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Abstract
Concurrent programming presents a challenge to students and experts alike

because of the complexity of multithreaded interactions and the difficulty to re-
produce and reason about bugs. Stateless model checking is a concurrency testing
approach which forces a program to interleave its threads in many different ways,
checking for bugs each time. This technique is powerful, in principle capable of
finding any nondeterministic bug in finite time, but suffers from exponential ex-
plosion as program size increases. Checking an exponential number of thread
interleavings is not a practical or predictable approach for programmers to find
concurrency bugs before their project deadlines.

In this thesis, I propose to make stateless model checking more practical for
human use by way of several new techniques. I have built Landslide, a stateless
model checker specializing in student projects for undergraduate operating sys-
tems classes. Landslide includes a novel algorithm for automatically managing
multiple state spaces according to their estimated completion times, which I will
show quickly finds bugs should they exist and also quickly verifies correctness
otherwise. I will evaluate Landslide’s suitability for inexpert use by presenting
the results of many semesters providing it to students in 15-410, CMU’s Oper-
ating System Design and Implementation class. Finally, I will explore broader
impact by extending Landslide to test some real-world programs and to be used
by students at other universities.
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Chapter 1

Introduction

Modern computer architectures have turned to increasing CPU core count, rather than clock
speed, to improve processing power [54]. To take advantage of multiple cores for perfor-
mance, programmers must write software to execute concurrently – using multiple threads
which execute multiple parts of a program’s logic simultaneously. However, when threads
access the same shared data, they may interleave in unexpected ways which change the out-
come of their execution. When an unexpected interleaving produces undesirable program
behaviour, for example, by corrupting shared data structures, we call it a concurrency bug.
Concurrency bugs are notoriously hard for programmers to find and debug because the spe-
cific thread interleaving required to trigger them arises at random during normal execution,
and often with very low probability.

Most commonly, a programmer searches for concurrency bugs in her code by running it
many times (in parallel, in serial, or both), hoping that eventually, it will run according to
the particular interleaving required to expose a hypothetical bug. This technique, known as
stress testing, is unreliable, providing no guarantee of finding the failing interleaving in any
finite amount of time. It also provides no assurance of correctness: when finished, there is no
way of knowing how many distinct thread interleavings were actually tested. Nevertheless,
stress testing remains popular because of how easily a programmer can use it: she simply
wraps her program in a loop, sets it to run overnight, and kills it if her patience runs out
before it finds a bug.

Stateless model checking [30] is an alternative way to test for concurrency bugs, or to
verify their absence, which provides more reliable coverage, progress, and verification than
stress testing. A stateless model checker tests a program by forcing it to execute a new unique
thread interleaving on each iteration of the test, capturing and controlling the randomness
in a finite state space of all possible interleavings.

Unfortunately, the size of these state spaces is exponentially proportional to the size of
the tested program. For even moderately-sized programs, there may be more possible ways
to interleave every thread’s every instruction than particles in the universe. Accordingly, a
programmer who wants her test to make reasonable progress through the state space must
choose a subset of ways that her threads could interleave, focusing on fully testing that sub-
set, while ignoring other possibilities she doesn’t care about. However, it is difficult to choose
a subset of thread interleavings that will produce a meaningful, yet feasible test. Until com-
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puters can automatically navigate this trade-off in some intelligent way, programmers will
continue to fall back to the random approach of stress testing.

Another problem stateless model checking suffers is that certain types of programs cannot
be tested without the programmer putting forth some manual instrumentation effort. For
example, operating system kernels implement their own sources of concurrency and their
own synchronization primitives, so the checker needs to be told how to identify and control
the execution of each thread. Some expert concurrency research wizards may be willing to
add manual annotations to their code, but required manual effort is a serious downside for
anyone with a looming deadline, and especially so for students who are still learning basic
concurrency principles.

This thesis will solve both problems discussed above. My thesis statement is as follows:

Thanks to the new algorithms, heuristics, and concurrency models I have developed, stateless
model checking is an appropriate and accessible concurrency testing technique for programmers

in both educational and real-world settings.

I have built Landslide [7], a stateless model checker for thread libraries and kernels, and I
have developed some techniques for automatically choosing the best thread interleavings to
test and for automatically instrumenting operating system kernels in an educational setting.
This thesis will comprise three major contributions:

• Meaningful state spaces (Chapter 3). I will present Iterative Deepening, a new algo-
rithm for navigating the trade-off in how many preemption points to test at once. Iter-
ative Deepening incorporates state space estimation [70] to decide on-the-fly whether
each state space is worth pursuing, and uses data race analysis [66] to find new pre-
emption point candidates based on a program’s dynamic behaviour. This section will
include a large evaluation of the technique, comparing its performance to three prior
work approaches across 600+ unique tests. I will show that Iterative Deepening of
preemption points outperforms prior work in terms both of finding bugs quickly and of
completely verifying correctness when no bug exists.

This work is completed and was published at OOPSLA 2016.

• Educational use (Chapters 4 and 5). For the past three semesters, I have offered
a fully-automated version of Landslide to students in 15-410, CMU’s undergraduate
Operating System Design and Implementation class [22, 23], for use as a debugging
aid during the thread library project. I will continue these user studies, and use the
data to evaluate the suitability of stateless model checking in an educational setting.

So far, the fully-automatic testing mode is available only for 15-410 thread library
projects. To prove these techniques are relevant beyond CMU’s walls, I will extend
Landslide to handle Pintos kernel projects from other universities [61]. I will then
collaborate with those schools to deploy Landslide to their operating systems students.

This is ongoing work; I have run the user study for 4 semesters so far and am proposing
to continue them and extend the existing evaluation, as well as deploy a Pintos port.

• Transactional Memory (Chapter 6). Transactional Memory (TM) is a relatively new
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concurrent programming technique [37] which is not yet addressed by modern model
checkers. I will extend Landslide’s concurrency model to support both hardware (HTM)
and software (STM) variants of TM, and test several “real-world” TM programs.

This will be new work, involving some implementation effort, some proofs, and de-
signing a new evaluation.
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Chapter 2

Background

This chapter will introduce the necessary background material on concurrency, stateless
model checking, data-race analysis, and the relevant undergraduate operating systems classes.

