We Use Platform Information Locally? . 13
3.1 Secure Boot . 13
3.2 Storage Access Control Based on Code Identity 14

4 Can We Use Platform Information Remotely? 19
4.1 Prerequisites . 19
4.2 Conveying Code Measurement Chains 19
4.3 Privacy Concerns . 22

5 How Do We Make Sense of Platform State? . 25
5.1 Coping With Information Overload . 25
5.2 Focusing on Security-Relevant Code . 25
5.3 Conveying Higher-Level Information 32

6 Roots of Trust . 35
6.1 General-Purpose Tamper-Resistant and Tamper-

Responding Devices . 35
6.2 General-Purpose Devices Without Physical Defenses 37
6.3 Special-Purpose Minimal Devices . 38
6.4 Research Solutions Without Hardware Support 39

7 Challenges in Bootstrapping Trust in Secure Hardware 41
7.1 Problem Definition . 42
7.2 Potential Solutions . 45
7.3 Preferred Solutions . 50

8 Validating the Process . 51
9 Applications . 53

9.1 Real World . 53
9.2 Research Proposals . 55

10 Implementing Trust Bootstrapping: Open Source Tools 59
10.1 Component Packages . 59
10.2 Complete Distributions or LiveCDs . 60

ix

Permission granted by the authors to review this work; do not distribute.

x Contents

11 Human Factors & Usability . 61
11.1 Trustworthy Verifier Devices . 61
11.2 Using Your Brain to Check a Computer 71
11.3 Pairing Two Trustworthy Devices . 71

12 Limitations . 73
12.1 Load-Time Versus Run-Time Guarantees 73
12.2 Hardware Attacks . 73

13 Additional Reading . 75
13.1 Books . 75
13.2 Conference and Workshop Proceedings 76

14 Summary . 77

References . 79

Index . 97

Permission granted by the authors to review this work; do not distribute.

Acronyms

AES Advanced Encryption Standard
AIK Attestation Identity Key
AMT Active Management Technology
API Application Programming Interface
BBRAM Battery-Backed RAM
BGP Border Gateway Protocol
BIND Binding Instructions aNd Data
BIOS Basic Input/Output System
CA Certificate Authority
CFI Control-Flow Integrity
CLR Common Language Runtime
CRTM Core Root of Trust for Measurement
DAA Direct Anonymous Attestation
DDoS Distributed Denial-of-Service
DEV Device Exclusion Vector
DMA Direct Memory Access
DRAM Dynamic RAM
DRM Digital Rights Management
DRTM Dynamic Root of Trust for Measurement
EK Endorsement Key
FPGA Fully-Programmable Gate Array
GPIO General-Purpose Input/Output
IMA Integrity Measurement Architecture
IPMI Intelligent Platform Management Interface
ISP Internet Service Provider
LED Light-Emitting Diode
LPC Low-Pin Count
LS2 Logic of Secure Systems
LT LaGrande Technology
MAC Mandatory Access Control
MLE Measured Launched Environment
MLTM Mobile Local-owner Trusted Module
MPT Memory Protection Table
MPWG Mobile Phone Working Group

xi

Permission granted by the authors to review this work; do not distribute.

xii Bootstrapping Trust in Modern Computers

MRTM Mobile Remote-owner Trusted Module
MTM Mobile Trusted Module
NAT Network Address Translation
NGSCB Next-Generation Secure Computing Base
NTP Network Time Protocol
NVRAM Non-Volatile RAM
OAEP Optimal Asymmetric Encryption Padding
OIAP Object Independent Authorization Protocol
OS Operation System
OSLO Open Secure LOader
PC Personal Computer
PCI Peripheral Component Interconnect
PCI-X PCI Express
PCR Platform Configuration Register
PIN Personal Identification Number
PKCS Public-Key Cryptography Standards
PKI Public-Key Infrastructure
PRIMA Policy-Reduced Integrity Measurement Architecture
PUF Physical Unclonable Function
PXE Preboot eXecution Environment
RAM Random-Access Memory
ReDAS Remote Dynamic Attestation System
ROM Read-Only Memory
ROTI Root of Trust Installation
SELinux Security-Enhanced Linux
SIM Subscriber Identity Module
SLB Secure Loader Block
SMI System-Management Interrupt
SMM System-Management Mode
SMX Safer-Mode Extensions
SP Secret Protected
SSH Secure Shell
SSL Secure Socket Layer
SVM Secure Virtual Machine
TCB Trusted Computing Base
TCPA Trusted Computing Platform Alliance
TCG Trusted Computing Group
TNC Trusted Network Connect
TOCTOU Time Of Check, Time Of Use
TOFU Trust On First Use
TPM Trusted Platform Module
TSS TCG Software Stack
TVD Trusted Virtual Domain
TVEM Trusted Virtual Environment Module
TXT Trusted eXecution Technology

Permission granted by the authors to review this work; do not distribute.

Bootstrapping Trust in Modern Computers xiii

USB Universal Serial Bus
VM Virtual Machine
VMM Virtual Machine Monitor
VT Virtualization Technology
VT-d Virtualization Technology for Directed IO
vTPM virtual Trusted Platform Module
WebALPS Web Applications with Lots of Privacy and Security
XOM eXecute-Only Memory
ZTIC Zurich Trusted Information Channel

Permission granted by the authors to review this work; do not distribute.

Permission granted by the authors to review this work; do not distribute.

1 Introduction

Suppose you are presented with two physically identical computers. One is running
a highly-certified, formally-proven, time-tested software stack, while the other is
running a commodity software stack that provides similar features, but is infested
with sophisticated malware. How can you tell which computer is which? How can
you decide which computer you should use to check your email, update your medi-
cal records, or access your bank account?

While the design and validation of secure software is an interesting study in its
own right, we focus this book on a survey of existing techniques for bootstrap-
ping trust in commodity computers, specifically by conveying information about a
computer’s current execution environment to an interested party. This would, for ex-
ample, enable a user to verify that her computer is free of malware, or that a remote
web server will handle her data responsibly.

To better highlight the research aspects of bootstrapping trust, we organize this
book thematically, rather than chronologically. Thus, we examine mechanisms for
securely collecting and storing information about the execution environment (Sec-
tion 2), methods for using that information locally (Section 3), techniques for se-
curely conveying that information to an external party (Section 4), and various ways
to convert the resulting information into a meaningful trust decision (Section 5).

Bootstrapping trust requires some foundational root of trust, and we review var-
ious candidates in Section 6. We then consider how the process of bootstrapping
trust can be validated (Section 8) and used in applications (Section 9). Of course,
creating trust ultimately involves human users, which creates a host of additional
challenges (Section 11). Finally, all of the work we survey has certain fundamental
limitations (Section 12).

Much of the research in this area falls under the heading of “Trusted Computing”,
the most visible aspect of which is the Trusted Platform Module (TPM), which has
already been deployed on over 350 million computers [219]. In many ways, this is
one of the most significant changes in hardware-supported security in commodity
systems since the development of segmentation and process rings in the 1960s, and
yet it has been met with muted interest in the security research community, perhaps
due to its perceived association with Digital Rights Management (DRM) [6]. How-
ever, like any other technology, the TPM can be used for either savory or unsavory
purposes. One goal of this book is to highlight the many ways in which it can be
used to improve user security without restricting user flexibility.

While Trusted Computing is the most visible aspect of this research area, we
show that many of the techniques used by Trusted Computing date back to the
1980s [68]. These ideas thus extend beyond Trusted Computing’s TPM to the gen-
eral concept of bootstrapping trust in commodity computers. This fact becomes all
the more relevant as cellphones emerge as the next major computing platform (as
of 2005, the number of cellphones worldwide was about double the number of per-
sonal computers [80, 218]). In fact, many cellphones already incorporate stronger
hardware support for security than many desktop computers and use some of the
techniques described in this book [9, 13]. Indeed, as CPU transistor counts continue

Permission granted by the authors to review this work; do not distribute.

2 Bootstrapping Trust in Modern Computers

to climb, CPU vendors are increasingly willing to provide hardware support for se-
cure systems (see, for example, Intel and AMD’s support for virtualization [3, 93],
and Intel’s new AES instructions, which provide greater efficiency and resistance to
side-channel attacks [81]). Thus, research in this area can truly guide the develop-
ment of new hardware-supported security features.

Summary

In this book, we endeavor to:

1. Draw attention to the opportunities presented by the spread of commodity hard-
ware support for security;

2. Provide a unified presentation of the reasoning behind and the methods for boot-
strapping trust; and

3. Present existing research in a coherent framework, highlighting underexamined
areas, and hopefully preventing the reinvention of existing techniques.

While we aim to make this book accessible to those new to the area, we do not
intend to provide a comprehensive tutorial on the various technologies; instead, we
refer the interested reader to the various references, particularly those highlighted in
Section 13, for additional details.

Permission granted by the authors to review this work; do not distribute.

2 What Do We Need to Know?
Techniques for Recording Platform State

In deciding whether to trust a platform, it is desirable to learn about its current state.
In this section, we discuss why code identity is a crucial piece of platform state
and how to measure it (Section 2.1). We then consider additional dynamic proper-
ties that may be of interest, e.g., whether the running code respects information-flow
control (Section 2.2). Finally, we argue that establishing code identity is a more fun-
damental property than establishing any of the other dynamic properties discussed
(Section 2.3). Unfortunately, the security offered by many of these techniques is still
brittle, as we discuss in Section 12.

2.1 Recording Code Identity

Why Code Identity?

To trust an entity X with her private data (or with a security-sensitive task), Alice
must believe that at no point in the future will she have cause to regret having given
her data (or entrusted her task) to X . In human interactions, we often form this belief
on the basis of identity – if you know someone’s identity, you can decide whether
to trust them. However, while user identity suffices for some tasks (e.g., authorizing
physical access), buggy software and user inexperience makes it difficult for a user
to vouch for the code running on their computer. For example, when Alice attempts
to connect her laptop to the corporate network, the network can verify (e.g., using a
password-based protocol) that Alice is indeed at the laptop. However, even if Alice
is considered perfectly trustworthy, this does not mean that Alice’s laptop is free of
malware, and hence it may or may not be safe to allow the laptop to connect.

Thus, to form a belief about a computer’s future behavior, we need to know more
than the identity of its user. One way to predict a computer’s behavior is to learn
its complete current state. This state will be a function of the computer’s hardware
configuration, as well as the code it has executed. While hardware configuration
might be vouched for via a signed certificate from the computer’s manufacturer,
software state is more ephemeral, and hence requires us to establish code identity
before we can make a trust decision.

Of course, the question remains: what constitutes code identity? At present, the
state-of-the-art for identifying software is to compute a cryptographic hash over
the software’s binary, as well as any inputs, libraries, or configuration files used.
The resulting hash value is often termed a measurement. We discuss some of the
difficulties with the interpretation of this type of measurement, as well as approaches
to convert such measurements into higher-level properties, in Section 5. Note that in
this work, we will often refer to “code”, “software”, and “binary” interchangeably,
relying on context to resolve any ambiguity.

Permission granted by the authors to review this work; do not distribute.

4 Bootstrapping Trust in Modern Computers

What Code Needs To Be Recorded?

To bootstrap trust in a platform, we must, at the very least, record the identity of the
code currently in control of the platform. More subtly, we also need to record the
identity of any code that could have affected the security of the currently executing
code. For example, code previously in control of the platform might have config-
ured the environment such that the currently running code behaves unexpectedly or
maliciously. In the context of the IBM 4758 secure coprocessor [184, 185], Smith
analyzes in greater detail which pieces of code can affect the security of a given
piece of software [182], examining issues such as previously installed versions of
an application that may have accessed the currently installed application’s secrets.

Who Performs the Measurements?

The best time to measure a piece of software is before it starts to execute. At this
point, it is in a fresh “canonical” form that is likely to be similar across many plat-
forms [68, 127]. Once it starts executing, it will generate local state that may vary
across platforms, making it difficult to evaluate the measurement. Thus, if the soft-
ware currently in control of the platform is Sn, then the logical entity to measure
Sn is the software that was previously in control of the platform, i.e., Sn−1. In other
words, before executing Sn, Sn−1 must contain code to record a measurement of
Sn in its “pristine” state. This logical progression continues recursively, with each
software Si responsible for measuring software Si+1 before giving it control of the
platform. These measurements document the chain of trust [213]; i.e., the party
interpreting the measurements must trust each piece of software to have properly
measured and recorded subsequently launched pieces of software. Of course, this
leads to the question of who (or what) measures the first software (S1) to execute on
the system.

Ultimately, measuring code identity requires a hardware-based root of trust. After
all, if we simply ask the running code to self-identify, malicious software will lie.
As we discuss in Section 6, most research in this area uses secure hardware (e.g.,
secure coprocessors) for this purpose, but some recent work considers the use of
general-purpose CPUs.

Thus, in a trusted boot (a technique first introduced by Gasser et al. [68]), a
hardware-based root of trust initiates the chain of trust by measuring the initial BIOS
code (see Figure 1). The BIOS then measures and executes the bootloader, and the
bootloader, in turn, measures and executes the operating system. Note that trusted
boot does not mean that the software that has booted is necessarily trustworthy,
merely that it must be trusted if the platform itself is to be trusted.

This process of temporal measurement collection can be extended to include
additional information about less privileged code as well (i.e., code that is not in
control of the platform). For example, the OS might record measurements of each
application that it executes. On a general-purpose platform, this additional informa-
tion is crucial to deciding if the platform is currently in a trustworthy state, since

Permission granted by the authors to review this work; do not distribute.

2 What Do We Need to Know? Techniques for Recording Platform State 5

System
(Hardware)

System
(P1, C1)

System
(P2, C2)

Prog P1
Conf C1

Prog P2
Conf C2

Measu
re

Exe
cu

te

Exe
cu

te

Measu
re

Secure Boot
(Section 3.1):

Trusted Boot:
L=0

Append:
L←L||m1

Append:
L←L||m2

m1 m2

if m1 ∉ L*:
then HALT

if m2 ∉ L*:
then HALT

...
m1 m2

Fig. 1 Trusted Boot vs. Secure Boot. The state of a computer system changes as programs run
with particular configurations. Trusted boot accumulates a list (L) of measurements for each pro-
gram executed, but it does not perform any enforcement. Secure boot (§3.1) will halt the system
if any attempt is made to execute a program that is not on an approved list (L*). Note that both
systems must always measure programs before executing them. It is also possible to employ both
types of boot simultaneously [68].

most modern operating systems do not, by themselves, provide enough assurance as
to the security of the entire system.

On the other hand, if the software in control of the platform can be trusted to
protect itself from, and maintain isolation between, less privileged code, then it may
only need to record measurements of less privileged code that performs security-
sensitive operations. For example, the Terra project [64] observed that a trusted
virtual machine monitor (VMM) can implement a trusted boot model both for itself
and its virtual machines (VMs). This approach simplifies measurement, since the
measurement of a single VM image can encompass an entire software stack. Fur-
thermore, since a VMM is generally trusted to isolate itself from the VMs (and the
VMs from each other), the VMM need only record measurements for the VMs that
perform security-relevant actions.

Of course, virtualization can also complicate the use of secure hardware, since
each VM may want or need exclusive control of it. The virtual Trusted Platform
Module (vTPM) project [20] investigated how a single physical TPM can be mul-
tiplexed across multiple VMs, providing each with the illusion that it has dedicated
access to a TPM.

IBM researchers also coined the notion of a Trusted Virtual Domain (TVD),
which is a management perspective on distributed systems that focuses on service
domains instead of point hardware and software solutions [29]. The TVD concept
includes the notion of platform integrity stemming from TPM-based measurements,
and shows how one might integrate such properties across a larger distributed sys-
tem. The TVD concept has inspired other researchers to further develop the con-
cept, e.g., [16, 34, 67, 125]. However, a detailed treatment is beyond the scope of
the present work, and we refer interested readers to Section 13.

Other researchers have investigated similar directions. For example, Krautheim
et al. propose the Trusted Virtual Environment Module (TVEM), which is in one

Permission granted by the authors to review this work; do not distribute.

6 Bootstrapping Trust in Modern Computers

Hardware Program 1 Program 2

Time

(a) One-Way Handoff

Program 1

Program 2

Privilege

(b) Temporary Handoff

Fig. 2 Execution Handoffs. Early in the boot process, control of the platform is often handed off
in a one-way manner. For example, the bootloader hands control to the OS and does not expect
the OS to return control. For most of the platform’s lifetime, however, one program (e.g., the OS or
VMM) temporarily allows another program to run (e.g., an application or VM), but relies on CPU
privilege mechanisms to eventually return control.

sense an enhanced vTPM, with more awareness of the semantics of distributed and
virtualized applications [110]. Goldman et al. propose logging extensions to vTPMs
to support better scalability in the data center [76].

How Can Measurements Be Secured?

Of course, all of these code identity records must be secured; otherwise, malicious
code might erase the record of its presence. This can happen in one of two ways (see
Figure 2), depending on the way in which control of the platform is handed off.

First, software currently in control of the platform can make a one-way transfer
of control, with no intention of returning. For example, during the boot process,
the bootloader hands control to the OS, with no intention of resuming execution.
In a handoff attack, trusted software inadvertently cedes control of the platform to
malicious software. For example, if the attacker replaces the standard OS with a
malicious OS, the bootloader may inadvertently hand control of the platform to the
malicious OS during the boot process. The malicious software, now in control of
the entire platform, may then attempt to erase any previously created records.

Second, software currently in control of the platform can make a temporary ex-
ecution transfer and rely on CPU features like privilege layers to eventually return
control. For example, the OS temporarily allows applications to run, or a VMM al-
lows its VMs to run, but both expect to resume execution in the future. In a privilege
escalation attack, less privileged code may find an exploit in more privileged code,
allowing it to access that code’s secrets, erase the record of the malicious code’s
presence, or even create fake records of other software.

Unfortunately, existing literature [64, 68, 164] tends to conflate these two types of
attacks, obscuring the relative merits of techniques for securing measurements (see
Figure 3). Below, we explore these techniques, certificate chains and hash chains, in
more detail. While some research proposes to secure records via a general-purpose,
secure append-only log [170], such work makes use of an independent logging
server which is not available in many environments.

Permission granted by the authors to review this work; do not distribute.

2 What Do We Need to Know? Techniques for Recording Platform State 7

Attack Type

C
ha

in
Ty

pe Privilege Handoff Control
Escalation to Malcode

Hash Record latest value in HW Record latest value in HW
Cert Vulnerable! Prove access to latest key

Fig. 3 Securely Recording Code Measurements. Techniques for preventing attacks on the mea-
surement record differ based on the method used to secure the record.

CERTIFICATE CHAINS.
Initial architecture designs for recording code identity measurements employed cer-
tificate chains [64, 68]. Before loading a new piece of software, Gasser et al. require
the currently running system to generate a certificate for the new software [68]. To
do so, the currently running system generates a new keypair for use by the new soft-
ware and uses its private key to sign a certificate containing the new public key and a
measurement of the new software. The system then erases its own secrets and loads
the new software, providing the new keypair and certificate as inputs. As a result, a
certificate chain connects the keypair held by the currently running software all the
way back to the computer’s hardware.

More concretely, consider the boot sequence shown in Figure 1. The hardware
is assumed to hold the private key SKH corresponding to a well-known public
key PKH . Before executing Program 1, it generates a fresh keypair {PK1,SK1},
and generates a certificate binding the keypair to the program’s measurement, i.e.,
SignSKH

(PK1||P1||C1). Program 1, before it executes Program 2, generates a fresh
keypair {PK2,SK2}, and generates a certificate for it, i.e., SignSK1

(PK2||P2||C2).
It erases its own private key, SK1, and then starts executing Program 2, providing
as input the new keypair (i.e., {PK2,SK2}), and the current certificate chain, i.e.,
SignSKH

(PK1||P1||C1), SignSK1
(PK2||P2||C2).

Certificate chains prevent handoff attacks, since by the time malicious code is
loaded, the keys used to generate the certificate chain have been erased (this is an
important point, often omitted in later work [64]). For example, by the time Program
2 executes, SK1 has been erased (and the hardware will only use SKH to sign the first
piece of software it launches). Thus, the only keypair the malicious code can both
use (in the sense of knowing the private key) and produce a certificate chain for, is a
keypair ({PK2,SK2}) that is certified with a certificate containing the measurement
of the malicious code. Thus, by requiring code to prove knowledge of a certified
keypair, a remote entity can ensure that it receives an accurate measurement list.

A certificate chain, however, cannot prevent a privilege escalation attack from
subverting the measurements. To maintain the certificate chain, privileged code must
keep its private key available; i.e., it cannot delete its key like it did during a one-way
handoff. To see this, consider an OS that wishes to extend a certificate chain to cover
each application executed. If the OS erases its secret key before handing control

Permission granted by the authors to review this work; do not distribute.

8 Bootstrapping Trust in Modern Computers

to Application 1, then it will not be able to generate a certificate for applications
launched later.

Because privileged code must keep its private key in memory, a privilege-
escalated attacker can use that key to rewrite the chain. In other words, the attacker
can generate a fresh keypair, {PKA,SKA}, and then use the more privileged soft-
ware’s (e.g., the OS’s) private key to bind the keypair to a benign program BP’s
measurement by generating SignSKOS

(PKA||PBP||CBP). At this point the attacker can
arbitrarily rewrite the portion of the platform’s chain of trust following the vulner-
able software. For example, if the OS is vulnerable, then once the attacker exploits
this vulnerability, he can arbitrarily rewrite the list of applications loaded. He may
not, however, be able to remove the vulnerable OS from the list, since the OS is typ-
ically loaded via a one-way handoff, and hence the bootloader’s keys are no longer
available.

HASH CHAINS.
Hash chains represent a potentially more efficient method of recording software
measurements. A hash chain requires only a constant amount of secure memory
to record an arbitrarily long, append-only list of code identities. As long as the
current value of the hash chain is stored in secure memory, both privilege escalation
and handoff attacks can be prevented. This is the approach adopted by the Trusted
Platform Module (TPM) [213]. Several research efforts have applied this approach
to the Linux kernel, and developed techniques to improve its efficiency [127, 164].

For a hardware-backed hash chain, the hardware sets aside a protected mem-
ory register that is initialized to a known value (e.g., 0) when the computer first
boots. On a TPM, these protected memory registers are called Platform Configu-
ration Registers (PCR); current (version 1.2) TPMs are required to support at least
24 PCRs [213]. The software determining a new code module’s identity I uses a
hardware API to extend I into the log. The hardware computes a cryptographic hash
over the the identity record and the current value V of the register and updates the
register with the output of the hash: V ← Hash(V ||I). The software may keep an
additional log of I in untrusted storage to help with the interpretation of the regis-
ter’s value at a future point. As long as Hash is collision-resistant, the register value
V guarantees the integrity of the append-only log; i.e., even if malicious software
gains control of the platform (via privilege escalation or a control handoff), it cannot
erase its identity from the log without rebooting the platform and losing control of
the machine.

Of course, without secure storage of the current value of the hash chain, a hash
chain cannot protect the integrity of the log, since once malicious code gains control,
it can simply replay the earlier extend operations and omit its measurement. There
are no secret keys missing that would impede it.

TPM-Based Measurement Example

To make this discussion more concrete, we give an example of a TPM-based trusted
boot sequence. This example is highly simplified; IBM’s Integrity Measurement

Permission granted by the authors to review this work; do not distribute.

2 What Do We Need to Know? Techniques for Recording Platform State 9

Architecture (IMA) discusses the design and implementation of a much more com-
plete solution for performing measurements [164]. We assume that the BIOS (B),
the bootloader (L), and the operating system (O) have all been modified to support
measurement collection. In practice, the BIOS and other firmware on many moth-
erboards often does not support such measurements, and hence must be updated
before a chain of trust can be established. These legacy issues helped motivate the
introduction of a CPU-based operation to create a dynamic root of trust after the
platform boot sequence (see Section 5.2).

When the computer first boots, the TPM’s PCRs are initialized to a known value
(e.g., 0). ROM code then measures (computes a hash) of the BIOS (B) and invokes
PCRExtend with a canonical PCR index, e.g., 5:

PCRExtend(5,B)

As a result, the TPM computes:

PCR5← H(0||B)

The ROM code then starts executing the BIOS. The BIOS performs its usual initial-
ization routines and extends a measurement of the bootloader (L) into the TPM. It
could choose a different PCR, but we will assume it continues to use PCR5, so we
have:

PCR5← H(H(0||B)||L)

The underlined value simply represents the previous value of PCR5. After the
PCRExtend operation, the BIOS can launch the bootloader. Similarly, the boot-
loader will extend a measurement of the OS (O) into the TPM before starting to
execute it. Finally, the OS will extend a measurement of the application (A) into
the TPM and launch the application. As a result, the value of PCR5 is :

h = H(H(H(H(0||B)||L)||O)||A)

Notice that the entire boot sequence is captured in a single hash value. Sections 3–5
discuss how to use and interpret this information.

2.2 Recording Dynamic Properties

While code identity is an important property, it is often insufficient to guarantee
security. After all, even though the system may start in a secure state, external inputs
may cause it to arrive in an insecure state. Thus, before entrusting a computer with
sensitive data, it might be useful to know whether the code has followed its intended
control flow (i.e., that it has not been hijacked by an attack), preserved the integrity
of its data structures (e.g., the stack is still intact), or maintained some form of
information-flow control. We compare the merits of these dynamic properties to

Permission granted by the authors to review this work; do not distribute.

10 Bootstrapping Trust in Modern Computers

those of code identity in Section 2.3. Below, we discuss two approaches, load-time
and run-time, to capturing these dynamic properties.

The simplest way to capture dynamic properties is to transform the program itself
and then record the identity of the transformed program. For example, the XFI [56]
and CFI [1] techniques transform a code binary by inserting inline reference moni-
tors that enforce a variety of properties, such as stack and control-flow integrity. By
submitting the transformed binary to the measurement infrastructure described in
Section 2.1, we record the fact that a program with the appropriate dynamic prop-
erty enforcements built-in was loaded and executed. If the transformation is trusted
to perform correctly, then we can extrapolate from the code identity that it also has
the property enforced by the transformation. Of course, this approach does not pro-
tect against attacks that do not tamper with valid control flows [40]. For example, a
buffer overflow attack might overwrite the Boolean variable isAdministrator
to give the attacker unexpected privileges.

Another approach is to load some piece of code that is trusted to dynamically
enforce a given security property on less-privileged code. An early example of this
approach is “semantic” attestation [85], in which a language runtime (e.g., the Java
or .NET virtual machine) monitors and records information about the programs it
runs. For example, it might report dynamic information about the class hierarchy
or that the code satisfies a particular security policy. As a concrete example of this
approach, Vejda et al. develop language-based trust services for the Java virtual
machine [217]. In a similar spirit, the ReDAS system [105] loads a kernel that has
been instrumented to check certain application data invariants at each system call.
Trust in the kernel and the invariants that it checks can allow an external party to
conclude that the applications running on the kernel have certain security-relevant
properties. Again, this approach relies on a code identity infrastructure to identify
that the trusted monitor was loaded.

Similarly, Baiardi et al. investigate methods for introspection of a target system
to dynamically confirm desired behavior at runtime [15]. While virtual-machine
based introspection is a known concept, their work shows how to integrate such
mechanisms with remote attestation.

2.3 Which Property is Necessary?

As discussed above, there are many code properties that are relevant to security,
i.e., things we would like to know about the code on a computer before entrusting
it with a security-sensitive task. However, since a general-purpose CPU can devote
only a limited amount of real estate to security functionality, we must consider what
properties are fundamentally needed (as opposed to merely being more efficient in
hardware).

The discussion in Section 2.2 suggests that many dynamic properties can be
achieved (in some sense) using code identity. In other words, the identity of the
code conveys the dynamic properties one can expect from it or the properties that

Permission granted by the authors to review this work; do not distribute.

2 What Do We Need to Know? Techniques for Recording Platform State 11

one can expect it to enforce on other pieces of software. However, the converse does
not appear to be true. That is, if a hardware primitive could report, for example,
that the currently running code respected its intended control flow, then it is not
clear how to use that mechanism to provide code identity. Furthermore, it clearly
does not suffice to say anything meaningful about the security-relevant behavior of
the code. A malicious program may happily follow its intended control-flow as it
conveys the user’s data to an attacker. Similar problems appear to affect other po-
tential candidates as well. Knowing that a particular invariant has been maintained,
whether it is stack integrity or information-flow control, is not particularly useful
without knowing more about the context (that is the code) in which the property is
being enforced.

