This article introduces a new SAS procedure written by the authors that analyzes longitu-
dinal data (developmental trajectories) by fitting a mixture model. The TRAJ procedure
fits semiparametric (discrete) mixtures of censored normal, Poisson, zero-inflated Pois-
son, and Bernoulli distributions to longitudinal data. Applications to psychometric scale
data, offense counts, and a dichotomous prevalence measure in violence research are il-
lustrated. In addition, the use of the Bayesian information criterion to address the prob-
lem of model selection, including the estimation of the number of components in the mix-
ture, is demonstrated.
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he study of developmental trajectories is a central theme of

developmental and abnormal psychology and of life
course studies in sociology and criminology (Fergusson, Lynskey, and
Horwood 1996; Loeber and LeBlanc 1990; Moffitt 1993; Patterson
1996; Patterson, DeBaryshe, and Ramsey 1989; Patterson et al. 1998;
Patterson and Yoerger 1997; Sampson and Laub 1993). This article
demonstrates a new SAS procedure, called TRAJ, developed by the
authors for estimating developmental trajectories. The procedure is
based on a semiparametric, group-based modeling strategy. Tech-
nically, the model is a mixture of probability distributions that are suit-
ably specified to describe the data to be analyzed. The approach is in-
tended to complement two well-established methods for analyzing
developmental trajectories—hierarchical modeling (Bryk and
Raudenbush 1987, 1992; Goldstein 1995) and latent growth curve
modeling (Meredith and Tisak 1990; Muthen 1989; Willett and Sayer
1994). In hierarchical modeling, individual variation in developmen-
tal trajectories, which are commonly called growth curves, are cap-
tured by a random coefficients modeling strategy. Latent growth curve
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modeling uses covariance structure methods. These methods model
variation in the parameters of developmental trajectories using contin-
uous multivariate density functions. The group-based approach em-
ploys a multinomial modeling strategy. The statistical theory underly-
ing the method has been developed in detail elsewhere (Nagin and
Land 1993; Land, McCall, and Nagin 1996; Roeder, Lynch, and
Nagin 1999; Nagin and Tremblay 1999; Nagin 1999), so our focus
here is on the software itself and its functional capabilities. However,
we begin with a brief overview of the underlying statistical theory.

BRIEF OVERVIEW: DERIVATION OF THE LIKELIHOOD

Mixture models are useful for modeling unobserved heterogeneity
in a population. An appropriate parametric model f(y, A) is assumed
for the phenomenon to be studied, wherey=(y,, y,, . . ., y,) denotes the
longitudinal sequence of an individual’s behavioral measurements
over the T periods of measurement. However, in contrast to the homo-
geneous case, it is believed that there are unobserved subpopulations
differing in their parameter values. In this case, the marginal density
for the data y can be written,

K K
f(y) =D Pr(C=kPr(Y =y|C=k) = p, f(y.h). (1)
k=1

k=1

Here p, is the probability of belonging to class k with corresponding
parameter(s) A,. The longitudinal nature of the data is modeled by hav-
ing the parameter(s) A, depend on time. Time-stable covariates (risk
factors) are incorporated into the model by assuming they influence
the probability of belonging to a particular group. Time-dependent
covariates can also directly affect the observed behavior, as illustrated
in Figure 1.

The risk factors affect the likelihood of a particular data trajectory,
but it is assumed that nothing more can be learned about the data (Y)
fromrisk factors (Z) given group (C). Thus, we assume the risk factors
for subjecti,Z =(Z , ..., Z ), and the data trajectory for the subject
consisting of the repeated measurements over 7' measurement periods,
Y,=(Y, Y,),areindependent given the group, C. Given that there
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Figure 1:  Directed Acyclic Graph Representing the Independence Assumptions

are K groups, we can write the conditional distribution of the observ-
able data for subject i, given risk factors and a time-dependent
covariate, W= (w, ..., w,),

K
fyilz;.w) =D Pr(C; =k|Z; =2,)Pr(Y; =y,|C; =k,W, =w).
k=1 2)