Thesis proposal note: I’ve written this section with the intent of reusing it in the thesis.
The other chapters, being necessarily more impermanent, are aimed directly at you (my thesis
committee) as the audience. This section is written with the intention for programmers of
any level to read.

2.1 Concurrency Bugs

2.1.1 The Basics

Modern software often turns to multithreading to improve performance. In a multithreaded
program, multiple execution units (or threads) execute the same or different sections of code
simultaneously.

Simultaneity. This simultaneity of threads is achieved either by executing each one on
a separate CPU, or by interleaving them nondeterministically (as controlled by clock inter-
rupts) on the same CPU. Because clock interrupts can occur at any instruction1, we consider
single-CPU multithreading to be simultaneous at the granularity of individual instructions.
Likewise, when multiple CPUs access the same memory, hardware protocols generally en-
sure that the events of a single instruction are executed atomically from the perspective of
all CPUs. Although there are some exceptions – unlocked memory-to-memory instructions,
unaligned writes [50], and weak memory consistency models [4] – we model multicore con-
currency the same way as above, deferring these exceptions beyond the scope of this work.
We refer to an execution trace depicting the global sequence of events as a thread interleaving
or schedule.

Shared state. When a programming language offers multithreaded parallelism but for-
bids access to any shared state between threads [52], the simultaneity of threads is largely
irrelevant to the program’s behaviour. However, “thread-unsafe” languages such as C, C++,

1 With some exceptions in kernel-level programming, which I discuss later.
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int x;
void count() {

for (int i = 0; i < 1000;
i++)

x++;
}
void main() {

tid1 = thr_create(count);
tid2 = thr_create(count);
thr_join(tid1);
thr_join(tid2);
printf("%d\n", x);

}

Thread 1 Thread 2
load tmp <- x;

load tmp <- x;
add tmp <- 1;
store x <- tmp;

add tmp <- 1;
store x <- tmp;

(a) Source listing for a multithreaded pro-
gram which might count to 2000.

(b) Example interleaving of the compiled as-
sembly for (a), in which 2 concurrent itera-
tions of the loop yield 1 net increment of x.

Figure 2.1: Example concurrent program in which simultaneous accesses to shared state may
interleave to produce unexpected results.

Java, and so on remain popular, in which threads may access global or heap-allocated vari-
ables and data structures with no enforced access discipline. The behaviour of such programs
is then subject to the manner in which these accesses interleave.

Identifying bugs. Even if a program’s behaviour is nondeterministic, that does not nec-
essarily mean it has a bug. After all, many programs use random number generation to
intentionally generate different outputs. We say a concurrency bug occurs when one or more
of a program’s nondeterministic behaviours is both unanticipated and undesired. Most often,
a concurrency novice who programs with shared state will consider the possible interleavings
where one thread’s access sequence occurs entirely before the other’s, but neglect to consider
intermediate outcomes in which the threads’ access sequences are interleaved. Consider the
program in Figure 2.1: Any output between 2 and 2000 is possible2, but whether this consti-
tutes a bug is a matter of perspective. Was the program written to count to 2000, or was it
written to compute a randomized distribution? In this thesis, we make no attempt to reason
about the “intent” of programs, so we further restrict concurrency bug to denote a program
behaviour which is mechanically identifiable, according to commonly-accepted notions of
what programs behaviours are always bad. Bug conditions include assertion failures, mem-
ory access errors (i.e., segmentation fault or bus error), heap errors (i.e., use-after-free or
overflow), deadlocks, and infinite loops (which must be identified heuristically [73]).

2.1.2 Concurrency Primitives

To prevent unexpected interleavings such as the example in Figure 2.1(b), most concurrent
programs use concurrency primitives to control which interleavings are possible. Controlling

2 Exercise for the reader: Show why 2 is a possible output, but 1 is not!
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typedef struct mutex {
volatile int held;
int owner;

} mutex_t;
void mutex_lock(mutex_t *mp) {

while (xchg(mp->held, 1))
yield(mp->owner);

mp->owner = gettid();
}
void mutex_unlock(mutex_t *mp) {

mp->owner = -1;
mp->held = 0;

}

int x;
mutex_t m;
void count() {

for (int i = 0; i < 1000;
i++)
mutex_lock(&m);
x++;
mutex_unlock(&m);

}

(a) A simple mutual exclusion lock built
using the xchg instruction.

(b) The count function from Figure 2.1, ad-
justed to use a mutex to ensure each increment
of x is uninterruptible.

Figure 2.2: Using a locking primitive to protect accesses to shared state.

nondeterminism is not typically provided by any features of programming languages them-
selves; rather, it is achieved via special atomicity mechanisms provided by the CPU and/or
operating system – hence the term “primitive”. For example, x86 CPUs provide the xchg in-
struction, which performs both a read and subsequent write to some shared memory, with no
possibility for other logic to interleave in between. Using such atomic instructions as building
blocks, concurrency libraries provide abstractions for controlling nondeterminism in several
commonly-desired ways. These include locks, descheduling, condition variables, semaphores,
reader-writer locks, and message-passing.

Each such abstraction provides certain semantics about what thread interleavings can
arise surrounding their use. When building a tool for testing concurrent programs, one may
include some computational understanding of the behaviour of any, or all, of these abstrac-
tions. Annotating a certain abstraction’s semantics treats it as a trusted concurrency primitive
in its own right, and allows the testing tool to reduce the possible space of interleavings (or
the set of false positive data-race candidates reported, etc.), at the cost of increasing the im-
plementation and theoretical complexity of the analysis. In this thesis, I will consider locks
and descheduling to be the only concurrency primitives, and assume the others listed above
are implemented using those as building blocks (an exercise for the reader [23]).

Locks (or mutexes, short for “mutual exclusion locks”) are objects, shared by multiple
threads, which allow the programmer to mark certain critical sections of code that must not
interleave with each other. When one thread completes a call to mutex_lock(mp), all
invocations by other threads on the same mp will wait (or “block”) until the corresponding
mutex_unlock(mp). Figure 2.2(a) shows how a yielding mutex (not the best imple-
mentation, but the simplest) may be implemented using xchg, and (b) shows how a mutex
may be used to fix the example from Figure 2.1.
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2.1.3 Transactional Memory

Critical sections of code must be protected from concurrent access, even when it’s not known
in advance whether the shared memory accesses between threads will actually conflict on
the same memory addresses. The concurrency primitives discussed above take a pessimistic
approach, imposing a uniform performance penalty (associated with the primitives’ imple-
mentation logic) on all critical sections, whether or not a conflict is likely. Some implemen-
tations may be optimized for “fast paths” in the absence of contention, but must still access
shared memory in which the primitive’s state resides.