Thus, one can argue that code identity truly is a fundamental property for pro-
viding platform assurance, and thus a worthy candidate for hardware support. Of
course, this need not preclude additional hardware support for monitoring (or en-
forcing) dynamic properties.

Permission granted by the authors to review this work; do not distribute.

12 Bootstrapping Trust in Modern Computers

Permission granted by the authors to review this work; do not distribute.

3 Can We Use Platform Information Locally?

We now discuss how accumulated platform information (Section 2) can benefit a
local user. Unfortunately, these measurements cannot be used to directly provide
information to local software; i.e., it does not make sense for higher-privileged soft-
ware to use these measurements to convey information to less-privileged software,
since the less-privileged software must already trust the higher-privileged software.

Nonetheless, in this section, we review techniques for using these measurements
to convince the user that the platform has booted into a secure state, as well as to
provide access control to a protected storage facility, such that secrets will only be
available to a specific software configuration in the future. Such techniques tend to
focus on preserving the secrecy and integrity of secrets, with less emphasis placed
on availability. Indeed, using code identity for access control can make availability
guarantees fragile, since a small change to the code (made for malicious or legiti-
mate reasons) may make secret data unavailable.

3.1 Secure Boot

How can a user tell if her computer has booted into a secure state? One approach
is to use a technique first described by Gasser et al. [68] and later dubbed “secure
boot” [8].

In a computer supporting secure boot, each system component, starting with the
computer’s boot ROM, compares the measurement of code to be loaded to a list
of measurements for authorized software (authorization is typically expressed via a
signature from a trusted authority, which requires the authority’s public key to be
embedded in the computer’s firmware) [8, 68]. Secure boot halts the boot process
if there is an attempt to load unauthorized code, and thus assures the user that the
platform is in an approved state simply by booting successfully.

One of the first systems to actually implement these ideas was AEGIS1 [8]. With
AEGIS, before a piece of software is allowed to execute, its identity is checked
against a certificate from the platform’s owner. The certificate identifies permitted
software. Anything without a certificate will not be executed.

However, a remote party cannot easily determine that a computer has been con-
figured for secure boot. Even if it can make this determination, it only learns that the
computer has booted into some authorized state, but it does not learn any informa-
tion about what specific state it happens to be in. Section 4 discusses the techniques
needed to provide more information to a remote party.

1 Two relevant research efforts have used the name AEGIS. One is that of Arbaugh et al. [8]
discussed in this section. The other is a design for a secure coprocessor by Suh et al. [201] and is
discussed in Section 6.1.

Permission granted by the authors to review this work; do not distribute.

14 Bootstrapping Trust in Modern Computers

3.2 Storage Access Control Based on Code Identity

Applications often require long-term protection of the secrets that they generate.
Practical examples include the keys used for full disk encryption or email signa-
tures, and a list of stored passwords for a web browser. Abstractly, we can provide
this protection via an access control mechanism for cryptographic keys, where ac-
cess policies consist of sets of allowed platform configurations, represented by the
measurement lists described in Section 2. Below, we discuss two of the most promi-
nent protected storage solutions: the IBM 4758 cryptographic co-processor and the
Trusted Platform Module (TPM).

3.2.1 Tamper-Responding Protected Storage

The IBM 4758 family of cryptographic co-processors provides a rich set of secure
storage facilities [50, 99, 184, 185]. First and foremost, it incorporates tamper-
responding storage in battery-backed RAM (BBRAM). Additional flash memory is
also available, but the contents of flash are always encrypted with keys maintained
in BBRAM. The design intention is that any attempt to physically tamper with the
device will result in it actively erasing secrets. Cryptographic keys that serve as the
root for protected storage can be kept here.

The IBM 4758 enforces storage access restrictions based on the concept of soft-
ware privilege layers. Layer 0 is read-only firmware. Layer 1 is, by default, the
IBM-provided CP/Q++ OS. Layers 2 and 3 are for applications. Each layer can store
secrets either in BBRAM or in flash. A hardware ratcheting lock prevents a lower-
privilege layer from accessing the state of a higher-privilege layer. Thus, once an
application loads at layer 2 or 3, the secrets of layer 1 are unavailable. Extensions to
the OS in layer 1 could permit arbitrarily sophisticated protected storage properties;
for example, an extension could provide a sealed storage facility (similar to the TPM
functionality discussed below) for binding secrets to a particular software configu-
ration. The BBRAM is also ideal for storing secure counters, greatly simplifying
defense against state replay attacks.

3.2.2 TPM-Based Sealed Storage

Despite providing much less functionality than a full-blown secure coprocessor, the
TPM can also restrict storage access based on platform state. It does so by allowing
software on the platform’s main CPU to seal or bind secrets to a set of measurements
representing some future platform state (we discuss the differences between these
operations below). Both operations (seal and bind) essentially encrypt the secret
value provided by the software. The TPM will refuse to perform a decryption, unless
the current values in its Platform Configuration Registers (PCRs – see Section 2.1)
match those specified during the seal or bind operation.

Permission granted by the authors to review this work; do not distribute.

3 Can We Use Platform Information Locally? 15

Full disk encryption is an example of an application that benefits from sealed
storage. The disk encryption keys can be sealed to measurements representing the
user’s operating system. Thus, the disk can only be decrypted if the intended OS
kernel has booted. This is the basic design of Microsoft BitLocker, discussed in
Section 9. Connecting disk encryption with code identity ensures that even if an
attacker modifies the boot sequence to load malware (e.g., via a DVD) or an alternate
OS kernel (e.g., an older kernel with known vulnerabilities), that software will be
unable to access the disk’s contents.

To provide protected storage, both (seal and bind) operations use encryption with
2048-bit asymmetric RSA keys, where the corresponding private keys are internal
to the TPM. The RSA keys are generated on the TPM itself, and the private portions
are never released in the clear. The TPM also ensures that these keys are only used
for encryption operations and never for signing [213]. Because the encryptions use
RSA PKCS #1v2.0 OAEP padding, the resulting encryption scheme is IND-CCA
secure [61], meaning that any change to the ciphertext will be detected during the de-
cryption process; hence the encryption scheme provides both secrecy and integrity
for the underlying plaintext.

Since the TPM has only a limited amount of protected internal storage space,
it uses a key hierarchy to protect storage keys. Specifically, the TPM stores only
the private portion of its Storage Root Keypair in protected storage. It then uses
the public portion of the Storage Root Keypair to encrypt the private portion of
keys used for seal and bind operations. The computer’s software (e.g., the OS or
VMM) is then responsible for managing the resulting ciphertext. Before performing
a seal/bind operation, the software loads a key into the TPM by presenting it with a
ciphertext encrypted by the Storage Root Key. The TPM decrypts the ciphertext to
obtain a key, checks its integrity, and then uses it to perform the seal/bind operation.
In this way, the TPM supports an arbitrary number of storage keys while using only
a constant amount of protected storage.

This approach does mean that software can destroy storage keys (by deleting the
corresponding ciphertexts), but this is considered a denial-of-service attack, which
the software controlling the platform can always launch in other ways as well, e.g.,
by powering off the computer, or wiping the hard drive.

In practice, for greater efficiency, applications that wish to protect large amounts
of data will typically use freshly generated symmetric keys for encryption and in-
tegrity protection of the data, and then use the TPM to protect the symmetric keys.

Sealing Data

Software on a TPM-equipped platform can invoke the TPM’s seal operation to en-
crypt a secret value and specify a policy that controls the decryption of the resulting
ciphertext. The policy specifies a set of PCR indices and the values those PCRs
should hold in order for the secret to be released; note that these values may be dif-
ferent from the current PCR values. In the future, when software wishes to decrypt
the ciphertext that resulted from the seal operation, it asks the TPM to unseal it. The

Permission granted by the authors to review this work; do not distribute.

16 Bootstrapping Trust in Modern Computers

TPM decrypts the ciphertext internally; if the current values in the specified PCRs
match the values specified in the policy, the TPM releases the plaintext (see below
for a concrete example).

The ability to seal data to an arbitrary set of PCR values enables a variety of
scenarios, including secure software updates. Suppose a software module P decides
to upgrade to a new version P′. Once P has validated the upgrade (e.g., by using
the publisher’s public key to verify a signature over the binary for P′), P unseals
all of its private data and then passes that data to a seal operation, specifying PCR
values corresponding to P′. When P′ runs, the PCR values will match, and hence the
upgraded version of the program will have access to all of the prior version’s data.

Because the TPM’s seal operation requires the RSA encryption to take place on
the TPM, the TPM can also include the current values of any specified PCRs (which
may be different from the values specified in the decryption policy) in the resulting
ciphertext. When the data is later decrypted, the software that performs the unseal
operation can ascertain the exact identity of the software that invoked the original
seal command. This allows an application that unseals data to determine whether
the newly unsealed data should be trusted. This may be useful, for example, during
software updates, allowing the new version to check that any data imported via an
unseal operation really did come from the previous version of the software.

Because sealing and unsealing require the same TPM to perform the encryp-
tion/decryption operations, it would be much more efficient to use a symmetric en-
cryption scheme, such as AES. However, at the time of its design, the TPM was
encumbered by export controls that precluded the use of desired algorithms.

Binding Data

In contrast to sealing, encryption using a public binding key need not take place on
the TPM. This allows for greater efficiency and flexibility when performing data
encryption, but it means that the resulting ciphertext does not include a record of the
entity that originally invoked the bind operation. However, because the private key
used for unbinding data can be locked to PCR values, an entity in possession of an
authentic public binding key can encrypt data (e.g., a cryptographic challenge such
as a nonce) using a binding key, and hence learn something about the software state
of the platform that performed the unbind operation.

Employing NVRAM

The TPM also includes a limited amount of nonvolatile RAM (NVRAM) that can be
used to perform a function similar to sealed storage. In particular, reading and writ-
ing to NVRAM can be restricted based on the contents of the PCRs, so an NVRAM
location can be made accessible only to a particular collection of software. Since
an NVRAM location can store arbitrary data, the most straightforward approach to
“sealing” data is to define an NVRAM location large enough to hold a symmetric

Permission granted by the authors to review this work; do not distribute.

3 Can We Use Platform Information Locally? 17

key and use the PCR-based restrictions to prevent other software from reading or
writing the key. The symmetric key can then be used to encrypt and MAC bulk data.

There are multiple limitations when using NVRAM. First, software that does not
match the PCR restrictions on an NVRAM location may still be able to delete the
information stored in that location. For example, the TPM owner can both delete
and re-establish NVRAM locations. Thus, application developers must be cautious
when using this facility. In particular, code reading or writing an NVRAM location
should verify that the target location has the expected PCR-based restrictions in
place. Second, the v1.2 TPM specification only requires 1,280 bytes of NVRAM,
some of which is dedicated to various system features such as storing the TPM’s
endorsement credential and the launch control policy. Although reading NVRAM
is relatively fast (9.8–14.8 ms) compared to other TPM operations, writing is 3–6x
slower (33.9–82.4 ms) [151]. Finally, the NVRAM is only expected to tolerate a
limited number (∼100,000) of write cycles during its lifetime. Writing to NVRAM
once every second would exhaust its write cycles in less than 28 hours.

Replay Issues

Note that the above-mentioned schemes bind cryptographic keys to some represen-
tation of software identity (e.g., hashes stored in PCRs). Absent from these prim-
itives is any form of freshness or replay-prevention. The output of a seal or bind
operation is ciphertext. Decryption depends on PCR values and an optional 20-byte
authorization value. It does not depend on any kind of counter or versioning system.
Application developers must take care to account for versioning of important sealed
state, as older ciphertext blobs can also be decrypted. An example attack scenario
is when a user changes the password to their full disk encryption system. If the
current password is maintained in sealed storage, and the old password is leaked,
certain classes of adversaries may be able to supply an old ciphertext at boot time
and successfully decrypt the disk using the old password. The TPM includes a ba-
sic monotonic counter that can be used to provide such replay protection. However,
the TPM has no built-in support for combining sealed storage with the monotonic
counter. NVRAM may be a better choice than sealed storage for such an application.

To address these shortcomings and simplify development, Parno et al. designed
and implemented the Memoir framework [151]. Memoir provides state continu-
ity, i.e., integrity, secrecy, and rollback-resistance for the state on which security-
sensitive software operates. In particular, it provides rollback resistance without
making the system vulnerable to system crashes (unlike, say a solution based on
monotonic counters). Memoir achieves these properties by enforcing module de-
terminism, storing a concise summary of the module’s request history in trusted
storage, and allowing only safe request replays after crashes. Since frequent writes
to trusted, non-volatile storage on the TPM is impractical (due to the latency of write
operations and the limited number of write cycles supported by the specification),
the authors show how to spread the state summary across both volatile and non-

Permission granted by the authors to review this work; do not distribute.

18 Bootstrapping Trust in Modern Computers

volatile trusted storage. The protocols involved were formally proven correct using
machine-checked proofs, and the implementation is available.

TPM-Based Sealed Storage Example

Here we continue the example begun in Section 2.1. Recall that we assumed that the
BIOS (B), the bootloader (L) and the operating system (O) have all been modified
to record the appropriate code identity records in the TPM. If the OS is currently
running an application (A), then the value of PCR5 is :

h = H(H(H(H(0||B)||L)||O)||A)

The application can generate secret data Dsecret and seal it under the current value
of PCR5 by invoking:

Seal((5),Dsecret)→C = EncK((5,h)||Dsecret)

where K is a storage key generated by the TPM. The resulting ciphertext C is re-
turned to the software that invoked the seal operation. What benefit does this pro-
vide? If the same boot sequence is repeated (in other words, if the exact same BIOS,
bootloader, OS and application are loaded in the same order) then clearly PCR5 will
take on the same value it had before. Thus a call to Unseal will produce Dsecret .
However, if any of these pieces of software changes, then the Unseal will fail. For
example, suppose an attacker replaces the OS with a malicious OS (Ô). When the
application is executed, the value of PCR5 will be:

ĥ = H(H(H(H(0||B)||L)||Ô)||A)

The properties of the hash function H guarantee that with extremely high probability
ĥ 6= h, and thus if an attacker invokes Unseal, the TPM will refuse to decrypt C.

Permission granted by the authors to review this work; do not distribute.

4 Can We Use Platform Information Remotely?

Section 2 described mechanisms for accumulating measurements of software state.
In this section, we treat the issue of conveying these measurement chains to an ex-
ternal entity in an authentic manner. We refer to this process as attestation, though
some works use the phrase outbound authentication. We also discuss privacy con-
cerns and mitigation strategies that arise when sharing this information with third
parties.

4.1 Prerequisites

The secure boot model (Section 3.1) does not capture enough information to se-
curely inform a remote party about the current state of a computer, since it (at best),
informs the remote party that the platform booted into some “authorized” state, but
does not capture which state that happens to be, nor which values were considered
during the authorization boot process.

Instead, a remote party would like to learn about the measurement of the currently
executing code, as well as any code that could have affected the security of this code.
Section 2 describes how a trusted boot process securely records this information in
measurement chains (using either certificates or hashes).

4.2 Conveying Code Measurement Chains

The high-level goal is to convince a remote party (hereafter: verifier) that a partic-
ular measurement chain represents the software state of a remote device (hereafter:
attestor). Only with an authentic measurement chain can the verifier make a trust
decision regarding the attestor. A verifier’s trust in an attestor’s measurement chain
builds from a hardware root of trust (Section 6). Thus, prerequisites for attestation
are that the verifier (1) understands the attestor’s hardware configuration and (2) is
in possession of an authentic public key bound to the hardware root of trust.

The attestor’s hardware configuration is likely represented by a certificate from
its manufacturer, e.g., the IBM 4758’s factory Layer 1 certificate [182], or the TPM’s
Endorsement, Platform, and Conformance Credentials [213]. Attestation-specific
mechanisms for conveying public keys in an authentic way are treated with respect
to privacy issues in Section 4.3. Otherwise, standard mechanisms (such as a Public
Key Infrastructure) for distributing authentic public keys apply.

The process of actually conveying an authenticated measurement chain varies
depending on the hardware root of trust. We first discuss a more general and more
powerful approach to attestation used on general-purpose secure coprocessors such
as the IBM 4758 family of devices. Then, given the prevalence of TPM-equipped
platforms today, we discuss attestation as it applies to the TPM.

Permission granted by the authors to review this work; do not distribute.

20 Bootstrapping Trust in Modern Computers

4.2.1 General Purpose Coprocessor-Based Attestation

Smith discusses the need for coprocessor applications to be able to authenticate
themselves to remote parties [182]. This is to be distinguished from merely configur-
ing the coprocessor as desired prior to deployment, or including a signed statement
about the configuration. Rather, the code entity itself should be able to generate and
maintain authenticated key pairs and communicate securely with any party on the
Internet. Smith details the decision to keep a private key in tamper-protected mem-
ory and have some authority generate certificates about the corresponding public
key. As these coprocessors are expensive devices intended for use in high assur-
ance applications, considerably less attention has been given to the device identity’s
impact on privacy.

Naming code entities on a coprocessor is itself an interesting challenge. For ex-
ample, an entity may go through one or more upgrades, and it may depend on lower
layer software that may also be subject to upgrades. Thus, preserving desired se-
curity properties for code and data (e.g., integrity, authenticity, and secrecy) may
depend not only on the versions of software currently running on the coprocessor,
but also on past and even future versions. The IBM 4758 exposes these notions as
configurations and epochs, where configuration changes are secret-preserving and
epoch changes wipe all secrets from the device.

During a configuration change, certificate chains incorporating historical data are
maintained. For example, the chain may contain a certificate stating the version of
the lowest layer software that originally shipped on the device, along with a cer-
tificate for each incremental upgrade. Thus, when a remote party interacts with one
of these devices, all information is available about the software and data contained
within.

This model is a relative strength of general-purpose cryptographic coprocessors.
TPM-based attestations (discussed in the next section) are based on hash chains
accumulated for no longer than the most recent boot cycle. The history of software
that has handled a given piece of sensitive data is not automatically maintained.

Smith examines in detail the design space for attestation, some of which is spe-
cific to the IBM 4758, but much of which is more generally applicable [182]. A
noteworthy contribution not discussed here is a logic-based analysis of attestation.
See Section 8 for additional work on validating the bootstrapping of trust.

4.2.2 TPM-Based Attestation

TPM-based attestation affords less flexibility than general coprocessor-based attes-
tation, since the TPM is not capable of general-purpose computation. During the
attestation protocol (shown in Figure 4), software on the attestor’s computer is re-
sponsible for relaying information between the remote verifier and the TPM [213].
The protocol assumes that the attestor’s TPM has generated an Attestation Identity
Keypair (AIK), which is an asymmetric keypair whose public component must be

Permission granted by the authors to review this work; do not distribute.

4 Can We Use Platform Information Remotely? 21

known to the verifier in advance, and whose private component is only accessible to
the TPM. We discuss privacy issues regarding AIKs in Section 4.3.1.

During the protocol, the verifier supplies the attestor with a nonce to ensure fresh-
ness (i.e., to prevent replay of old attestations). The attestor then asks the TPM to
generate a Quote. The Quote is a digital signature covering the verifier’s nonce and
the current measurement aggregates stored in the TPM’s Platform Configuration
Registers (PCRs). The attestor then sends both the quote and an accumulated mea-
surement list to the verifier. This measurement list serves to capture sufficiently
detailed metadata about measured entities to enable the verifier to make sense of
them. Exactly what this list contains is implementation-specific. Marchesini et al.
focus on the measurement of a long-term core (e.g., kernel) [127], while IBM’s
Integrity Measurement Architecture contains the hash and full path to a loaded exe-
cutable, and recursively measures all dynamic library dependencies [164]. To check
the accuracy of the measurement list, the verifier computes the hash aggregate that
would have been generated by the measurement list and compares it to the aggregate
signed by the TPM Quote. This verification process involves efficient hash function
computations, so it is more efficient than performing a public-key based certificate
verification for every measurement.

Coker et al. [45] discuss five principles that should guide the development of
attestation-based systems. In particular, they highlight the importance of freshness
and the need for comprehensive information about the attestor. The latter creates
tension with the attestor’s need to limit the amount of information it discloses. They
also argue that the semantics of an attestation should be made explicit, so that they
can be subjected to formal logical analysis.

Preventing Reboot Attacks

A naive implementation of the above attestation protocol is susceptible to a reboot
or reset attack. The basic weakness is a time-of-check to time-of-use (TOCTOU)
vulnerability where the attesting platform is subject to remote physical tampering,
such as power-cycling the platform. For example, the adversary may wait until the
verifier has received an attestation, then reset the attestor and boot a malicious soft-
ware image. Mitigating this attack requires a way to bind ephemeral session keys to
the currently executing software [64, 75, 130]. These keys can then be used to estab-
lish a secure channel (see below). A reboot destroys the established tunnel, thereby
breaking the connection and preventing the attack.

However, these defenses are insufficient to prevent slightly more sophisticated
attacks that can be launched by an attacker in physical possession of the com-
puter [102, 189]. By connecting the TPM’s reset pin directly to ground, the attacker
can reset the TPM independent of the rest of the platform. This causes the PCRs
to reset and allows the attacker to extend arbitrary measurements into the PCRs
and hence forge a set of measurements representing an arbitrary boot process. See
Section 12.2 for discussion of other potential attacks.

Permission granted by the authors to review this work; do not distribute.

22 Bootstrapping Trust in Modern Computers

Attestation Service

Prog P1, Conf C1

Prog P2, Conf C2

...

Meas. List

TPM

PCR 0

PCR N
...

External

Veri!er
Daemon

1. AttRequest

5. QuoteRes, MeasList

2. QuoteRequest

3. QuoteResponse

4. Retrieve
6. Validate Response

Fig. 4 Attestation. High-level summary of a TPM-based attestation protocol using signed hash
chain measurements [213], e.g., as in IBM’s Integrity Measurement Architecture [164]. Some de-
tails are elided, e.g., the inclusion of an anti-replay nonce as part of the AttRequest message.

Linking Code Identity to Secure Channels

Binding a secure channel (i.e., a channel that provides secrecy, integrity, and authen-
ticity) to a specific code configuration on a remote host requires some care. Goldman
et al. [75] consider an SSL client that connects to a server with attestation capabili-
ties. Even if the client verifies the SSL certificate and the server’s attestation, there
is no linkage between the two. This enables an attack where a compromised SSL
server forwards the client’s attestation request to a different, trusted server. McCune
et al. consider a similar challenge in establishing a secure channel between a client
system and an isolated execution environment on a server [130, 131]. Both conclude
that the solution is to include a measurement of the public key used to bootstrap the
secure channel in the attestation, e.g., extend the public key into one of the TPM’s
PCRs. Goldman et al. also discuss other more efficient solutions in the context of a
virtualized environment.

4.3 Privacy Concerns

Participating in an attestation protocol conveys to the verifier detailed information
about the software loaded for execution on a particular platform. Furthermore, the
attestation often depends on a cryptographic key embedded in the secure hardware,
and using the same key in multiple attestations allows those attestations to be linked
together.

In some cases, this may not be a concern. For example, in the military and in
many enterprises, precise platform identification is desirable, and users do not have
an expectation of privacy. As a result, some of the more expensive cryptographic
co-processors that target these environments contain little provision for privacy.

Permission granted by the authors to review this work; do not distribute.

4 Can We Use Platform Information Remotely? 23

However, in consumer-oriented applications, privacy is vital, and hence several
techniques have been developed to maintain user privacy while still providing the
ability to securely bootstrap trust.

4.3.1 Identity Certificate Authorities

One way to enhance user privacy is to employ a trusted third party to manage the re-
lationship between a platform’s true unique identity, and one or more pseudonyms
that can be employed to generate attestations for different purposes. The Trusted
Computing Group initially adopted this approach in the TPM [213], dubbing the
trusted third party a Privacy CA and associating the pseudonyms with Attestation
Identity Keypairs (AIKs). A TPM’s true unique identity is represented by the En-
dorsement Keypair (EK) embedded in the TPM.2

At a high level, the trusted third party validates the correctness of the user’s
secure hardware, and then issues a certificate declaring the user’s pseudonym corre-
sponds to legitimate secure hardware. With the TPM, the user can ask the TPM to
generate an arbitrary number of AIKs. Using the TPM’s EK, the user can convince
the Privacy CA to issue a certificate for the public portion of an AIK, certifying that
the private portion of the AIK is known only to a real, standards-compliant TPM.
Of course, for many applications, it will be necessary to use a consistent pseudonym
for that particular application (e.g., online banking).

The Privacy CA architecture described above has encountered some real-world
challenges. In reality, there is no one central authority trusted by all or even most
users. Furthermore, a Privacy CA must be highly secure while also maintaining high
availability, a nontrivial undertaking. To date, no commercial Privacy CAs are in
operation, though a handful of experimental services have been created for research
and development purposes [58, 157]. Pirker et al. implement their service in Java
and make the code freely available [157].

4.3.2 Direct Anonymous Attestation

To address the limitations of Privacy CAs, a replacement protocol called Direct
Anonymous Attestation (DAA) [23] was developed and incorporated into the latest
TPM specification [213]. DAA is completely decentralized and achieves anonymity
by combining research on group signatures and credential systems. Unlike many
group signatures, it does not include a privileged group manager, so anonymity can
never be revoked. However, it does allow membership to be revoked. In other words,

2 It is possible to clear a TPM’s EK and generate a new one. However, once an EK is cleared, it
cannot be reinstated (the private key is lost). Further, high-quality TPMs ship from the manufac-
turer with a certified EK. Without a certified EK, it is difficult for a Privacy CA to make a trust
decision about a particular TPM. Generating one’s own EK is most appropriate for security-aware
enterprises with procedures in place to generate new EKs in physically controlled environments,
or for highly security-conscious individuals.

Permission granted by the authors to review this work; do not distribute.

24 Bootstrapping Trust in Modern Computers

an adversary’s credentials can be invalidated without the system ever actually learn-
ing the adversary’s identity.

With DAA, a TPM equipped platform can convince an Issuer that it possesses a
legitimate TPM and obtain a membership certificate certifying this fact. However,
the interaction with the Issuer is performed via zero-knowledge proofs, so that even
if the Issuer colludes with a verifier, the user’s anonymity is protected.

DAA also allows a user to select any desired level of privacy by employing an
arbitrarily large set of pseudonyms. Thus, the user can be anonymous (by using
a new pseudonym for every attestation), fully traceable (by using a single fixed
pseudonym), or any level of privacy in between. These pseudonyms can be used
to authorize standard TPM AIKs, so existing techniques for attestation continue to
function.

In practice, however, DAA has been slow to catch on. No currently available
hardware TPMs offer DAA support, due in part to the cost of implementing expen-
sive group signature operations on the limited TPM processor. The DAA algorithm
is also quite complex, since it offloads as much computation as possible to the sys-
tem’s (relatively) untrusted primary CPU.

Rudolph noted some weaknesses in the original DAA design that could under-
mine its anonymity properties [160], primarily by having the Issuer employ different
long-term keys for different users. Several fixes have been proposed [120], but these
attacks highlight the ability of implementation “details” to undermine the security
of formally proven systems.

More recently, researchers have pursued approaches to DAA that reduce the num-
ber of expensive computations that must be performed inside of the TPM [24, 37].

Permission granted by the authors to review this work; do not distribute.

5 How Do We Make Sense of Platform State?

Knowing what code is executing on a platform does not necessarily translate into
knowing whether that code can be trusted. In this section, we elaborate on this prob-
lem (5.1) and then review solutions that fall into two broad categories: solutions
that provide only the identity of security-relevant code (5.2), and those that convey
higher-level information (5.3).

5.1 Coping With Information Overload

At a high level, converting code identity into security properties is simply an ex-
ercise in software engineering. If we build perfectly secure software, then knowing
this bulletproof code is running on a computer suffices to assure us that the computer
can be trusted. Unfortunately, developing software with strong security properties,
even minimal security kernels with limited functionality, has proven to be a daunting
and labor-intensive task [5, 73, 101, 107].

As a result, most computers run a large collection of buggy, unverified code.
Worse, both OS and application code changes rapidly over time, making it difficult
to decide whether a particular version of software, combined with dozens of other
applications, libraries, drivers, etc., really constitutes a secure system.

Below, we examine techniques developed to cope with this state-space explosion.

5.2 Focusing on Security-Relevant Code

One way to simplify the decision as to whether a computer is trustworthy is to only
record the identity of code that will impact the computer’s security. Reducing the
amount of security-relevant code also simplifies the verifier’s workload in interpret-
ing an attestation. To achieve this reduction, the platform must support multiple priv-
ilege layers, and the more-privileged code must be able to enforce isolation between
itself and less-privileged code modules. Without isolation, privilege-escalation at-
tacks (recall Section 2.1) become possible, enabling malicious code to potentially
erase its tracks.

