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Abstract—Many markets exhibit price dispersion across suppliers of obser-
vationally identical goods. Statistical agencies typically assume this disper-
sion reflects unobserved quality, so standard price indexes do not incorporate
price declines when buyers substitute toward lower-price suppliers. We
show that long-run price differences across suppliers can be used to infer
unobserved quality differences and propose an index that accommodates
quality-adjusted price dispersion. Using transaction-level data on contract
semiconductor manufacturing, we document substantial quality-adjusted
price dispersion and confirm that a standard index is biased above our
proposed index.

I. Introduction

ACCURATE measures of market prices are important in
all branches of applied economic analysis. One of the

most persistent challenges in the practice of price measure-
ment is accounting for differences in product quality. Such
differences may involve products’ characteristics, as well
as aspects of the overall transaction, such as customer ser-
vice or timely delivery (Carlton, 1983). Price indexes seek
to measure average price growth, controlling for differences
in product quality across goods and over time. This is quite
challenging in practice because of difficulties in observing
detailed physical product attributes and other less tangible
characteristics of transactions.

While these challenges have been known for decades, they
have recently taken on particular significance in markets
for intermediate inputs.1 Such markets are characterized by
increased internationalization of production chains and shifts
toward relatively low-price suppliers in developing countries
such as China (Hummels, Ishii, & Yi, 2001). Moreover, an
increasing number of “factoryless manufacturers” outsource
product fabrication activities altogether (Bayard, Byrne, &
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1 It has long been recognized that price differences reflect both quality
variation and quality-adjusted price dispersion. The 1961 Price Statistics
Review Committee, chaired by George Stigler, described the measurement
of quality variation as the most significant challenge in index construction
(National Bureau of Economic Research Incorporated, 1961).

Smith, 2015; Bernard & Fort, 2013). These developments
have led to greater substitution across suppliers of interme-
diate inputs, both domestic and international. In this context,
failure to accurately estimate differences in quality across
suppliers will lead to biased import quantity and productivity
measures.

In this paper, we study the problem of price index con-
struction when new suppliers and incumbents may charge
different prices for goods of identical quality. Standard price
indexes, known as matched-model indexes, typically assume
that the law of one price holds, which rules out the possi-
bility of price dispersion for identical goods. In doing so,
they omit price declines when buyers shift toward suppliers
offering discounts, and hence are biased upward. We propose
a simple means to infer differences in unobserved quality
based on long-run price differences across suppliers. Early
in a product’s life cycle, market frictions can impede arbi-
trage across incumbents and new suppliers, generating price
dispersion for goods of similar quality. Yet the influence of
these frictions tends to dissipate over time, so that in the long
run, several years after entry, price differences largely reflect
quality differences. We use this insight to infer unobserved
quality and thereby construct a novel price index that both
accounts for quality differences across suppliers and allows
for deviations from the law of one price.

We apply our method to the contract semiconductor man-
ufacturing industry, using new transaction-level data that
include information on prices and all relevant physical char-
acteristics of each product. These data allow us to compare
prices for technically identical products across suppliers
located in different countries. We find large price differences
across suppliers; for example, Chinese producers charged
17% less on average than firms in market leader Taiwan for
otherwise identical products. Moreover, the price differences
are especially large early in each product’s life cycle but par-
tially converge later on, consistent with a setting in which
frictions bind less over time. Together, these patterns sug-
gest the presence of cross-supplier price variation that would
confound matched-model price indexes. In fact, a standard
matched-model index falls almost 1 percentage point per
year more slowly than our proposed quality-adjusted index.
This substantial upward bias in the standard approach is large
enough to meaningfully bias productivity measures and other
government statistics.

Although our empirical setting focuses on substitution
between suppliers of imported intermediates, the proposed
index applies broadly to environments involving the entry
of low-price sellers. Thus, our approach also applies to
the domestic retail context, where outlet substitution bias
resulting from omitting new entrants is a long-standing
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concern.2 Our proposed index is quite feasible for mea-
surement agencies to implement, as it uses only price and
quantity information, which can be collected using existing
surveys.

Our empirical findings contribute to a growing liter-
ature investigating the measurement implications of the
globalization of supply chains, showing that shifts to low-
priced offshore suppliers drive systematic bias in standard
import price measures.3 Our quality inference procedure also
provides an alternative to a common approach in the inter-
national trade literature, which infers relative quality across
suppliers from differences in market share conditional on
price.4 While this approach is suitable for measuring long-
run trends in quality or differences in quality for aggregate
industries across countries, one should be cautious when
studying short time spans or narrowly defined product mar-
kets. In a setting where market frictions slow the rate of
arbitrage across suppliers, new entrants may have low mar-
ket shares even when offering the same price and quality
as an incumbent supplier. In this setting, the share-based
approach systematically understates the relative quality of
entering suppliers. We empirically confirm this point in the
semiconductor market.

The paper proceeds as follows. Section II introduces the
measurement problem and proposes a price index using long-
run price differences to infer quality differences. Section III
provides background on the contract semiconductor man-
ufacturing industry, which differs in important ways from
the more commonly studied memory and processor markets.
Section IV investigates price differences and price dynamics
between suppliers, finding strong evidence for price differ-
ences across suppliers of identical quality goods. In section
V, we calculate a standard matched model index and show
that it is biased upward in comparison to our proposed index.
Section VI concludes.

II. Measurement Framework

The U.S. Bureau of Labor Statistics (BLS) and most
other government statistical agencies use a matched-model
approach to price index construction (Bureau of Labor Sta-
tistics, 1997; Triplett, 2006). This approach defines a set
of products and collects their prices in two time periods,

2 See, for example, Reinsdorf (1993), the Boskin Commission Report
(Boskin, Dulberger, & Gordon, 1998), Greenlees and McClelland (2011),
and Hausman and Leibtag (2009).

3 Houseman et al. (2011) argue that substitution toward offshore suppliers
in developing countries substantially biased measures of productivity and
real value-added growth in the United States. Feenstra et al. (2013) study
three issues that bias the import price index upward: using a nonsuperlative
index number formula, omitting the effect of tariffs on purchase prices, and
omitting the effects of increased variety. Houseman and Ryder (2010) pro-
vide a summary of other papers discussing measurement problems arising
from globalization.