Transactional memory [37] offers a more optimistic approach: critical sections of code
are marked as “transactions”, analogously to locking a mutex, and allowed to speculatively
execute with no protection. If a conflict between transactions is detected, the program state
is rolled back to the beginning of the transaction, and a backup code path may optionally
be taken. Consequently, no intermediate state of a transacting thread is ever visible to other
threads; all changes to memory within a transaction become globally visible “all at once” (or
not at all). This method optimizes for a common no-contention case of little-to-no overhead,
pushing extra both code and implementation complexity to handling conflicts.

Transactional memory (TM) may be implemented either in hardware, using special in-
structions and existing cache coherence algorithms, or in software, via library calls and a log-
based commit approach. Software transactions (STM) [3] can be used on any commodity
processor, but must impose runtime overhead associated with logging. Hardware transac-
tions (HTM) [20, 77] achieve better performance by reusing existing cache coherence logic
to detect conflicts, but require explicit support from the CPU, which is not yet widespread.
Haswell [36] is the first x86 architecture to support HTM, offering three new instructions:
xbegin, xend, and xabort, to begin, commit, and fail a transaction, respectively. The
example program in Figure 2.3 demonstrates how these instructions can be used to syn-
chronize a simple shared access without locking overhead in the common case, using GCC’s
compiler intrinsics [29].

In this thesis, I will focus on HTM as my platform for testing transactional programs,
to highlight the importance of researching advanced testing techniques in anticipation of
upcoming hardware features. My treatment of TM will be largely agnostic to whether a
transactional interface is backed by HTM or STM, and I will extend it to cover STM as well,
as discussed in Section 6.

2.2 Stateless Model Checking

Model checking [30] is a testing technique for systematically exploring the possible thread
interleavings of a concurrent program. A model checker executes the program repeatedly,
each time according to a new thread interleaving, until the state space (or the CPU budget)
is exhausted. During each execution, it forces threads to execute serially, thereby confining
the program’s nondeterminism to controlled thread switches. Some model checkers explicitly
store the set of visited program states as a means of identifying equivalent interleavings [38].
This approach is called stateful model checking. In this thesis, I focus on stateless model
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(All threads)
if ((status = _xbegin()) == _XBEGIN_STARTED) {

if (too_much(foo)) {
_xabort();

} else {
foo++;
_xend();

}
} else if (status != _XABORT_EXPLICIT) {

mutex_lock(&m);
foo++;
mutex_unlock(&m);

}

Figure 2.3: An example program demonstrating the various HTM primitives. If the transac-
tion in the top branch aborts, whether from a conflict or from the programmer’s intention,
execution will revert to the return of _xbegin, and statuswill be assigned an error code
indicating the abort reason. The programmer can then use explicit synchronization, such as
a mutex, to resolve the conflict.

checking, which instead analyzes the sequence of execution events to avoid a prohibitive
memory footprint. Henceforth I will abbreviate “stateless model checking” simply as “model
checking” for brevity.

Static versus dynamic analysis. Model checking is a dynamic program analysis, meaning
that it observes the operations and accesses performed by the program as its code is executed.
In contrast, static program analyses check certain properties at the source code level. Static
analyses are ideal for ensuring certain standards of code quality, which often correlates with
correctness, but cannot decide for certain whether a given program will fail during execution
without actually running the code [31]. Static analyses face the challenge of false alarms (or
false positives): code patterns which look suspicious but are actually correct. A debugging tool
which reports too many false alarms will dissuade developers from using it [25]. Dynamic
analysis, our approach, identifies program behaviours that are definitely wrong, so each bug
report is accompanied by concrete evidence of the violation. Assertions, segfaults, use-after-
free of heap memory, and deadlock are examples of such failures we check for, although a
checker may also include arbitrary program-specific predicates.

Preemption points. During execution, a model checker identifies a subset of the pro-
gram’s operations as “interesting”, i.e., points at which interrupting the current thread to
run a different one is likely to produce different behaviour. These points, called preemption
points, may be identified by any combination of human intuition and machine analysis. Typi-
cal preemption points include the boundaries of synchronization APIs (e.g., mutex_lock)
or accesses to shared variables. Considering that at each preemption point multiple threads
exist as options to run next, the set of possible ways to execute the program can be viewed
as a tree. The number of preemption points in each execution define the depth of this tree,
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2 1

2...

...

1 ...

...

... ...

...

... ...

Figure 2.4: DPOR identifies independent transitions by different threads which can commute
without affecting program behaviour. Here, if the transitions marked 1 and 2 have no shared
memory conflicts, the states marked with the red arrow are guaranteed identical. Hence,
only one of the subtrees need be explored.

and the number of threads available to run define the branching factor. Hence, in a program
with n preemption points and k threads available to run at each, the state space size is O(nk).
Addressing the scaling problem in this exponential relation is the central research problem
for all model checkers.

Reduction techniques. Dynamic Partial Order Reduction [28] (henceforth, DPOR) is the
premier algorithm for mitigating the exponential explosion that arises as program size in-
creases. It identifies equivalent execution sequences according to Mazurkiewicz trace theory
[53], and tests at least one execution from each equivalence class. Intuitively, if two thread
transitions between preemption points do not conflict on any shared resource access, reorder-
ing them produces an equivalent interleaving, i.e., the same program behaviour. Figure 2.4
shows a part of an execution tree in which the operations by threads 1 and 2 are indepen-
dent, and hence only one of the subtrees need be tested. Over the years, researchers have
developed many enhancements to DPOR, such as Optimal DPOR [1], parallelizable DPOR
[71], SAT-directed model checking [19], Maximal Causality Reduction [39], and DPOR for
relaxed memory architectures [78].