While layering is a time-honored technique for improving security and manag-
ing complexity [73, 101], we focus on the use of layering to simplify or interpret
information given to an external party about the state of the system.

Privilege Layering via the Operating System

Similar to the semantic attestation [85] technique discussed in Section 2.2, March-
esini et al. introduce a system [127] that uses privilege layering to simplify measure-

Permission granted by the authors to review this work; do not distribute.

26 Bootstrapping Trust in Modern Computers

ment information. Rather than target a language runtime (as in semantic attestation),
they target a module in a trusted OS, and their approach mixes the trusted boot and
secure boot processes described in Sections 2.1 and 3.1. The platform records the
launch of a long-term core (an SELinux kernel in their implementation) which loads
and verifies a policy file supplied by an administrator. The long-term core contains
an Enforcer module that ensures that only applications matching the policy are al-
lowed to execute. Thus, application execution follows the secure boot model. Secrets
are bound to the long-term core, rather than specific applications, using trusted boot
measurements as described in Section 3.2. If an external party can be convinced via
remote attestation that the long-term core is trustworthy, then the only additional
workload is to verify that the Enforcer is configured with an appropriate policy (i.e.,
one that satisfies the external party’s requirements).

Jaeger et al. propose a similar system for enforcing a particular policy [97].
Their policy-reduced integrity measurement architecture (PRIMA) enforces an in-
tegrity policy called Clark Wilson-Lite (CW-Lite) [176]. CW-Lite relaxes the orig-
inal Clark-Wilson [44] requirements that complete, formal assurance of programs
is required, and that all interfaces must have filters. Instead, only interfaces accept-
ing low-integrity inputs must have filters. PRIMA supports the notion of trusted
and untrusted subjects, and extends IBM’s IMA [164] to also measure the Manda-
tory Access Control (MAC) policy, the set of trusted subjects, and the code-subject
mapping (e.g., the active user or role when a program is run). Verification of an
attestation produced on a PRIMA-capable system involves additional checks. Veri-
fication fails if any of the following occur: (1) an untrusted program executes, or (2)
a low integrity flow enters a trusted program without first being filtered. PRIMA is
prototyped using SELinux.

Privilege Layering via Virtualization

The model of attesting first to a more-privileged and presumably trustworthy core,
and then to only a portion of the environment running thereupon, has been explored
in great detail in the context of virtualization.

One of the early designs in this space was Microsoft’s Next-Generation Secure
Computing Base (NGSCB) [42, 55]. With NGSCB, security-sensitive operations are
confined to one virtual machine (VM), while another VM can be used for general-
purpose computing. The VMM is trusted to provide strong isolation between virtual
machines (VMs), and hence an external party need only learn about the identity
of the VMM and a particular VM, rather than all of the code that has executed
in the other VMs. Specifically, handoff attacks (Section 2.1) are significant only
prior to the VMM itself launching, and within the VM where an application of
interest resides. Handoff attacks in other VMs are irrelevant. The challenge remains
to this day, however, to construct a VMM where privilege-escalation attacks are
not a serious concern. The NGSCB architecture had a significant influence on the
design of the TPM, DRTM (see Section 5.2), and early thinking on how to build
secure applications on a bootstrapped foundation of trust [140].

Permission granted by the authors to review this work; do not distribute.

5 How Do We Make Sense of Platform State? 27

Recording the initial VM image also provides a simple way of summarizing an
entire software stack. With the advent of “virtual appliances,” e.g., a dedicated bank-
ing VM provided by one’s bank, this model can be quite promising. Terra gener-
alized this approach to allow multiple “open”, unrestricted VMs to run alongside
“closed” or proprietary VMs [64]. sHype, from IBM, enforces mandatory access
control (MAC) policies at the granularity of entire virtual machines [163]. Simi-
lar projects, including Nizza [179], Proxos [202], and Overshadow [41], have uti-
lized virtualization to separate security-sensitive code from untrusted code. Unfor-
tunately, the large Trusted Computing Base (TCB) of such solutions makes strong
assurance difficult.

Schiffman et al. [169] describe a virtualization-based architecture for providing
strong integrity assurances in a data center. A VM verifier checks the integrity of
each application VM before executing it, and then an enforcer in each VMM im-
poses a variant of the Clark-Wilson integrity model [176] on the VMs as they exe-
cute. Traditional attestation mechanisms attest to the correct execution of the VMM,
as well as the policies enforced. The system relies on a Root of Trust Installation
(ROTI) mechanism [192] to bind the integrity of a privileged VM to the integrity of
its installer. In other words, the integrity of a currently executing system can be tied
back to the installer (e.g., a DVD ISO) that created the system, simplifying verifica-
tion. One drawback of the ROTI approach is that it requires the system’s persistent
state to be largely static, as significant changes in the persistent state are difficult to
map back to the original installation.

Hardware-Supported Isolation: System-Management Mode

Azab et al. [12] demonstrate how System-Management Mode (SMM) can be used to
monitor and attest to the integrity of a hypervisor, without adding an additional layer
of software “underneath” the hypervisor. SMM is a special x86 execution mode that
is invoked via System-Management Interrupts (SMIs). SMM is often used to control
fan speed or react to special keys on laptop keyboards (e.g., the volume control but-
tons). Code in an SMI handler operates independently of normal system code, such
as the OS or hypervisor, and it can introspect on CPU state and the contents of mem-
ory. The HyperSentry system [12] uses a remote management interface to invoke an
SMI and hence trigger their SMM-based checker. Examples of remote management
interfaces include the Intelligent Platform Management Interface (IPMI) [91] and
Intel’s Active Management Technology (AMT), which is now a part of Intel’s vPro
Technology [94]. This ensures that any malware running in the OS or hypervisor
will not know when the checker is triggered, and hence will not have the opportu-
nity to hide itself.

In order to convey integrity information to a remote verifier, HyperSentry relies
on a trusted boot process (see Section 2.1). The Core Root of Trust for Measurement
(CRTM – a portion of the BIOS) measures the rest of the BIOS and extends the mea-
surement into a PCR. The BIOS then measures HyperSentry’s SMI handler, extends
that measurement as well, and installs the handler. Finally, the handler generates a

Permission granted by the authors to review this work; do not distribute.

28 Bootstrapping Trust in Modern Computers

public-private keypair and extends the public portion into the TPM. As a result, a
standard TPM-based attestation will convince a remote party that HyperSentry was
installed correctly and will convey enough information to establish a secure channel
to HyperSentry.

To perform an integrity measurement over the hypervisor, HyperSentry uses a
number of clever tricks to run a measurement agent in the hypervisor’s context in
such a way that malware running with hypervisor privileges cannot evade, predict,
or interfere with the measurement. HyperSentry can then use its private key to sign
the resulting measurement and leave it to the untrusted code to convey the signed
measurement and the TPM-based attestation to the remote verifier. Note that refusal
to provide this information also serves as evidence that the hypervisor has been
compromised.

The primary challenge to deploying an SMM-based system like HyperSentry is
that commercial computers do not allow the installation of arbitrary SMI handlers.
The HyperSentry team was able to work with a manufacturer to install a custom
BIOS on their machine, but this option is not available on a typical computer.

Hardware-Supported Isolation: Dynamic Root of Trust for Measurement

A further challenge is that even VMM-based solutions include a considerable
amount of non-security-relevant code, e.g., the BIOS, the boot loader, and var-
ious option ROMs. This code makes attestation challenging for several reasons.
First, these code modules differ significantly across platforms or even across ver-
sions of the same platform, making it difficult for the recipient to assess the security
of a particular software stack. Additionally, these entities are more privileged than
the VMM (since they run before the VMM at the highest possible privilege level)
and may be capable of undermining the VMM’s ability to subsequently instantiate
strong isolation between VMs. Finally, most of this legacy code was not designed to
collect measurements, and hence must be updated to establish a proper static chain
of trust. For example, most firmware for performing a PXE (network-based) boot
does not include facilities for creating or storing measurements of the boot image
obtained via the PXE protocol. Until this firmware is updated, the platform cannot
perform a trusted boot or a secure boot via the PXE protocol.

To address these shortcomings, AMD and Intel extended the x86 instruction set
to support a dynamic root of trust for measurement (DRTM – also known as late
launch) operation with their respective Secure Virtual Machine (SVM) and Trusted
eXecution Technology (TXT) (formerly codenamed LaGrande Technology) initia-
tives [3, 93]. Both AMD and Intel are shipping processors and chipsets with these
capabilities; they can be purchased in commodity computers. At a high level, a
DRTM operation essentially resets the CPU and memory controller to a known state,
atomically measures a piece of code into the TPM, and begins executing the code in
a hardware-protected environment.

In more detail, the key new feature offered by the SKINIT instruction on AMD
(or GETSEC[SENTER] on Intel) is the ability to launch a Virtual Machine Monitor

Permission granted by the authors to review this work; do not distribute.

5 How Do We Make Sense of Platform State? 29

(VMM) or Security Kernel at an arbitrary time (hence the colloquialism late launch)
with built-in protection against software-based attacks. When a DRTM is invoked,
the CPU’s state is reset, and direct memory access (DMA) protections for a region
of memory are enabled. The CPU measures the contents (e.g., executable code) in
the memory region, extends the measurement into a PCR of the TPM, and begins
executing the code. Essentially, DRTM provides many of the security benefits of
rebooting the computer (e.g., starting from a clean-slate), while bypassing the over-
head of a full reboot (i.e., devices remain enabled, the BIOS and bootloader are not
invoked, memory contents remain intact, etc.).

We now describe AMD’s implementation of DRTM, followed by Intel’s differ-
ences in terminology and technique.

AMD SECURE VIRTUAL MACHINE (SVM).
To initiate a DRTM with AMD SVM, software in CPU protection ring 0 (e.g.,

kernel-level code) invokes the SKINIT instruction, which takes a physical memory
address as its only argument. AMD refers to the memory at this address as the
Secure Loader Block (SLB). The first two words (16-bit values) of the SLB are
defined to be its length and entry point (both must be between 0 and 64 KB).

To protect the SLB launch against software attacks, the processor includes a num-
ber of hardware protections. When the processor executes an SKINIT instruction, it
disables DMA to the physical memory pages comprising the SLB by setting the rel-
evant bits in the system’s Device Exclusion Vector (DEV). It also disables interrupts
to prevent previously executing code from regaining control. Debugging access is
also disabled, even for hardware debuggers. Finally, the processor enters flat 32-bit
protected mode and jumps to the provided entry point.

AMD SVM also includes support for attesting to the proper invocation of the
SLB. As part of the SKINIT instruction, the processor first causes the TPM to reset
the values of the TPM’s dynamic PCRs (i.e., PCRs 17–23) to zero,3 and then trans-
mits the (up to 64 KB) contents of the SLB to the TPM so that it can be measured
(hashed) and extended into PCR 17. Note that software cannot invoke the command
to reset PCR 17. The only way to reset PCR 17 is by executing another SKINIT
instruction. Thus, future TPM attestations can include the value of PCR 17 to attest
to the use of SKINIT and to the identity of the SLB loaded.

INTEL TRUSTED EXECUTION TECHNOLOGY (TXT – FORMERLY LT).
Intel’s TXT is comprised of processor support for virtualization (VT-x) and Safer

Mode Extensions (SMX) [93]. Newer systems also include Virtualization Technol-
ogy for Directed I/O (VT-d). SMX provides support for dynamic root of trust in a
manner similar to AMD’s SVM, so we focus primarily on the differences between
the two technologies. Instead of SKINIT , Intel introduced an instruction called GET-
SEC. GETSEC is a leaf instruction, and performs different operations depending
on the value in general purpose register EAX. The leaf corresponding to AMD’s
SKINIT is GETSEC[SENTER].

3 A reboot of the platform sets the values of dynamic PCRs to −1, unlike with static PCRs, which
are set to 0 during a reboot.

Permission granted by the authors to review this work; do not distribute.

30 Bootstrapping Trust in Modern Computers

A DRTM invoked with GETSEC[SENTER] is comprised of two phases. First,
an Intel-signed code module – called the Authenticated Code Module, or ACMod
– must be loaded into memory. The platform’s chipset verifies the signature on the
ACMod using a built-in public key, extends a measurement of the ACMod into
PCR 17, and finally executes the ACMod. The ACMod is then responsible for mea-
suring the equivalent of AMD’s SLB (which is called an MLE, i.e., a Measured,
Launched Environment), extending the measurement into PCR 18, and then execut-
ing the code. In analogy to AMD’s DEV protection, Intel protects the memory re-
gion containing the ACMod and the SLB from outside memory access using VT-d.4

However, unlike the 64 KB protected by AMD’s DEV, Intel’s default DMA protec-
tions can be configured to include two arbitrary sized swathes of memory – one
below 4 GB, and one above 4 GB.

As the OSLO bootloader project noted [102], DRTM allows the chain of trust
described in Section 2.1 to be significantly shortened. One promising design is to
launch a VMM, which prevents some kinds of malicious platform firmware from
attacking the VMM.

BIND [177] combined DRTM with secure information about the launched code’s
inputs and outputs, hence providing a more dynamic picture to a remote party. Since
it predated the arrival of actual hardware support, it lacked an implementation.

The Flicker project [130, 131] found that this approach could be extended even
further to provide a secure execution environment on demand. It combined DRTM
with sealed storage (see Section 3.2) and a carefully engineered kernel module to al-
low the currently executing environment to be temporarily paused while a measured
and isolated piece of code ran. Once completed, the previous environment could
be resumed and run with full access to the platform’s hardware (and hence execute
at native speed). This reduced the code identity conveyed to a third party to a tiny
Flicker-supplied shim (potentially as little as 250 lines of code) and the security-
relevant code executed with Flicker protections. However, the authors found that
since the DRTM primitive had not been designed to support frequent or rapid in-
vocation, it introduced context-switch overheads on the order of tens or hundreds
of milliseconds for practical security-sensitive code. Nonetheless, relatively simple
changes to the hardware could dramatically improve this performance [132].

Finally, the TrustVisor project [129] attempts to strike a middle ground by em-
ploying a minimalist hypervisor to provide DRTM-like functionality to applications,
greatly minimizing context switch overhead as compared to Flicker. It also provides
a higher-level, simplified interface to TPM-like functionality, such as sealing secrets
to code identity.

TPM LOCALITY.
The dynamic root of trust mechanism described above depends in part on a TPM
privilege facility called locality. Locality is primarily intended to support a hierarchy

4 Early versions used a Memory Protection Table (MPT) that is now deprecated. Note that Intel
has continued to evolve their platform’s supported capabilities, and that things continue to change
even at the time of this writing.

Permission granted by the authors to review this work; do not distribute.

5 How Do We Make Sense of Platform State? 31

of system software operating at different privilege levels as well as different levels of
trustworthiness (e.g., a hypervisor, an operating system, and various applications).

Certain TPM commands (most notably those that can reset the value of a Plat-
form Configuration Register) are only permitted from a sufficiently privileged lo-
cality. The following table provides a brief overview of the PCRs that can be reset
at each locality.

Locality Resettable PCR(s)
None N/A

0 N/A
1 PCR 20
2 PCRs 19–20
3 PCRs 18–20
4 PCRs 17–20

The implementation of locality is specific to the integration of the TPM with a
host platform such as the PC Client platform [212]. On PCs, the locality of the cur-
rent TPM command is determined by the memory-mapped address in the host sys-
tem’s physical memory space that is used to communicate the command to the TPM.
For example, a TPM command sent using an address of the form 0xfed40xxx
will be treated as a locality 0 command, while the same command sent using an ad-
dress of the form 0xfed44xxx will be treated as a locality 4 command. The CPU
and chipset prevent software from employing the 0xfed44xxx addresses. Only
the CPU itself, while executing the SKINIT or GETSEC[SENTER] instruction, can
generate commands with these addresses. The most privileged software on the PC
(e.g., the hypervisor or OS) can access all localities less than 4,5 and it may choose
to restrict other software even further by using memory protections to restrict access
to the relevant physical addresses.

Interested readers should refer to the appropriate platform-specific specification
for full details on the locality mechanism (e.g., the PC Client Specific TPM Interface
Specification [212]).

Slicing and Privilege Separation

A persistent challenge in trying to restrict one’s focus to security-relevant code is
that most software was written without meticulous attention to the principle of least
privilege. As such, researchers have endeavored to automatically apply privilege
separation to a legacy codebase, via tools such as PrivTrans [25]. PrivTrans lever-
ages programmer annotations to automatically separate an existing program into
privileged and unprivileged components. The authors compare their results against
the manual privilege separation performed for the OpenSSH utility.

Program Slicing is useful in this context [204, 222], as it allows computation of
the set of program statements that affect values at some point of interest. However,

5 Intel TXT platforms reserve Locality 3 access exclusively for their Autheticated Code Modules
(see Section 5.2).

Permission granted by the authors to review this work; do not distribute.

32 Bootstrapping Trust in Modern Computers

existing slicing techniques do not necessarily provide guarantees about the confiden-
tiality of sensitive data. Monate and Signoles introduce a source-to-source program
slicing method that preserves the confidentiality of information [141].

5.3 Conveying Higher-Level Information

An orthogonal approach to interpreting code identity is to convert the information
into a set of higher-level properties that facilitate trust judgements. This is typically
accomplished either via code-level constraints or by outsourcing the problem to a
third-party.

Code Constraints

As discussed in Section 2.2, multiple research efforts have studied mechanisms for
applying static methods (e.g., via type checking [100] or inline reference mon-
itors [56]) or dynamic methods (e.g., via hypervisors [172, 191], security ker-
nels [105], or language runtimes [85]) for conveying information about software.
Attesting to code identity allows an external party to verify that the running code has
been appropriately transformed or that the dynamic checker was loaded correctly.
This in turn assures the external party that the code has the property (or properties)
provided by the transformation or checker.

Nauman et al. propose an attestation framework that enables an object owner to
specify detailed usage control policies to be evaluated on a remote platform [144].
Attestation is leveraged to convey enforcement information between platforms, and
allows a challenger to verify that object attribute update behavior and information
flow behavior are in accordance with the appropriate policy.

Outsourcing

Another approach is to outsource the problem of interpreting code identity to a third
party. Terra [64] took an initial step in this direction, as the authors suggest that
clients obtain certificates from their software providers that map hash values to soft-
ware names and/or versions. By including these certificates with their attestation, the
client simplifies the verifier’s interpretation task (i.e., the verifier no longer needs to
have its own database for mapping hash values to software packages, assuming the
verifier trusts the PKI used by the software vendors).

Subsequent work by Sadeghi and Stüble develops this idea much further [162].
They propose property-based attestation, with the goal of attesting whether a plat-
form or an application fulfills the desired security requirements without revealing
the specific software and hardware configuration. The client contacts a third-party
who certifies that the client’s software satisfies a much higher-level property, e.g.,

Permission granted by the authors to review this work; do not distribute.

5 How Do We Make Sense of Platform State? 33

the client’s software will never leak sensitive data. The client then presents this
certificate to the verifier. Assuming the verifier trusts this third-party, it can easily
conclude that the client possesses the certified property. In this way, verifiers are:
unable to discriminate based on certain business considerations (e.g., OS or appli-
cation software vendors), relieved of the burden of somehow ascertaining all known
trusted configurations, and relieved of the burden of actually making a trust assess-
ment of a given configuration. Unfortunately, most work in this area does not specify
how the third party decides whether a particular piece of software provides a given
property.

While similar in name, property-based attestation [162] and semantic attesta-
tion [85] are quite different. Property-based attestation [162] focuses on replacing
the TPM’s hash-based measurements with software properties certified by third par-
ties. In particular, these software properties should be used, instead of a list of
hashes, for conveying the state of the platform or the binding of secrets to a par-
ticular configuration. In contrast, semantic attestation [85] uses standard attestation
techniques to report on the execution of a trusted language runtime (e.g., Java or
.NET) and a (potentially dynamic) policy enforced by that runtime. Thus, semantic
attestation is orthogonal to outsourcing and, in fact, has more in common with the
privilege layering (via OS or VMM) techniques discussed above.

Chen et al. later proposed protocols [38] for combining property-based attestation
with anonymity protocols similar to DAA (see Section 4.3.2). Kühn et al. extend the
functionality of property-based attestation and construct a prototype on commodity
systems [111]. Korthaus et al. describe an enhanced bootloader to support property-
based attestation [109].

Permission granted by the authors to review this work; do not distribute.

34 Bootstrapping Trust in Modern Computers

Permission granted by the authors to review this work; do not distribute.

6 Roots of Trust

Trust in any system needs a foundation or a root of trust. Here, we discuss the roots
of trust that have been proposed or deployed. Typically, the root of trust is based on
the secrecy of a private key that is embedded in hardware; the corresponding public
key is certified by the hardware’s manufacturer. As we discuss, some systems further
rely on a piece of code that must execute in the early boot process for their root of
trust. We also discuss schemes where the root of trust is established by the properties
of the physical hardware itself.

We defer to Sections 7 and 11 the discussion of how to create a trusted path
between the human user and the root of trust. In brief, a trusted path is a mechanism
for creating a secret and authenticated channel from the user to another entity, in
this case the computer system’s root of trust. It is intimately related to the user’s
mental model of the computer system. With a well-constructed trusted path, the
user should know the identity of entity with which she communicates, that entity
should “know” that the communications come from the user (and not from, e.g.,
other software), and the contents of the communication should remain secret and
unmodified.

We divide this section as follows: 1) general-purpose devices with significant re-
sistance to physical tampering, 2) general-purpose devices without significant phys-
ical defenses, 3) special-purpose minimal devices, and 4) research solutions that
attempt to instantiate a root of trust without custom hardware support.

6.1 General-Purpose Tamper-Resistant and Tamper-Responding
Devices

We first discuss commercial solutions available today. Relatively few products have
achieved widespread commercial success, since tamper-resistant devices require
costly manufacturing processes. We then discuss research projects that developed
many of the design ideas manifested in today’s commercial solutions. In all of these
systems, the hardware stores a secret private key, and the manufacturer digitally
signs a certificate of the corresponding public key. The certificate forms the root of
trust that a verifier uses to establish trust in the platform.

6.1.1 Commercial Solutions

IBM offers a family of general-purpose cryptographic co-processors with tamper-
resistant and tamper-responding properties, including the PCI-based 4758 [99, 184,
185] and the PCI-X-based 4764/PCIXCC [11, 89]. These devices include packaging
for resisting and responding to physical penetration and fluctuations in power and
temperature. Batteries provide power that enables an active response to detected

Permission granted by the authors to review this work; do not distribute.

36 Bootstrapping Trust in Modern Computers

tampering, in the form of immediate erasure of the area where internal secrets are
stored and permanently disabling the device. Some of these devices include support
for online battery replacement, so that the lifetime of these devices is not constrained
by the lifetime of a battery.

Many higher-end smart cards and SIM cards include protections against physical
attack. For example, the Infineon line of SLE88 chips includes sensors to detect
voltage fluctuations, glitches, and light, as well as filters designed to smooth power
usage (and hence frustrate power analysis) [90]. In these devices, a private key,
typically used for authentication, resides solely in the microprocessor, and all private
key operations take place within the microprocessor itself. Thus, the card can be
used to interact with potentially untrusted terminals without risking key exposure.
Gobioff et al. discuss the need for an on-card trusted path to the user, since an
untrusted terminal can display some information to the user but perform a different
transaction with the card itself (e.g., doubling the amount of a transaction) [71].
Smart cards are also discussed in Section 11.

6.1.2 Research Projects

µABYSS [221] and Citadel [223] are predecessors of the modern IBM designs,
placing a CPU, DRAM, flash ROM, and battery-backed RAM (BBRAM) within
a physically tamper-resistant package. Tampering causes erasure of the BBRAM,
consequently destroying the keys required to decrypt the contents of DRAM. The
Dyad secure co-processor [226] also presents some design elements visible today in
IBM’s devices. Only signed code from a trusted entity will be executed, and boot-
strapping proceeds in stages. Each stage checks its integrity by comparing against a
signature stored in the device’s protected non-volatile memory.

The XOM [123] and AEGIS6 [201] designs do not trust the operating system,
and include native support for partitioning cache and memory between mutually
distrusting programs. The AEGIS design [201] generates secrets (for use as encryp-
tion keys) based on the physical properties of the CPU itself (e.g., logic delays).
Physical tampering will impact these properties, rendering the encryption keys in-
accessible.

The Cerium processor design is an attempt at providing similar properties while
remaining a largely open system [36]. Cerium relies on a physically tamper-resistant
CPU with a built-in private key. This key is then used to encrypt sensitive data before
it is sent to memory. Cerium depends on a trusted micro-kernel to manage address
space separation between mutually distrusting processes, and to manage encryption
of sensitive data while it resides in untrusted DRAM.

Lee et al. propose the Secret Protected (SP) architecture for virtual secure copro-
cessing [117]. SP proposes hardware additions to standard CPUs in the form of a
small key store, encryption capabilities at the cache-memory interface, new instruc-
tions, and platform changes to support a minimalistic trusted path. These facilities

6 Two relevant research efforts have used the name AEGIS. One is that of Arbaugh et al. [8]
discussed in Section 2.1. The other is by Suh et al. [201] and is discussed in this section.

Permission granted by the authors to review this work; do not distribute.

6 Roots of Trust 37

enable a Trusted Software Module to execute with direct hardware protection on
the platform’s primary CPU. This module can provide security-relevant services to
the rest of the system (e.g., emulate a TPM’s functionality), or it can implement
application-specific functionality. Data is encrypted and integrity protected when it
leaves the CPU for main memory, with the necessary keys residing solely within the
CPU itself. SP pays considerable attention to the performance as well as security
characteristics of the resulting design.

6.2 General-Purpose Devices Without Dedicated Physical Defenses

Here we discuss devices that are designed to help increase the security of soft-
ware systems, but do not incorporate explicit physical defense measures. In prac-
tice, the degree of resilience to physical compromise varies widely. For example,
consider the differences in physically attacking a device 1) on a daughter card that
can be readily unplugged and interposed on, 2) soldered to the motherboard, 3)
integrated with the “super-IO” chip, and 4) on the same silicon as the main CPU
cores. The best examples for commodity platforms today are those equipped with a
Trusted Platform Module (TPM), its mobile counterpart, the Mobile Trusted Mod-
ule (MTM [53, 211]), or a smart card.

TPM-equipped Platforms

The TPM chip is a hardware device, but it does not employ any specific tamper
resistance. Trust in the TPM stems from three roots of trust, specifically the roots
of trust for Storage, Reporting, and Measurement. Trusted storage is provided by
an encryption key that permanently resides within the TPM in nonvolatile RAM
(see Section 3.2.2). The root for reporting (or communicating measurements to an
external party) can be protected by the TPM’s storage facilities. Finally, TPM mea-
surement depends an immutable part of platform firmware called the Core Root of
Trust for Measurement, which initializes the TPM when a platform first boots up.

MTM-equipped Platforms

The TCG Mobile Phone Working Group (MPWG) has specified a Mobile Trusted
Module (MTM) [211]. The MTM specification interleaves two different profiles,
depending on the device’s owner: a Mobile Local Owner Trusted Module (MLTM)
and a Mobile Remote Owner Trusted Module (MRTM). The local owner has physi-
cal control over the device, i.e., its user. The remote owner is a stakeholder without
physical access to the deployed device, e.g., a device manufacturer or a network
service provider.

Permission granted by the authors to review this work; do not distribute.

38 Bootstrapping Trust in Modern Computers

In the MRTM (Remote Owner) profile, trust stems from four distinct roots of
trust: Storage, Enforcement, Reporting, and Verification. These roots of trust rep-
resent security preconditions required for the MTM to initialize successfully [53].
Unlike the TPM, an MTM may be implemented entirely in software, although a
device secret must be protected so that it can be used to provide a secure root of
trust for storage facilities. Similar to the TPM, the other roots can use keys that
are protected by secure storage. The root of trust for execution typically makes use
of the isolated execution features of the platform’s main CPU, e.g., ARM Trust-
Zone [9] or TI M-Shield [13]. Boot integrity is provided using a secure boot model
(Section 3.1).

Researchers are exploring this space. Winter details a design combining TCG
and ARM TrustZone ideas for embedded Linux [224]. Ekberg and Bugiel present a
software implementation of an MRTM, taking care to minimize its space constraints
as far as possible [52]. This minimized MRTM is more easily realized on real-world
secure execution environments with highly constrained memory resources, e.g., TI
M-Shield as mentioned above. Dietrich et al. consider two approaches for providing
modular, customizable MTM functionality which are based on currently available
cell phones’ security extensions – ARM TrustZone processor extensions and Secure
Elements [47].