The time-stable covariate effect on group membership is modeled
with a generalized logit function (0, and A, are taken to be zero for
identifiability),

exp(0, +)\;<z,-)
K

exp(0 +)\/zi)
g, I I 3)

Pr(C, =K|Z, =z,) =

TRAJ provides the option of modeling three different distributions
for Pr(Y, =Yy, | C.=k, W.=w) to analyze count, psychometric scale,
and dichotomous data. The zero-inflated Poisson (ZIP) model is use-
ful for modeling the conditional distribution of count data given group
membership when there are more zeros than under the Poisson
assumption (Lambert 1992). This is common in antisocial and abnor-
mal behavior that is typically concentrated in a small fraction of the
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population. For the ZIP model, the probability of observing the data
trajectory y, given membership in group & is,

Pr(Y; =y |C; =k, W, =w;)

p( klk)xi”
- H[p,]k+<1 Piji)e ”‘11'[(1 Pijk yij']k )

y;=0 ;>0 ij*

Note that p, is the extra-Poisson probability of a zero. Let age; denote
subject i’s age in period j, and w; subject i’s time-dependent covariate
value in period j. The (optional) time-dependent covariate is related
linearly to log(A;;). In addition, a polynomial relationship is used to
model the link between age and the model’s parameters:

log(A,) = By, + age B, +age’ B, + ...+ w3, and
log(p,,/(1 - p,)) = o, + age, 0, + agezl.jOLZk +....

The software allows for specification of up to a third-order polynomial
in age. It also allows the user to specify different order polynomials
across the k trajectory groups. Equations (3) and (4) incorporated into
equation (2) give the likelihood of observing the data trajectory of a
subject, given his covariate values. The complete likelihood for all
subjects is the product of these individual likelihood values.

The censored normal (CNORM) model is useful for modeling the
conditional distribution of psychometric scale data, given group
membership (Nagin and Tremblay 1999). A distribution allowing
for censoring is used because the data tend to cluster at the minimum
of the scale (Min) and at the scale maximum (Max). Hence, the likeli-
hood of observing the data trajectory for subject i, given he belongs
to group k, is

Pr(Yi=yi| Ci=k, Wi=w;) =

H(D Min — Mljk H l(p ylj Wik H |—® Max—},tijk ’
Vi =min Min<yi/»<MaxG 9 y;j=Max ()

where

2
“,_‘,'k = B()k + ageijBlk + ageij BZk+ <ot W{jak' (5)
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The censored normal model is also appropriate for continuous data
that are approximately normally distributed, with or without censor-
ing. The uncensored case is handled by specifying a minimum and
maximum that lie outside the range of the observed data values.

Finally, the logistic (LOGIT) model is used to model the condi-
tional distribution of dichotomous data, given group membership. The
likelihood of observing the trajectory for subject i, given he belongs to
group k, is

Pr(Y; =y,|C; =k, W, =Wi)=Hpijk H(l_pijk)
with i ;=0

2
exp(B ok +age;; Bk +age; Bk +--~+wij8k)

DPijk = :
/ 1+expPBo, +ageijBlk+age§B2k+--~+w,:]»5k) (6)

Maximum likelihood is used to estimate the model parameters. The
maximization is performed using a general quasi-Newton procedure
(Dennis, Gay, and Welsch 1981; Dennis and Mei 1979) obtained from
Netlib. Standard error estimates are calculated by inverting the
observed information matrix. Subjects with some missing longitudi-
nal data values or time-dependent covariate values are included in the
analysis. However, subjects with any missing risk factor (time-stable
covariate) data are excluded from the analysis.

OVERVIEW OF SOFTWARE

Many researchers are familiar with the SAS preprogrammed statis-
tical procedures to analyze data. In addition, SAS can be programmed
through statements in the data step through macros or through the SAS
interactive matrix language. A lesser-known fourth option is to develop
a customized SAS procedure using a SAS product: SAS/TOOLKIT.
Our custom SAS procedure (available for the PC platform only) is a
program written in the C programming language that interfaces with
the SAS system to perform the model fitting. The executable dynamic
link library is distributed to other users who after installation use it just
as they would use any preprogrammed SAS procedure. The following
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introductory example illustrates the application of the method and the
use of the SAS procedure TRAIJ.