Search heuristics. However, even though DPOR can prune an exponential number of
redundant interleavings, the state space size is still exponential in the number of dependent
(conflicting) interleavings. Developers will always want to test larger and larger programs,
so no matter the quality of our reduction algorithm, we must accept that some tests will be
too large to be fully tested in a reasonable time. Hence, recent model checking research
has turned to heuristic techniques for achieving further reduction, optimizing the search to
try to uncover bugs faster (should they exist) at the expense of possibly missing other bugs,
or missing the chance to complete a full verification. Iterative Context Bounding [55] is
a popular such technique which heuristically reorders the search to prioritize interleavings
with fewer preemptions first. This heuristic is based on the insight that most bugs require few
preemptions to uncover, so interleavings with a number of preemptions that exceeds a certain
bound will be de-prioritized, only tested until after all the fewer-preemption interleavings are
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int x = 0; bool y = false; mutex_t mx;

Thread 1 Thread 2
1 x++; // A1
2 mutex_lock(&mx);
3 mutex_unlock(&mx);
4 mutex_lock(&mx);
5 mutex_unlock(&mx);
6 x++; // A2

(a) True potential data race.

Thread 1 Thread 2
1 x++; // B1
2 mutex_lock(&mx);
3 y = true;
4 mutex_unlock(&mx);
5 mutex_lock(&mx);
6 bool tmp = y;
7 mutex_unlock(&mx);
8 if (tmp) x++; // B2

(b) No data race in any interleaving.

Figure 2.5: Data-race analyses may be prone to either false negatives or false positives. Ap-
plying Happens-Before to program (a) will miss the potential race possible between A1/A2
in an alternate interleaving, while using Limited Happens-Before on (b) will produce a false
alarm on B1/B2.

completed. Preemption sealing [6] is another heuristic strategy which restricts the scope of
the search by limiting the model checker to use only preemption points arising from certain
functions in the source code. This allows developers to vastly reduce state space size by
identifying which program modules are already trusted, although it requires some human
intuition to correctly mark those boundaries.

2.3 Data Race Analsyis

Data race analysis [64] identifies pairs of unsynchronized memory accesses between threads.
Two instructions are said to race if:

1. they both access the same memory address,

2. at least one is a write,

3. the threads do not hold the same lock,

4. and no synchronization enforces an order on the thread transitions (the Happens-Before
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relation, described below).

In Figure 2.5, the pairs of lines marked with comments (A1 and A2, B1 and B2) race.
A data race analysis may be either static (inspecting source code) [25] or dynamic (track-

ing individual accesses arising at run-time) [66]. This paper focuses exclusively on dynamic
analysis, so although our example refers to numbered source lines for ease of explanation,
in practice we are actually classifying the individual memory access events corresponding to
those lines during execution. Actually, each x++ statement likely compiles to two separate
load or store instructions, so each of those two instructions from each of the two marked
source lines pairwise will race (except for the two loads, which are both reads).

Variants of Happens-Before. Most prior work focuses on Happens-Before [46] as the
order relation between accesses. [72] and [58] identify a problem with this approach: it
cannot identify access pairs separated by an unrelated lock operation which could race in an
alternate interleaving, as shown in the example program in Figure 2.5(a). We call such unre-
ported access pairs false negatives. [58] introduces the Limited Happens-Before relation, which
will report such potential races by considering only blocking operations like cond_wait
to enforce the order. However, consider the similar program in Figure 2.5(b), in which the
access pair ceases to exist in the alternate interleaving. Limited Happens-Before will report
all potential races, avoiding false negatives [66], but at the cost of necessarily reporting some
such false positives.

In Chapter 3, we use the Limited Happens-Before relation for our analysis. The justifi-
cation for this is that, while stand-alone data-race analyses must avoid inundating the user
with false alarms [25], my work incorporates data-race analysis in an internal feedback loop,
and reports only directly observed failures to the user. Hence, I accept some overhead from
false positives for the sake of more thorough testing.

2.4 Education

In this thesis I will tackle Pebbles and Pintos, two different system architectures used in
educational operating systems courses. This section describes the projects which students
implement and which Landslide tests.

2.4.1 Pebbles

In the course of a semester, students work on five programming assignments; the first two are
individual, and the remaining three are the products of two-person teams. I will focus on the
third and fourth of these, the thread library and kernel, called “P2” and “P3” respectively (the
project numbers start at 0). The other three (a stack-crawling backtrace utility, a bare-metal
game with device drivers, and a small extension to the P3 kernel) are not of concern in this
thesis. The course’s prerequisite is Introduction to Computer Systems [10]. Both P2 and P3
are built using the Pebbles system call specification, outlined in Table 2.1
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System call name Summary
Lifecycle management

fork Duplicates the invoking task, including all memory regions.
thread_fork Creates a new thread in the current task.
exec Replaces the program currently running in the invoking task with a

new one specified.
set_status Records the exit status of the current task.
vanish Terminates execution of the calling thread.
wait Blocks execution until another task terminates, and collects its exit

status.
task_vanish* Causes all threads of a task to vanish.

Thread management
gettid Returns the ID of the invoking thread.
yield Defers execution to a specified thread.
deschedule Blocks execution of the invoking thread.
make_runnable Wakes up another descheduled thread.
get_ticks Gets the number of timer ticks since bootup.
sleep Blocks a thread for a given number of ticks.
swexn Registers a user-space function as a software exception handler.

Memory management
new_pages Allocates a specified region of memory.
remove_pages Deallocates same.

Console I/O
getchar* Reads one character from keyboard input.
readline Reads the next line from keyboard input.
print Prints a given memory buffer to the console.
set_term_color Sets the color for future console output.
set_cursor_pos Sets the console cursor location.
get_cursor_pos Retrieves the console cursor location.

Miscellaneous
ls Loads a given buffer with the names of files stored in the RAM disk

“file system.”
halt Ceases execution of the operating system.
misbehave* Selects among several thread-scheduling policies.

Table 2.1: The Pebbles specifcation defines 25 system calls. Students are not required to
implement ones marked with an asterisk (*), though the reference kernel provides them.
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P2

The thread library project [23] has two main components: implementing concurrency prim-
itives, and implementing thread lifecycle and management routines. The required concur-
rency primitives are as follows:
• Mutexes, with the interfacemutex_lock(mp) andmutex_unlock(mp), whose

functionality is described earlier this chapter. Students may use any x86 atomic instruc-
tion(s) they desire, such as xchg, xadd, or cmpxchg, and/or the deschedule/
make_runnable system calls offered by the reference kernel.