4 Prominent examples include Feenstra and Romalis (2014), Hallak and
Schott (2011), Hottman, Redding, and Weinstein (2016), Hummels and
Klenow (2005), Khandelwal (2010), Khandelwal, Schott, and Wei (2013),
and Kugler and Verhoogen (2011).

t and t − 1.5 For each product j, the analyst measures the
price relative, pj,t/pj,t−1. These price relatives are then aver-
aged across products using an index number formula such as
a Laspeyres index, which weights products’ price relatives
using initial-period expenditure shares. The use of price rel-
atives is intended to control for differences in unobserved
quality across products. Assume that an observed unit of
product j reflects ξj quality-adjusted units, so that the price
of a quality-adjusted unit is Pj,t = pj,t/ξj. As long as prod-
ucts are sufficiently narrowly defined such that ξj is constant
across periods, then pj,t/pj,t−1 = Pj,t/Pj,t−1. The observed
price relative equals the quality-adjusted price relative. The
average of observed price relatives is then the average growth
in quality-adjusted prices.

However, matched-model indexes do not easily accom-
modate new products, since one cannot calculate a price
relative in the period of entry. While there are a variety of
ways to address the introduction of new products, the most
common approach is to simply omit them from the index in
the period of entry (Triplett, 2006). This choice is justified
when the law of one price holds for quality-adjusted units,
meaning that Pj,t = Pk,t ∀j, k. In this case, including or omit-
ting a newly entering product from the index has no effect
on the average quality-adjusted price; any set of continuing
products will provide an accurate measure of average price
growth.

The index construction problem becomes more difficult
when the law of one price does not hold. For example,
imagine that newly entering products typically have lower
quality-adjusted prices than continuing products, so that buy-
ers shift toward the entrants. In this case, average price
growth for continuing products will overstate overall price
growth. More generally, when new entrants exhibit sys-
tematic quality-adjusted price differences from continuing
varieties, omitting new entrants from the matched-model
index leads to systematic upward bias.6

This potential problem with matched-model indexes is
well known to the BLS and other measurement agencies.
It is referred to as new product bias in the case of fundamen-
tally new goods, and new outlet bias or outlet substitution
bias when new suppliers of existing goods enter the market.7
The BLS attempts to mitigate these biases using hedonic
regressions or subjective quality estimates provided by sur-
vey respondents, but these adjustments are implemented for

5 A “product” can be interpreted broadly as a bundle including a physical
item, its supplier, and/or its buyer. We will specify the relevant product
dimensions in our application.

6 Appendix B.1.1 formalizes this statement using the measurement
framework we introduce in the paper.

7 The landmark Boskin Commission Report (Boskin et al., 1998)
addressed both new product and new outlet bias in the U.S. Consumer Price
Index (CPI). BLS economists Greenlees and McClelland (2011) empiri-
cally examine outlet substitution bias in the CPI and cite BLS studies on
the topic as early as 1964. Former BLS assistant commissioner of interna-
tional prices William Alterman (2015) recently proposed the creation of a
new Input Price Index program to address outlet substitution bias in the BLS
Producer Price Index (PPI) and Import Price Index (MPI) due to offshoring.
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very few products.8 In the overwhelming majority of cases,
new products and new suppliers are simply omitted from the
index when they first appear.

In this paper, we focus on new outlet bias and propose an
alternative strategy for incorporating entering suppliers that
allows for quality-adjusted price variation. We examine a
framework that exhibits the law of one price as a special case
by assuming that different firms supply the same physical
good, and thus quality-adjusted units are perfect substitutes.
The representative buyer combines output, yj,t , from each
supplier, j, using a linear aggregator over quality-adjusted
units,

Yt =
∑
j∈Jt

ξjyj,t , (1)

where Jt is the set of available products. Balk (1998) shows
that with a perfect substitutes aggregator like equation (1),
the exact price index measures the growth in quality-adjusted
unit value:

It ≡
∑

j∈Jt
pj,tyj,t

/ ∑
j∈Jt

ξjyj,t

∑
j∈Jt−1

pj,t−1yj,t−1

/ ∑
j∈Jt−1

ξjyj,t−1

. (2)

Because goods are perfect substitutes, cost minimization
implies that the law of one price holds—that pj,t/ξj = Pt ∀j.9
Substituting this into equation (2) yields It = Pt/Pt−1 =
pj,t/pj,t−1 ∀j ∈ (Jt ∩ Jt−1); average quality-adjusted price
growth equals price growth for each continuing product
under the law of one quality-adjusted price. The matched-
model index remains accurate even when dropping new
entrants.

Now consider a more general setting in which product
market frictions impede buyers from freely adjusting their
mix of suppliers. These impediments might include search
costs (Sorensen, 2000), slow diffusion of information about
new suppliers (Foster, Haltiwanger, & Syverson, 2015; Perla,
2016), relationship-specific investments between buyers and
suppliers (Tirole, 1988; Klemperer, 1995), investments in
systems of compatible components (Greenstein, 1995), and
others.10 We capture these frictions by assuming the buyer
faces a constraint on the rate at which it can alter its mix of
suppliers,

∑
j

A
(
σj,t , σj,t−1

) ≤ k for k > 0, (3)

8 For the CPI, the BLS uses hedonic quality adjustments for certain prod-
ucts in apparel and electronics and for textbooks and rental units. The PPI
and MPI use hedonic adjustment for computers. Subjective adjustments
are common for computers and vehicles but rare otherwise; less than 2%
of observations in the MPI are quality-adjusted in this manner. See online
appendix A.1 for details, including a discussion of the particular sources of
new outlet bias in import price measurement.

9 The law of one price may still hold when buyers have an explicit taste
for diversity. Online appendix B.2 provides an example.