Bugiel and Ekberg extend the execution environment available to a protected
software module (in the context of Flicker – Section 5.2) to include a full MTM [27].
They observe that modules that manage credentials will preserve the secrecy and in-
tegrity of the credentials, but that deployed credentials may still be misused (though
not leaked) by other applications. Thus, an architecture is presented that is intended
to provide the link between applications, their respective sealed credentials, and the
secure execution environment.

Smart Cards

Unlike the high-end products discussed in Section 6.1.1, low-end smart cards and
SIM cards may not have any active tamper response mechanisms; instead, they of-
ten attempt to protect a secret key through techniques such as hardware obfusca-
tion [227].

6.3 Special-Purpose Minimal Devices

Several research projects have considered the utility of special-purpose security
hardware. In general, this minimalistic approach works for some applications, but
the limited functionality will exclude many applications that depend on reporting
exactly what code is currently executing. Characterizing more precisely what func-
tionality is needed in secure hardware for various classes of applications is still an
open area of research.

Permission granted by the authors to review this work; do not distribute.

6 Roots of Trust 39

Preventing Equivocation

Chun et al. observe that much of the complexity in Byzantine-Fault-Tolerant pro-
tocols arises from an adversary’s ability to lie differently to each legitimate partic-
ipant [43]. They show that the ability to attest to an append-only log can prevent
such duplicity, and can hence greatly reduce the complexity and overhead of these
protocols. Following up on this work, Levin et al. [121] show that the same property
can be achieved with a much simpler primitive, namely the ability to attest to the
value of a counter. They informally argue that this is the simplest primitive that can
provide this property, and they show that an attested counter can be used in a range
of applications, including PeerReview and BitTorrent.

Physical Unclonable Functions (PUFs)

Microscopic differences in manufacturing processes cause no two devices to be
identical at the atomic level. Research in physical one-way functions [148], also
known as physical unclonable functions, explores the applicability of such proper-
ties to security protocols. Circuits can be produced that are easy to evaluate but (it
is hoped) practically impossible to predict or replicate. At the time of this writing
PUFs remain a promising mechanism for providing strong device identity, which
has applications in attestation protocols, e.g., [28, 118]. Schellekens et al. also typify
this space by investigating trusted computing on low-cost reconfigurable hardware
without non-volatile storage, such as low-end FPGAs, using a PUF to bootstrap key
storage [168]. Recently, Armknecht et al. formalized a large collection of extant
research on physical functions [10].

6.4 Research Solutions Without Hardware Support

The research community has proposed mechanisms to establish a software-based
root of trust based solely on the properties of the physical hardware, i.e., without
special hardware support. The key idea in software-based attestation is to have code
compute a checksum over itself to verify its integrity [69, 104, 173, 174, 175, 190].
A verifier checks the result of the computed checksum and also measures the com-
putation time. If an adversary interferes with the checksum computation, the inter-
ference will either slow the computation (and such timing deviation can be detected
by the verifier) or will result in an incorrect checksum. Software-based attestation
requires several strong assumptions, including the need for the verifier to have in-
timate knowledge of the hardware platform being verified, i.e., the verifier must
know the platform’s CPU make and model, clock speed, cache architecture, etc. In
comparison with hardware-based techniques, the resulting security properties are
similar to those of DRTM on a platform such as AMD SVM [3] or Intel TXT [93]
(see Section 5.2). Secure storage remains a challenge as we discuss below.

Permission granted by the authors to review this work; do not distribute.

40 Bootstrapping Trust in Modern Computers

The earliest proposal in this area is due to Spinellis [190], who proposes to use a
timed self-checksumming code to establish a root of trust on a system. In the same
vein, Kennel and Jamieson propose to use hardware side-effects to authenticate soft-
ware [104]. Seshadri et al. implement a timed checksum function on embedded sys-
tems as well as on PCs [173, 174]. Shaneck et al. and Giffin et al. propose the use
of self-modifying code to strengthen self-checksumming [69, 175].

Attacks have been proposed against weakened versions of software-based attes-
tation mechanisms [32, 225]; however, these attacks are primarily based on imple-
mentation flaws, rather than fundamental limitations of the approach. Indeed, Perrig
and van Doorn describe issues with some of the attacks [154]. Even so, additional
formalism is needed to create true confidence in software-based attestation.

Long-term secure storage is also an open challenge for software-based attes-
tation. This is because software-based attestation has no dedicated or hardware-
protected storage for integrity measurements or secrets bound to integrity measure-
ments. Thus, if such properties are desired, they must be engineered in software.
However, there are fundamental limitations to the types of storage that can be pro-
tected long-term (e.g., across a power cycle) without a root of trust for storage (e.g.,
an encryption key available only to the trusted code that runs as part of the software-
based attestation).

One line of research has avoided this dependence on hardware properties by fo-
cusing on auditing the results of specific function evaluations. Audit-based solu-
tions [19, 142] typically require the client (or randomly selected workers) to recal-
culate some portion of the work done by untrusted workers. This may be infeasible
for resource-constrained clients and often relies on some fraction of the workers to
be honest, or at least non-colluding.

A variant on the logging approach depends on tamper-evident logs and determin-
istic replay [84]. Specifically, the authors propose a system to attest to the actions of
a virtual machine (VM) without the need for hardware support. The VM runs atop
an “Accountable VMM” that stores, in a tamper-evident log, all non-deterministic
inputs to the VM, as well as all messages sent or received. When two parties inter-
act, they exchange signed summaries of their logs, so that the each party can ensure
the exchanged messages are properly logged. To verify Bob’s VM, Alice requests
a signed log of the VM’s activity. Using her own reference implementation of the
software allegedly running in the VM, Alice performs a deterministic replay of the
inputs to the VM and verifies the output is consistent with the log.

Unlike typical bootstrapping approaches, the accountable replay approach does
not report what software is actually running. As a result, it cannot prevent “enhance-
ment” attacks. For example, one of the motivating examples the authors consider is
gaming. An accountable VM would detect a user who installs software to give her
infinite life, since this behavior is inconsistent with the behavior of the unmodi-
fied game. However, it would not detect cheating software that aims a gun for the
player, or allows the player to see through walls. Cheats in this category produce
VM output that is feasible within the unmodified game. In addition, efficiently per-
forming deterministic replay is still quite challenging, particularly for multi-core
systems [116].

Permission granted by the authors to review this work; do not distribute.

7 Challenges in Bootstrapping Trust in
Secure Hardware

Thus far, we have discussed how to use various secure hardware mechanisms to
bootstrap trust in a platform, in particular by using the secure hardware to monitor
and report on the software state of the platform. Given the software state, the user
(or an agent acting on the user’s behalf) can decide whether the platform should be
trusted. Due to cost considerations, most commodity computers do not include a
full-blown secure coprocessor such as the IBM 4758 [185]. Instead, the move has
been towards cheaper devices such as the Trusted Platform Module (TPM) [213].
The cost reduction is due in part to the decision to make the TPM secure only against
software attacks. As a consequence, a TPM in the physical possession of an adver-
sary cannot be trusted.

With appropriate software support, the TPM can be used to measure and record
each piece of software loaded for execution, and to securely convey this information
(via an attestation) to a remote party [164, 213] (see Section 4). With hardware
support for a dynamic root of trust, included in the most recent CPUs from AMD
and Intel, the attestation from the TPM can be simplified to attest to the secure,
isolated execution of a particular piece of software (see Section 5.1). With either
approach, the resulting attestations can be verified by a user’s trusted device, such
as a cellphone or a special-purpose USB device [215]. Thus, the TPM can be used
to establish trust in the software on a machine.

However, the question remains: How do we bootstrap trust in the TPM itself?
Surprisingly, neither the TPM specifications nor the academic literature have con-
sidered this problem. Instead, it is assumed that the user magically possesses the
TPM’s public key. While this assumption dispenses with the problem, it does not
truly solve it, since in real life the user does not typically receive authentic public
keys out of the blue. Without the TPM’s public key, the user cannot determine if she
is interacting with the desired local TPM or with an adversarially-controlled TPM.
For example, in a cuckoo attack, malware on the local machine may forward the
user’s messages to a remote TPM that the adversary physically controls. Thus, the
user cannot safely trust the TPM’s attestation, and hence cannot trust the computer
in front of her.

As a result, as noted by Parno [149], we need a system to allow a conscientious
user to bootstrap trust in the local TPM, so that she can leverage that trust to estab-
lish trust in the entire platform. 7

In this section, we discuss the following topics: 1) we formally define (using
predicate logic) the problem of bootstrapping trust in a platform, 2) we show how
the model captures the cuckoo attack, as well as how it suggests potential solutions,
3) we give sample instantiations of each type of solution and discuss their advan-
tages and disadvantages, and 4) we recommend improvements for future platforms
that aspire to be trusted.

7 The text in this section is adapted from Parno’s work [149].

Permission granted by the authors to review this work; do not distribute.

42 Bootstrapping Trust in Modern Computers

(a) Example Implementation (b) Logical Equivalent

Fig. 5 The Cuckoo Attack. In one implementation of the cuckoo attack (a), malware on the user’s
local machine sends messages intended for the local TPM (TPML) to a remote attacker who feeds
the messages to a TPM (TPMM) inside a machine the attacker physically controls. Given physical
control of TPMM, the attacker can violate its security guarantees via hardware attacks. Thus, at a
logical level (b), the attacker controls all communication between the verifier and the local TPM,
while having access to an oracle that provides all of the answers a normal TPM would, without
providing the security properties expected of a TPM.

7.1 Problem Definition

In this section, we present an informal description of the problem, followed by a
more rigorous, formal definition.

We focus on a slightly abstracted model of the Trusted Platform Module (TPM).
In particular, we model it as a security chip equipped with a public/private keypair
{KTPM,K−1

TPM} and a set of Platform Configuration Registers (PCRs). The TPM’s
manufacturer provides the TPM with an Endorsement Certificate, which certifies
that the TPM is a genuine hardware TPM and serves to authenticate the TPM’s
public key KTPM. Section 4.2.2 describes the lower-level details hidden by this
abstraction.

7.1.1 Informal Problem Description

Our high-level goal is to establish trust in a potentially compromised computer,
so that a user can perform security-sensitive tasks. To achieve this goal, we must
assume the user already trusts someone or something, and then leverage that trust to
establish trust in the computer.

Specifically, we make two initial trust assumptions. First, we assume the user has
a mobile, trusted device, such as a cellphone, or a special-purpose USB device [215]
that can compute and communicate with the computer. This device is assumed to be
trusted in part due to its limited interface and functionality,8 so it cannot be used for
general security-sensitive tasks. We also assume the user trusts someone (potentially
herself) to vouch for the physical integrity of the local machine. Without this as-
sumption (which may not hold for kiosk computers), it is difficult to enable secure,

8 Arguably, this assumption may not hold for current smartphones.

Permission granted by the authors to review this work; do not distribute.

7 Challenges in Bootstrapping Trust in Secure Hardware 43

Predicates
Predicate Meaning
TrustedPerson(p) User trusts person p.
PhysSecure(c) Computer c is physically secure.
SaysSecure(p, c) Person p says computer c is physically secure.
TrustedC(c) Computer c is trusted.
TrustedT(t) TPM t is trusted.
On(t, c) TPM t resides on computer c.
CompSaysOn(c, t) Computer c says TPM t is installed on computer c.

Axioms
1. ∀p,c TrustedPerson(p) ∧ SaysSecure(p, c)

→ PhysSecure(c)
2. ∀t,c On(t, c) ∧ ¬ PhysSecure(c)→¬ TrustedT(t)
3. ∀t,c On(t, c) ∧ PhysSecure(c)→ TrustedT(t)
4. ∀t,c On(t, c) ∧ TrustedT(t)→ TrustedC(c)
5. ∀t,c On(t, c) ∧ ¬ TrustedT(t)→¬ TrustedC(c)
6. ∀c, t CompSaysOn(c, t)→ On(t, c)

Fig. 6 Trust Model. The predicates describe relevant properties of the system, while the axioms
encode facts about the domain.

general-purpose computing. Fortunately, humans are relatively good at protecting
their physical belongings (as opposed to virtual belongings, such as passwords).
Furthermore, the assumption holds with respect to Internet-based attackers.

Ideally, from these two trust assumptions (a trustworthy verifier device and a
physically secure local computer), we would establish trust in the secure hardware
(TPM) in the local computer. Trust in the TPM could then be used to establish trust
in the software on the computer. Unfortunately, there is currently no way to connect
our trust assumptions to trust in the local TPM. When a user walks up to a computer,
she has no reliable way of establishing the identity (public key) of the TPM inside
the computer. As a result, she may fall victim to what we call a cuckoo attack.

In a cuckoo attack,9 the adversary convinces the user that a TPM the adversary
physically controls in fact resides in the user’s own local computer. Figure 5(a) illus-
trates one possible implementation of the cuckoo attack. Malware on the user’s local
machine proxies the user’s TPM-related messages to a remote, TPM-enabled ma-
chine controlled by the attacker. The attacker’s TPMM can produce an Endorsement
Certificate certifying that the TPM’s public key KTPMM

comes from an authentic

TPM. The attacker’s computer then faithfully participates in the TPM protocol, and
it provides an attestation that trusted software has been loaded correctly.

9 The cuckoo bird replaces other birds’ eggs with its own. The victim birds are tricked into feeding
the cuckoo chick as if it were their own. Similarly, the attacker “replaces” the user’s trusted TPM
with his own TPM, leading the user to treat the attacker’s TPM as her own.

Permission granted by the authors to review this work; do not distribute.

44 Bootstrapping Trust in Modern Computers

Assumption Encoding
1. Alice trusts herself. TrustedPerson(Alice)
2. Alice says her computer C is physi-

cally secure.
SaysSecure(Alice, C)

3. The adversary controls machine M
containing TPMM .

On(TPMM , M)

4. M is not physically secure. ¬ PhysSecure(M)
5. Malware on Alice’s machine C

causes it to say that TPMM is in-
stalled on C.

CompSaysOn(C, TPMM)

Fig. 7 Trust Model Assumptions. We encode our assumptions about the situation in predicates.

(1) TrustedPerson(Alice) Assumption 1
(2) SaysSecure(Alice, C) Assumption 2
(3) PhysSecure(C) Axiom 1: (1), (2)
(4) CompSaysOn(C, TPMM) Assumption 5
(5) On(TPMM , C) Axiom 6: (4)
(6) TrustedT(TPMM) Axiom 3: (5), (3)
(7) TrustedC(C) Axiom 4: (5), (6)
(8) On(TPMM , M) Assumption 3
(9) ¬ PhysSecure(M) Assumption 4
(10) ¬ TrustedT(TPMM) Axiom 2: (8), (9)
(11) ¬ TrustedC(C) Axiom 5: (5), (10)
(12) ⊥ 7, 11

Fig. 8 Proof Failure Reveals Cuckoo Attack. Applying our axioms to our assumptions leads to
a logical contradiction.

As a result, the user will decide to trust the local PC. Any secrets she enters can be
captured by malware and forwarded to the attacker. Even secrets protected by TPM-
based guarantees (e.g., encrypted using KTPMM

) will be compromised, since the

TPM’s specifications offer no guarantees for a TPM in the physical possession of
the adversary.

Thus, it is crucial that the user be able to securely communicate with the TPM
in the local machine before revealing any sensitive information. Note that while
this attack resembles a classic Attacker-in-the-Middle attack, it differs in that the
attacker controls the software of the local machine and the hardware and software
on the remote machine.

Permission granted by the authors to review this work; do not distribute.

7 Challenges in Bootstrapping Trust in Secure Hardware 45

7.1.2 Formal Model

To analyze the cuckoo attack more formally, we can model the situation using pred-
icate logic. Figure 6 summarizes our proposed model for establishing trust in a com-
puter equipped with secure hardware. The first axiom encodes our assumption that
trusted humans can vouch for the physical integrity of a computer. The next two
axioms codify the TPM’s vulnerability to hardware attacks. The second set of ax-
ioms encodes our assumption that trust in the TPM inside a computer suffices (via
software attestations) to establish trust in the computer. The final axiom represents
the fact that today, without the local TPM’s public key, the user must accept the
computer’s assertion that a particular TPM resides on the computer.

To “initialize” the system, we also encode our assumptions about the concrete
setting in a set of predicates (shown in Figure 7). By applying our set of axioms
to the initial assumptions, we can reason about the trustworthiness of the local ma-
chine. Unfortunately, as shown in Figure 8, such reasoning leads to a logical contra-
diction, namely that the local machine C is both trusted and untrusted. This contra-
diction captures the essence of the cuckoo attack, since it shows that the user cannot
decide whether to trust the local machine.

Removing the contradiction requires revisiting our axioms or our assumptions.
We explore these options below.

7.2 Potential Solutions

The cuckoo attack is possible because the attacker can convince the user to accept
assurances from an untrustworthy TPM. In this section, we first show that an obvi-
ous solution, cutting off network access, addresses one instantiation of the cuckoo
attack but does not solve the problem, since malware on the local machine may have
enough information to perfectly emulate a TPM in software. To avoid similar mis-
steps, we return to our formal model and consider solutions that remove an assump-
tion, as well as solutions that fix an axiom. For each approach, we provide several
concrete instantiations and an analysis of their advantages and disadvantages.

7.2.1 Removing Network Access

From Figure 5(a), it may seem that the cuckoo attack can be prevented by severing
the connection between the local malware the adversary’s remote PC. The assump-
tion is that without a remote TPM to provide the correct responses, the infected
machine must either refuse to respond or allow the true TPM to communicate with
the user’s device (thus, revealing the presence of the malware).

Below, we suggest how this could be implemented, and show that regardless of
the implementation, this solution fundamentally does not work. We demonstrate this
both with the formal model from Section 7.1.2, and with an attack.

Permission granted by the authors to review this work; do not distribute.

46 Bootstrapping Trust in Modern Computers

There are several ways to remove the local malware’s access to the remote TPM.
We could instruct the user to sever all network connections. If the user cannot be
trusted to reliably accomplish this task,10 the verifier could jam the network con-
nections. For example, the user’s trusted device might include an RJ-45 connector
to plug the Ethernet jack and jam the wireless network at the logical level (by contin-
uously sending Request-to-Send frames) or at the physical level. Finally, we could
use a distance-bounding protocol [22] to prevent the adversary from making use
of a remote TPM. Since the speed of light is constant [51], the verifier can require
fast responses from the local platform and be assured that malware on the computer
does not have time to receive an answer from a remote party. However, with cur-
rent TPMs, identification operations take half a second or more, with considerable
variance both on a single TPM and across the various TPM brands [132]. A sig-
nal traveling at the speed of light can circle the earth about four times in the time
required for an average TPM to compute a signature, making distance-bounding
infeasible.

Unfortunately, removing network access is fundamentally insufficient to prevent
the replay attack. One way to see this is via the formal model from Figure 6. Neither
the predicates nor the axioms assume the local adversary has access to the remote
PC. The logical flaw that allows the cuckoo attack to happen arises from Axiom 6,
i.e., the local computer’s ability to convince the user that a particular TPM resides
on the local computer. In other words, as shown in Figure 5(b), the cuckoo attack
is possible because the malware on the local machine has access to a “TPM ora-
cle” that provides TPM-like answers without providing TPM security guarantees.
If the local malware can access this oracle without network access, then cutting off
network access is insufficient to prevent the cuckoo attack.

In particular, since the adversary has physical possession of TPMM, he can ex-
tract its private key. He can then provide the malware on the local computer with
the private key, TPMM’s Endorsement Certificate, and a list of trusted PCR values.
Thus provisioned, the malware on the local machine can perfectly emulate TPMM,
even without network access.

7.2.2 Eliminating Malware

An alternate approach is to try to remove the malware on Alice’s local computer. In
our formal model, this equates to removing Assumption 5, which would remove the
contradiction that results in the cuckoo attack. Unfortunately, this approach is both
circular and hard to achieve.

First, we arrived at the cuckoo attack based on the goal of ensuring that the lo-
cal machine could be trusted. In other words, the goal is to detect (and eventually
remove), any malware on the machine using the TPM. Removing malware in order
to communicate securely with the TPM, in order to detect and remove malware,
potentially leaves us stuck in an endless loop.

10 For example, it may be difficult to tell if an infected laptop has its wireless interface enabled.

Permission granted by the authors to review this work; do not distribute.

7 Challenges in Bootstrapping Trust in Secure Hardware 47

In practice, there are two approaches to cutting through this circularity, but nei-
ther is entirely satisfactory.

§1 Trust. The “null” solution is to simply ask the local machine for its key and trust
that no malware is present.
Pros: This is clearly the simplest possible solution. Sadly, it seems to be the
only viable solution available today, at least without special devices or additional
hardware changes.
Cons: The assumption that the machine is not compromised will not hold for
many computers. Unprotected Windows PCs are infected in minutes [2]. Even
newly purchased devices may not meet this criteria [115, 186].

§2 Timing Deviations. Researchers have observed that certain computations can be
done faster locally than malware can emulate the same computations while hid-
ing its own presence (see Section 6.4). By repeating these computations, a tim-
ing gap appears between a legitimate execution of the protocol, and a malware-
simulated execution. Using such a system, we could run a code module on the
local computer to check for malware.
Pros: Since these approaches do not rely on special hardware, they can be em-
ployed immediately on current platforms.
Cons: Using timing deviations requires severing the PC’s network access; Sec-
tion 7.2.1 shows that this is non-trivial. Also, such techniques require specific
hardware knowledge (e.g., about the exact CPU architecture/model, memory
size, cache size, etc.) that the user is unlikely to possess.

7.2.3 Establishing a Secure Channel

Given the conclusions above, we must keep the assumptions in Figure 7. Thus, to
find a solution, we must fix one or more of our axioms. We argue that the correct
target is Axiom 6, as the others are fundamental to our problem definition.

We cannot simply remove Axiom 6, since without it, we cannot introduce the
notion of a TPM being installed on a computer. Instead, establishing a secure (au-
thentic and integrity-preserving) channel to the TPM on the local machine suffices
to fix Axiom 6. Such a secure channel may be established using hardware or cryp-
tographic techniques.

For a hardware-based approach, we would introduce predicate HwSaysOn(t,c)
to indicate that a secure hardwired channel allowed the user to connect to the TPM
on the local machine. Axiom 6 would then be written as:

∀t,c HwSaysOn(t,c)→ On(t,c)

A cryptographic approach requires the user to obtain some authentic crypto-
graphic information about the TPM she wishes to communicate with. Based on
the user’s trust in the source of the information, she could then decide that the
TPM was in fact inside the machine. We could encode this using the predicate
PersonSaysOn(p, t, c) indicating that a person p has claimed that TPM t

Permission granted by the authors to review this work; do not distribute.

48 Bootstrapping Trust in Modern Computers

is inside computer c. Axiom 6 would then be written as:

∀p, t,c TrustedPerson(p)∧PersonSaysOn(p, t,c)→ On(t,c)

Hardware-Based Secure Channels

Below, we analyze ways to implement a hardware-based modification to Axiom 6
to allow the user to establish a secure channel with the TPM on the local computer.

§3 Special-Purpose Interface. Add a new hardware interface to the computer that
allows an external device to talk directly to the TPM. The TPM already supports
differential access rights, so the external interface could be designed to allow
the external verifier to guarantee that software on the machine does not interfere
with the contents of the TPM while the verifier is attached.
Pros: The use of a special-purpose port reduces the chances for user error (since
they cannot plug the external verifier into an incorrect port).
Cons: Introducing an entirely new interface and connector specification would
require significant industry collaboration and changes from hardware manufac-
turers, making it an unlikely solution in the near term.

§4 Existing Interface. Use an existing external interface (such as Firewire or USB)
to talk directly to the TPM.
Pros: This solution is much simpler to deploy, since it does not require any
manufacturer changes.
Cons: Existing interfaces are not designed to support this type of communi-
cation. For example, USB devices cannot communicate with the host platform
until addressed by the host. Even devices with more freedom, such as Firewire
devices, can only read and write to memory addresses. While the TPM is made
available via memory-mapped I/O ports, these mappings are established by the
software on the machine, and hence can be changed by malware. Thus, there
does not appear to be a way to reuse existing interfaces to communicate reliably
with the local TPM.

§5 External Late Launch Data. Recent CPUs from AMD and Intel can perform
a late launch of an arbitrary piece of code (see Section 5.1). During the late
launch, the code to be executed is measured and the measurement is sent to
the TPM. The code is then executed in a protected environment that prevents
interference from any other hardware or software on the platform. If the late
launch operation also made the code’s measurement code available externally,
then the user’s verifier could check that the invoked code was trustworthy. The
code could then check the integrity of the platform or establish a secure channel
from the verifier to the TPM.
Pros: Recent CPUs contain the late launch functionality needed to measure and
securely execute code.
Cons: Existing interfaces (such as USB) do not allow the CPU to convey the
fact that a late launch occurred nor the measurement of the executed code in an
authentic fashion. Malware on the computer could claim to perform a late launch

Permission granted by the authors to review this work; do not distribute.

7 Challenges in Bootstrapping Trust in Secure Hardware 49

and then send a measurement of a legitimate piece of code. This attack could be
prevented by creating a special-purpose interface that talks directly to the CPU,
but this brings us back to §3, which is a simpler solution.

§6 Special-Purpose Button. Add a new button on the computer for bootstrapping
trust. For example, the button can execute an authenticated code module that
establishes a secure channel between the verifier (connected via USB, for exam-
ple) and the TPM. Alternatively, the button could disable all network interfaces
to prevent the cuckoo attack from occurring. Such a button could also be useful
for taking a laptop on an airplane.
Pros: A hardware button press cannot be overridden by malware. It also pro-
vides the user with a tangible guarantee that secure bootstrapping has been ini-
tiated.
Cons: Executing an authenticated code module requires hardware not only for
invoking the necessary code, but also for verifying digital signatures (similar to
§9), since the code will inevitably need updates. This approach also relies on the
user to push the button before connecting the verifier device, since the device
cannot detect the button push. If the user plugs in the verifier before pushing
the button, on the computer could fool the device with a cuckoo attack. Both
versions of this solution require hardware changes.

Cryptographic Secure Channels

Establishing a cryptographically-secure channel requires the user to share a secret
with the TPM or to obtain the TPM’s public key. Without a prior relationship with
the TPM, the user cannot establish a shared secret, so in this section we focus on
public-key methods.

§7 Camera-based Channel. Seeing-is-Believing (SiB), an approach suggested by
McCune et al. [133] (and later used for kiosk computing [66]), requires the com-
puter’s manufacturer to encode a hash of the platform’s identity in a 2-D barcode
and attach the barcode to the platform’s case. Note that this step should be per-
formed by the manufacturer and not, say, the current owner, since the current
owner would have to establish the TPM’s identity, in which case the problem
would simply recurse to them. Using a camera-equipped smartphone, the user
can take a picture of the 2-D barcode and use the smartphone to process the
computer’s attestation.
Pros: This solution is attractive, since it requires relatively little effort from the
manufacturer, and most people find picture-taking simple and intuitive.
Cons: Because it requires a vendor change, this solution will not help current
platforms. It also requires the user to own a smartphone and install the relevant
software. The user must also trust that the smartphone has not been compro-
mised. As these phones grow increasingly complex, this assumption is likely to
be violated. In a kiosk setting, the 2-D barcode may be replaced or covered up
by an attacker.

Permission granted by the authors to review this work; do not distribute.

50 Bootstrapping Trust in Modern Computers

§8 Human-based Channel. Instead of using a 2-D barcode, the manufacturer could
encode the hash as an alpha-numeric string. The user could then enter this string
into a smartphone, or into a dedicated trusted device.
Pros: Similar to §7, except the user no longer needs a camera-equipped device.
Cons: Similar to those of §7, but it still requires non-trivial input capability on
the user’s device. It also relies on the user to correctly enter a string of digits
meaningless to the user.

§9 Trusted BIOS. If the user trusts the machine’s BIOS, she can reboot the machine
and have the trusted BIOS output the platform’s identity (either visually or via
an external interface, such as USB). The trusted BIOS must be protected from
malicious updates. For example, some Intel motherboards will only install BIOS
updates signed by Intel [113].
Pros: This approach does not require the user to use any custom hardware.
Cons: The user must reboot the machine, which may be disruptive. It relies on
the user to only insert the verifier after rebooting, since otherwise the verifier
may be deceived by local malware. The larger problem is that many mother-
boards do not include the protections necessary to guarantee the trustworthiness
of the BIOS, and there is no indicator to signal to the user that the BIOS in the
local computer is trustworthy.