EXAMPLE 1: MONTREAL LONGITUDINAL STUDY

The data consist of 1,037 boys assessed annually by their teachers
at age 6 (spring 1984) and at ages 10 through 15 on scales of physical
aggression, opposition, and hyperactivity. The 53 participating schools
were located in low socioeconomic areas of Montreal (Canada).
Time-stable covariates were recorded, including age of mother and
father at the birth of their first child, years of schooling for the mother
and father, a home adversity index, and psychometric scale data on
inattention, anxiety, and prosocial behavior of each boy at age 6. Con-
sider the opposition score, which ranges from 0 to 10 and measures
five items: does not share, irritable, disobedient, blames others, and
inconsiderate. Figure 2 shows sample opposition data for nine sub-
jects, illustrating the variability in the trajectory shapes. Some never
exhibit difficulties; others have difficulties and then seem to learn
more adaptive coping strategies, as evidenced by their drop in opposi-
tion scores. Also present are subjects who continue to show high levels
of oppositional behavior through age 15. Figure 3 shows the distribu-
tion of the opposition scores for each year they were recorded. Scores
of zero are most frequent. Note also that the opposition scores
decrease in frequency as the score increases. Hence, the censored nor-
mal distribution seems a sensible choice for modeling these data.

The following statements fit a five-group model to the oppositional
behavior data and plot the results (see Figure 4). The justification for the
choice of five groups is discussed in the fourth section of this article.

PROC TRAJ DATA=MONTREAL OUT=0OF OUTPLOT=0P OUTSTAT=0S;

VAR 01-07; /* Opposition Variables */
INDEP T1-T7; /* Age Variables */
MODEL CNORM,; /* Censored Normal Model */
MIN 0; /* Lower Censoring Point */
MAX 10; /* Upper Censoring Point */
NGROUPS 5; /* Fit 5 Groups */
ORDER 3333 3; /* Cubic Trajectory for Each Group */
RUN;

%TRAJPLOT (OP, OS,“Opposition Trajectories”,,"“Opposition”,“Scaled Age”);
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Figure 2:  Sample Data (oppositional behavior)

Twenty-two percent of the subjects are classified as exhibiting little
or no oppositional behavior (group 1); the largest percentage, 42 per-
cent, exhibit low and somewhat decreasing levels of oppositional be-
havior (group 2); 18 percent of the subjects show moderate levels of
oppositional behavior (group 3); 7 percent of the subjects start out
with high levels of oppositional behavior that drops steadily with age
(group 4); while the remaining 10 percent exhibit chronic problems
with oppositional behavior (group 5).
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Figure 3:  Distribution of Opposition Scores by Age

The next examples illustrate analyses of dichotomous data and
Poisson data with extra zeros. It is important to realize that some mod-
els are difficult to fit and that there is no guarantee that the procedure
will be able to fit the model successfully. In particular, the procedure
may find only a local minimum; hence, the process of determining
starting values is critical. If the user does not specify starting values (as
in the introductory example), the procedure provides default starting
values by assuming intercept-only trajectories evenly spaced through
the range of the dependent variable. The next example includes the
specification of starting values.

EXAMPLE 2: CAMBRIDGE STUDY OF DELINQUENT DEVELOPMENT

The data consist of 411 subjects from a prospective longitudinal sur-
vey conducted in a working-class section of London. Farrington and
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Figure 4: Expected (dashed lines) Versus Observed (solid line) Trajectories

West (1990) provide a detailed discussion of the study. The numbers
of criminal offense convictions were recorded annually beginning
when the boys were age 10 and continuing through age 32. Because
we are dealing with count data, the Poisson model is potentially ap-
propriate here; however, more zeros are present than would be ex-
pected in the purely Poisson model, so we use the ZIP model. The fol-
lowing statements fit a four-group model to the offense counts data
and plot the results (see Figure 5). The starting values were obtained
from an analysis (Roeder et al. 1999) that used cubic trajectories for
the four groups.