10 Such frictions appear to apply quite broadly. Monarch (2016) finds
that 45% of U.S. arm’s-length importers maintain their primary Chinese
supplier across years, inferring the presence of substantial costs of switching
international suppliers.

where σj,t ≡ ξjyj,t/Yt is supplier j’s share of quality-adjusted
purchases, k represents the buyer’s capacity to adjust its sup-
plier mix in any one period, and A

(
σj,t , σj,t−1

)
> 0 measures

the amount of this capacity that is exhausted by adjusting the
share of purchases from a single supplier from σj,t−1 to σj,t .
Assume that A (·) is a smooth, convex function of both argu-
ments.11 Equation (3) parsimoniously captures the ideas that
frictions slow the reallocation of market shares and that they
relax as a product market matures. Early in a product’s life
cycle, buyers may be unaware of new suppliers or may be
locked in by specific investments with the founding suppliers
in the market. These frictions initially impede the reallo-
cation of market share, since equation (3) binds. But over
time, information diffuses, specific investments depreciate,
and new buyers enter the market without existing supplier
commitments. When the market reaches a point where large
reallocations of market shares are no longer sought, equation
(3) no longer binds.12

Frictions make the problem dynamic, so the buyer solves

min{yj,t}
∑

t

δt
∑

j

pj,tyj,t , δ ∈ (0, 1) , (4)

subject to equations (1) and (3). Using the definition of σj,t ,
the first-order conditions are

pj,t

ξj
+ λtA1

(
σj,t , σj,t−1

) + δλt+1A2
(
σj,t+1, σj,t

) = μt ∀j,

(5)

where μt is the multiplier on equation (1) and λt is the multi-
plier on equation (3). If the set of suppliers has stabilized and
desired market share adjustments have largely been realized,
then equation (3) will not bind, and equation (4) collapses
to the static problem above. In this long-run setting, which
we refer to as t = T , equation (5) collapses to pj,T/ξj = μT ,
that is, quality-adjusted prices equalize. Now consider the
prior period, T − 1, in which the adjustment constraint still
binds. Since the constraint does not bind in T , λT = 0, and
equation (5) becomes

pj,T−1

ξj,T−1
+ λT−1A1

(
σj,T−1, σj,T−2

) = μT−1. (6)

In the second term, A1
(
σj,T−1, σj,T−2

)
reflects the marginal

cost of increased market share in terms of its depletion of
the buyer’s limited adjustment capacity. This term is positive
when σj,T−1 > σj,T−2, which implies that a supplier must
offer a lower quality-adjusted price to increase its market
share. This intuition applies more generally: new entrants

11 A few other natural restrictions on A are (a) A (σ, σ) = 0, (b)
A1 (σ, σ) = A2 (σ, σ) = 0, (c) A1 (σt , σt−1) > (<) 0 as σt > (<) σt−1; and
(d) A2 (σt , σt−1) < (>) 0 as σt > (<) σt−1.

12 In an earlier draft, we explicitly modeled a lump-sum cost of switching
suppliers (Byrne, Kovak, & Michaels, 2013). Though this cost endows sell-
ers with some market power that elevates prices across the board, we find
that the relative prices of suppliers largely reflect quality differences late in
the product life cycle, as the inflow of new buyers helps to equalize market
power for incumbent sellers and new suppliers.
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offer quality-adjusted discounts to accumulate market share,
but their relative prices rise over time until the law of one
quality-adjusted price is restored.13 This is the pattern we
will observe in the semiconductor market in section IV.

Our proposed measurement strategy takes advantage of
the fact that in the long run (period T ), the effects of fric-
tions dissipate, such that differences in observed prices fully
reflect quality differences. This makes it straightforward to
infer quality differences, since

pj,T/pk,T = ξj/ξk . (7)

We can therefore use the ratio of observed prices in the long
run, pj,T/pk,T , to correct for unobserved quality differences
in earlier periods. Substituting equation (7) into equation (2)
yields

Ît ≡
∑

j pj,tyj,t

/ ∑
j

pj,T
p1,T

yj,t

∑
j pj,t−1yj,t−1

/ ∑
j

pj,T
p1,T

yj,t−1

, (8)

where the baseline supplier (k = 1) can be any firm that
participates in both periods t − 1 and t. Unlike equation (2),
this index can be calculated using observable data. However,
it cannot be implemented in real time, since it uses long-run
price differences to infer earlier quality differences. We pro-
pose that price measurement agencies continue to produce
existing indexes, but later issue revised series that update ear-
lier estimates once the the set of suppliers and their market
shares has stabilized, and the long-run condition, equation
(7), holds. Section V discusses these implementation issues
in more detail.

Our proposed index accurately measures the exact index
in equation (2) when relative quality is constant over time,
because long-run price relatives reflect earlier quality dif-
ferences.14 In contrast, even with constant relative quality,
matched-model indexes are biased upward because they
omit price declines occurring when entrants offering low
quality-adjusted prices gain market share.15 We will argue
that constant relative quality is likely in the market we study,
and if products are sufficiently narrowly defined (e.g., with
barcode data), it will hold in many other markets as well.
However, in many contexts, the constant quality assumption
will be less plausible.16 In appendix B.1, we show that in
situations where an entrant’s quality catches up with that of
incumbents, under reasonable assumptions one can bound
the exact index between the standard matched-model index
(an upper bound) and our proposed index (a lower bound).

13 See appendix B.3 for a full characterization of equilibrium dynamics
when the reallocation of market shares is impeded by frictions.

14 Our index requires no assumptions about costs or markups, which do
not appear in equation (2) or equation (8).

15 See appendix B.1.1.
16 Bilir (2014) provides an example in which intellectual property rights

concerns wane as a product ages, so the difference in quality between sup-
pliers with strong versus weak intellectual property protections will decline
over time.

Thus, even with changing quality, our proposed index may
be used to bound the true price path.

III. Contract Semiconductor Manufacturing

We study these price measurement issues in the con-
text of the contract semiconductor manufacturing industry.17

Semiconductor fabrication involves creating networks of
transistors on the surface of a thin piece of semiconducting
material called a “wafer.” Transistors and the connections
between them are created by successively depositing and
etching away layers of conducting and insulating materials
on the wafer’s surface, with more complex designs requiring
more layers. The etching pattern for each layer is projected
onto the wafer through a “mask” containing the desired
pattern.

Semiconductor fabrication technology has advanced over
time in discrete steps, defined by wafer size and line width
(also called feature size). Larger wafers accommodate a
larger numbers of chips, reducing the cost per chip. Dur-
ing our sample period, producers made 150 mm, 200 mm,
or 300 mm diameter wafers. Line width is the size of the
smallest feature that can be fabricated reliably. Decreased
line width means that individual transistors are smaller, mak-
ing chips of a given functionality smaller, lighter, faster, and
more energy efficient. Smaller line widths are more difficult
to produce, initially resulting in lower yields, the fraction of
chips on a wafer that function correctly, when a new line
width is introduced. In our sample, line widths range from
45 nm to more than 500 nm. We refer to each combination
of wafer size and line width as a process technology (e.g.,
200 mm wafer, 180 nm line width).