§10 Trusted Third Party. The TPM could be equipped with a certificate provided by
a trusted third party associating the TPM with a particular machine. The verifier
can use the trusted third party’s public key to verify the certificate and establish
trust in the TPM’s public key.
Pros: The verifier only needs to hold the public key for the trusted third party
and perform basic certificate checks. No hardware changes are needed.
Cons: It is unclear how the verifier could communicate the TPM’s location as
specified in the certificate to the user in a clear and unambiguous fashion. Bind-
ing the certificate to the computer’s serial number (or other information printed
on a label attached the computer) has the same advantages and disadvantages as
§8. This solution also moves the problem of establishing a TPM’s identity to the
third party, who must then employ one of the other solutions suggested here.

7.3 Preferred Solutions

Of all the solutions presented in Section 7.2, we argue that §3 (a special-purpose
hardware interface) provides the strongest security. It removes almost every oppor-
tunity for user error, does not require the preservation of secrets, and does not re-
quire software updates. Unfortunately, the cost and industry collaboration required
to introduce a new interface make it unlikely to be deployed in the near future.

Of the plausibly deployable solutions, we argue in favor of §8 (an alphanumeric
hash of the TPM’s public key), since it allows for a simpler verification device.
Nonetheless, we recognize that these selections are open to debate, and believe that
considerable room remains for additional solutions.

Permission granted by the authors to review this work; do not distribute.

8 Validating the Process

Bootstrapping trust can only be effective if we can validate the hardware, software,
and protocols involved. Below we summarize the (relatively few) efforts in this
direction.

From a hardware perspective, Smith and Austel discuss efforts to apply formal
methods to the design of secure coprocessors [180, 184]. They also state formal
security goals for such processors. Bruschi et al. use a model checker to find a
replay attack in the TPM’s Object Independent Authorization Protocol (OIAP) [26].
They also propose a countermeasure to address their attack, though it requires a
TPM design change.

Taking a more empirical approach, Chen and Ryan identify an opportunity to
perform an offline dictionary attack on weak TPM authorization data, and propose
fixes [39]. Sadeghi et al. performed extensive testing on TPMs from multiple ven-
dors to evaluate their compliance with the specification [161]. They find a vari-
ety of violations and bugs, including some that impact security. Starting from the
TPM specification, Gürgens et al. developed a formal automata-based model of the
TPM [83]. Using an automated verification tool, they identify several inconsisten-
cies and potential security problems. Shubina et al. study the development chal-
lenges created by TPM diversity, using as a case study their efforts to integrate the
TPM into OpenSolaris [178].

Dwoskin et al. describe an informal framework, based on virtualization, for test-
ing security architectures [49]. One VM hosts the test system, while another VM
hosts the test framework and utilizes hooks in the VMM and in the test system
to launch various simulated attacks. The VMM can also emulate new security hard-
ware. For example, the authors emulate the SP architecture [117] (see Section 6.1.2).
This allows them to discover, for example, that the secure load/store instructions
significantly complicate the architecture. They replace the instructions with “secure
areas”, but the framework finds several issues with the implementation, including
leakage of data on the stack and issues with pushing exception frames onto the
stack.

At the software level, Kauer notes several implementation flaws in trusted com-
puting applications [102]. These include bootloaders that fail to appropriately mea-
sure software before loading it, and BIOS software that allows flash updates without
validation.

At the protocol layer, Smith defines a logic for reasoning about the information
that must be included in platform measurements to allow a verifier to draw mean-
ingful conclusions [182]. Millen et al. [139] use a symbolic model checker to verify
the properties of a TPM-based measured boot, as well as those of a dynamic root
of trust (see Section 5.2). They conclude that on Intel systems, finding the expected
measurements of a hypervisor (or kernel) in PCRs 17 and 18 is sufficient to guar-
antee said hypervisor has been loaded, as long as the hypervisor is self-protecting.
They also confirm that this guarantee is not impacted by the security (or insecurity)
of software that runs earlier in the boot cycle, e.g., the BIOS or boot loader.

Permission granted by the authors to review this work; do not distribute.

52 Bootstrapping Trust in Modern Computers

Datta et al. later used the Logic of Secure Systems (LS2) [46] to formally de-
fine and prove the code integrity and execution integrity properties of the static and
dynamic TPM-based attestation protocols. The logic also helps make explicit the in-
variants and assumptions required for the security of the protocols. For example, it
is possible to lose information about the static root of trust when invoking dynamic
root of trust multiple times. Systems must be explicitly engineered to maintain mea-
surement chains across dynamic roots of trust.

Permission granted by the authors to review this work; do not distribute.

9 Applications

Clearly, many applications benefit from the ability to bootstrap trust in a computer.
Rather than give an exhaustive list, we focus on applications deployed in the real
world, and a handful of particularly innovative projects in academia.

9.1 Real World

Code Access Security in Microsoft .NET

Microsoft’s Code Access Security is intended to prevent unauthorized code from
performing privileged actions [137]. The Microsoft .NET Common Language Run-
time (CLR) maintains evidence for assemblies of code and uses these to determine
compliance with a security policy. One form of evidence is the cryptographic hash
of the code in question. This represents one of the more widely deployed systems
that supports making security-relevant decisions based purely on the identity of code
as represented by a cryptographic hash of that code.

BitLocker

One of the most widely-used applications of trust bootstrapping is BitLocker [138],
Microsoft’s drive encryption feature, which first appeared in the Windows Vista
OS. Indeed, BitLocker’s dependence on the presence of a v1.2 TPM likely helped
encourage the adoption of TPMs into the commodity PC market. The keys used
to encrypt and authenticate the harddrive’s contents are sealed (see Section 3.2) to
measurements taken during the computer’s initial boot sequence. This ensures that
malware such as boot-sector viruses and rootkits cannot hijack the launch of the
OS nor access the user’s files. These protections can be supplemented with a user-
supplied PIN and/or a secret key stored on a USB drive.

The high profile of BitLocker has attracted the attention of multiple researchers.
Türpe et al. show that (without compromising the cryptography or sealed storage
primitives employed in BitLocker) the real-world attack surface includes such things
as spoofing the unlock prompt or simply compromising some of BitLocker’s exe-
cutable files and hoping that the user will employ one of the non-TPM recovery
mechanisms when the attack is detected, instead of taking the system in for servic-
ing [214]. In one sense, this is a success on the part of BitLocker, since attackers’
best options have been pushed towards tricking the human user. However, it remains
an open question if a system can be constructed with similar technical security prop-
erties that has fewer opportunities to fool the user.

Permission granted by the authors to review this work; do not distribute.

54 Bootstrapping Trust in Modern Computers

Trusted Network Connect (TNC)

TNC is a working group with goals including strengthening network endpoints.
TNC supports the use of attestation to perform Network Access Control. Thus, be-
fore a computer can connect to the network, it must pass integrity checks on its
software stack, as well as perform standard user authentication checks. An explicit
goal is to give non-compliant computer systems an avenue for remediation. Existing
open source solutions have already been tested for interoperability with promising
results [87].

Secure Boot on Mobile Phones

Mobile phones (and other embedded devices) have long benefitted from a secure
boot architecture. Until recently, these devices served very specific purposes, and
the degree of control afforded to mobile network operators by a secure boot archi-
tecture helped to ensure dependable service and minimize fraud. Even many modern
smartphones with support for general-purpose applications employ rich capability-
based secure architectures whose properties stem from secure boot. For example,
Symbian Signed [53] is the interface to getting applications signed such that they
can be installed and access certain capabilities on smartphones running the Symbian
OS. Apple’s iPhone OS employs a similar design.

Voting Machines

With the recent move towards digital voting machines, techniques for bootstrapping
trust in both the hardware and software employed become even more important.
Gallo et al. [63] detail the software and hardware mechanisms employed in the de-
sign of over 165,000 direct-recording voting machines in Brazil’s 2010 elections.
While inspired in part by TPM-based designs, they design their system to employ
active security measures to ensure that only signed code runs. A three-pronged cer-
tificate hierarchy separates the privileges needed for servicing and programming the
machines from the privileges needed to record votes. The machine displays its cur-
rent trust state via a set of LEDs, and poll workers can verify hardware integrity via
a set of challenge-response values provided by the electoral commission. The voting
machine responds to the challenges based on an internal, cryptographic identity key
that should be destroyed if the processor is tampered with. The processor is a stan-
dard microcontroller enhanced with a variety of hardware defenses against physical
tampering.

Permission granted by the authors to review this work; do not distribute.

9 Applications 55

9.2 Research Proposals

Multiple projects have considered using secure hardware to bootstrap trust in a tra-
ditional “Trusted Third Party”. Examples include certifying the behavior of the auc-
tioneer in an online auction [155], protecting the private key of a Certificate Author-
ity [130], protecting the various private keys for a Kerberos Distribution Center [95].

Given the ever increasing importance of web-based services, multiple research
efforts have studied how to bootstrap greater assurance in public web servers. In
the WebALPS project, building on the IBM 4758, Jiang et al. enhanced an SSL
server to provide greater security assurance to a web client [98, 181]. A “guardian”
program running on the secure coprocessor provides data authenticity and secrecy,
as well as safeguarding the server’s private SSL keys. This approach helps protect
both the web client and the web server’s operator from insider attacks. In the Spork
project, Moyer et al. consider the techniques needed to scale TPM-based attestation
to support a high-performance web server [143]. They also implement their design
by modifying the Apache web server to provide attested content and developing a
Firefox extension for validating the attestations.

Of course, other network protocols can benefit from bootstrapped trust as well.
For example, the Flicker project (see Section 5.2) enhanced the security of SSH
passwords while they are handled by the server. With a Flicker-enhanced SSH
server, the client verifies an attestation that allows it to establish a secure chan-
nel to an isolated code module on the server. By submitting its password over this
channel, the client can ensure that only a tiny piece of code on the server will ever
see the password, even if other malware has infected the server. On a related note,
the BIND project [177] observed that by binding bootstrapped code to its inputs,
they could achieve a transitive trust property. For example, in the context of BGP,
each router can verify that the previous router in the BGP path executed the correct
code, made the correct decisions given its input, and verified the same information
about the router before it. The last property ensures that by verifying only the pre-
vious router in the chain, the current router gains assurance about the entire BGP
path. Keller, Lee, and Rexford explore this idea further in the context of hosted vir-
tual networks [103]. In particular, they examine the tradeoffs involved in equipping
routers with a TPM or an SP processor (see Section 6). Their primary goal is to en-
able a service provider to lease virtual routers from an infrastructure provider who
installs and multiplexes physical routers. The service provider requires proof that
her software is running correctly in the hosted environment.

Researchers have also investigated the use of bootstrapped trust in the network it-
self. Ramachandran et al. propose imbuing packets with the provenance of the hosts
and applications that generated them [159]. Unfortunately, these packet markings
are not secured, so the system must assume that the entire network is trusted and
that all hosts have deployed the system in a tamper-proof fashion. Garfinkel et al.
noted that secure hardware might help defend against network-based attacks [65].

However, the first design and implementation of this idea came from Baek and
Smith, who describe an architecture for prioritizing traffic from privileged applica-
tions [14]. Using a TPM, clients attest to the use of an SELinux kernel equipped

Permission granted by the authors to review this work; do not distribute.

56 Bootstrapping Trust in Modern Computers

with a module that attaches Diffserv labels to outbound packets based on an admin-
istrator’s network policy. This system requires a large TCB (i.e., an entire Linux ker-
nel) and universal deployment. Gummadi et al. propose the Not-A-Bot system [82],
which tries to distinguish human-generated traffic from bot-driven traffic. They at-
test to a small client module that tags outgoing packets generated within one second
of a keystroke or mouse click. Through trace-driven experiments, the authors show
that the system can significantly reduce malicious traffic. However, the system only
considers application-level attacks, i.e., the network is assumed to be uncongested.
Thus, the server is responsible for verifying client attestations, which is less practical
for applications such as combating network-level DDoS attacks or super-spreader
worms. The system works well for human-driven application-specific scenarios, but
it is difficult to adapt it to services that are not primarily human-driven, such as NTP,
transaction processing, network backup, or software update servers.

Rather than use a TPM, Feng and Schluessler propose, at a high level, using
Intel’s Active Management Technology to provide information on the machine’s
state to network elements by introspecting on the main CPU’s activities [57]. They
do not focus on conveying this information efficiently, nor do they provide a full
system design and implementation. In a more orthogonal direction, Dixon et al.
propose pushing middle-box functionality, such as NAT and QoS to endhosts, using
trusted computing as a foundation [48].

Parno et al. [150, 153] propose a generic framework for efficiently conveying
trustworthy host-based information to network elements. They explore how boot-
strapping trust in endhosts (via techniques like those described in this work) can
simplify network protocols or improve their efficiency. In their architecture, senders
employ secure hardware to convince an off-path verifier that they have installed a
small code module that maintains network-relevant information. A small protection
layer enforces mutual isolation between the code module and the rest of the sender’s
software, ensuring both security and privacy. Once authorized by a verifier, the code
module can insert cryptographically-secured information into outbound traffic. This
information is checked and acted on by in-path prioritizers. The authors evaluate
the effectiveness of this architecture for combatting spam, mitigating network-level
distributed denial-of-service attacks, and detecting super-spreader worms.

Sarmenta et al. observe that a trusted monotonic counter can be used in a wide
variety of applications, including count-limited objects (e.g., keys that can only be
used a fixed number of times), digital cash, and replay prevention [165]. While the
TPM includes monotonic counter functionality, the specification only requires it to
support a maximum of four counters, and only one such counter need be usable dur-
ing a particular boot cycle. Thus, they show how to use a log-based scheme to sup-
port an arbitrary number of simultaneous counters. They also design a more efficient
scheme based on Merkle trees [136], but this scheme would require modifications
to the TPM, so that it could securely store the tree’s root and validate updates to it.

Schwartz et al. show how to provide a contractual anonymity system called
RECAP by leveraging a trusted execution environment and a group signature
scheme [171]. The anonymity contract guarantees the user anonymity and message
unlinkability so long as she adheres to the contract. Likewise, the service provider

Permission granted by the authors to review this work; do not distribute.

9 Applications 57

is guaranteed to be able to identify users who violate the contract. Attestations con-
vince both the users and service providers that an Accountability Server will enforce
precisely the agreed-upon contract. RECAP is interesting because the trusted third
party is not biased towards the interests of either the user or the service provider.
This bias has been a drawback of many previous anonymity schemes involving a
trusted third party.

Saroiu and Wolman [166] and Gilbert et al. [70] propose equipping mobile de-
vices with trusted hardware to attest to the sensor data collected. They argue that
many crowd-sourced tasks, such as traffic detection and amateur reporting, would
be enhanced by allowing users to demonstrate that sensor readings were not tam-
pered with. Of course, this does not address tampering with the inputs to the sensors
themselves.

Finally, researchers have developed schemes with trusted computing building
blocks to provide wallet-like functionality for credentials such as passwords, e.g.,
TruWallet [62].

Permission granted by the authors to review this work; do not distribute.

58 Bootstrapping Trust in Modern Computers

Permission granted by the authors to review this work; do not distribute.

10 Implementing Trust Bootstrapping: Open Source Tools

Here we introduce a variety of open-source software projects that are highly relevant
to bootstrapping trust. At the time of this writing many interesting software packages
are available, including a full Linux distribution and several LiveCDs that facilitate
experimentation without modifying anything on one’s hard drive. These software
packages are an excellent starting place for gaining a deeper understanding of the
capabilities of existing hardware and software to bootstrap trust.

10.1 Component Packages

First, the Linux kernel has included a device driver for v1.2 TPM chips since
v2.6.17. TPM driver support is also included in recent versions of OpenSolaris.
Many different TPM drivers exist for Windows, but we are not aware of any open
source drivers.

One of the first research projects that endeavored to create a static root of trust
was the IBM Integrity Measurement Architecture (IMA) [164], portions of which
are available in the default Linux kernel source distribution starting with v2.6.30.
Newer kernels are expected to include increasing levels of support.

The TrouSerS project [206] provides much of the supporting infrastructure re-
quired to bootstrap trust in a TPM-equipped system, and represents first and fore-
most an implementation of the TCG Software Stack (TSS). TrouSerS includes the
necessary components to bootstrap trust in the Linux kernel’s IMA facilities, in-
cluding the Trusted Grub bootloader that is capable of performing integrity mea-
surements over the kernel before it loads. TrouSerS also includes the tcsd daemon
(userspace process) that multiplexes access to the system’s TPM across multiple
applications, and the libtspi library against which applications can link to use
the TSS API. In addition, TrouSerS provides the tpm-tools package to facili-
tate management of a TPM chip. There is also a testsuite that is a valuable
resource; it contains many small programs that demonstrate how to exercise specific
TPM functionality. Finally, TrouSerS includes an enhanced version of OpenSSL
that can leverage TPM-based keys.

jTSS and jTpmTools comprise an alternative TSS and TPM utility library fully
written in Java [158, 205]. jTSS communicates directly with the character device
/dev/tpm that is exposed by the Linux TPM driver. jTpmTools can use jTSS, or
it can communicate directly with the TrouSerS TSS.

Two different open-source TPM emulators are available today. Strasser et al.
were the first to release one publicly [199], and it has enjoyed experimental integra-
tion with several versions of the Xen hypervisor. IBM developed a TPM emulator
internally, and eventually released it under an open-source license [74]. Both of
these emulators are extremely valuable when developing applications that leverage
the TPM, since (by design) it can sometimes be very difficult to debug why a par-
ticular TPM operation is failing or otherwise behaving unexpectedly.

Permission granted by the authors to review this work; do not distribute.

60 Bootstrapping Trust in Modern Computers

Kauer developed the Open Secure Loader (OSLO) shortly after AMD released
their first platforms with support for dynamic root of trust (i.e., the SKINIT instruc-
tion – see Section 5.2) [102]. Intel has released their own reference implementa-
tion for their Trusted eXecution Technology (TXT) in the form of the Trusted Boot
project [92]. Both tboot and OSLO are multiboot-compliant kernels that can sub-
sequently boot Xen or Linux. Prior to booting these other kernels, these modules
invoke the SKINIT or GETSEC[SENTER] instruction to create a dynamic root of
trust and perform sanity checks on platform state to ensure a trustworthy boot.

The Flicker project (discussed in Section 5.2) has also released its source code [59].
Flicker is a valuable reference implementation that shows how to invoke a dynamic
root of trust for measurement well after a platform boots, thereby bootstrapping trust
in a small code module without being burdened by the presence of the legacy oper-
ating system code in the trusted computing base for the module of interest. Flicker
was initially developed for AMD hardware but has recently been expanded to sup-
port both AMD and Intel processors, and to work with both Linux and Windows 7.

The Memoir project [151] (discussed in Section 3.2.2) has also released its source
code, building rollback protection on top of the secrecy and integrity protection
offered by the Flicker system.

All of these projects offer various ways to ensure that software is measured,
or offer developer APIs so that other applications can be written to take advan-
tage of TPM-based functionality. The Open Platform Trust Services (OpenPTS)
project [146] takes a wider view; it contains much of the infrastructure required to
generate and convey attestations between systems, including protocols and serial-
ized message formats.

10.2 Complete Distributions or LiveCDs

Readers interested in quickly and easily experimenting with the software discussed
above may be interested in the Knoppix for Trusted Computing Geeks [108] Linux
distribution. The TPM driver, IMA, TrouSerS, Trusted Grub, and other packages are
already installed and configured in a LiveCD environment.

The European Open Trusted Computing (OpenTC) project produced the OpenTC
Proof of Concept Prototype 1 [147]. This prototype is also in the form of a
LiveCD/LiveDVD, and boots the Xen hypervisor and various guest domains (Xen
terminology for a virtual machine). Sealed storage demonstrations are included.

Permission granted by the authors to review this work; do not distribute.

11 Human Factors & Usability

Most existing work in attestation and trusted computing focuses on interactions be-
tween two computing devices. This section treats a higher goal – that of convincing
the human operator of a computer that it is in a trustworthy state. These solutions
sort into two categories: those where the user is in possession of an additional trust-
worthy device, and those based solely on the human’s sensory and cognitive abil-
ities. An additional, though somewhat orthogonal, category concerns user-friendly
techniques to pair two trustworthy devices, e.g., to establish a secure channel be-
tween two cellphones.

11.1 Trustworthy Verifier Devices

A scientist once gave a public lecture describing how the Earth orbits around the sun and
how the sun, in turn, orbits around the center of a collection of stars called our galaxy.

At the end of the lecture, a little old lady at the back of the room got up and said: “What
you have told us is rubbish. The world is really a flat plate supported on the back of a giant
tortoise.”

The scientist gave a superior smile before replying, “What is the tortoise standing on?”
“You’re very clever, young man, very clever,” said the old lady, “but it’s turtles all the

way down!”

A user trying to employ one device to verify the trustworthiness of another device
quickly realizes that it’s “turtles all the way down” because of the endless loop
of trust dependencies. Researchers have considered a variety of ways in which to
provide the user with one initial turtle (an iTurtle [135]) which is axiomatically
trustworthy, thereby breaking the dependency loop. This section is dedicated to an
extended case study exploring the design space for such a device, including the
various research challenges involved.11

11.1.1 Overview

Standard remote attestation mechanisms (see Section 4) encounter at least three
problems when we adapt them to user-based attestation. All three problems arise
because the user does not have an axiomatically trustworthy device to perform ver-
ification. (1) The chain of trust created through the verification process does not
propagate back to the user, because there is no authenticated channel between the
user and the verifier (see Figure 9). (2) In a networked world, it is unclear why the
device the user employs as the verifier is any more trustworthy than her other de-
vices. (3) Platform and user privacy are more salient when attestation involves end
user machines. We present scenarios to illustrate the above problems.

11 The text in this section is adapted from the work of McCune et al. [135].

Permission granted by the authors to review this work; do not distribute.

62 Bootstrapping Trust in Modern Computers

Computing

Device

What code are

you running?

Code List

User

?

Bank

(Verifier)

Fig. 9 Remote attestation does not create an authenticated channel between the verifier and the
user. If verification fails, there is no way to inform the user. Thus, malware on the user’s computing
device can lie about verification results.

Security-Sensitive Interactive Transactions

Consider a user who wants to perform online banking using her computer. If the
bank’s server is attestation-aware and the user’s computer is attestation-compliant,
then the bank’s server can request an attestation from the user’s computer to verify
that the user’s computer is running an approved software stack. If the server detects
an unapproved software stack, then it can refuse service.

The problem with the above scenario is that there is no way for the bank’s server
to securely inform the user of the verification result (see Figure 9). If verification
is unsuccessful, the user’s computer cannot be trusted to display the correct result,
since any notification mechanism that displays the verification result on-screen is
vulnerable to spoofing. Malware installed on the user’s computer could lie to the
user that the attestation verified correctly at the bank, display a fake login page, and
capture the user’s login credentials.

There are two popularly suggested solutions to the problem of establishing an
authenticated channel between the user and the bank: side-channels and trusted I/O.
Automated side-channels use means of communication other than the user’s com-
puter to establish an authenticated channel. For instance, the bank’s computer can
send SMS messages or make telephone calls to convey the verification result to the
user. However, any unauthenticated, automated side-channel may facilitate auto-
mated attack. Using a side-channel that is not automated, such as having a customer
service representative make a phone call, is also not an option since the attacker can
pretend to be a bank employee (a fact amply demonstrated by social engineering
attacks). Besides, a non-automated side channel makes the verification expensive
and potentially error prone by introducing additional human factors.

Trusted computing technologies, such as AMD’s SVM [3] and Intel’s Trusted
Execution Technology (TXT) [93], which include specification for hardware mech-
anisms for trusted I/O, do not solve the problem of establishing an authenticated
channel between the user and the bank either. While they do include mechanisms
for establishing trusted channels between platform components, they do not require
any display to indicate that the channel is present [78]. Even if, in the future, these

Permission granted by the authors to review this work; do not distribute.

11 Human Factors & Usability 63

hardware technologies are extended to address this shortcoming, legacy systems
will remain a problem.

The online banking example can be extended to any security-sensitive interactive
transaction, such as remote login or e-commerce. One may also wish to consider
how the problem presented in the above example can be applied to the examples in
Chapter 2 of Balacheff et al. [17].

Thus, the best approach may be for the user to use load-time attestation to directly
verify her own computer. This would allow the user to trust her computer (to the
extent guaranteed by load-time attestation) to correctly display messages sent by
the bank.

Specialized Computing Devices

Next, consider specialized computing devices such as 802.11 access points, home
routers, GPS navigation systems, and printers. These devices may also contain in-
formation or perform tasks that users consider to be security-sensitive (e.g., the in-
tegrity of their map data, the secrecy of their printed documents, or the privacy of
their photographs), making them attractive targets for malware.

It is unclear how to apply TCG-style remote attestation to these devices, because,
in a networked world, the absence of an axiomatically trusted device means that
the choice of which device to use as the verifier is not obvious. For example, it is
unclear why the user should trust their cell phone to function as a verifier any more
than they trust their laptop or desktop computer. Note also that today’s attacks have
moved “up” the software stack (e.g., cross-site scripting) and may apply to many
device types. Furthermore, a third-party remote verifier cannot be used, even if one
existed (no such verifiers exist today), since we re-encounter the problem of how to
establish an authenticated channel between the user and verifier. Also, the user may
not want to employ third-party verifiers due to privacy concerns.

Privacy Issues

During a standard attestation, the verifier learns detailed information about the at-
testor and the software configuration of the challenged system. As discussed in Sec-
tion 4.3.2, existing attestation protocols based on the TPM include several privacy-
enhancing mechanisms, such as Privacy CAs and Direct Anonymous Attestation.
Further, these approaches may hide the identity of the attestor, but not the software
configuration of the platform in the attestations. Some of the techniques discussed
in Section 5, like property-based attestation, may mitigate the privacy issues created
by disclosing software configuration.

However, enabling the user to verify her own computer would alleviate these
privacy problems. Further, the user can set privacy policies on her computer with
respect to remote attestations and trust the software on her computer to adhere to
them (to the extent guaranteed by load-time attestation).

Permission granted by the authors to review this work; do not distribute.

64 Bootstrapping Trust in Modern Computers

Computing

Device

iTurtle

User

OK Green

Light
Computing

Device

iTurtle

User

!!! RED

Light

Fig. 10 Hypothetical scenario showing the use of the iTurtle. On the left, the user learns that her
computing device is trustworthy. On the right, the user learns that her computing device has a
problem.

11.1.2 User-Observable Verification

We have discussed ways in which standard attestation fails to provide user-observable
verification. Here, we explore how one might design a system for user-observable
verification, including what some of the desired properties of such a system might
be. This will set the stage for Section 11.1.3, where we detail open research issues.

There are two main ways to support device-based user-observable verification:
(1) Via computing devices that self-verify, or (2) Via an inherently trustworthy ex-
ternal device.

Self-verification is not an option on today’s computing devices, as we cannot trust
a potentially compromised device to report its status correctly. Future architectures
may change this. One possibility is to include a trustworthy verification subsystem
in every device. However, there is still the problem of how to communicate the re-
sult of the verification to the user. One could imagine adding secure I/O capabilities
to devices to communicate verification results to the user, although such a design
choice may increase the cost and complexity of the trustworthy subsystem. Further-
more, if every manufacturer designs their own user-interface for verification, then
the user will be confronted with many different interfaces. This could cause confu-
sion, increase the frequency of mistakes, and degrade user experience, all of which
could result in users disregarding the verification process altogether.

Instead of a dedicated verification subsystem inside every device, we could build
a single verification device. This alleviates the problem of the user having to learn
and use several different verification interfaces. This appears to be the most desirable
solution from the point of view of ease of use. This dedicated device provides an
unambiguous point from which trust originates for the user. We call this device the
iTurtle, based on analogy with the “Turtles All the Way Down” story, because it
is the turtle on which all other turtles stand, i.e., it is the turtle on which all user
trust is built. Figure 10 portrays the iTurtle in use. Assuming a dedicated device is
employed, it should support the following properties.

Permission granted by the authors to review this work; do not distribute.

11 Human Factors & Usability 65

Software Design Simplicity

The software on the iTurtle should be small, since it should be amenable to for-
mal verification or manual audit for security assurance. The software design should
avoid the use of cryptographic secrets to eliminate the overhead involved with their
maintenance. Such overheads include the use of tamper-resistant or tamper-evident
hardware, key management issues like revocation, migration, and regeneration, and
vulnerabilities due to lost or stolen iTurtles.