PROC TRAJ DATA=CAMBRDGE OUT=0OF OUTPLOT=0P OUTSTAT=0S;

VAR C1-C23; /* Offense Count Variables */
INDEP T1-T23; /* Age Variables */
MODEL ZIP; /* Zero Inflated Poisson Model */
NGROUPS 4; /* Fit 4 Groups */
ORDER 020 2; /* Two Linear and Two Quadratic Groups ~ */
IORDER 1; /* Linear Zero Inflation */
START 4.8 /* Group 1 - Intercept Only */
-15.516.2-4.5 /* Group 2 - Quadratic Trajectory */
-1.1 /* Group 3 - Intercept Only */

-4551-13 /* Group 4 - Quadratic Trajectory */
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Figure 5:  Expected (dashed lines) Versus Observed (solid line) Trajectories

-0.20.0 /* Linear Zero Inflation */
-1.2-2.1-2.1; /* Group Proportion Parameters */
RUN;

%TRAJPLOT (OP, OS,“Offense Counts”,,“Offense Counts”,“Scaled Age”);

Sixty-six percent of the subjects are classified as never convicted
(group 1), 19 percent exhibit low conviction rates limited to adoles-
cence (group 2), 7 percent of the subjects show low but persisting con-
viction rates (group 3), while the remaining 8 percent exhibit the high-
est conviction rates (group 4).

EXAMPLE 3: CAMBRIDGE DATA PREVALENCE MEASURE

It is common in research on criminal careers to analyze both the
frequency of offending measured by offense counts and the absence
or presence of offenses (a dichotomous prevalence measure). The
analysis on the Cambridge data is repeated, converting the numbers
of criminal offense convictions to a dichotomous prevalence mea-
sure. The logistic model will be used for the prevalence data. The fol-
lowing statements fit a three-group model to the prevalence measure
data and plot the results (see Figure 6).
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Figure 6: Expected (dashed lines) Versus Observed (solid line) Trajectories

PROC TRAJ DATA=CAMBRDGE OUT=0OF OUTPLOT=0P OUTSTAT=0S;

VAR C1-C23; /* Prevalence Variables */
INDEP T1-T23; /* Age Variables */
MODEL LOGIT; /* Logistic Model */
NGROUPS 3; /* Fit 3 Groups */
ORDER 3 3 3; /* Cubic Trajectories */
RUN;

%TRAJPLOT (OP, OS,“Prevalence Measure”,, Prevalence”,“Scaled Age”);

Fifty-eight percent of the subjects are classified as never convicted,
34 percent have a low prevalence rate that peaks during adolescence,
and the remaining 8 percent exhibit the highest prevalence rate.

EXAMPLE 4: INTRODUCING TIME-STABLE
COVARIATES INTO THE MODEL

A common objective of social science research is to establish
whether a trait (e.g., being prone to oppositional behavior) is linked to
measured covariates (e.g., risk factors). Previous applications of the
semiparametric approach categorized subjects by latent trait from ob-
servable behavior (Nagin, Farrington, and Moffitt 1995; Laub, Nagin,
and Sampson 1998). The group assignments were then fit to the co-
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variates with standard linear models. However, this classify-analyze
procedure does not account for the uncertainty in group assign-
ment and can lead to bias (Clogg 1995; Roeder et al. 1999). This
final example illustrates the inclusion of risk factors directly into
the model. In so doing, this approach accounts for assignment uncer-
tainty automatically.

Suppose we were interested in investigating whether and to what
degree inattention, verbal I1Q, and an adverse home life are risk factors
for elevated levels of opposition. Figure 7 shows the distribution of
measures of each of these factors for the subjects in the Montreal
study. The procedure automatically drops observations with missing
data in the risk factor variables. Of the subjects, 174 have missing val-
ues in the risk factors and are omitted from the analysis. The following
statements perform the risk analysis on the remaining 863 subjects.