• Condition variables, with the interface cond_wait(cvp, mp), cond_signal
(cvp), and cond_broadcast(cvp). cond_wait blocks the invoking thread,
“simultaneously” releasing a mutex which protects some associated state (atomically,
with respect to other calls to signal or broadcast under that mutex). cond_signal
and cond_broadcast wake one or all waiting threads. Students must use the
deschedule and make_runnable system calls to implement blocking (busy-
waiting is forbidden), and typically include an internal mutex to protect the condition
variable’s state as well. The primary challenge of this exercise is ensuring the afore-
mentioned atomicity between cond_wait’s unlock and deschedule, with respect to
the rest of the interface.

• Semaphores, with the interface sem_wait(sp) and sem_signal(sp) (some-
times called proberen and verhogen in other literature). The semaphore can be initial-
ized to any integer value; if initialized to 1, it behaves like a mutex. Students typically
implement semaphores using mutexes and condition variables, not using atomic in-
structions or system calls directly.

• Reader-writer locks (rwlocks), with the interface rwlock_lock(rwp, mode)
and rwlock_unlock(rwp). modemay be either RWLOCK_READ orRWLOCK_-
WRITE. Behaves as mutexes, but multiple readers may access the critical section si-
multaneously. Students typically implement rwlocks using mutexes and condition vari-
ables, not using atomic instructions or system calls directly.

The interface to each also includes an associated _init() and _destory() function.
The thread lifecycle/management routines are as follows:
• thr_init(stack_size) initializes the thread library, setting a default stack size

to be allocated to new threads.

• thr_create(child_func, child_arg) spawns a new thread to run the
specified function with the specified argument. There is a semantic gap between this
function and the thread_fork system call (which takes no parameters, makes no
changes to the user’s address space, and cannot meaningfully be invoked from C code)
which students must bridge. Returns an integer thread ID of the newly created thread.

• thr_exit(status) aborts execution of the calling thread, recording an exit status
value. The main challenge of this function is to allow another thread to free the memory
used for the exiting thread’s stack, without risking any corruption as long as the exiting
thread continues to run.
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• thr_join(tid, statusp) blocks the calling thread until the thread with the
specified thread ID exits, then returns, collecting its exit status.

Other than thr_init (which is necessarily single-threaded), several concurrency errors
between any two (or all three) of these functions are very common in student submissions.

Finally, students also implement automatic stack growth using the swexn system call,
which is not relevant to this thesis.

P3

In P3, students implement a kernel which provides the same system calls shown in Table 2.1,
previously provided by the reference kernel. Pebbles adopts the Mach [2] distinction between
tasks, which are resource containers, and threads, each of which executes within a single task.
This requires less implementation complexity than the more featureful Plan 9’s rfork [62]
or Linux’s clone models.

Although the internal interfaces are not mandated like they were in P2, all Pebbles kernels
must necessarily contain the same abstract components. These include:
• A round-robin scheduler, including context switching, timer handling, and runqueue

management;

• Some approach to locking, often analogous to P2’s concurrency primitives (henceforth
referred to as “kernel mutexes”), ll and some approach to blocking threads indefinitely;

• A virtual memory implementation, including a program loader;

• Lifecycle management code for creation and destruction of kernel threads and pro-
cesses;

• Other miscellany such as a suite of fault handlers to ensure no user program can cause
the kernel itself to crash.

Because any combination of system calls or fault handlers can be invoked by user programs
simultaneously, concurrency bugs can arise from the interaction of any subset of kernel com-
ponents with each other. The most common bugs studence face arise from the interaction of
some component with itself (e.g., concurrent invocations ofnew_pages/remove_pages
in the same process), or from the interaction between an exiting thread and some other
thread trying to communicate with it (vanish versus, well, anything else, really). The
most difficult concurrency problem in P3 is that of coordinating a parent and a child task
that simultaneously exit: when a task completes, live children and exited zombies must be
handed off to the task’s parent or to the init process, when the task’s parent may itself
be exiting; meanwhile, threads in tasks that receive new children may need to be awakened
from wait. Careless solutions to this problem are prone to data races or deadlocks.

2.4.2 Pintos

The Pintos kernel architecture [61] is used at several universities, including Berkeley, Stan-
ford, and the University of Chicago. The Pintos basecode implements a rudimentary ker-
nel, consisting of a context switcher, round-robin scheduler, locking primitives, and program
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loader. upon which students add more features in several projects. Most relevant to this
thesis, the basecode provides the following functions/libraries, among others:
• Semaphores (the basic concurrency primitive, implemented using direct scheduler calls):
sema_up, sema_down, sema_try_down;

• Locks (which simply wrap a semaphore initialized to 1), lock_acquire, lock_-
release, lock_try_acquire;

• Condition variables (also implemented using scheduler calls): cond_wait, cond_-
signal, cond_broadcast, with the same semantics as Pebbles P2 condvars;

• Basic round-robin scheduling facilities: thread_block (a kernel-level analogue to
Pebbles’s deschedule), thread_yield

• Kernel thread lifecycle management, thread_create and thread_exit, in-
cluding stack space memory management;

• Interrupt and fault handlers;

• A page allocator, palloc_get_page, palloc_get_multiple, palloc_-
free_page, palloc_free_multiple

Both Pebbles and Pintos basecodes offer a standard C library including malloc, string-
formatting, printing, etc.

Although there is some variety in supplemental assignments, all Pintos courses include
three core projects building on the Pintos basecode:
• Threads: Students must implement an “alarm clock” (analogous to Pebbles’s sleep

system call), a priority scheduling algorithm, and a multi-level feedback queue sched-
uler.

• Userprog: Provided with rudimentary virtual memory and ELF loader implementations,
students must implement argument passing and several system calls associated with
userspace programs, including exec, exit, wait, and file descriptor management.

• Filesys: Provided with a simple “flat” filesystem implementation, students must extend
it with a buffer cache, extensible files, and subdirectories.