Commodity Hardware

Using commodity hardware will enable inexpensive mass-production of iTurtles.
Portions of the software can be borrowed from existing code. Many of the bugs
inherent in a new hardware design will have been removed or have known work-
arounds. A mature developer community will exist to support iTurtle developers.

Universal Physical Connectivity

The iTurtle should use a ubiquitous physical interface. Today, the best choice is
likely to be USB. A USB-based iTurtle would have the ability to act as a master or
slave device, and would be equipped with adapters for the different USB plug sizes.

Wired Interface

The temptation to use wireless interfaces must be avoided, because without physical
connectivity, there is no way (without the use of cryptography) for the human to
unambiguously identify the device being verified by the iTurtle. Note that using a
wired interface still does not address a relay attack where the challenged machine
relays an attestation request to another machine [200].

User Interface Simplicity

The interface which tells the user whether or not verification succeeded should be
simple enough to be used by untrained novice users. Simplicity of the user interface
should also minimize the opportunities for user error. An example of a simple user
interface is a dual-color LED capable of showing a red or a green light, as shown in
Figure 10.

Permission granted by the authors to review this work; do not distribute.

66 Bootstrapping Trust in Modern Computers

Small Form Factor

The iTurtle should be small, lightweight, and rugged. This will enable users to al-
ways carry the iTurtle with them, e.g., on a keychain.

11.1.3 Research Issues

A number of research challenges arise when we try to build a verification system
using an iTurtle.

What to Verify

Attestation mechanisms verify the software configuration of a computing device,
raising the question: How do we define the software configuration of a computing
device? Below we consider two possible answers, and note their difficulties.

Attestation schemes proposed in the literature treat the software configuration
of a computing device as all software that has been loaded for execution since the
last reboot [8, 50, 164, 213]. However, even with a small set of installed software,
the number of possible software configurations can be large. This is because the
number of possible configurations is the number of permutations of the subset of
loaded software from the set of all installed software. Some of the problems for the
iTurtle include: (1) How does the iTurtle attach meaning to all of these different
configurations? (2) How does the iTurtle store so many different configurations for
many different devices?

An alternate scheme would be to define a software configuration as the list of all
software that is installed on the device. However, this definition does not take into
consideration the problems that arise due to interactions between different software
components.

We must also consider the question of how to represent the software configura-
tion of a device, i.e., how to assign identities to software. Another question is how
to translate a software configuration into a trust decision.

How to Verify

We now discuss how the iTurtle might verify the software on a computing device,
and we identify open research issues. The verification process consists of comparing
the software configuration of the device being verified against known-good config-
urations.

What is a known-good configuration? The user must somehow translate their no-
tion of trust into a set of known-good software configurations. This is a problem
with no clear solution. The issue is the semantic gap between a list of program iden-
tities and the nebulous notion called trust. The vendor of a computing device might

Permission granted by the authors to review this work; do not distribute.

11 Human Factors & Usability 67

be able to help the users by providing some default known-good configurations for
the device.

How does the iTurtle obtain known-good configurations the first time? With
trusted computing today, there are at least two possible ways to address this prob-
lem. (1) The Oracle Method retains a trusted third party as a read-only oracle which
provides a list of known-good software configurations to the iTurtle. (2) The Trusted
First Time (TFT) Method assumes that the system is in a secure state the first time it
is verified and compares all subsequent verifications against the first one.

With this verification model, both of these approaches have unresolved issues.
Questions which arise with the Oracle Method include: (1) How does the iTurtle
establish an authenticated channel to the oracle? (2) How does the user ensure that
their privacy is not compromised through oracle queries (i.e., the oracle may be
able to infer the software configuration of the user’s device if the iTurtle specifically
queries the oracle for each piece of software on the user’s device)?

Question (1) does not arise with standard attestation because the verifier is as-
sumed to be a properly configured general-purpose computing device (i.e., it may be
assumed to possess authentic public keys), whereas the iTurtle is a special-purpose
device with limited capabilities. Standard attestation tries to address question (2) by
introducing a layer of indirection between the long-term identity of the user’s device
and the identity used for oracle queries. This layer of indirection has been realized
with techniques such as Privacy CAs [213] or Direct Anonymous Attestation [23].
However, these techniques may be too heavyweight for the iTurtle.

An important question for the TFT Method is: How does the iTurtle distinguish
between a legitimate installation or upgrade and an attack? The user must somehow
convey to the iTurtle that a legitimate upgrade or installation is taking place. Doing
this without increasing the complexity of the iTurtle is a challenge.

An additional question for verification is: How does the user use the same iTurtle
to verify multiple devices? The main issue here is authenticating the device being
verified so that the iTurtle uses the correct known-good configuration during veri-
fication. Also, interoperability demands a standard protocol for communication be-
tween many types of devices and the iTurtle. Standardizing such a protocol is likely
to be a significant practical challenge.

What to Do When Verification Fails

Most trusted computing literature does not address procedures for recovering if ver-
ification fails, raising the following questions.

How does recovery happen? If the device is compromised, then a trusted entity
(the recovery agent) must be involved in recovery. The recovery process may also
need to involve the user; however, the level of user expertise required is unclear. It
may be necessary to have an expert such as an ISP, a device vendor, or a third party
service perform the recovery for a fee. The infrastructure required for involving an
expert may be prohibitive.

Permission granted by the authors to review this work; do not distribute.

68 Bootstrapping Trust in Modern Computers

Where is the recovery agent? The recovery agent can be part of the iTurtle, part
of the device, or some combination of both.

If the recovery agent is located on the device, then, for secure recovery, it needs
to be isolated from all other software on the device, and the user needs to know
that it launched correctly. Technologies such as AMD SVM [3] and Intel TXT [93]
provide exactly this functionality, assuming the iTurtle can verify an attestation from
the device that a known-good recovery procedure was launched. However, such a
system must still authenticate the user’s desire to initiate recovery.

If the recovery is performed completely by the iTurtle, then we could design
a Snapping iTurtle to help revert (“snap”) the system state back to a previously
known-good state. However, it is unclear how the iTurtle can obtain sufficient con-
trol of the device to perform the snap operation without involving any entity on the
device. One approach may be to make the iTurtle a bootable device containing a
known-good system image. Another approach is to rollback to a known-good state,
and then selectively reapply legitimate user actions, but exclude the effects of the
malware [72, 106]. The goal is to retain as much of the user’s work and data as
possible, while still eliminating the malware’s effects.

Performing recovery using a combination of the device and the iTurtle might be
a practical approach, but additional work is required to discover the details of which
operations need to be performed by each of them.

How is recovery initiated? Is it user-invoked or automatic? Both choices have
usability issues. User-invoked recovery gives more control to the user but becomes
annoying if failure is frequent. Equipping the iTurtle with dedicated hardware to ac-
cept the user’s recovery request increases its cost and complexity. Automatic recov-
ery removes control from the user, which could also destroy data, interrupt critical
work, etc.

Trusting the iTurtle

How can the user trust her iTurtle? Since she cannot directly verify her iTurtle, the
only currently available approaches are for the manufacturer of the iTurtle to certify
it, or for a trusted third party to certify it. Certification requires standards to be
established for the hardware and software components of the iTurtle. If the resulting
standard is complex, then certification as well as conformance to standards will be
hard. The certification process of TPMs demonstrates this [161].

What if the iTurtle is compromised? We would like to avoid the use of tamper-
evident or tamper-resistant hardware, therefore, iTurtle compromise is an issue. The
challenges here are: (1) How does the user detect the compromise? (2) When the
user detects that her iTurtle is compromised, what should she do?

Periodic inspection and recertification, and fault tolerant design work well for
issues that arise due to normal wear and tear, but they are insufficient to address
point (1). For point (2), discarding and replacing the iTurtle is cumbersome, as the
user would need to reconfigure the new iTurtle to suit her attestation preferences.

Permission granted by the authors to review this work; do not distribute.

11 Human Factors & Usability 69

11.1.4 Instantiating an iTurtle

Below, we briefly survey proposals for “iTurtles”, i.e., devices that are axiomatically
trusted and that can verify other devices.

Some TPM chips include a small number (e.g., fewer than five) of General-
Purpose Input/Output (GPIO) pins.12 These pins are controlled by using the TPM’s
NVRAM commands with special index values (Section 3.2.2). As access to NVRAM
locations can be controlled by PCR values, the same controls are available for GPIO
pins. As an example, one could architect a system to illuminate a green LED if an
approved hypervisor has been loaded for execution.

To help a human establish trust in a computer, Itoi et al. describe a smart card-
based solution called sAEGIS [96]. sAEGIS builds on the AEGIS [8] secure boot
architecture (see Section 3.1) but changes the source of the trusted software list. In-
stead of being preconfigured by a potentially untrustworthy administrator, sAEGIS
allows the smart card to serve as the repository of the trusted software list. Thus, a
user can insert her smart card into an untrusted computer and reboot. If booting is
successful, the resulting environment conforms to the policy encoded on her smart
card, i.e., the executing software appears in the list stored on the smart card. Of
course, the user must establish through some out-of-band mechanism that the com-
puter indeed employs the sAEGIS system. Otherwise, it might simply ignore the
user’s smart card.

To help humans verify that a platform is trustworthy, Lee et al. propose the addi-
tion of a simple multi-color LED and button to computers to enable interaction with
a Trusted Software Module [117]. A complete architecture and implementation for
these simple interfaces remains an open problem.

The Zurich Trusted Information Channel (ZTIC) is a USB device designed to
serve as a trusted client endpoint for confirming sensitive transactions [220]. It in-
cludes a display and several buttons, and it depends on the user’s PC only for net-
work communication. The ZTIC is the endpoint of an independent SSL connection
to the remote server, and remains secure even if the user’s PC is compromised.
Although the ZTIC does not attempt to convey any information about the trust-
worthiness of the user’s PC, the user experience of the ZTIC resembles that of the
alternatives discussed in this section, and is illustrative for purposes of comparison.

The Bumpy [134] system is an architecture to provide a trusted path for send-
ing input to web pages from a potentially malicious client-side host. A user is as-
sumed to possess a trustworthy smartphone and an encryption-capable keyboard.
The smartphone serves as a security indicator to convey the destination for which
upcoming input will be encrypted. Users are responsible for prefixing their sensitive
input with a secure attention sequence (e.g., @@) and for verifying that the secure
attention sequence causes their smartphone to update with the intended destination
for the user’s forthcoming input. Attestation is used to convince the smartphone that
the user’s input is being encrypted in an isolated code module.

12 Such pins are an optional portion of the TPM specification.

Permission granted by the authors to review this work; do not distribute.

70 Bootstrapping Trust in Modern Computers

Libonati et al. present the results of a semester-long user study of the Bumpy sys-
tem and offer insights for designing security-relevant interfaces and training users
to successfully utilize them [122]. For example, they conclude that users appear
to readily adapt to employing secure attention sequences (at least generic ones,
rather than website-specific ones). Thus, techniques that leverage secure attention
sequences to realize useful security properties hold promise. Interactive security in-
dicators appeared to yield better security than ones that a user is asked to simply ob-
serve. Even very disruptive and strongly worded warning messages were ignored in
multiple cases. This suggests that changing user behavior may require some form of
training in which users must redo activities that resulted in insecure actions. Finally,
many users appeared to be unprepared to correctly distinguish between discontinu-
ities in the user experience caused by benign software updates, and those caused by
the malicious actions of an attacker.

As part of an implementation of a red-green system [112] (i.e., a system that
partitions a user’s applications and activities into an untrusted “red” system and a
trusted “green” system), the Lockdown project [215] developed an external USB
verifier device with many of the properties discussed in Section 11.1.2.

The Lockdown verifier consists of a single switch, two LEDs, and a buzzer. The
switch can be toggled from secure to insecure (or vice versa). Using the TPM’s pub-
lic key, the verifier can authenticate attestations regarding the state of the platform.
When the user is in the trusted environment, the green LED is lit. When the user is
in the untrusted environment, the red LED is lit. To provide additional feedback to
the user (e.g., after she toggles the switch), the verifier uses a blinking red LED to
indicate processing. Thus, the user need only remember to check that the green LED
is lit before performing security-sensitive tasks. The verifier activates its buzzer to
attract the user’s attention whenever the LEDs change state. The verifier can also
create an alarm buzz if it is unable to verify the correctness of the reference monitor
or if the system encounters a fatal error.

The verifier’s security display is beyond the control of an adversary and cannot
be spoofed or manipulated. Further, the device does not store any secrets or sensitive
information and hence does not pose a threat if lost or stolen. Its simple interface
(providing essentially one bit of input and one bit of output), makes it easy to un-
derstand and use.

11.1.5 Summary

We have discussed the benefits of user-observable verification, surveyed possible in-
stantiations, and highlighted some of the research issues remaining. User-observable
verification lends strong privacy properties to trusted computing technologies since
the verification process is completely controlled by the user of the computer. Also,
users are free to modify and use their computing devices in any way they see fit,
even as they do today, while enjoying the security benefits of trusted computing.

Permission granted by the authors to review this work; do not distribute.

11 Human Factors & Usability 71

11.2 Using Your Brain to Check a Computer

Roots of trust established based on timing measurements (Section 6.4) can poten-
tially be verified by humans. Franklin et al. propose personally verifiable applica-
tions as part of the PRISM architecture for human-verifiable code execution [60].
The person inputs a challenge from a physical list and then measures the length of
time before the application produces the correct response (also on the list). Verifi-
cation amounts to checking that the response is correct and that it arrived in a suffi-
ciently short period of time. Such verification relies on the timing-based proposals
discussed in Section 6.4.

11.3 Pairing Two Trustworthy Devices

Human factors also come into play when attempting to establish secure communi-
cation between two devices, which is often referred to as “pairing”. This allows a
user, who has successfully bootstrapped trust in two individual devices (using one
or more of the techniques we have discussed), to create a secure channel between
them. In particular, unlike in earlier discussions, in which one device may be in-
fected with malware, in this setting, the two devices are trusted, and the adversary
is assumed to be an external entity.

Proposed pairing strategies include: password entry on one or both device(s) [124,
126]; string comparison that uses the human as a channel to ensure authentic ex-
change of information [114, 124, 126, 216]; audio-based comparison where the
human user compares the strings via audio representation [77, 187]; visual-based
comparison of graphics that encode data [54, 156]; shaking devices to create shared
entropy pools [33, 88, 119, 128]; common properties of the wireless channel to es-
tablish authentic or secret information [30]; and even the electrical conductivity of
the human body [188].

There is also research using location-limited channels to exchange keys [18, 31,
133, 145, 193]. The Resurrecting Duckling protocol [193] leverages a direct phys-
ical connection between devices for key setup. In the protocol, a mother duck (i.e.,
the group leader) defines and distributes a key to the ducklings (i.e., the other mem-
bers of the group). During setup, a policy is uploaded. The policy specifies what
actions a duckling will take, (e.g., communicate with other members of the group).
Unfortunately, this requires that the mother duck is completely trusted, and the pres-
ence of a special interface that supports physical contact.

Talking to Strangers [18] and Capkun’s work [31] use demonstrative identifica-
tion over a location-limited channel (e.g., infrared) to exchange authenticated public
keys. Seeing-is-Believing (SiB – recall Section 7.2.3) leverages a digital camera and
a 2D barcode displayed electronically as a visual channel to provide demonstrative
identification [133, 167]. However, a single SiB exchange provides authentication
in one direction only. While a role reversal may be reasonable with smartphones,
it is not feasible when one device is a PC or laptop without a camera. Neverthe-

Permission granted by the authors to review this work; do not distribute.

72 Bootstrapping Trust in Modern Computers

less, scanning a barcode with a smartphone may be a practical approach to ascertain
device identity.

In the realm of access control, researchers have studied a related problem known
as the Chess Grandmaster Problem, Mafia Fraud, or Terrorist Fraud [4, 21], in which
an adversary acts as a prover to one honest party and a verifier to another party
in order to obtain access to a restricted area. Existing solutions rely on distance
bounding [21, 22], which, as explained in Section 7.2.1, is ineffective for a TPM,
or employ radio-frequency hopping [4] which is also infeasible for most existing
hardware roots of trust.

Permission granted by the authors to review this work; do not distribute.

12 Limitations

When it comes to bootstrapping trust in computers, there appear to be significant
limitations on the types of guarantees that can be offered against software and hard-
ware attacks. We summarize these limitations below to alert practitioners to the
dangers and to inspire more research in these areas.

12.1 Load-Time Versus Run-Time Guarantees

As described in Section 2, existing techniques measure software when it is first
loaded. This is the easiest time to obtain a clean snapshot of the program, before, for
example, it can create temporary and difficult to inspect local state. However, this
approach is fundamentally “brittle”, since it leaves open the possibility that mal-
ware will exploit the loaded software. For example, if an attacker exploits a buffer
overflow in the loaded software, no measurement of this will be recorded. In other
words, the information about this platform’s state will match that of a platform that
contains pristine software. Thus, any vulnerability in the attesting system’s software
potentially renders the attestation protocol meaningless.

Ideally, we would like a mechanism that provides run-time guarantees, i.e., a
mechanism that conveys the current state of the platform, rather than information
about software loaded on the machine at some arbitrary point in the past. While
Sections 2.2 and 5.3 surveyed several attempts to provide run-time properties, they
all ultimately depend on a static load-time guarantee. This reinforces the importance
of minimizing the amount of software that must be trusted and attested to, since
smaller code tends to contain fewer bugs and be more amendable to formal analysis.

12.2 Hardware Attacks

As discussed in Section 6, protection against hardware attacks is typically a tradeoff
between cost (and hence ubiquity) and resilience [7]. Below, we discuss some hard-
ware attacks on commodity systems. An important consequence of these attacks is
that applications that rely on widespread, commodity secure hardware without phys-
ical protections, such as current TPMs, must align the application incentives with
those of the person in direct physical control of the platform. Thus, applications that
help a user protect her computer from attackers, e.g., an application that verifies the
result of an anti-virus scan, are far more likely to succeed than applications such as
DRM, which attempt to restrict users’ capabilities by keeping secrets from them.

Even simple hardware attacks, such as connecting the TPM’s reset pin to ground,
can undermine the security offered by this inexpensive solution [102]. Another vi-
able attack is to physically remove the TPM chip and interpose on the Low-Pin
Count (LPC) bus that connects the TPM to the chipset. The low speed of the bus

Permission granted by the authors to review this work; do not distribute.

74 Bootstrapping Trust in Modern Computers

makes such interposition feasible and would require less than one thousand dollars
in FPGA-based hardware. Tarnovsky shows how to perform a more sophisticated
hardware attack [203], but this attack requires costly tools, skills, and equipment
including an electron microscope.

This also makes existing TPMs (or similar physically vulnerable devices) a poor
choice for kiosk computing. Combining virtualization with a TPM can offer a degree
of trust in a kiosk computer [66], but only if the owner of the computer is trusted
not to tamper with the TPM itself. Of course, other physical attacks exist, including
physical-layer keyboard sniffers and screen-scrapers. The roots of trust we consider
in this book are unlikely to ever cope with such attacks.

Similar problems plague cloud computing and electronic voting applications.
When a client entrusts a cloud service with sensitive data, it can bootstrap trust
in the cloud’s software using the techniques we have described, but it cannot verify
the security of the cloud’s hardware. Thus, the client must trust the cloud provider
to deploy adequate physical security. Likewise, a voter might use a trusted device
to verify the software on an electronic voting machine, but this information can be
undermined by physical attacks on the machine itself. PUFs (Section 6.3) or some
of the physical protections discussed in Section 6.1.1 may offer some hope for these
settings.

Note, however, that protecting a hardware root of trust may be insufficient. As
discussed by many of the references in Section 13.1, the end goal is to create an
entire trusted platform, which includes computations performed outside the root of
trust, as well as the communication path to and from the user.

For example, hardware attacks on secrets stored in memory can subvert many of
the guarantees discussed thus far. Even if a combination of hardware and software
protections can protect a user’s secrets while the computer is active, recent research
by Halderman et al. has shown that data in RAM typically persists for a surprisingly
long time (seconds or even minutes) after the computer has been powered down [86].
Hence, an attacker who has physical access to the computer may be able to read
these secrets directly out of the computer’s memory.

Permission granted by the authors to review this work; do not distribute.

13 Additional Reading

13.1 Books

Trusted Computing Platforms: TCPA Technology in Context

The Trusted Computing Group is actually a successor organization (formed in 2003)
to the Trusted Computing Platform Alliance (TCPA). Balacheff et al. document the
design of the v1.1b13 TPM as it emerged from the TCPA era [17]. Note that the
v1.1b TPM does not include any support for dynamic root of trust (Section 5.2),
and indeed, the only platform change required to support v1.1b was BIOS support
for the Core Root of Trust for Measurement (CRTM).

Balacheff et al. discuss the circa 2003 TPM and the TCG Software Stack (TSS)
in considerable detail. While today newer resources exist to learn the details of the
modern TPM and TSS, Balacheff et al. remains interesting for its extensive set of
Usage Scenarios (Chapter 2) and for articulating many of the original motivations
for “trusted computing platforms”.

Trusted Computing Platforms: Design and Applications

Released in 2005, Smith’s book [183] takes a broad perspective and considers the
general problem of attempting to establish trust in computation taking place at a re-
mote site, even when the remote system is potentially in the hands of an adversary.
Smith discusses a variety of systems, from early work on secure coprocessor de-
sign, to the modern Trusted Computing Group efforts, to the contemporary research
literature. Both hardware and software attacks are considered.

Smith’s role in the design and implementation of the IBM 4758 secure copro-
cessor is apparent, and the 4758 is the subject of many examples and discussions.
The 4758 remains an excellent standard against which to compare other endeavors
to realize secure computation. The reader may take interest in the phrase outbound
authentication, which is a term similar in spirit to, but predating, remote attestation.

Smith’s book provides an excellent broad view of the space of general approaches
to achieve a “trusted computing platform.” Comparatively, the present work is more
constrained to the processes involved in bootstrapping trust, and places much less
emphasis on maintaining this trust in the face of physically present adversaries.

Trusted Computing

Mitchell’s book [140] contains a collection of articles surveying the general field
of Trusted Computing as of 2005. It covers the design of Microsoft’s now-defunct

13 Two TPM versions enjoy widespread deployment as of the time of this writing: v1.1b, and v1.2.

Permission granted by the authors to review this work; do not distribute.

76 Bootstrapping Trust in Modern Computers

NGSCB, and it is instructive to see how NGSCB’s design influenced hardware de-
velopments (e.g., the design of the TPM and of DRTM). Another chapter provides
context on the development of DAA, covering the various cryptographic schemes
that evolved into the protocol included in the TPM specification. Later chapters
examine applications of trusted computing, including topics such as single sign-
on, certificate management, digital rights management, certificate management, and
peer-to-peer networks. The common theme is the use of attestation to imbue trust
in code, and a reliance on isolation, particularly the NGSCB architecture, to allow
trusted and untrusted code to coexist.

A Practical Guide to Trusted Computing

While the other books discussed in this section include some practical detail, they
are not primarily targeted at developers. In contrast, Challener et al. focus on Trusted
Computing from a developer’s perspective, providing guidance on writing TPM de-
vice drivers or applications that interface with the TCG Software Stack [35]. They
also offer advice on porting software applications targeted at the v1.1b version of
the TPM and TSS to the v1.2 standard. To the best of our knowledge no widely
deployed software leverages these older APIs, although they remain relevant given
the deployed base of v1.1b TPM chips. Challener et al. also provide one of the first
discussions of dynamic root of trust.

Dynamics of a Trusted Platform

Grawrock covers the motivation and design of the TPM, as well as Intel’s dynamic
root of trust and virtualization support [79]. Grawrock’s book is actually a second
edition of sorts, superseding a 2006 book entitled The Intel Safer Computing Ini-
tiative. Grawrock attempts to motivate the relevant technologies from first princi-
ples, and trades off less history of the development of the technology for more de-
tail on Intel-specific technical characteristics. This book contains the most thorough
treatment of dynamic root of trust to date.

13.2 Conference and Workshop Proceedings

At least two annual academic conferences exist with a focus on trusted com-
puting, with a significant focus on bootstrapping trust. These are the Interna-
tional Conference on Trust and Trustworthy Computing [207, 208, 209, 210] (in
its fourth year as of 2011), and the ACM Scalable Trusted Computing Work-
shop [194, 195, 196, 197, 198] (in its sixth year as of 2011).

Permission granted by the authors to review this work; do not distribute.

14 Summary

In this book, we organize and clarify extensive research on bootstrapping trust in
commodity systems. We identify inconsistencies (e.g., in the types of attacks con-
sidered by various forms of secure and trusted boot), and commonalities (e.g., all
existing attempts to capture dynamic system properties still rely in some sense on
static, load-time guarantees) in previous work. We also consolidate the various types
of hardware support available for bootstrapping trust. This leads us to the observa-
tion that applications based on low-cost, non-tamper-resistant hardware (e.g., the
TPM), must align their incentives with those of the computer owner, suggesting that
applications that help the user protect her own secrets or check her computer for
malware are more likely to succeed than applications that try to hide information
from her. Empirically, users are entrusting increasing amounts of sensitive data and
transactions to their computers; we hope the techniques discussed in this book will
help enable systems worthy of that trust.

Permission granted by the authors to review this work; do not distribute.

Permission granted by the authors to review this work; do not distribute.

References

All of the URLs listed here are valid as of June, 2011.

[1] Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In:
Proceedings of the ACM Conference on Computer and Communications Se-
curity (CCS) (2005) (Referenced on page 10.)

[2] Acohido, B., Swartz, J.: Unprotected PCs can be hijacked in minutes. USA
Today (2004) (Referenced on page 47.)

[3] Advanced Micro Devices: AMD64 architecture programmer’s manual. AMD
Publication no. 24593 rev. 3.14 (2007) (Referenced on pages 2, 28, 39, 62,
and 68.)

[4] Alkassar, A., Stüble, C., Sadeghi, A.R.: Secure object identification or: Solv-
ing the chess grandmaster problem. In: Proceedings of the New Security
Paradigm Workshow (NSPW) (2003) (Referenced on page 72.)

[5] Ames Jr, S.R.: Security kernels: A solution or a problem? In: Proceedings of
the IEEE Symposium on Security and Privacy (1981) (Referenced on page
25.)

[6] Anderson, R.: Cryptography and competition policy - issues with “Trusted
Computing”. In: Proceedings of the Workshop on Economics and Informa-
tion Security (2003) (Referenced on page 1.)

[7] Anderson, R., Kuhn, M.: Tamper resistance – a cautionary note. In: Proceed-
ings of the USENIX Workshop on Electronic Commerce (1995) (Referenced
on page 73.)

[8] Arbaugh, W.A., Farber, D.J., Smith, J.M.: A reliable bootstrap architecture.
In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 65–71
(1997) (Referenced on pages 13, 36, 66, and 69.)

[9] ARM: ARM security technology. PRD29-GENC-009492C (2009) (Refer-
enced on pages 1 and 38.)

[10] Armknecht, F., Maes, R., Sadeghi, A.R., Standaert, F.X., Wachsmann, C.: A
formal foundation for the security features of physical functions. In: IEEE
Symposium on Security and Privacy (2011) (Referenced on page 39.)

[11] Arnold, T., van Doorn, L.: The IBM PCIXCC: A new cryptographic copro-
cessor for the IBM eServer. IBM Journal of Research and Development 48(3)
(2004) (Referenced on page 35.)

79

Permission granted by the authors to review this work; do not distribute.

80 References

[12] Azab, A.M., Ning, P., Wang, Z., Jiang, X., Zhang, X., Skalsky, N.C.: Hy-
perSentry: Enabling stealthy in-context measurement of hypervisor integrity.
In: Proceedings of the ACM Conference on Computer and Communications
Security (CCS) (2010) (Referenced on page 27.)

[13] Azema, J., Fayad, G.: M-Shield mobile security technology: making wire-
less secure. Texas Instruments Whitepaper. Available at http://focus.
ti.com/pdfs/wtbu/ti_mshield_whitepaper.pdf (2008) (Ref-
erenced on pages 1 and 38.)

[14] Baek, K.H., Smith., S.: Preventing theft of quality of service on open plat-
forms. In: Proceedings of the IEEE/CREATE-NET Workshop on Security
and QoS in Communication Networks (2005) (Referenced on page 55.)