A primary benefit of studying the contract semiconductor
manufacturing industry is that technological change pro-
ceeds discretely, with wafer sizes and line widths taking
on a small set of particular values. The number of layers
also determines the manufacturing complexity of a partic-
ular design. These discrete observable features allow us to
flexibly control for product characteristics when examining
prices.

We focus on transactions between semiconductor design
firms and contract semiconductor manufacturers called
foundries. These firms, operating principally in Asia, exclu-
sively produce chips designed by other firms. This vertically
disintegrated business model has grown substantially over
time as the costs of fabrication facilities have become pro-
hibitive for all but the largest semiconductor companies.
Importantly, using arm’s-length transactions avoids price
measurement difficulties potentially arising from transfer
pricing between related parties.

The foundry market differs in important ways from the
microprocessor and memory markets that have been the

17 See appendix C for additional detail on contract semiconductor manu-
facturing. Turley (2003) provides an accessible overview of semiconductor
technology, manufacturing, and business.
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focus of most prior economic studies of semiconductors.18

Foundries instead specialize in custom chips for specific
models of electronic devices such as cellular phones,
hard drives, automobiles, and digital cameras, with chips
produced in smaller batches and requiring substantial invest-
ment in design. They also use mature fabrication technolo-
gies that are one generation or more behind the leading-edge
processes used by processor and memory manufactur-
ers. Thus, the arrival of new process technologies in the
foundry market is largely determined by external forces, and
there is less scope for yield improvement in these mature
technologies.19

Contract semiconductor fabrication involves large costs
of switching suppliers, resulting from the custom aspect of
each product and substantial investments required to have a
particular foundry produce a particular design. For example,
a set of masks costs more than $1 million and cannot be
transferred across suppliers. This led one industry associa-
tion to state, “The time and cost associated with [switching]
tend to lock customers into a particular foundry.”20 Other
examples of start-up costs include the many chemical and
mechanical adjustments and calibrations to manufacturing
equipment that are implemented during the engineering
phase of production for a particular chip design. These
adjustments must be redone when moving to a new produc-
tion line, even within the same firm. An additional example
is negotiating a new supplier agreement, which requires a
vast amount of technical information to be exchanged and
can absorb much attention of senior management (Allan,
2002). Together these supplier-specific investments for each
design create frictions that impede buyers from switching an
existing design to a new supplier. As we showed in section
II, frictions of this nature tend to generate quality-adjusted
price dispersion that biases traditional matched-model price
indexes.

IV. Price Dispersion across Countries

Information on semiconductor wafer prices comes from a
proprietary database of purchases from foundries, collected
by the Global Semiconductor Alliance (GSA), a nonprofit
industry organization. The data set consists of 6,916 individ-
ual responses to the Wafer Fabrication & Back-End Pricing
Survey for 2004–2010, providing a representative sample of
transactions that accounts for about 20% of the semiconduc-
tor wafers produced by the foundry sector worldwide. The
data report the price paid, location (country) of the foundry,
and the line width, wafer size, and layers for each transac-
tion. This information allows us to examine average prices

18 Microprocessor and memory products account for a minimal share of
foundry output, according to the IHS iSuppli Pure Play Foundry Market
Tracker. Unfortunately, our data agreement prohibits us from citing a precise
figure for this share.

19 See appendix F for detailed analysis of yields.
20 This quotation is from the Common Platform Alliance, an industry

group advocating a common platform that would standardize aspects of
semiconductor production technology.

by foundry location, controlling for all relevant physical
characteristics.

Although this level of product detail is remarkable, the
GSA data have two important limitations. First, we only
observe the country in which the foundry is located and
cannot identify the producing firm. However, a single firm
accounts for the vast majority of output in each of the
three largest sources of contract semiconductor manufac-
turing services: Taiwan Semiconductor Manufacturing Cor-
portation (TSMC) in Taiwan, Semiconductor Manufacturing
International Corporation (SMIC) in China, and Chartered
Semiconductor in Singapore.21 As shown in table 1, these
countries account for about 80% of worldwide foundry out-
put. Thus, for the three largest supplying countries, country
identifiers closely approximate producing-firm identifiers.
The second main limitation is that we have no information
on buyers, so we are unable to control for any buyer-specific
information.22

Descriptive statistics for key variables in the GSA data-
base are shown in table 2.23 The rapid changes in semi-
conductor technology are immediately apparent: 300 mm
wafers’ market share rises from 3% to 20% over the sam-
ple period, while older technologies’ shares fall. Newer line
widths also generally increase in share over time: 65 nm
technology slowly gained share in the foundry market,
accounting for 8% by 2010, while older technologies, with
line widths larger than 250 nm, dwindle from 40% in 2004
to 33% in 2010. The number of metal and mask layers per
wafer also rose somewhat over time, reflecting a trend toward
more complex designs. These steady improvements in wafer
technology demonstrate the importance of controlling for
product characteristics when examining price differences
across suppliers and price changes over time.

In table 3, we use a hedonic regression framework to
investigate cross-country variation in wafer prices. First, we
regress the log wafer price on quarter indicators and indi-
cators for the location of production, with Taiwan as the
omitted category. In all specifications, we cluster standard
errors by quarter.24 Column 1 finds very large unconditional
price differences across suppliers, with wafers produced in
China costing 25.7% less than those produced in Taiwan
on average.25 These large unconditional price differences
can partly be explained by differences in product attributes.
Column 2 adds indicators for each wafer size and each

21 These statements are based on IHS iSuppli data, but our confidentiality
agreement prohibits us from quoting precise figures at the firm level. Note
also that although TSMC operated one small production facility in China
during our sample period, it accounted for a very small share of Chinese
output.

22 For more information on the data sources, sample, and cleaning, see
appendix D.

23 Observations are weighted by combining transaction-level quantities
from GSA and quarter × country × technology quantity information from
IHS iSuppli. See appendix D.2 for details.

24 Results without clustering the standard errors are presented in appen-
dix E.1. For the vast majority of coefficients in table 3, the clustered standard
errors are larger than those assuming independent errors.