Some schools further offer a virtual memory project, extending the provided VM with a
frame table and supplemental page table and fault handler [35, 60], or supplemental HTTP
server andmalloc assignments [41]. Being largely architectural/algorithmic projects rather
than concurrency-oriented ones, I am not concerned with these assignments in this thesis.
The main concurrency challenges in Pintos projects arise from the threads and userprog as-
signments: implementing a correct alarm routine, ensuring the priority scheduler remains
safe in the presence of concurrent threads of the same priority, and designing correct inter-
actions between the wait and exit system calls.
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Chapter 3

State Spaces

In this chapter, I will present a new algorithm for model checkers to automatically choose
which preemption points to use to test reasonably-sized state spaces. This is the first of
the three projects I am proposing for this thesis, and has already been published at OOPSLA
2016 [9]. The thesis will largely restate the paper, and also go into more detail on some ideas
which didn’t make it into the paper, such as measuring the variance in each experimental data
series. Here in the proposal I will simply summarize the content of the paper.

3.1 Motivation

This project is motivated by my experience contributing to Parrot [16], a (partially) de-
terminizing runtime for multithreaded programs which allowed some nondeterminism in
performance-critical sections to achieve high performance. We combined Parrot with dBug
[68], a model checker, to check the correctness of the nondeterministic sections of programs
which remained. Unfortunately, dBug was able to finish a state space for fewer than half
of these programs in our evaluation in a 24-hour time limit, even after the reduction Parrot
provided. In that project, our model checker was limited to a fixed set of preemption points;
in other words, it would always test different programs with the same granularity of thread
interleavings. Consequently, the resulting completion time for each test would vary wildly,
unpredictably falling on one side or the other of our arbitrary time limit.

I argue that this is the wrong usage model for model checkers to present to users who
wish to test for concurrency bugs. Users want concrete bug reports (obviously), or in absence
of those, they want some assurance of the program’s correctness. However, users do not live
in a∞-sized fantasy land [74], and are generally willing to wait only for some fixed finite
time. If full verification of all possible interleavings is not possible within that time, a partial
verification guarantee for some smaller state spaces is better than an “I don’t know” verdict
for one single state space.
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3.2 Design

Hence, I propose a more user-friendly framework for model checking, in which many differ-
ent state spaces are tested, and higher priority is given to state spaces which appear possi-
ble to complete before the user’s patience runs out or their project is due. At the heart of
this framework is an algorithm I call Iterative Deepening, by analogy with the eponymous
technique in chess artificial intelligence [45]. In both chess and model checking, Iterative
Deepening makes progressively “deeper” searches of an exponentially-sized state space, re-
peatedly increasing the size of a subset state space to be explored, until a prescribed time limit
is exceeded. While in chess, the size bound is determined by a single depth parameter, the
size of model checking state spaces is determined by any number of different combinations
of preemption points being enabled or disabled.

Quicksand. I have built a wrapper program, called Quicksand, which manages the ex-
ecution of multiple simultaneous Landslide instances. Quicksand relies on state space esti-
mation [70] to decide at runtime how to prioritize these jobs. Landslide can provide these
estimates to a reasonable accuracy before actually testing a large fraction of interleavings
for a given state space. Quicksand seeks to maximize completed state spaces, as each one
serves as a guarantee that all interleavings possible with its preemption points were tested.
Moreover, because Iterative Deepening treats the set of preemption points as mutable, it can
add new preemption points reactively based on any runtime analysis. Landslide begins with
a statically-coded set of synchronization API preemption points (such as used by dBug [68]),
and during testing, runs a dynamic data-race analysis [24, 58, 66] to identify new candidate
preemption points.

Iterative Deepening. With a limited CPU budget, Quicksand must avoid running tests
that are likely to be fruitless. Hence, it separates the available preemption point sets into a
set of suspended jobs (partially-explored state spaces with high ETAs), and a set of pending
jobs (untested ones with unknown ETAs). When Landslide reports an ETA exceeding the time
limit, Quicksand compares with other pending and suspended jobs to find another one more
likely to complete in time. The Iterative Deepening algorithm implements this comparison,
presented formally in Algorithm 1. Its main feature is understanding that when one Landslide
instance is testing a superset of preemption points compared to another, the state space is
correspondingly guaranteed to contain a superset of possible thread interleavings.

Data-race preemption points. As mentioned, runtime data race analysis produces new
potential sites at which preempting the program may produce new behaviour. With Iterative
Deepening, this is a simple matter of creating a new state space with an additional preemp-
tion point enabled on the racing instructions by each thread, shown formally in Algorithm 2.
The new state spaces may expose a failure, in which case Landslide reports a data-race bug,
or complete successfully, indicating a benign or false-positive data race. They may also un-
cover a new data-race candidate entirely, in which case Quicksand iteratively advances to a
superset state space containing PPs for both racing access pairs. Being constrained by a CPU
budget, time may run out before completing a data race’s associated state space, in which
case Quicksand reports a potential false positive that the user must handle.
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Algorithm 1: Suspending exploration of a state space in favour of a potentially smaller
one.

Input: j0, the currently-running job
Input: P , the list of pending jobs, sorted by decreasing heuristic priority
Input: S , the list of already-suspended jobs, sorted by increasing ETA
Input: T , the remaining time in the CPU budget

1 if ETA( j0) < HeuristicETAFactor × T then
2 return j0 // Common case: job is expected to finish.
3 end
4 foreach job jP ∈ P do
5 // Don’t run a pending job if a subset of it is already suspended; its ETA would be

at least as bad.
6 if ∀ jS ∈ S , PPSet( jS) 6⊂ PPSet( jP) then
7 return jP
8 end
9 end

10 foreach job jS ∈ S do
11 if PPSet( j0) 6⊂ PPSet( jS) ∧ ETA( j0) > ETA( jS) then
12 // If a subset of jS is also suspended, don’t run the larger one first.
13 if ∀ jS2 ∈ S , PPSet( jS2) 6⊂ PPSet( jS) then
14 return jS
15 end
16 end
17 end
18 return j0 // ETA( j0) was bad, but no other j was better.

3.3 Verification

3.3.1 Convergence of Iterative Deepening

When the a test’s state spaces are small enough that Quicksand can exhaustively check all of
them within a given CPU budget, the resulting verification claim turns out to be equivalent
to a naïmodel checker which preempts on every memory access. In this way, the Iterative
Deepening algorithm provides the “best of both worlds” for the tradeoff mentioned in Sec-
tion 3.1: when tests are too large, Quicksand falls back on prioritization heuristics to find
bugs quickly; when tests are tractable, Quicksand’s verification is equal to the strongest from
any single-state-space technique.