[15] Baiardi, F., Cilea, D., Sgandurra, D., Ceccarelli, F.: Measuring semantic in-
tegrity for remote attestation. In: Proceedings of the International Conference
on Trusted Computing (2009) (Referenced on page 10.)

[16] Bailey, K.A., Smith, S.W.: Trusted virtual containers on demand. In: Proceed-
ings of the ACM Workshop on Scalable Trusted Computing (STC) (2010)
(Referenced on page 5.)

[17] Balacheff, B., Chen, L., Pearson, S., Plaquin, D., Proudler, G.: Trusted Com-
puting Platforms – TCPA Technology in Context. Prentice Hall (2003) (Ref-
erenced on pages 63 and 75.)

[18] Balfanz, D., Smetters, D., Stewart, P., Wong, H.C.: Talking to strangers: Au-
thentication in ad-hoc wireless networks. In: Proceedings of the ISOC Sym-
posium on Network and Distributed System Security (NDSS) (2002) (Refer-
enced on page 71.)

[19] Belenkiy, M., Chase, M., Erway, C.C., Jannotti, J., Küpçü, A., Lysyanskaya,
A.: Incentivizing outsourced computation. In: Proceedings of the Workshop
on Economics of Networked Systems (NetEcon) (2008) (Referenced on page
40.)

[20] Berger, S., Cáceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn,
L.: vTPM: Virtualizing the trusted platform module. In: Proceedings of the
USENIX Security Symposium (2006) (Referenced on page 5.)

[21] Beth, T., Desmedt, Y.: Identification tokens - or: Solving the chess grand-
master problem. In: Proceedings of CRYPTO (1991) (Referenced on page
72.)

[22] Brands, S., Chaum, D.: Distance-bounding protocols. In: Proceedings of Eu-
roCrypt (1994) (Referenced on pages 46 and 72.)

[23] Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Pro-
ceedings of the ACM Conference on Computer and Communications Secu-
rity (CCS) (2004) (Referenced on pages 23 and 67.)

[24] Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM re-
sources. In: Proceedings of the International Conference on Trust and Trust-
worthy Computing (2010) (Referenced on page 24.)

[25] Brumley, D., Song, D.: Privtrans: Automatically partitioning programs for
privilege separation. In: Proceedings of the USENIX Security Symposium
(2004) (Referenced on page 31.)

Permission granted by the authors to review this work; do not distribute.

References 81

[26] Bruschi, D., Cavallaro, L., Lanzi, A., Monga, M.: Replay attack in TCG spec-
ification and solution. In: Proceedings of the Annual Computer Security Ap-
plications Conference (ACSAC) (2005) (Referenced on page 51.)

[27] Bugiel, S., Ekberg, J.E.: Implementing an application-specific credential plat-
form using late-launched mobile trusted module. In: Proceedings of the ACM
Workshop on Scalable Trusted Computing (STC) (2010) (Referenced on
page 38.)

[28] Busch, H., Sotáková, M., Katzenbeisser, S., Sion, R.: The PUF promise. In:
Proceedings of the International Conference on Trust and Trustworthy Com-
puting (2010) (Referenced on page 39.)

[29] Bussani, A., Griffin, J.L., Jansen, B., Julisch, K., Karjoth, G., Maruyama, H.,
Nakamura, M., Perez, R., Schunter, M., Tanner, A., Van Doorn, L., Van Her-
reweghen, E.A., Waidner, M., Yoshihama, S.: Trusted Virtual Domains: Se-
cure foundations for business and IT services. Tech. Rep. RC23792, IBM
Research (2005) (Referenced on page 5.)

[30] Cagalj, M., Capkun, S., Hubaux, J.P.: Key agreement in peer-to-peer wireless
networks. Proceedings of the IEEE (Special Issue on Cryptography) 94, 467–
478 (2006) (Referenced on page 71.)

[31] Capkun, S., Hubaux, J.P., Buttyan, L.: Mobility helps security in ad hoc net-
works. In: Proceedings of the ACM Symposium on Mobile Ad Hoc Net-
working & Computing (MobiHoc) (2003) (Referenced on page 71.)

[32] Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2009) (Ref-
erenced on page 40.)

[33] Castelluccia, C., Mutaf, P.: Shake them up! A movement-based pairing proto-
col for CPU-constrained devices. In: Proceeding of the Conference on Mobile
Systems, Applications, and Services (MobiSys) (2005) (Referenced on page
71.)

[34] Catuogno, L., Dmitrienko, A., Eriksson, K., Kuhlmann, D., Ramunno, G.,
Sadeghi, A.R., Schulz, S., Schunter, M., Winandy, M., Zhan, J.: Trusted vir-
tual domains - design, implementation and lessons learned. In: Proceedings
of the International Conference on Trusted Systems (INTRUST) (2009) (Ref-
erenced on page 5.)

[35] Challener, D., Hoff, J., Catherman, R., Safford, D., van Doorn, L.: Practical
Guide to Trusted Computing. Prentice Hall (2007) (Referenced on page 76.)

[36] Chen, B., Morris, R.: Certifying program execution with secure procesors. In:
Proceedings of the USENIX Workshop on Hot Topics in Operating Systems
(HotOS) (2003) (Referenced on page 36.)

[37] Chen, L.: A DAA scheme using batch proof and verification. In: Proceedings
of the International Conference on Trust and Trustworthy Computing (2010)
(Referenced on page 24.)

[38] Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.R., Stüble, C.: A
protocol for property-based attestation. In: Proceedings of the ACM Work-
shop on Scalable Trusted Computing (STC) (2006) (Referenced on page 33.)

Permission granted by the authors to review this work; do not distribute.

82 References

[39] Chen, L., Ryan, M.D.: Offline dictionary attack on TCG TPM weak autho-
risation data, and solution. In: Proceedings of the Conference on Future of
Trust in Computing (2008) (Referenced on page 51.)

[40] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the USENIX Security Symposium
(2005) (Referenced on page 10.)

[41] Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: A virtualization-based
approach to retrofitting protection in commodity operating systems. In: Pro-
ceedings of the ACM Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2008) (Referenced on page
27.)

[42] Chen, Y., England, P., Peinado, M., Willman, B.: High assurance computing
on open hardware architectures. Tech. Rep. MSR-TR-2003-20, Microsoft
Research (2003) (Referenced on page 26.)

[43] Chun, B.G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only
memory: Making adversaries stick to their word. In: Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP) (2007) (Referenced on
page 39.)

[44] Clark, D.D., Wilson, D.R.: A comparison of commercial and military security
policies. In: Proceedings of the IEEE Symposium on Security and Privacy
(1987) (Referenced on page 26.)

[45] Coker, G., Guttman, J., Loscocco, P., Herzog, A., Millen, J., O’Hanlon, B.,
Ramsdell, J., Segall, A., Sheehy, J., Sniffen, B.: Principles of remote attesta-
tion. International Journal of Information Security 10(2) (2011) (Referenced
on page 21.)

[46] Datta, A., Franklin, J., Garg, D., Kaynar, D.: A logic of secure systems and
its application to trusted computing. In: Proceedings of the IEEE Symposium
on Security and Privacy (2009) (Referenced on page 52.)

[47] Dietrich, K., Winter, J.: Towards customizable, application specific mobile
trusted modules. In: Proceedings of the ACM Workshop on Scalable Trusted
Computing (STC) (2010) (Referenced on page 38.)

[48] Dixon, C., Uppal, H., Brajkovic, V., Brandon, D., Anderson, T., Krishna-
murthy, A.: ETTM: A scalable fault tolerant network manager. In: Proceed-
ings of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2011) (Referenced on page 56.)

[49] Dwoskin, J.S., Gomathisankaran, M., Chen, Y.Y., Lee, R.B.: A framework
for testing hardware-software security architectures. In: Proceedings of the
Annual Computer Security Applications Conference (ACSAC) (2010) (Ref-
erenced on page 51.)

[50] Dyer, J., Lindemann, M., Perez, R., Sailer, R., van Doorn, L., Smith, S.W.,
Weingart, S.: Building the IBM 4758 Secure Coprocessor. IEEE Computer
(2001) (Referenced on pages 14 and 66.)

[51] Einstein, A.: On the electrodynamics of moving bodies. Annalen der Physik
17, 891–921 (1905) (Referenced on page 46.)

Permission granted by the authors to review this work; do not distribute.

References 83

[52] Ekberg, J.E., Bugiel, S.: Trust in a small package: minimized MRTM soft-
ware implementation for mobile secure environments. In: Proceedings of the
ACM Workshop on Scalable Trusted Computing (STC) (2009) (Referenced
on page 38.)

[53] Ekberg, J.E., Kylänpää, M.: Mobile trusted module (MTM) - an introduction.
Tech. Rep. NRC-TR-2007-015, Nokia Research Center (2007) (Referenced
on pages 37, 38, and 54.)

[54] Ellison, C., Dohrmann, S.: Public-key support for group collaboration. ACM
Transactions on Information and System Security 6(4) (2003) (Referenced
on page 71.)

[55] England, P., Lampson, B., Manferdelli, J., Peinado, M., Willman, B.: A
trusted open platform. IEEE Computer 36(7), 55–62 (2003) (Referenced
on page 26.)

[56] Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: Soft-
ware guards for system address spaces. In: Proceedings of the USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI) (2006)
(Referenced on pages 10 and 32.)

[57] Feng, W.C., Schluessler, T.: The case for network witnesses. In: Proceedings
of the IEEE Workshop on Secure Network Protocols (2008) (Referenced on
page 56.)

[58] Finney, H.: PrivacyCA. http://privacyca.com (Referenced on page
23.)

[59] Flicker: Minimal TCB code execution. Source code v0.5: http://
flickertcb.sourceforge.net/ (Referenced on page 60.)

[60] Franklin, J., Luk, M., Seshadri, A., Perrig, A.: PRISM: Enabling personal ver-
ification of code integrity, untampered execution, and trusted I/O or human-
verifiable code execution. Tech. Rep. CMU-CyLab-07-010, Carnegie Mellon
University, Cylab (2007) (Referenced on page 71.)

[61] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA–OAEP is secure
under the RSA assumption. In: Proceedings of CRYPTO (2001) (Referenced
on page 15.)

[62] Gajek, S., Löhr, H., Sadeghi, A.R., Winandy, M.: TruWallet: trustworthy and
migratable wallet-based web authentication. In: Proceedings of the ACM
Workshop on Scalable Trusted Computing (STC) (2009) (Referenced on
page 57.)

[63] Gallo, R., Kawakami, H., Dahab, R., Arajo, G., Azavedo, R.: T-DRE: A hard-
ware trusted computing base for direct recording electronic vote machines.
In: Proceedings of the Annual Computer Security Applications Conference
(ACSAC) (2010) (Referenced on page 54.)

[64] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A vir-
tual machine-based platform for trusted computing. In: Proceedings of the
Symposium on Operating System Principles (SOSP) (2003) (Referenced on
pages 5, 6, 7, 21, 27, and 32.)

Permission granted by the authors to review this work; do not distribute.

84 References

[65] Garfinkel, T., Rosenblum, M., Boneh, D.: Flexible OS support and applica-
tions for Trusted Computing. In: Proceedings of the USENIX Workshop on
Hot Topics in Operating Systems (HotOS) (2003) (Referenced on page 55.)

[66] Garriss, S., Cáceres, R., Berger, S., Sailer, R., van Doorn, L., Zhang, X.:
Trustworthy and personalized computing on public kiosks. In: Proceedings
of the Conference on Mobile Systems, Applications, and Services (MobiSys)
(2008) (Referenced on pages 49 and 74.)

[67] Gasmi, Y., Sadeghi, A.R., Stewin, P., Unger, M., Winandy, M., Husseiki, R.,
Stüble, C.: Flexible and secure enterprise rights management based on trusted
virtual domains. In: Proceedings of the ACM Workshop on Scalable Trusted
Computing (STC) (2008) (Referenced on page 5.)

[68] Gasser, M., Goldstein, A., Kaufman, C., Lampson, B.: The digital distributed
system security architecture. In: Proceedings of the National Computer Se-
curity Conference (1989) (Referenced on pages 1, 4, 5, 6, 7, and 13.)

[69] Giffin, J.T., Christodorescu, M., Kruger, L.: Strengthening software self-
checksumming via self-modifying code. In: Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC) (2005) (Referenced on
pages 39 and 40.)

[70] Gilbert, P., Cox, L.P., Jung, J., Wetherall, D.: Toward trustworthy mobile
sensing. In: Proceedings of the ACM Workshop on Mobile Computing Sys-
tems and Applications (HotMobile) (2010) (Referenced on page 57.)

[71] Gobioff, H., Smith, S., Tygar, J., Yee, B.: Smart cards in hostile environments.
In: Proceedings of the USENIX Workshop on Electronic Commerce (1995)
(Referenced on page 36.)

[72] Goel, A., Po, K., Farhadi, K., Li, Z., de Lara, E.: The taser intrusion recov-
ery system. In: Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP) (2005) (Referenced on page 68.)

[73] Gold, B.D., Linde, R.R., Cudney, P.F.: KVM/370 in retrospect. In: Proceed-
ings of the IEEE Symposium on Security and Privacy (1984) (Referenced on
page 25.)

[74] Goldman, K.: IBM’s software Trusted Platform Module. Source code:
http://ibmswtpm.sourceforge.net/ (Referenced on page 59.)

[75] Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tun-
nel endpoints. In: Proceedings of the ACM Workshop on Scalable Trusted
Computing (STC) (2006) (Referenced on pages 21 and 22.)

[76] Goldman, K., Sailer, R., Pendarakis, D., Srinivasan, D.: Scalable integrity
monitoring in virtualized environments. In: Proceedings of the ACM Work-
shop on Scalable Trusted Computing (STC) (2010) (Referenced on page 6.)

[77] Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and
clear: Human-verifiable authentication based on audio. In: Proceedings of the
IEEE International Conference on Distributed Computing Systems (ICDCS)
(2006) (Referenced on page 71.)

[78] Grawrock, D.: The Intel Safer Computing Initiative: Building Blocks for
Trusted Computing. Intel Press (2006) (Referenced on page 62.)

[79] Grawrock, D.: Dynamics of a Trusted Platform. Intel Press (2008) (Refer-
enced on page 76.)

Permission granted by the authors to review this work; do not distribute.

References 85

[80] GSM Association: GSM mobile phone technology adds another billion con-
nections in just 30 months. GSM World Press Release (2006) (Referenced
on page 1.)

[81] Gueron, S., Kounavis, M.E.: New processor instructions for accelerating
encryption and authentication algorithms. Intel Technology Journal 13(2)
(2009) (Referenced on page 2.)

[82] Gummadi, R., Balakrishnan, H., Maniatis, P., Ratnasamy, S.: Not-a-bot: Im-
proving service availability in the face of botnet attacks. In: Proceedings of
the USENIX Symposium on Networked Systems Design and Implementation
(NSDI) (2009) (Referenced on page 56.)

[83] Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security
evaluation of scenarios based on the TCG’s TPM specification. In: Proceed-
ings of the European Symposium on Research in Computer Security (ES-
ORICS) (2007) (Referenced on page 51.)

[84] Haeberlen, A., Aditya, P., Rodrigues, R., Druschel, P.: Accountable virtual
machines. In: Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2010) (Referenced on page 40.)

[85] Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: a virtual ma-
chine directed approach to trusted computing. In: Proceedings of the Confer-
ence on Virtual Machine Research (2004) (Referenced on pages 10, 25, 32,
and 33.)

[86] Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calan-
drino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember:
Cold boot attacks on encryption keys. In: Proceedings of the USENIX Secu-
rity Symposium (2008) (Referenced on page 74.)

[87] von Helden, J., Bente, I., Vieweg, J.: Trusted Network Connect (TNC). Eu-
ropean Trusted Infrastructure Summer School (2009) (Referenced on page
54.)

[88] Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen,
H.W.: Smart-its friends: A technique for users to easily establish connections
between smart artefacts. In: Proceedings of the ACM Conference on Ubiqui-
tous Computing (Ubicomp) (2001) (Referenced on page 71.)

[89] IBM: CCA basic services reference and guide for the IBM 4758 PCI and
IBM 4764 PCI-X cryptographic coprocessors. 19th Ed. (2008) (Referenced
on page 35.)

[90] Infineon Technologies AG: Infineon chip card and security ICs portfolio.
http://www.infineon.com (2010) (Referenced on page 36.)

[91] Intel, HP, NEC, Dell: IPMI - Intelligent Platform Management Inter-
face specification second generation v2.0. http://download.intel.
com/design/servers/ipmi/IPMIv2_0rev1_0.pdf (2004) (Ref-
erenced on page 27.)

[92] Intel Corporation: Trusted boot. Source code: http://tboot.
sourceforge.net/ (Referenced on page 60.)

Permission granted by the authors to review this work; do not distribute.

86 References

[93] Intel Corporation: Intel trusted execution technology – measured launched
environment developer’s guide. Document number 315168-005 (2008) (Ref-
erenced on pages 2, 28, 29, 39, 62, and 68.)

[94] Intel Corporation: Intel vPro Technology. http://www.intel.com/
technology/vpro/ (2011) (Referenced on page 27.)

[95] Itoi, N.: Secure coprocessor integration with Kerberos V5. In: Proceedings
of the USENIX Security Symposium (2000) (Referenced on page 55.)

[96] Itoi, N., Arbaugh, W.A., Pollack, S.J., Reeves, D.M.: Personal secure booting.
In: Proceedings of the Australasian Conference on Information Security and
Privacy (ACISP) (2000) (Referenced on page 69.)

[97] Jaeger, T., Sailer, R., Shankar, U.: PRIMA: policy-reduced integrity mea-
surement architecture. In: Proceedings of the ACM Symposium on Access
Control Models And Technologies (SACMAT) (2006) (Referenced on page
26.)

[98] Jiang, S.: WebALPS implementation and performance analysis. Master’s
thesis, Dartmouth College (2001) (Referenced on page 55.)

[99] Jiang, S., Smith, S., Minami, K.: Securing web servers against insider attack.
In: Proceedings of the Annual Computer Security Applications Conference
(ACSAC) (2001) (Referenced on pages 14 and 35.)

[100] Johnson, R., Wagner, D.: Finding user/kernel pointer bugs with type infer-
ence. In: Proceedings of the USENIX Security Symposium (2004) (Refer-
enced on page 32.)

[101] Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A retro-
spective on the VAX VMM security kernel. IEEE Transactions on Software
Engineering 17(11), 1147–1165 (1991) (Referenced on page 25.)

[102] Kauer, B.: OSLO: Improving the security of Trusted Computing. In: Pro-
ceedings of the USENIX Security Symposium (2007). Source code: http:
//os.inf.tu-dresden.de/˜kauer/oslo/ (Referenced on pages
21, 30, 51, 60, and 73.)

[103] Keller, E., Lee, R.B., Rexford, J.: Accountability in hosted virtual networks.
In: Proceedings of the ACM Workshop on Virtualized Infrastructure Systems
and Architectures (VISA) (2009) (Referenced on page 55.)

[104] Kennell, R., Jamieson, L.: Establishing the genuinity of remote computer sys-
tems. In: Proceedings of the USENIX Security Symposium (2003) (Refer-
enced on pages 39 and 40.)

[105] Kil, C., Sezer, E.C., Azab, A., Ning, P., Zhang, X.: Remote attestation to
dynamic system properties. In: Proceedings of the IEEE/IFIP Conference on
Dependable Systems and Networks (DSN) (2009) (Referenced on pages 10
and 32.)

[106] Kim, T., Wang, X., Zeldovich, N., Kaashoek, M.F.: Intrusion recovery using
selective re-execution. In: Proceedings of the USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI) (2010) (Referenced on
page 68.)

[107] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Norrish, M., Kolanski, R., Sewell, T., Tuch,

Permission granted by the authors to review this work; do not distribute.

References 87

H., Winwood, S.: seL4: Formal verification of an OS kernel. In: Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP) (2009)
(Referenced on page 25.)

[108] Knoppix for trusted computing geeks. http://unit.aist.go.jp/
itri/knoppix/index-en.html (Referenced on page 60.)

[109] Korthaus, R., Sadeghi, A.R., Stüble, C., Zhan, J.: A practical property-based
bootstrap architecture. In: Proceedings of the ACM Workshop on Scalable
Trusted Computing (STC) (2009) (Referenced on page 33.)

[110] Krautheim, F.J., Phatak, D.S., Sherman, A.T.: Introducing the trusted virtual
environment module: A new mechanism for rooting trust in cloud computing.
In: Proceedings of the International Conference on Trust and Trustworthy
Computing (2010) (Referenced on page 6.)

[111] Kühn, U., Selhorst, M., Stüble, C.: Realizing property-based attestation and
sealing with commonly available hard- and software. In: Proceedings of the
ACM Workshop on Scalable Trusted Computing (STC) (2007) (Referenced
on page 33.)

[112] Lampson, B.: Usable security: How to get it. Communications of the ACM
52(11) (2009) (Referenced on page 70.)

[113] Lang, P.: Flash the Intel BIOS with confidence. Intel Developer UPDATE
Magazine (2002) (Referenced on page 50.)

[114] Laur, S., Nyberg, K.: Efficient mutual data authentication using manually
authenticated strings. In: Proceedings of the Conference on Cryptology and
Network Security (CANS) (2006) (Referenced on page 71.)

[115] LeClaire, J.: Apple ships iPods with Windows virus. Mac News World (2006)
(Referenced on page 47.)

[116] Lee, D., Wester, B., Veeraraghavan, K., Narayanasamy, S., Chen, P.M., Flinn,
J.: Respec: Efficient online multiprocessor replay via speculation and external
determinism. In: Proceedings of the ACM Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS) (2010)
(Referenced on page 40.)

[117] Lee, R.B., Kwan, P., McGregor, J.P., Dwoskin, J., Wang, Z.: Architecture for
protecting critical secrets in microprocessors. In: Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA) (2005) (Referenced on
pages 36, 51, and 69.)

[118] van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: Proceedings of the ACM Workshop on Scalable
Trusted Computing (STC) (2010) (Referenced on page 39.)

[119] Lester, J., Hannaford, B., Gaetano, B.: Are you with me? - Using accelerom-
eters to determine if two devices are carried by the same person. In: Proceed-
ings of Pervasive (2004) (Referenced on page 71.)

[120] Leung, A., Chen, L., Mitchell, C.J.: On a possible privacy flaw in direct
anonymous attestation (DAA). In: Proceedings of the International Confer-
ence on Trusted Computing (2008) (Referenced on page 24.)

[121] Levin, D., Douceur, J.R., Lorch, J.R., Moscibroda, T.: TrInc: Small trusted
hardware for large distributed systems. In: Proceedings of the USENIX Sym-

Permission granted by the authors to review this work; do not distribute.

88 References

posium on Networked Systems Design and Implementation (NSDI) (2009)
(Referenced on page 39.)

[122] Libonati, A., McCune, J.M., Reiter, M.K.: Usability testing a malware-
resistant input mechanism. In: Proceedings of the ISOC Symposium on Net-
work and Distributed Systems Security (NDSS) (2011) (Referenced on page
70.)

[123] Lie, D., Thekkath, C.A., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J.C.,
Horowitz, M.: Architectural support for copy and tamper resistant software.
In: Proceedings of the ACM Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS) (2000) (Referenced
on page 36.)

[124] Linksky, J. et al.: Simple Pairing Whitepaper, revision v10r00.
http://mclean-linsky.net/joel/cv/Simple%20Pairing_
WP_V10r00.pdf (2006) (Referenced on page 71.)

[125] Löhr, H., Pöppelmann, T., Rave, J., Steegmanns, M., Winandy, M.: Trusted
virtual domains on OpenSolaris: usable secure desktop environments. In:
Proceedings of the ACM Workshop on Scalable Trusted Computing (STC)
(2010) (Referenced on page 5.)

[126] Lortz, V., Roberts, D., Erdmann, B., Dawidowsky, F., Hayes, K., Yee, J.C.,
Ishidoshiro, T.: Wi-Fi Simple Config Specification, version 1.0a (2006). Now
known as Wi-Fi Protected Setup (Referenced on page 71.)

[127] Marchesini, J., Smith, S.W., Wild, O., Stabiner, J., Barsamian, A.: Open-
source applications of TCPA hardware. In: Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC) (2004) (Referenced on
pages 4, 8, 21, and 25.)

[128] Mayrhofer, R., Gellersen, H.: Shake well before use: Intuitive and secure
pairing of mobile devices. IEEE Transactions on Mobile Computing 8(6)
(2009) (Referenced on page 71.)

[129] McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.:
TrustVisor: Efficient TCB reduction and attestation. In: Proceedings of the
IEEE Symposium on Security and Privacy (2010) (Referenced on page 30.)

[130] McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An
execution infrastructure for TCB minimization. In: Proceedings of the ACM
European Conference on Computer Systems (EuroSys) (2008) (Referenced
on pages 21, 22, 30, and 55.)

[131] McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: Minimal
TCB code execution (extended abstract). In: Proceedings of the IEEE Sym-
posium on Security and Privacy (2007) (Referenced on pages 22 and 30.)

[132] McCune, J.M., Parno, B., Perrig, A., Reiter, M.K., Seshadri, A.: How low
can you go? Recommendations for hardware-supported minimal TCB code
execution. In: Proceedings of the ACM Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS) (2008)
(Referenced on pages 30 and 46.)

Permission granted by the authors to review this work; do not distribute.

References 89

[133] McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera
phones for human-verifiable authentication. In: Proceedings of the IEEE
Symposium on Security and Privacy (2005) (Referenced on pages 49 and 71.)

[134] McCune, J.M., Perrig, A., Reiter, M.K.: Safe passage for passwords and other
sensitive data. In: Proceedings of the ISOC Symposium on Network and
Distributed System Security (NDSS) (2009) (Referenced on page 69.)

[135] McCune, J.M., Perrig, A., Seshadri, A., van Doorn, L.: Turtles all the way
down: Research challenges in user-based attestation. In: Proceedings of the
USENIX Workshop on Hot Topics in Security (HotSec) (2007) (Referenced
on page 61.)

[136] Merkle, R.C.: A certified digital signature. In: Proceedings of CRYPTO
(1989) (Referenced on page 56.)

[137] Microsoft Corporation: Code access security. MSDN .NET Framework De-
veloper’s Guide – Visual Studio .NET Framework 3.5 (2008) (Referenced on
page 53.)

[138] Microsoft Corporation: Full volume encryption using Windows BitLocker
drive encryption. Microsoft Services Datasheet (2008) (Referenced on page
53.)

[139] Millen, J., Guttman, J., Ramsdell, J., Sheehy, J., Sniffen, B.: Analysis of a
measured launch. Tech. Rep. 07-0843, The MITRE Corporation (2007) (Ref-
erenced on page 51.)

[140] Mitchell, C. (ed.): Trusted Computing. The Institution of Electrical Engineers
(2005) (Referenced on pages 26 and 75.)

[141] Monate, B., Signoles, J.: Slicing for security of code. In: Proceedings of
the International Conference on Trust and Trustworthy Computing (2008)
(Referenced on page 32.)

[142] Monrose, F., Wyckoff, P., Rubin, A.: Distributed execution with remote audit.
In: Proceedings of ISOC Network and Distributed System Security Sympo-
sium (NDSS) (1999) (Referenced on page 40.)

[143] Moyer, T., Butler, K., Schiffman, J., McDaniel, P., Jaeger, T.: Scalable web
content attestation. In: Proceedings of the Annual Computer Security Appli-
cations Conference (ACSAC) (2009) (Referenced on page 55.)

[144] Nauman, M., Alam, M., Zhang, X., Ali, T.: Remote attestation of attribute
updates and information flows in a UCON system. In: Proceedings of the
International Conference on Trusted Computing (2009) (Referenced on page
32.)

[145] NFC Forum: Specifications. http://www.nfc-forum.org/specs/
(Referenced on page 71.)

[146] Open platform trust services (OpenPTS). Source code: http://
openpts.sourceforge.jp (Referenced on page 60.)

[147] OpenTC proof of concept prototype 1. http://www.opentc.
net/index.php?option=com_content&task=view&id=
45&Itemid=63 (Referenced on page 60.)

[148] Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way functions.
Science 297(5589) (2002) (Referenced on page 39.)

Permission granted by the authors to review this work; do not distribute.

90 References

[149] Parno, B.: Bootstrapping trust in a “trusted” platform. In: Proceedings of the
USENIX Workshop on Hot Topics in Security (HotSec) (2008) (Referenced
on page 41.)

[150] Parno, B.: Trust extension as a mechanism for secure code execution on com-
modity computers. Ph.D. thesis, Carnegie Mellon University (2010) (Refer-
enced on page 56.)