25 exp(−0.297) − 1 = −0.257.
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Table 1.—Foundry Capacity by Country

Global Capacity

Foundry Total Industry Taiwan China Singapore Europe United States Japan South Korea Malaysia

2000 875 9,462 63.2% 7.1% 7.5% 6.8% 4.4% 7.8% 3.2% 0.0%
2001 972 8,286 60.5 8.9 8.4 6.3 4.2 7.1 2.9 1.7
2002 1,011 8,646 56.0 10.7 10.0 6.2 5.3 7.0 2.9 1.8
2003 1,150 9,018 51.1 15.5 10.1 6.5 5.1 6.4 3.2 2.2
2004 1,429 10,000 50.3 19.0 9.6 5.6 4.1 5.3 3.1 3.0
2005 1,739 11,073 48.5 23.2 9.2 4.9 3.6 4.5 3.0 3.1
2006 1,951 12,320 48.0 24.1 9.9 4.4 3.3 4.1 3.2 3.0
2007 2,157 13,588 48.9 23.4 10.0 4.6 3.1 3.7 3.5 3.0
2008 2,401 14,297 49.9 22.1 11.2 5.1 2.9 2.9 3.3 2.7
2009 2,546 14,058 49.2 22.0 10.9 6.5 2.8 2.7 3.5 2.5
2010 2,812 14,230 49.4 21.5 11.3 7.4 2.6 2.5 3.3 2.1
2011 3,177 14,923 50.2 21.8 10.7 7.9 2.4 2.3 3.0 1.8

Authors’ calculations from IHS iSuppli data. See appendix D.2 for more detail on this data source. Sample includes contract manufacturers (pure-play foundries) only. Capacity measured in thousand 8-inch equivalent
wafers per month.

Table 2.—Wafer Price Descriptive Statistics

Yearly Means

Mean SD 2004 2005 2006 2007 2008 2009 2010

Price per wafer ($) 1,204.22 949.28 1,321.01 1,293.51 1,298.54 1,189.68 1,120.34 1,080.39 1,126.09
Number of wafers contracted 11,865.00 22,302.74 8,344.61 14,912.17 10,544.97 16,767.34 9,260.24 9,692.42 13,533.24
Layers

Metal layers 4.60 1.77 4.22 4.56 4.85 4.76 4.62 4.56 4.64
Mask layers 25.72 7.31 23.69 24.52 26.37 26.74 25.86 26.27 26.58
Polysilicon layers 1.23 0.46 1.36 1.21 1.20 1.19 1.30 1.14 1.20

Wafer size
150 mm 0.16 0.37 0.18 0.17 0.15 0.10 0.17 0.16 0.17
200 mm 0.73 0.44 0.79 0.76 0.76 0.81 0.68 0.68 0.63
300 mm 0.11 0.32 0.03 0.07 0.09 0.09 0.15 0.16 0.20

Line width
45 nm 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.03
65 nm 0.03 0.16 0.00 0.00 0.00 0.01 0.04 0.07 0.08
90 nm 0.04 0.21 0.00 0.02 0.04 0.05 0.08 0.06 0.06
130 nm 0.15 0.36 0.12 0.16 0.18 0.17 0.14 0.14 0.15
150 nm 0.06 0.23 0.07 0.08 0.10 0.09 0.03 0.01 0.01
180 nm 0.26 0.44 0.25 0.23 0.24 0.28 0.26 0.31 0.26
250 nm 0.12 0.33 0.17 0.17 0.13 0.15 0.10 0.07 0.08
Older vintage 0.33 0.47 0.40 0.35 0.30 0.25 0.34 0.35 0.33

Authors’ calculations based on GSA Wafer Fabrication and Back-End Pricing Survey. Summary statistics based on sample of 6,253 transaction-level observations. Transactions weighted by combining technology-level
(wafer × line width) shipments information from IHS iSuppli and within-technology order size information from the GSA transaction data.

line width, layer controls, and the size of the transaction.26

The omitted category is for 200 mm wafers with 180 nm
line width, produced in Taiwan. The signs of all regression
coefficients are intuitive. More advanced production tech-
nologies, with larger wafers, smaller line widths, or more
layers, command higher prices. When controlling for this
exhaustive list of technological attributes, the estimated price
differences across suppliers change. For example, the mea-
sured China discount falls in magnitude from 25.7% to
17.0%, indicating that China produced more trailing-edge
products than Taiwan. Column 3 uses more flexible technol-
ogy controls, including indicators for each wafer size × line
width combination. The substantial price differences persist,
indicating that Chinese suppliers provide substantial average
discounts, even for technologically identical products.

26 Note that hedonic regression estimates reflect a joint envelope of
demand and supply functions (Rosen, 1974). Including an order size regres-
sor to control for nonlinear pricing is reasonable in this context, unlike when
trying to separately identify a demand or supply curve. That said, all results
are similar when omitting this control.

Even if physical product attributes are identical across
suppliers, there may still be unobserved differences in the
quality of the overall production service that explain the
price differences in table 3. For example, a supplier with
systematically lower yields would likely provide a discount
to compensate the customer for the fact that each wafer
represents fewer usable chips as compared to a supplier
with higher yields.27 Foundries may differ in the quality
of engineering support they provide customers to imple-
ment their designs in the foundry’s manufacturing process.
Other aspects of customer service, reliability, or brand
reputation may also differ across foundries in different
countries.

While hedonic methods are unable to account for these
potential sources of unobserved heterogeneity across suppli-
ers, the measurement strategy proposed in section II shows
how to use long-run prices to infer unobserved quality

27 Appendix F provides a detailed analysis of yields, finding that they are
very unlikely to account for the price differences across countries in table 3.
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Table 3.—Hedonic Wafer Price Regressions

Dependent Variable: Log of Price per Wafer

(1) (2) (3) (4)
No Attribute Controls Linear Attribute Controls Flexible Attribute Controls China and Taiwan Only

Variable Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Foundry location
China −0.297 (0.042)∗∗∗ −0.186 (0.027)∗∗∗ −0.188 (0.027)∗∗∗ −0.196 (0.028)∗∗∗
Malaysia −0.274 (0.065)∗∗∗ −0.278 (0.042)∗∗∗ −0.286 (0.041)∗∗∗
Singapore −0.046 (0.026)∗ −0.061 (0.016)∗∗∗ −0.068 (0.016)∗∗∗
United States −0.093 (0.021)∗∗∗ 0.068 (0.030)∗∗ 0.064 (0.031)∗∗