The theorem statement is as follows:
Theorem 1 (Convergence). If a bug can be exposed by any thread interleaving possible by
preempting on all instructions during a specific test, Iterative Deepening will eventually test an
equivalent interleaving which exposes the same bug.

The proof is available at [8].
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Algorithm 2: Adding new jobs with data-race PPs.
Input: j0, the currently-running job
Input: J , the set of all existing (or completed) jobs
Input: α, an instruction reported by the MC as part of a racing access pair

1 if ∀ j ∈ J , PPSet( j0) ∪ α 6⊆ PPSet( j) then
2 AddNewJob(PPSet( j0) ∪ α, HeuristicPriority(α))
3 end
4 if ∀ j ∈ J , PPSet( j) 6= {yield,α} then
5 AddNewJob({yield,α}, HeuristicPriority(α))
6 end

3.3.2 Pruning False Positives

I have also proved a (somewhat less remarkable) theorem concerning the soundness of a new
tactic for pruning certain types of false-positive data race candidates (under Limited HB). A
“malloc-recycle” false positive occurs when two threads seem to race on the same memory
address, but only because the malloced block containing that address was freed and
reallocated in between. If the transitions of the two threads were reordered, the address
collision would disappear and there would be no race. The proof is available at [8]; the
theorem statement is:
Theorem 2 (Soundness of eliminating malloc-recycle candidates). If a malloc-recycle candi-
date is not a false positive, DPOR will test an alternate thread interleaving in which the accesses
can race without fitting the malloc-recycle pattern.

3.4 Evaluation

I evaluated Quicksand on the product of the following two questions: For an arbitrary fixed
CPU budget...

• ...does Quicksand find more bugs than a single-state-space (SSS-MC) approach...

• ...does Quicksand provide more total verifications than SSS-MC...

...where the SSS-MC control is configured to preempt...
• ...on synchronization API boundaries only?

• ...on every single shared memory access?
I also conducted a separate experiment focused on the issue of nondeterministic data-

races: candidates that require model checking to expose in the first place, which would be
false-negatives during a single-execution analysis.

I also also ran several different configurations of Quicksand in each of these experiments,
alternately using Limited Happens-Before or Pure Happens-Before for its data-race analysis.
Both of these cases outperformed all the other cases of SSS-MC, so this was mostly useful for
comparing the two techniques against each other.
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3.4.1 Setup and Test Suite

The test suite for all these experiments was 157 student projects: 79 P2 thread libraries from
CMU, and 78 Pintos kernels from Berkeley and the University of Chicago (Section 2.4). I
paired each submission with several test cases, 6 for each P2 and 3 for each Pintos. In total
there were 629 unique pairs of a test case and a student project, henceforth called simply
“tests”. (Savvy mathematicians will note that doesn’t quite add up – some of the Pintoses
were incomplete, and could only run 1 or 2 tests.)

For each of the 629 tests, I ran Quicksand and SSS-MC for 10 CPU-hours each in each of
the configurations named above. Quicksand, being inherently parallel, was given 10 CPUs
for 1 wall-clock hour, while SSS-MC control experiments were given 10 wall-clock hours on
1 CPU (which is being charitable: comparing CPU-time gives the controls perfectly efficient
hypothetical scaling from parallelization).

3.4.2 Results

The results are shown in Figure 3.1. The first 3 graphs all plot a cumulative distribution of
their respective achievements, with elapsed time on the X-axis (as a log scale, to emphasize
detail in the “easy” tests). The captions largely explain each result. To summarize, Quicksand
outperforms the state-of-the-art on all metrics, excepting the impact of parallelization start-up
overhead for very small CPU-time limits. The Limited HB data-race strategy generally finds
bugs faster when they exist, but suffers on total verifications compared to Pure HB, because
of its false positives which create excess redundant state spaces for Landslide to check.
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(a) Bugs found as a function of elapsed CPU
time. After the break-even point at ~200
seconds, Quicksand outperforms all control
experiments.

(b) Bugs found by elapsed wall-clock time.
This presentation emphasizes that the
“break-even” point in (a) is just an artifact
of parallelization start-up overhead. Quick-
sand is parallelized tenfold; the vertical line
indicates its 1 hour limit.

(c) Total verifications provided as a function
of CPU time. The lines for SSS-MC-ICB and
SSS-MC-DPOR are artificially penalized to
exclude tests with data races, as preempting
on sync APIs alone is not sufficient to ver-
ify those. SSS-MC-Shared-Mem, however, is
not penalized thus; its failure here is due to
the massive computational overhead from so
many preemption points.

(d) Plot of how many data-race bugs were
found using “single-pass” data-race candi-
dates versus “nondeterministic” ones. With
both Limited and Pure HB approaches, the
MC’s ability to find new data-race candidates
in obscure thread interleavings led to more
bugs found in all test cases. Between Limited
and Pure HB, Pure HB is more reliant on this
phenomenon, as Limited HB can often find
more potential races on the first pass.

Figure 3.1: Many kernels died to bring us this information.
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Chapter 4

Pebbles

This chapter proposes my plan to evaluate Landslide’s effectiveness as a debugging aid for
students in an educational setting. This is the second of the three projects I am proposing for
this thesis, and is currently ongoing work.

4.1 Motivation

In my MS thesis [7], I solicited students at CMU’s Operating Systems Design and Imple-
mentation class (henceforth, “15-410”) to volunteer at the end of the P3 project to annotate
their kernels and try debugging them with Landslide. However, the annotation burden un-
dermined Landslide’s purpose: the only students willing to spend free time on manual in-
strumentation were biased to be those who were already doing well in the class, and hence
least likely to benefit from Landslide’s debugging potential. (Actually, even the best 15-410
students still have concurrency bugs, but in principle, an educational tool should reach the
more struggling students, the so-called “middle” and/or “bottom” of the class.) Requiring
annotations hurts Landslide’s case as a grading tool, as well: TAs need to understand the
kernel to begin with in order to annotate correctly, and while achieving such understanding
they may as well grade it by hand, as before.