PROC TRAJ DATA=MONTREAL OUT=0OF OUTPLOT=0P OUTSTAT=0S;

VAR 01-07; /* Opposition Variables Wi
INDEP T1-T7; /* Age Variables */
MODEL CNORM; /* Censored Normal Model */
MIN 0; /* Lower Censoring Point */
MAX 6; /* Upper Censoring Point */
NGROUPS 5; /* Fit 5 Groups */
ORDER 3333 3; /* Cubic Trajectory for Each Group */
RISK VERBALIQ, /* Risk Factors */
INATTENT,ADVERSTY;

RUN;

In Table 1, we present the risk factor parameter estimates, standard
errors, tests for the hypothesis that the parameter equals zero, and p
values for the tests. Figure 8 illustrates the marginal relationships of
the risk factors—inattention, adversity, and verbal IQ—to the likeli-
hood of belonging to the highest opposition category versus the lowest
opposition category. Included in the plots are the sample values (a small
amount of noise has been added to the plot points to separate them):
low opposition group on the bottom and high opposition group on the
top of each graph. As adversity in the home and inattention scores in-
crease, so does the likelihood of problems with high oppositional be-
havior. However, as verbal IQ increases, the likelihood of belonging to
the high opposition group decreases.



386 SOCIOLOGICAL METHODS & RESEARCH

LI S S e R | S B —

0 2 4 6 8 10 12 00 02 04 06 08 1.0 o 1 2 3 4

200
200

300

150
150

200

100
00

100

50
50

Verbal IQ Adversity Index Inattention Index

Figure 7:  Distribution of Verbal 1Q, Adversity, and Inattention Index

EXAMPLE 5: MONTREAL LONGITUDINAL STUDY
WITH A TIME-VARYING COVARIATE

A trajectory defines the developmental course of a behavior over
age (or time). Trajectories, however, are not deterministic functions of
age. External events may deflect a trajectory. For example, Laub et al.
(1998) examine the impact of marriage on deflecting trajectories of
offending from high levels of criminality toward desistance. Life
events may also have transitory affects on enduring trajectories of
behavior. For example, spells of mental illness may temporarily alter
trajectories of high-level productivity.

In this example, we extend the basic model presented in exam-
ple 1 by introducing a time-varying covariate into the trajectory model.
Specifically, we add to the base model relating opposition to age a
binary variable equal to 2 if by the age ¢ the individual had been held
back in school, 1 if the individual has not been held back. The objec-
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Figure 8:  Probability of Belonging to Group 5 (high opposition) Versus Group 1 (low
opposition) as a Function of Risk Factor

tive is to test whether for some trajectory groups school failure is asso-
ciated with an increase in opposition. Note that the structure of the
model allows for the possibility that the impact may vary by trajectory
group. The number of students held back ranges from 51 at age 6 to
516 at age 15.

The following statements fit a five-group model to the oppositional
behavior data.

PROC TRAJ DATA=MONTREAL OUT=OF OUTPLOT=0P OUTSTAT=0S;

VAR 01-07; /* Opposition Variables */
INDEP T1-T7, /* Age Variables */
MODEL CNORM; /* Censored Normal Model */
MIN 0; /* Lower Censoring Point */
MAX 10; /* Upper Censoring Point */

NGROUPS 5; /* Fit 5 Groups */
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TABLE 1: Risk Factor Parameter Estimates, Errors, Tests, and p Values

Group Parameter Estimate Error Test p Value

2 Constant 1.96 0.79 2.49 .013
Inattention 0.26 0.15 1.82 .069
Adversity 2.83 0.63 4.46 .000
Verbal 1Q -0.41 0.08 5.19 .000

3 Constant 0.80 0.72 1.11 .268
Inattention 0.48 0.12 3.98 .000
Adversity 0.98 0.49 1.99 .046
Verbal 1Q -0.10 0.07 —-1.48 .140

4 Constant -4.61 1.37 -3.36 .001
Inattention 1.21 0.16 7.72 .000
Adversity 2.92 0.79 3.71 .000
Verbal 1Q 0.11 0.12 0.90 .366

5 Constant -2.46 1.30 -1.90 .058
Inattention 1.18 0.20 5.91 .000
Adversity 4.27 0.99 4.33 .000
Verbal 1Q -0.28 0.11 -2.60 .009