Wafer size
150 mm −0.467 (0.032)∗∗∗
300 mm 0.671 (0.021)∗∗∗

Line width
≥ 500 nm −0.245 (0.053)∗∗∗
350 nm −0.167 (0.033)∗∗∗
250 nm −0.061 (0.026)∗∗
150 nm 0.169 (0.027)∗∗∗
130 nm 0.356 (0.018)∗∗∗
90 nm 0.479 (0.032)∗∗∗
65 nm 0.676 (0.030)∗∗∗
45 nm 0.962 (0.062)∗∗∗

Wafer Size × Line Width
Indicators X X

Number of metal layers 0.076 (0.007)∗∗∗ 0.076 (0.007)∗∗∗ 0.081 (0.007)∗∗∗
Number of polysilicon layers 0.027 (0.024) 0.028 (0.024) 0.025 (0.024)

Number of mask layers 0.005 (0.002)∗∗∗ 0.005 (0.002)∗∗∗ 0.004 (0.002)∗∗
Epitaxial layer indicator 0.064 (0.037)∗ 0.067 (0.037)∗ 0.066 (0.038)∗
log number of wafers Contracted −0.056 (0.004)∗∗∗ −0.057 (0.004)∗∗∗ −0.058 (0.005)∗∗∗
Quarter indicators X X X X
R2 0.046 0.909 0.913 0.922
Observations 6,253 6,253 6,253 5,378

Observations represent individual semiconductor wafer transactions from GSA data. The omitted category is a 200 mm 180 nm wafer produced in Taiwan. Transactions weighted by combining technology-level
(wafer × line width) shipments information from IHS iSuppli and within-technology order size information from the GSA transaction data. Standard errors clustered by 28 quarter clusters. Significant at ***1%, **5%,
*10%. See appendix E.1 for alternative weighting assumptions and results without clustering standard errors.

differences. To visualize these long-run price differences,
figure 1 shows the evolution of prices for four impor-
tant technologies produced by both Chinese and Taiwanese
foundries. Each point represents the average price per wafer
for transactions in the same quarter × country × technol-
ogy cell. In general, Taiwan begins production at least eight
quarters before Chinese foundries.28 When Chinese firms
do enter, their prices are below their Taiwanese competi-
tors, but the gap generally narrows over time. This pattern
is consistent with newly entering Chinese producers ini-
tially offering quality-adjusted discounts to attract customers
in the presence of frictions, followed by declining price
gaps that eventually reflect the underlying average quality
difference as frictions dissipate. The increase in Chinese
market share shown in table 1 corroborates the interpreta-
tion that Chinese producers initially offer quality-adjusted
discounts.

Figure 2 examines these technology-specific price gaps
directly. The y-axis shows the China/Taiwan price ratio,
allowing for comparisons across technologies with different
average prices. The x-axis measures the number of quar-
ters since the last supplier entered the relevant technology.29

28 Authors’ calculations using IHS iSuppli data. See appendix D.4 for
details on measurement and the reasons for delayed Chinese entry.

29 We restrict attention to Taiwan, China, and Singapore, omitting very
small suppliers, and record the quarter in which the last of these three
suppliers entered the relevant market. China was the last entrant for all but

The dashed gray line plots the price ratio for 200 mm
180 nm wafers, the technology with the most sales in our
sample period. Because our data begin in Q1 2004 and
China entered this market in Q3 2002, we first observe the
price gap six quarters following Chinese entry. Although the
price ratio is volatile over time, it exhibits a clear upward
trend, reflecting the closing price gap visible in the upper
right panel of figure 1. The black line in figure 2 aver-
ages the technology-specific price ratios over technologies
within each entry quarter, showing that the pattern of closing
price gaps applies on average across technologies. To ensure
that this pattern is not driven by changes in the technol-
ogy mix or changes in design complexity over time, table 4
implements a within-technology analysis, regressing quar-
terly price ratios on technology fixed effects, layer controls,
and the time since Chinese entry. All specifications find clos-
ing price gaps, and quadratic specifications in columns 3 and
4 suggest that the price gap closes faster in the years just after
entry and stabilizes later. The dashed black line in figure 2
plots the predicted values from column 4 of table 4, con-
firming that the closing price gaps are a within-technology
phenomenon and that the average China/Taiwan price ratio
levels out at approximately 0.9. Appendix E.2 documents a

one technology, for which Singapore entered last. See appendix D.4 for
details.
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Figure 1.—Average Wafer Prices by Quarter and Technology, Taiwan and China
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Each point represents the average price per wafer for transactions in the relevant quarter, produced by the relevant country, and with the relevant technology (wafer size × line width). When multiple transactions
appear in a given quarter, country, technology cell, prices are averaged using quantity weights to yield the average price per wafer across the transactions. The figure shows price trajectories for four large technologies
with substantial output from both Taiwan and China.

similar pattern of closing price gaps between Singapore and
Taiwan.30

The robust pattern of large initial price gaps that converge
over time suggests the presence of frictions that initially drive
large quality-adjusted price differences across suppliers and
then dissipate over time. Fixed quality differences or quality
differences that evolve over calendar time for all technolo-
gies cannot explain this within-technology pattern.31 Only if
quality differences evolve systematically within each tech-
nology can they explain the observed price dynamics. As an
example, if Chinese yields start well below those in Taiwan
for each new technology and then catch up over time, this
could explain the convergence in relative prices. However,
appendix F provides extensive evidence against this possibil-
ity. We use detailed foundry yield data for 65 nm technology,
GSA yield data, industry publications, and interviews to
show that it is very unlikely that yield changes account for
the observed gradual convergence in prices. Moreover, even

30 Appendix E.3 uses an alternative approach to document price conver-
gence across all suppliers.

31 This rules out explanations based on steady improvements in the quality
or reliability of China’s production service or changes in brand recognition,
customer service, or tax policy.

if relative quality does change over time, our measurement
strategy can still be used to bound the true index, as noted in
section II. We return to this possibility in the next section.