[151] Parno, B., Lorch, J.R., Douceur, J.R., Mickens, J., McCune, J.M.: Mem-
oir: Practical state continuity for protected modules. In: Proceedings of the
IEEE Symposium on Security and Privacy (2011). Source code: http:
//research.microsoft.com/en-us/projects/memoir/ (Ref-
erenced on pages 17 and 60.)

[152] Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity com-
puters. In: Proceedings of the IEEE Symposium on Security and Privacy
(2010) (Referenced on page vii.)

[153] Parno, B., Zhou, Z., Perrig, A.: Help me help you: Using trustworthy host-
based information in the network. Tech. Rep. CMU-CyLab-09-016, Carnegie
Mellon University, Cylab (2009) (Referenced on page 56.)

[154] Perrig, A., van Doorn, L.: Refutation of “On the difficulty of software-based
attestation of embedded devices”. http://sparrow.ece.cmu.edu/
group/pub/perrig-vandoorn-refutation.pdf (2010) (Refer-
enced on page 40.)

[155] Perrig, A., Smith, S., Song, D., Tygar, J.: SAM: A flexible and secure auc-
tion architecture using trusted hardware. In: Proceedings of the International
Workshop on Internet Computing and E-Commerce (ICEC) (2001) (Refer-
enced on page 55.)

[156] Perrig, A., Song, D.: Hash visualization: A new technique to improve real-
world security. In: Proceedings of the International Workshop on Crypto-
graphic Techniques and E-Commerce (CrypTEC) (1999) (Referenced on
page 71.)

[157] Pirker, M., Toegl, R., Hein, D., Danner, P.: A PrivacyCA for anonymity and
trust. In: Proceedings of the International Conference on Trusted Computing
(2009) (Referenced on page 23.)

[158] Pirker, M., Winkler, T., Toegl, R., Gissing, M.: IAIK jTpmTools - TPM
tools for the Java platform. Source code v0.6: http://trustedjava.
sourceforge.net/ (Referenced on page 59.)

[159] Ramachandran, A., Bhandankar, K., Tariq, M.B., Feamster, N.: Packets with
provenance. Tech. Rep. GT-CS-08-02, Georgia Tech (2008) (Referenced on
page 55.)

[160] Rudolph, C.: Covert identity information in direct anonymous attestation
(DAA). In: Proceedings of the IFIP Information Security Conference (2007)
(Referenced on page 24.)

[161] Sadeghi, A.R., Selhorst, M., Stüble, C., Wachsmann, C., Winandy, M.: TCG
inside? - A note on TPM specification compliance. In: Proceedings of the
ACM Workshop on Scalable Trusted Computing (STC) (2006) (Referenced
on pages 51 and 68.)

Permission granted by the authors to review this work; do not distribute.

References 91

[162] Sadeghi, A.R., Stueble, C.: Property-based attestation for computing plat-
forms: caring about properties, not mechanisms. In: Proceedings of the Work-
shop on New Security Paradigms (NSPW) (2004) (Referenced on pages 32
and 33.)

[163] Sailer, R., Valdez, E., Jaeger, T., Perez, R., van Doorn, L., Griffin, J.L.,
Berger, S.: sHype: Secure hypervisor approach to trusted virtualized systems.
Tech. Rep. RC23511, IBM Research (2005) (Referenced on page 27.)

[164] Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation
of a TCG-based integrity measurement architecture. In: Proceedings of the
USENIX Security Symposium (2004). Source code:
http://linux-ima.sourceforge.net (Referenced on pages 6, 8,
9, 21, 22, 26, 41, 59, and 66.)

[165] Sarmenta, L., van Dijk, M., O’Donnell, C., Rhodes, J., Devadas, S.: Virtual
monotonic counters and count-limited objects using a TPM without a trusted
OS. In: Proceedings of the ACM Workshop on Scalable Trusted Computing
(STC) (2006) (Referenced on page 56.)

[166] Saroiu, S., Wolman, A.: I am a sensor, and I approve this message. In: Pro-
ceedings of the ACM Workshop on Mobile Computing Systems and Appli-
cations (HotMobile) (2010) (Referenced on page 57.)

[167] Saxena, N., Ekberg, J.E., Kostiainen, K., Asokan, N.: Secure device pairing
based on a visual channel (short paper). In: Proceedings of the IEEE Sympo-
sium on Security and Privacy (2006) (Referenced on page 71.)

[168] Schellekens, D., Tuyls, P., Preneel, B.: Embedded trusted computing with au-
thenticated non-volatile memory. In: Proceedings of the International Con-
ference on Trusted Computing (2008) (Referenced on page 39.)

[169] Schiffman, J., Moyer, T., Shal, C., Jaeger, T., McDaniel, P.: Justifying in-
tegrity using a virtual machine verifier. In: Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC) (2009) (Referenced on
page 27.)

[170] Schneier, B., Kelsey, J.: Cryptographic support for secure logs on untrusted
machines. In: Proceedings of the USENIX Security Symposium (1998) (Ref-
erenced on page 6.)

[171] Schwartz, E.J., Brumley, D., McCune, J.M.: A contractual anonymity sys-
tem. In: Proceedings of the ISOC Symposium on Network and Distributed
Systems Security (NDSS) (2010) (Referenced on page 56.)

[172] Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A tiny hypervisor to
provide lifetime kernel code integrity for commodity OSes. In: Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP) (2007)
(Referenced on page 32.)

[173] Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pio-
neer: Verifying integrity and guaranteeing execution of code on legacy plat-
forms. In: Proceedings of ACM Symposium on Operating Systems Principles
(SOSP) (2005) (Referenced on pages 39 and 40.)

[174] Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: Software-based
attestation for embedded devices. In: Proceedings of the IEEE Symposium
on Security and Privacy (2004) (Referenced on pages 39 and 40.)

Permission granted by the authors to review this work; do not distribute.

92 References

[175] Shaneck, M., Mahadevan, K., Kher, V., Kim, Y.: Remote software-based at-
testation for wireless sensors. In: Proceedings of European Workshop on
Security and Privacy in Ad Hoc and Sensor Networks (ESAS) (2005) (Ref-
erenced on pages 39 and 40.)

[176] Shankar, U., Jaeger, T., Sailer, R.: Toward automated information-flow in-
tegrity verification for security-critical applications. In: Proceedings of the
ISOC Symposium on Network and Distributed System Security (NDSS)
(2006) (Referenced on pages 26 and 27.)

[177] Shi, E., Perrig, A., van Doorn, L.: BIND: A time-of-use attestation service
for secure distributed systems. In: Proceedings of the IEEE Symposium on
Security and Privacy (2005) (Referenced on pages 30 and 55.)

[178] Shubina, A., Bratus, S., Ingersol, W., Smith, S.W.: The diversity of TPMs
and its effects on development: A case study of integrating the TPM into
OpenSolaris. In: Proceedings of the ACM Workshop on Scalable Trusted
Computing (STC) (2010) (Referenced on page 51.)

[179] Singaravelu, L., Pu, C., Haertig, H., Helmuth, C.: Reducing TCB complex-
ity for security-sensitive applications: Three case studies. In: Proceedings
of the ACM European Conference in Computer Systems (EuroSys) (2006)
(Referenced on page 27.)

[180] Smith, S., Austel, V.: Trusting trusted hardware: Towards a formal model for
programmable secure coprocessors. In: Proceedings of the USENIX Work-
shop on Electronic Commerce (1998) (Referenced on page 51.)

[181] Smith, S.W.: WebALPS: Using trusted co-servers to enhance privacy and se-
curity of web transactions. IBM Research Report RC-21851 (2000) (Refer-
enced on page 55.)

[182] Smith, S.W.: Outbound authentication for programmable secure coproces-
sors. Journal of Information Security 3 (2004) (Referenced on pages 4, 19,
20, and 51.)

[183] Smith, S.W.: Trusted Computing Platforms: Design and Applications.
Springer (2005) (Referenced on page 75.)

[184] Smith, S.W., Perez, R., Weingart, S.H., Austel, V.: Validating a high-
performance, programmable secure coprocessor. In: Proceedings of the Na-
tional Information Systems Security Conference (1999) (Referenced on
pages 4, 14, 35, and 51.)

[185] Smith, S.W., Weingart, S.: Building a high-performance, programmable se-
cure coprocessor. Computer Networks 31(8) (1999) (Referenced on pages 4,
14, 35, and 41.)

[186] Sophos: Best Buy digital photo frames ship with computer virus.
http://www.sophos.com/pressoffice/news/articles/
2008/01/photo-frame.html (2008) (Referenced on page 47.)

[187] Soriente, C., Tsudik, G., Uzun, E.: HAPADEP: Human-assisted pure audio
device pairing. In: Proceedings of the International Information Security
Conference (ISC) (2008) (Referenced on page 71.)

Permission granted by the authors to review this work; do not distribute.

References 93

[188] Soriente, C., Tsudik, G., Uzun, E.: Secure pairing of interface constrained
devices. International Journal on Security and Networks 4(1) (2009) (Refer-
enced on page 71.)

[189] Sparks, E.R.: A security assessment of trusted platform modules. Tech. Rep.
TR2007-597, Dartmouth College (2007) (Referenced on page 21.)

[190] Spinellis, D.: Reflection as a mechanism for software integrity verification.
ACM Transactions on Information and System Security 3(1) (2000) (Refer-
enced on pages 39 and 40.)

[191] Srivastava, A., Giffin, J.: Efficient monitoring of untrusted kernel-mode exe-
cution. In: Proceedings of the ISOC Symposium on Network and Distributed
System Security (NDSS) (2011) (Referenced on page 32.)

[192] St. Clair, L., Schiffman, J., T., J., P, M.: Establishing and sustaining system
integrity via root of trust installation. In: Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC) (2007) (Referenced on
page 27.)

[193] Stajano, F., Anderson, R.: The resurrecting duckling: Security issues for ad-
hoc wireless networks. In: Proceedings of the Security Protocols Workshop
(1999) (Referenced on page 71.)

[194] STC ’06: Proceedings of the ACM Workshop on Scalable Trusted Comput-
ing. ACM, New York, NY, USA (2006). 459065 (Referenced on page 76.)

[195] STC ’07: Proceedings of the ACM Workshop on Scalable Trusted Comput-
ing. ACM, New York, NY, USA (2007). 537073 (Referenced on page 76.)

[196] STC ’08: Proceedings of the ACM Workshop on Scalable Trusted Comput-
ing. ACM, New York, NY, USA (2008). 537081 (Referenced on page 76.)

[197] STC ’09: Proceedings of the ACM Workshop on Scalable Trusted Comput-
ing. ACM, New York, NY, USA (2009). 459095 (Referenced on page 76.)

[198] STC ’10: Proceedings of the ACM Workshop on Scalable Trusted Comput-
ing. ACM, New York, NY, USA (2010). 459105 (Referenced on page 76.)

[199] Strasser, M., Stamer, H., Molina, J.: Software-based TPM emulator. Source
code: http://tpm-emulator.berlios.de/ (Referenced on page
59.)

[200] Stumpf, F., Tafreschi, O., Röder, P., Eckert, C.: A robust integrity reporting
protocol for remote attestation. In: Proceedings of the Workshop on Ad-
vances in Trusted Computing (WATC) (2006) (Referenced on page 65.)

[201] Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: AEGIS: Archi-
tecture for tamper-evident and tamper-resistant processing. In: Proceedings
of the International Conference on Supercomputing (2003) (Referenced on
pages 13 and 36.)

[202] Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: Making trust between
applications and operating systems configurable. In: Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI) (2006) (Referenced on page 27.)

[203] Tarnovsky, C.: Security failures in secure devices. In: Black Hat DC Presen-
tation (2008) (Referenced on page 74.)

Permission granted by the authors to review this work; do not distribute.

94 References

[204] Tip, F.: A survey of program slicing techniques. Journal of Programming
Languages 3(3), 121–189 (1995) (Referenced on page 31.)

[205] Toegl, R., Winkler, T., Steurer, M.E., Pirker, M., Pointner, C., Holzmann,
T., Gissing, M., Sabongui, J.: IAIK jTSS - TCG software stack for the Java
platform. Source code v0.6 http://trustedjava.sourceforge.
net/ (Referenced on page 59.)

[206] TrouSerS: The open-source TCG software stack. Source code: http://
trousers.sourceforge.net/ (Referenced on page 59.)

[207] Trusted Computing - Challenges and Applications, Lecture Notes in Com-
puter Science, vol. 4968. Springer-Verlag, Berlin Germany (2008) (Refer-
enced on page 76.)

[208] Trusted Computing, Lecture Notes in Computer Science, vol. 5471. Springer-
Verlag, Berlin Germany (2009) (Referenced on page 76.)

[209] Trust and Trustworthy Computing, Lecture Notes in Computer Science, vol.
6101. Springer-Verlag, Berlin Germany (2010) (Referenced on page 76.)

[210] Trust and Trustworthy Computing, Lecture Notes in Computer Science, vol.
6740. Springer-Verlag, Berlin Germany (2011) (Referenced on page 76.)

[211] Trusted Computing Group: TCG mobile trusted module specification. Ver-
sion 1.0, Revision 7.02 (2010) (Referenced on page 37.)

[212] Trusted Computing Group: PC client specific TPM interface specification
(TIS). Version 1.21, Revision 1.00 (2011) (Referenced on page 31.)

[213] Trusted Computing Group: Trusted Platform Module Main Specification.
Version 1.2, Revision 116 (2011) (Referenced on pages 4, 8, 15, 19, 20,
22, 23, 41, 66, and 67.)

[214] Türpe, S., Poller, A., Steffan, J., Stotz, J.P., Trukenmüller, J.: Attacking the
BitLocker boot process. In: Proceedings of the International Conference on
Trusted Computing (2009) (Referenced on page 53.)

[215] Vasudevan, A., Parno, B., Qu, N., Gligor, V.D., Perrig, A.: Lockdown: A safe
and practical environment for security applications. Tech. Rep. CMU-CyLab-
09-011, Carnegie Mellon University, Cylab (2009) (Referenced on pages 41,
42, and 70.)

[216] Vaudenay, S.: Secure communications over insecure channels based on short
authenticated strings. In: Proceedings of CRYPTO (2005) (Referenced on
page 71.)

[217] Vejda, T., Toegl, R., Pirker, M., Winkler, T.: Towards trust services for
language-based virtual machines for grid computing. In: Proceedings of the
International Conference on Trusted Computing (2008) (Referenced on page
10.)

[218] Wallace, C.: Worldwide PC market to double by 2010. Forrester Research,
Inc. Press Release (2004) (Referenced on page 1.)

[219] Wave Systems Corp: Trusted Computing: An already deployed, cost ef-
fective, ISO standard, highly secure solution for improving Cyberse-
curity. http://www.nist.gov/itl/upload/Wave-Systems_
Cybersecurity-NOI-Comments_9-13-10.pdf (2010) (Refer-
enced on page 1.)

Permission granted by the authors to review this work; do not distribute.

References 95

[220] Weigold, T., Kramp, T., Hermann, R., Höring, F., Buhler, P., Baentsch, M.:
The Zurich trusted information channel: An efficient defence against man-in-
the-middle and malicious software attacks. In: Proceedings of the Interna-
tional Conference on Trusted Computing (2008) (Referenced on page 69.)

[221] Weingart, S.: Physical security for the µABYSS system. In: Proceedings of
the IEEE Symposium on Security and Privacy (1987) (Referenced on page
36.)

[222] Weiser, M.: Program slicing. IEEE Transactions on Software Engineering
10(4), 352–357 (1984) (Referenced on page 31.)

[223] White, S., Weingart, S., Arnold, W., Palmer, E.: Introduction to the Citadel
architecture: Security in physically exposed environments. Tech. Rep.
RC16672, IBM T. J. Watson Research Center (1991) (Referenced on page
36.)

[224] Winter, J.: Trusted computing building blocks for embedded Linux-based
ARM Trustzone platforms. In: Proceedings of the ACM Workshop on Scal-
able Trusted Computing (STC) (2008) (Referenced on page 38.)

[225] Wurster, G., van Oorschot, P., Somayaji, A.: A generic attack on
checksumming-based software tamper resistance. In: Proceedings of the
IEEE Symposium on Security and Privacy (2005) (Referenced on page 40.)

[226] Yee, B.S.: Using secure coprocessors. Ph.D. thesis, Carnegie Mellon Univer-
sity (1994) (Referenced on page 36.)

[227] Zhuang, X., Zhang, T., Lee, H., Pande, S.: Hardware assisted control flow
obfuscation for embedded processors. In: Proceedings of the Conference on
Compilers, Architecture and Synthesis for Embedded Systems (2004) (Ref-
erenced on page 38.)

Permission granted by the authors to review this work; do not distribute.

Permission granted by the authors to review this work; do not distribute.

Index

Symbols

.NET 10, 33, 53

A

Access control 72
For storage 14

Accountable VMM 40
ACM Scalable Trusted Computing Workshop

76
ACMod see Authenticated Code Module
Active Management Technology 27, 56
AEGIS 13, 36, 69
AES instructions 2
AIK see Attestation Identity Keypair
AMD 2, 28, 29, 60, 68
AMT see Active Management Technology
Anonymity 23, 57
Append-only log 6, 8, 39
Attestation 19, 22, 26, 28, 29, 32, 41, 43, 52,

62, 63, 66, 75
Coprocessor-based 20
Human-verifiable 64, 71
Load-time vs. run-time 73
Principles of 21
Property-based 32, 33
Protocol 20
Scaling 55
Semantic 10, 25, 33
Software-based 39, 47, 71

Attacks on 40
To network elements 55, 56
TPM-based 20

Attestation Identity Keypair 20, 23, 24
Auctions 55
Audit-based solutions 40
Authenticated Code Module 30, 31
Authorized software 13

B

Barcodes 49
Battery-backed RAM 14, 36
BBRAM see Battery-backed RAM
BGP 55
BIND 30, 55
Binding data 16
BIOS 4, 9, 18, 27, 28, 50, 51
BitLocker 15, 53
Boot process 6, 7, 9, 15, 18
Bumpy 69
Byzantine-Fault-Tolerant protocols 39

C

Cellphone 1, 41, 42, 49, 50, 54, 57, 72
Cerium 36
Certificate Authority 55
Certificate chain 7, 20
CFI 10
Chain of trust 4, 9, 28, 30
Citadel 36
Clark-Wilson integrity model 26, 27
CLR see Common Language Runtime
Code constraints 32
Code identity 3, 10

For access control 13, 14
Use with full disk encryption 15

Common Language Runtime 53
Conference on Trust and Trustworthy

Computing 76
Conformance credential 19
Contractual anonymity 56
Control flow integrity 9, 11
Core Root of Trust for Measurement 27, 37,

75
CP/Q++ OS 14
CRTM see Core Root of Trust for

Measurement

97

Permission granted by the authors to review this work; do not distribute.

98 Index

Cuckoo attack 41, 43
Formal model 45
Potential solutions to 45–50

D

DAA see Direct Anonymous Attestation
Debugging access 29
DEV see Device Exclusion Vector
Device Exclusion Vector 29
Dictionary attack 51
Digital Rights Management 1, 73, 76
Direct Anonymous Attestation 23, 33, 63,

67, 76
Optimizations of 24
Weaknesses of 24

Direct Memory Access 29
Direct Memory Access protection 29
Distance bounding 46, 72
DMA see Direct Memory Access
DRM see Digital Rights Management
DRTM see Dynamic Root of Trust for

Measurement
Dyad 36
Dynamic Platform Configuration Registers

29
Dynamic properties 9, 10

Enforcement-based 10, 25
Transform-based 10, 32

Dynamic Root of Trust for Measurement 9,
26, 28–30, 39, 41, 48, 51, 60, 76

E

EK see Endorsement Keypair
Endorsement credential 19, 42, 43, 46
Endorsement Keypair 23
Enforcer 26
Ephemeral session key 21
Execution handoff 6

One-way 6
Temporary 6

Export controls 16
Extend 8, 9, 29, 30

F

Flicker 30, 38, 55, 60
Formal methods 51
FPGA 39, 74
Full disk encryption 14, 15, 53

G

General-Purpose Input/Output 69

GETSEC 29
GETSEC[SENTER] 28, 29, 31, 60
GPIO see General-Purpose Input/Output
Group signature 23, 56
Grub 59, 60

H

Handoff attack 6, 7, 26
Hardware attacks 73
Hardware configuration 3
Hardware obfuscation 38
Hardware ratcheting lock 14
Hash 3, 8
Hash chain 7, 8, 22
Hosted virtual networks 55
Human factors 61
HyperSentry 27, 28
Hypervisor 27, 28, 30–32, 51

I

IBM 4758 4, 14, 19, 20, 35, 41, 55, 75
IBM 4764/PCIXCC 35
IMA see Integrity Measurement Architec-

ture
Infineon 36
Information overload 25
Information-flow control 11
Inline reference monitor 10, 32
Integrity

Clark-Wilson model 26, 27
For data centers 27
For data structures 9
For measurement lists 6

Integrity Measurement Architecture 8, 21,
22, 26, 59, 60

Intel 2, 27–31, 51, 60, 68, 76
Intel vPro Technology 27
Intelligent Platform Management Interface

27
Interrupts 29
Introspection 27
iPhone 54
IPMI see Intelligent Platform Management

Interface
Isolation

Via DRTM 28
Via privilege layering 25
Via System-Management Mode 27
Via virtualization 26

Issuer 24
iTurtle 61, 64, 67–69

Permission granted by the authors to review this work; do not distribute.

Index 99

J

Java 10, 33, 59
jTpmTools 59
jTSS 59

K

Kerberos 55
Key hierarchy 15
Kiosks 42, 49, 74
Knoppix for Trusted Computing Geeks 60

L

LaGrande Technology 28
Language-based trust services 10
Late launch see Dynamic Root of Trust for

Measurement
Limitations 73
Linux 8, 59, 60
LiveCDs 60
Locality 30
Location-limited channel 71
Lockdown project 70
Logic of Secure Systems 52
Low-Pin Count 74
LPC see Low-Pin Count
LS2 see Logic of Secure Systems

M

M-Shield 38
MAC see Mandatory Access Control
Malware 28
Mandatory Access Control 26, 27
Measured Launched Environment 30
Measurement 3, 19, 26, 29, 30, 37

Agent 28
Collection 4
Conveying 19
How to secure 6, 7
Hypervisor integrity 28
List of 5, 7, 8, 13, 14, 21, 66
Local use 13
TPM-based example 8
Who performs 4

Memoir 17, 60
Memory persistence 74
Memory Protection Table 30
µABYSS 36
MLE see Measured Launched Environment
MLTM see Mobile Local Owner Trusted

Module

Mobile Local Owner Trusted Module 37
Mobile Remote Owner Trusted Module 37,

38
Mobile Trusted Module 37, 38
Mobilephone see Cellphone
Monotonic counter 17, 56
MPT see Memory Protection Table
MRTM see Mobile Remote Owner Trusted

Module
MTM see Mobile Trusted Module

N

Network access control 54
Next-Generation Secure Computing Base

26, 76
NGSCB see Next-Generation Secure

Computing Base
Nizza 27
Non-control data attacks 10
Nonvolatile RAM 16, 37, 69

Limitations of 17
Not-A-Bot 56
NVRAM see Nonvolatile RAM

O

OAEP 15
Object Independent Authorization Protocol

51
OIAP see Object Independent Authorization

Protocol
Open Platform Trust Services 60
Open Secure LOader 30, 60
Open Trusted Computing 60
Open-source tools 59
OpenPTS see Open Platform Trust Services
OpenSolaris 51, 59
OpenSSH 31
Option ROM 28
OSLO see Open Secure LOader
Outbound authentication 19, 75
Overshadow 27

P

Pairing two devices 71
Passwords 14
PCR see Platform Configuration Register
Peer-to-peer networks 76
Physical tampering 21
Physical Unclonable Function 39, 74
Platform Configuration Register 8, 14, 15,

21, 22, 27, 29, 30, 42

Permission granted by the authors to review this work; do not distribute.

100 Index

Dynamic 29
Platform credential 19
Platform state 14

Recording 3
Understanding 25

Predicate logic 41
PRIMA 26
PRISM 71
Privacy 20–23, 33, 61, 63
Privacy CA 23, 63, 67

Experimental deployments 23
Privilege layering 25
Privilege separation 31
Privilege-escalation attack 6, 7, 25, 26
PrivTrans 31
Program slicing 31
Property-based attestation see Attestation
Provenance 55
Proxos 27
Pseudonym 23, 24
Public Key Infrastructure 19, 32
PUF see Physical Unclonable Function
PXE boot 28

Q

Quote 21

R

Reboot attack 21
RECAP 56
Red-green system 70
ReDAS 10
Replay attacks 17
Reset attack see Reboot attack
Resurrecting Duckling protocol 71
Rollback resistance 17
Root of trust 4, 19, 35, 37

General-purpose 37
Hardware-based 4
Software-based 39
Special-purpose 38
Tamper-resistant 35

Root of Trust Installation 27
ROTI see Root of Trust Installation
RSA 15, 16

S

sAEGIS 69
Safer Mode Extensions 29
Sealed storage 14, 15, 18, 30

TPM-based Example 18

Secret Protected 36, 51, 55
Secure boot 5, 13, 19, 26, 28, 38, 54, 69
Secure channel 21, 22, 28, 49
Secure Elements 38
Secure Loader Block 29
Secure Virtual Machine 28, 29, 68
Security kernel 25, 29, 32
Security-relevant code 25
Seeing-is-Believing 49, 71
SELinux 26, 56
Semantic attestation see Attestation
sHype 27
SiB see Seeing-is-Believing
Side-channel attacks 2
SIM card 36, 38
SKINIT 28, 29, 31, 60
SLB see Secure Loader Block
SLE88 chip 36
Smart card 36, 38
SMI see System-Management Interrupt
SMM see System-Management Mode
SMX see Safer Mode Extensions
Software engineering 25
Software-based attestation see Attestation
SP see Secret Protected
Spork 55
SSH 55
SSL 22, 55
Storage root keypair 15
SVM see Secure Virtual Machine
Symbian Signed 54
Symbolic model checking 51
System-Management Interrupt 27
System-Management Mode 27

T

Talking to Strangers 71
Tamper-responding 14, 35, 54
TCB see Trusted Computing Base
TCG Software Stack 75, 76
TCPA see Trusted Computing Platform

Alliance
Terra 5, 27, 32
Time-Of-Check to Time-Of-Use 21
TNC see Trusted Network Connect
TOCTOU see Time-Of-Check to Time-Of-

Use
TPM see Trusted Platform Module
Transitive trust 55
TrouSerS 59, 60
Trusted boot 4, 5, 8, 19, 26, 28, 60
Trusted Computing 1
Trusted Computing Base 27, 56

Permission granted by the authors to review this work; do not distribute.

Index 101

Trusted Computing Group 23, 75
Trusted Computing Platform Alliance 75
Trusted eXecution Technology 28, 29, 31,

60, 68
Trusted Network Connect 54
Trusted path 35, 36, 61, 69, 74
Trusted platform 74, 75
Trusted Platform Module 1, 8, 14, 19, 20,

22–24, 26, 28, 29, 31, 37, 38, 41–43, 51,
53–56, 60, 69, 73, 75, 76

Driver support 59, 76
Emulators 59

Trusted sensors 57
Trusted third party 55
Trusted Virtual Domain 5
Trusted Virtual Environment Module 5
TrustVisor 30
TrustZone 38
TruWallet 57
TSS see TCG Software Stack
TVD see Trusted Virtual Domain
TVEM see Trusted Virtual Environment

Module
TXT see Trusted eXecution Technology
Type checking 32

U

User identity 3, 62

V

Validation 51
Verification

Failure and recovery 67

Verifier 19, 20, 27, 28
Virtual appliances 27
Virtual Machine 5, 26, 27
Virtual Machine Monitor 5, 26, 28, 30, 51
virtual Trusted Platform Module 5
Virtual-machine introspection 10
Virtualization 26, 51
Virtualization Technology for Directed I/O

29, 62
VM see Virtual Machine
VMM see Virtual Machine Monitor
Voting machine 54, 74
vPro see Intel vPro Technology
VT-d see Virtualization Technology for

Directed I/O
VT-x 29
vTPM see virtual Trusted Platform Module

W

WebALPS 55
Windows 53, 59, 60

X

Xen 59, 60
XFI 10
XOM 36

Z

Zero-knowledge proof 24
ZTIC see Zurich Trusted Information

Channel
Zurich Trusted Information Channel 69

Permission granted by the authors to review this work; do not distribute.