ORDER 3333 3; /* Cubic Trajectory for Each Group */

TCOV C1-C7; /* Time Varying Covariate (Held Back) */

RUN;

Expected opposition trajectories for subjects never held back and
always behind are given in Figure 9. Note that this was done as one
way to illustrate the effect of the time-varying covariate. Other plots
are possible by changing when subjects begin to be behind grade. We
see that there is an increase in opposition for those behind grade in
groups 2, 3, and 5. There is little effect in the lowest opposition group
(group 1) and in the steadily decreasing group (group 4). Those behind
grade in group 4 showed lower opposition in the first period. This is
explained because of the 55 subjects classified to group 4 (the smallest
group), 4 were behind grade in the first period and all had low opposi-
tion scores relative to the rest of the group.

USING THE BAYESIAN INFORMATION CRITERION (BIC)
FOR MODEL SELECTION

One possible choice for testing the hypothesis of the number of
components in a mixture is the likelihood ratio test. However, the null
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TABLE 2: Interpretation of 2log (B,

2log (B,,) (B,) Evidence Against H,

0to2 1to3 Not worth mentioning

2t06 31020 Positive

6to 10 20 to 150 Strong

> 10 > 150 Very strong

hypothesis (i.e., three components versus more than three compo-
nents) is on the boundary of the parameter space, and hence the classi-
cal asymptotic results do not hold (Ghosh and Sen 1985). To circum-
vent this problem, we follow the lead of D’Unger et al. (1998) and use
the change in the BIC between models as an approximation to the log
of the Bayes factor (Kass and Wasserman 1995). Keribin (1997) dem-
onstrated that, under certain conditions, this approximation is valid for
testing the number of components in a mixture. Raftery (1995) and
Kass and Raftery (1995) are good references for Bayes factors. Also,
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TABLE 3: Tabulated Bayesian Information Criterion (BIC) and 2log (B,

(opposition data)

Number of Groups BIC Null Model 2log (B,,)
1 -12,524.06

2 -11,818.92 1 1,410.28
3 -11,685.81 2 266.22
4 -11,683.27 3 5.08
5 -11,669.70 4 27.14
6 -11,678.51 5 -17.62

Fraley and Raftery (1998) address the use of Bayes factors in
model-based clustering. The Bayes factor (B, ) gives the posterior
odds that the alternative hypothesis is correct when the prior probabil-
ity that the alternative hypothesis is correct equals one-half.

The BIC (Schwarz 1978), the log-likelihood evaluated at the maxi-
mum likelihood estimate less one-half the number of parameters in the
model times the log of the sample size, tends to favor more parsimoni-
ous models than likelihood ratio tests when used for model selection.
To maintain consistent usage with that of Jeffreys (1961) and Kass and
Raftery (1995), we use the BIC log Bayes factor approximation,

2log,(B,,) = 2(ABIC), @

where ABIC is the BIC of the alternative (more complex) model less
the BIC of the null (simpler) model. The log form of the Bayes factor
is interpreted as the degree of evidence favoring the alternative model
(see Table 2).

Table 3 tabulates the BIC for model fits to the oppositional behavior
data. Based on the results, the five-group model is favored.

CONCLUSION

We demonstrated the use of a new SAS procedure that we wrote to
analyze longitudinal data by fitting a mixture model. We illustrated
the use of the TRAJ procedure through applications to psychometric
scale data (oppositional behavior) using the censored normal mixture,
offense counts using the ZIP mixture, and an offense prevalence
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measure using the logistic mixture. Time-stable covariates (risk fac-
tors) were incorporated into the model by assuming that the risk fac-
tors are independent of the developmental trajectories, given group
membership. A time-dependent covariate can also directly affect the
observed behavior trajectory. In addition, the use of the BIC to address
the problem of model selection, including the estimation of the num-
ber of components in the mixture, was demonstrated. While we
focused on applications from research on antisocial behavior, any
application that proposes to differentiate observations by type or cate-
gory can be analyzed by our method. The procedure, with online doc-
umentation, is available from the authors free of charge at http://lib.
stat.cmu.edu/~bjones/traj.html.
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