V. Price Index Results

In this section, we implement the measurement strategy
proposed in section II and compare the results to a standard
matched-model approach. The first step is to choose a refer-
ence supplier (k = 1 in equation [8]) that is present in both
periods. We choose Taiwan, since it is the first entrant for
all technologies and remains present throughout our sam-
ple period.32 Next, we must define the long run, which is
reached when the distribution of market shares has stabilized
and frictions no longer distort relative prices. We suggest
that analysts use a combination of institutional knowledge
and observed price and market share dynamics to determine
the relevant long run for a given market. For semiconduc-
tors, large fixed costs of starting production of a particular
design with a given supplier deter the movement of a design

32 Note that the reference supplier can change when considering different
pairs of time periods, so it is not necessary that a particular supplier be
present throughout the life of an index.
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Figure 2.—Closing China/Taiwan Price Ratio

The x-axis measures the number of quarters since the last supplier began producing the relevant technology. The y-axis measures the China/Taiwan price ratio. The gray dashed line shows the raw quarterly price
ratio for 200 mm 180 nm technology, which had the largest market share during our sample period. We construct similar series for all technologies and then average the price ratios across technologies in each quarter
to generate the solid black line, which also exhibits a closing price gap over time. The dashed black line shows predicted values from a within-technology quadratic trend estimated using technology fixed effects. The
associated regression estimates are reported in column 4 of table 4. The light dotted lines show a 90% confidence interval around the quadratic prediction. The black diamond shows the point on the quadratic trend that
we use to measure the long-run price ratio between China and Taiwan for the purposes of quality adjustment.

Table 4.—Closing Price Gaps within Technology

Dependent Variable: China-Taiwan Price Ratio

(1) (2) (3) (4)

Time since last supplier entry 0.007∗∗ 0.009∗∗∗ 0.027∗ 0.036∗∗∗
(0.003) (0.002) (0.015) (0.013)

(Time since last supplier entry)2 −0.0005 −0.0007∗∗
(0.0003) (0.0003)

Difference in average:
Number of metal layers 0.310∗∗∗ 0.323∗∗∗

(0.090) (0.087)

Number of polysilicon layers 0.079 0.081
(0.075) (0.072)

Number of mask layers 0.148 0.208∗∗
(0.102) (0.101)

Epitaxial layer −0.011∗∗ −0.010∗∗∗
(0.004) (0.004)

Log number of wafers contracted −0.006 −0.007
(0.009) (0.007)

Technology (wafer size × line width) indicators X X X X
R2 0.166 0.433 0.190 0.472
Observations 91 91 91 91

Observations represent technology (wafer size × line width) and quarter combinations. The dependent variable is the China/Taiwan price ratio. “Time since last supplier entry” reflects the elapsed number of quarters
since the last supplier first began producing the relevant technology. All specifications include technology fixed effects, so trends reflect within-technology changes in the price ratio as time elapsed following the last
supplier’s entry. All specifications exhibit closing price gaps within technology over time. Heteroskedasticity-robust standard errors in parentheses. Significant at ***1%, **5%, *10%.

from one supplier to another. However, designs have finite
life spans and new designs continually enter the market.
After all of the initial designs phase out, the newer remain-
ing designs face a stable set of suppliers during their entire
period of production, and there is little subsequent realloca-
tion of market shares. The vast majority of designs produced
at foundries last for five years or less, so nearly all of the

locked-in designs leave within five years following the last
supplier’s entry.33 We therefore assume that the long run is
reached after five years, which is corroborated by figure 2,

33 This conclusion is based on helpful discussions with Len Jelinek, chief
analyst at IHS, and Falan Yinug of the Semiconductor Industry Association,
who solicited related information from the association’s members.
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Figure 3.—Price Indexes

Authors’ calculations using GSA wafer price data and IHS iSuppli quantity data. Sample restricted to wafers produced in Taiwan, China, and Singapore. The solid black line matched-model index is a Fisher index
of price relatives for each country × technology, following the standard matched-model index construction method. The dashed gray line, quality-adjusted unit value index, first generates quality-adjusted unit values
across countries within technology, following equation (8), and then forms technology-level price relatives from these unit values. It then aggregates these price relatives across technologies using a Fisher index. The
quality-adjusted unit value falls more quickly than the standard matched-model index, reflecting the fact that the standard approach omits price declines when suppliers with lower quality-adjusted prices enter the
market. See the text for details and table 5 for specific index values.

in which relative prices stabilize around five years after the
last supplier’s entry.

We can now use long-run relative prices to calculate the
quality adjustment factors pj,T/p1,T in equation (8). The
preferred approach given sufficient data would be to calcu-
late these adjustment factors separately for each technology.
However, in our data, this approach would result in many
missing values for smaller technologies that appear sporad-
ically in the GSA transaction sample (e.g., 200 mm 250 nm
wafers for China in figure 1). Instead, we pool across tech-
nologies to estimate average within-technology price ratios.
In particular, we evaluate the quadratic fit in figure 2 at five
years (twenty quarters) following the last supplier’s entry,
yielding a quality adjustment of 0.915 (marked with a black
diamond on the figure). This implies that Chinese products
provide 8.5% fewer effective units than otherwise equivalent
Taiwanese products. A similar process for Singapore yields
an adjustment of 0.956.

In appendix G, we compare these quality estimates to
those based on a commonly used method in the international
trade literature, which relies on the structure of CES demand
to infer relative quality based on relative sales conditional
on price.34 We implement a version of this approach fol-
lowing Khandelwal et al. (2013) and find far lower relative
quality estimates for China and Singapore than those just

34 See note 4 for citations.

reported. This difference reflects the fact that new entrants
slowly accumulate market share in a setting with frictions.
Quality inference procedures assuming a frictionless market
observe the low quantities for entrants and systematically
understate their relative quality when frictions are present.

Given our relative quality estimates, it is straightforward
to calculate the proposed quality-adjusted unit-value index.
Let t index quarters, j supplying country, and h technol-
ogy. We plug the average price in each quarter × country ×
technology cell ( pj,h,t), the quantities for each cell (yj,h,t),
and the quality adjustment factors just listed ( pj,T/p1,T ) into
equation (8), yielding unit value relatives for each quar-
ter × technology, Ph,t/Ph,t−1. We then average these relatives
across technologies using a Fisher ideal index, which flexi-
bly captures potential substitution across technologies.35 We
compare our proposed index to a standard matched-model
index, which takes price relatives for each quarter × coun-
try × technology, pj,h,t/pj,h,t−1, and averages them across
across country × technology pairs using a Fisher index. Note
that this price relative is undefined in the quarter of supplier
j’s entry into the market for technology h, so the new sup-
plier is omitted from the standard matched-model index in
its quarter of entry.

The index results appear in figure 3 and table 5. Both
indexes fall over time, consistent with rapid improvement

35 See appendix A.3 for the Fisher index formula.
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Table 5.—Price Indexes

Quarterly Yearly

Index: Matched Model Quality-Adjusted Unit Value Matched Model Quality-Adjusted Unit Value

2004 Q1 100.0 100.0 2004 95.2 93.9
2004 Q2 96.7 95.7 2005 79.8 78.7
2004 Q3 92.6 90.7 2006 71.6 70.1
2004 Q4 91.6 89.1 2007 64.3 61.8
2005 Q1 83.6 81.8 2008 57.8 54.3
2005 Q2 82.7 81.2 2009 53.3 49.6
2005 Q3 78.8 78.3 2010 48.9 45.5
2005 Q4 74.2 73.6
2006 Q1 72.4 71.5 Average yearly
2006 Q2 72.3 71.0 change 2004–2010 −0.105 −0.114
2006 Q3 70.6 69.1
2006 Q4 71.0 68.7
2007 Q1 66.6 64.1
2007 Q2 62.6 60.6
2007 Q3 63.1 61.2
2007 Q4 65.0 61.3
2008 Q1 59.3 56.2
2008 Q2 59.9 56.2
2008 Q3 56.1 52.4
2008 Q4 56.1 52.2
2009 Q1 55.5 51.7
2009 Q2 56.2 52.6
2009 Q3 51.2 47.8
2009 Q4 50.3 46.5
2010 Q1 51.2 47.0
2010 Q2 48.2 44.7
2010 Q3 48.2 45.5
2010 Q4 48.1 44.9

Authors’ calculations using GSA wafer price data and IHS iSuppli quantity data. Sample restricted to wafers produced in Taiwan, China, and Singapore. The matched-model index is a Fisher index of price relatives
for each country × technology, following the standard matched-model index construction method. The quality-adjusted unit value index first generates quality-adjusted unit values across countries within technology,
following equation (8), and then forms technology-level price relatives from these unit values. It next aggregates these price relatives across technologies using a Fisher index. The quality-adjusted unit value falls more
quickly than the standard matched-model index, reflecting the fact that the standard approach omits price declines when suppliers with lower quality-adjusted prices enter the market. See the text for details and figure
3 for a graphical representation.

in wafer characteristics alongside relatively stable average
prices seen in table 2. As expected, the quality-adjusted
unit value index falls more quickly than the standard
matched-model index, with a difference of 0.9 percentage
points per year.36 The difference reflects the fact that the
matched-model index omits price declines when new sup-
pliers offering quality-adjusted discounts enter the market.
To understand the practical scale of this difference, con-
sider a hypothetical situation in which the prices of all
intermediate inputs imported into the United States experi-
enced an upward bias of 0.9 percentage points per year. This
upward bias would result in understated input quantities and
overstated productivity growth. We accordingly adjust the
materials input price index from the BEA National Income
and Product Accounts and recalculate multifactor produc-
tivity.37 In this situation, U.S. productivity growth would

36 The scale of bias is similar to findings in prior work on other
globalization-related measurement issues. Houseman et al. (2011) examine
offshoring to developing countries and find upward bias for manufacturing
import prices of 0.8 percentage points per year. Feenstra et al. (2013) docu-
ment several problems biasing the import price index upward by 1.5% per
year. Note that these various upward biases are likely additive across the
three papers.

37 To implement this calculation, we invoke the commonly used import
comparability assumption that imports are split between intermediate and
final use in the same proportion as domestic production (Feenstra & Jensen,
2012). This allows us to estimate the share of materials inputs accounted
for by imported intermediates.

be biased upward by 0.14 percentage points per year over
2004 to 2010, implying that the official productivity growth
measure of 1.5% per year during the time period is biased
upward by 9.5%. Thus, pervasive price index bias of the
scale identified in the contract semiconductor manufactur-
ing industry would have an important effect on productivity
measurement.

If producers in China and Singapore improve their rel-
ative product quality over time for each technology, then
our method overstates the entrants’ relative quality when
they first appear in the market. Although the scope for
such within-product quality improvement is limited (see
section III), it remains possible. However, under reason-
able assumptions, the exact index is bounded between the
matched-model and quality-adjusted unit value indexes (see
section II). Thus, even if the constant-quality assumption is
violated, one can plausibly bound the path for the exact index
using easily calculated indexes.

A few implementation issues are worth emphasizing. The
index requires only data on prices and quantities, which
are generally available to measurement agencies.38 Ana-
lysts must identify a period of supplier stability, which is
a common stage of industry evolution (Klepper, 1996), but

38 Appendix A.2 describes the sources of quantity information already
collected by BLS.
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is not universal. One must also determine the length of
time required before the effects of frictions dissipate. As
in our analysis, this choice should be informed by a com-
bination of institutional knowledge regarding the sources of
frictions and observed behavior of prices or market shares.
Finally, since the quality-adjustment procedure is retroac-
tive, measurement agencies can continue to produce standard
matched-model indexes in a timely fashion, later issuing
revised or supplementary research series that use long-run
prices to infer earlier quality differences. Researchers and
other government agencies could then use these adjusted
indexes.

VI. Conclusion

Accounting for differences in product quality across sup-
pliers is one of the central challenges in price measurement,
and this challenge is amplified as production chains con-
tinue to fragment internationally and market shares shift
toward low-price suppliers in developing countries. Stan-
dard matched-model index methods assume that entrants
and incumbents charge identical prices for quality-adjusted
units of output, reflecting the law of one price in frictionless
markets. Using a novel database of contract semiconduc-
tor manufacturing transactions, we find strong evidence for
quality-adjusted price differences across suppliers. These
results coincide with prior work on cross-supplier price dis-
persion, which finds copious evidence for frictions in various
markets, calling into question the law-of-one-price assump-
tion (Stigler & Kindahl, 1970; Abbott, 1992; Sorensen, 2000;
Syverson, 2007).

We demonstrate how violations of the law of one price
drive upward bias in standard matched-model indexes and
propose a novel index using long-run price differences to
infer quality differences across suppliers. We implement this
measurement strategy in the context of the contract semi-
conductor manufacturing industry, finding that a standard
matched model index falls almost 1 percentage point per
year more slowly than the quality-adjusted unit value index.
Given that many markets involve supplier-specific invest-
ments, network effects, information frictions, and search
costs, we anticipate that the measurement tools we developed
here will be applicable to a wide range of other industries.
Because our method uses long-run price differences to
infer earlier quality differences, we propose that mea-
surement agencies continue to produce standard matched-
model indexes in a timely manner and issue retrospective
revisions once our quality adjustment procedure can be
implemented.
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