Since then, I’ve extended Landslide to support testing Project 2 (P2) thread libraries (Sec-
tion 2.4.1) as well. Because P2 mandates specific function names for the project’s internal
APIs – most importantly, for the concurrency primitives – Landslide can automatically anno-
tate arbitrary student implementations with no manual effort required of the user (whether
student or TA). The addition of Quicksand and Iterative Deepening (Chapter 3) partly ful-
fills this purpose, freeing student attention from the issue of which state spaces to test. This
chapter will detail my further techniques and evaluation which are specific to educational
use.
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4.2 Implementation Details

Every stateless model checker must make some assumptions about the tested programs’ con-
currency model [56]. However, arbitrary programs may break conventional disciplines of
concurrent programs, while still being bug-free. For example, thread communication via
ad-hoc yield loops may appear to automated tools as a possible infinite loop, livelock, or
deadlock. This is especially true of student code, written by people who are just learning
concurrent programming discipline for the first time, and/or written under the time pressure
of a project deadline. To be an effective tool for struggling students, a model checker should
somehow coax adversarial programs to fit its concurrency model, to effectively test for real
bugs, rather than rejecting them outright on some stylistic or disciplinary grounds.

Fully-automatic instrumentation of student P2s has been no walk in the park. I have
equipped Landslide with several powerful algorithms and heuristics for handling the most
common anti-patterns in student submissions.
• Yield-blocking. Landslide recognizes open-coded busy-wait loops used for ad-hoc syn-

chronization, and is able to treat threads as blocked (or “disabled” in model-checking
parlance), avoiding getting stuck in an infinitely-long interleaving (or “cyclic state
space”) which should never arise during normal execution. The heuristically-driven
algorithm is as follows:

Whenever a thread performs a yield, xchg, or other atomic instruction, Land-
slide increments a per-thread counter to track its (supposed) busy-wait loop iter-
ations. A thread’s counter is reset any time it performs some “interesting” activity
not likely to appear in a true busy-wait loop: any condvar, semaphore, or rwlock
invocation (but not mutexes), and the beginning or end of any thread library func-
tion (create, join, or exit). 1 The consequence of any this heuristic’s inaccuracy is
that an unusual wait-loop might be classified as an infinite loop bug anyway.

When a thread’s loop counter reaches some heuristic limit (10 for yields, 100
for xchgs), Landslide speculatively marks the thread blocked (or “disabled”, in
model-checking parlance), just as though it had invoked deschedule. It also
retroactively disables that thread at all preceding yields/xchgs in that se-
quence, which prevents DPOR from trying to use each as a preemption point,
and avoids a state space explosion (by a factor of the heuristic yield limit). 2

When retroactively disabling a thread across all its preceding loop iterations,
Landslide’s state space estimator must account for the “pruning” of duplicate sub-
trees at those (now disabled) preemption points. If in any previous thread in-
terleaving, DPOR tagged the now-yield-blocked thread to interleave at another
thread’s preemption point, the estimator would have included that potential sub-
tree in its computation of how much unexplored state space exists. Accordingly,
in this case Landslide will invert the estimation algorithm, including propagating
the reduced subtree size all the way to the state space’s root. 3

1Implemented in check_user_yield_activity and check_user_xchg in user_sync.c.
2Implemented in update_blocked_transition in user_sync.c.
3Implemented in untag_blocked_branch in estimate.c.
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Landslide can precisely identify when another thread may trigger the yield-blocking
one to fall out of its loop, by analyzing the shared memory conflicts involving only
accesses performed in the loop. At any such memory conflict, Landslide will reen-
able the yielding thread. (If the other thread’s access does not fulfill the yielding
thread’s wait condition, the latter will just re-trigger the heuristic and become
blocked again.) 4

This approach is similar to the Fair-Bounded Search algorithm in [14], although it
avoids a major assumption of the latter (threads yield if and only if not making
progress), and also avoids the need to iteratively deepen the yield bound by instead
fixing it as a heuristic constant.

• False-positive deadlock avoidance. In contrast to its treatment of data races, Land-
slide must never report a false-positive bug. If its heuristics falsely identify a thread as
blocked, and all other threads are truly blocked, waiting on some progress from that
thread, Landslide would report a deadlock bug, and confuse students horribly.

The yield-loop heuristic assumes that “too many” yields or atomics should not arise
during normal, non-looping execution of thread library routines. Though extremely
rare, this assumption can be violated by an adversarial student submission. More of-
ten, Landslide can falsely block threads in the special case of mutex_test (see [9]),
where it uses preemption points within the implementation of mutex_lock itself.
False deadlocks can also arise from the heuristic blocking of ICB [55] (used in Quick-
sand’s control experiments, Section 3.4).

When a deadlock arises under conditions where one or more threads are heuristically
blocked, Landslide attempts to refute it as a false positive by artificially unblocking all
heuristically-blocked threads. 5 Landslide then repeats this process a heuristic constant
number of times (128), allowing the program that many chances to make progress
before proclaiming deadlock. 6 Note that this heuristic cannot miss true deadlocks as
false negatives: if the deadlock is true, each thread will immediately trigger the yield-
blocking heuristic again, bringing the system back into deadlocked state as many times
as necessary to exhaust the heuristic limit.

• Lock hand-off. A common, though discouraged, idiom for implementing thread de-
struction involves one thread “handing off” ownership of a mutex to another. That
thread will then release the lock with no corresponding acquire in its own execution.
Although Landslide cannot easily recognize at what point the latter thread’s accesses
are protected by that lock for the sake of data-race analysis, potentially leading to false
positive races, it must release the lock in its bookkeeping to avoid false negatives if any
later access that should be protected by that lock isn’t. When releasing a lock, if absent
from the current thread’s lockset, Landslide searches the locksets of all other existing
threads, and releases it there. Landslide can instead optionally be configured to treat

4Implemented in check_unblock_yield_loop in user_sync.c.
5If any threads are ICB-blocked, I prioritize waking those before trying to wake any yield-blocked threads.

Waking all threads at once here can lead to unsoundness.
6Implemented in try_avoid_fp_deadlock in arbiter.c.
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lock hand-off as a style warning or as an outright bug, as a matter of discipline. 7

However, some of the less common offenses are both more difficult to handle algorith-
mically, and also more worrying from a pedagogical point of view. For the following cases,
I configured Landslide to abort, and warn the student that they must find a better solution
before it could test their code (in other words, I promoted these patterns to be treated as
bugs).

• Busy-wait loops containing neither yield nor xchg (nor any other atomic instruc-
tion), such as while (!other_thread_ready) continue;. This blurs the
line between anti-pattern and concurrency bug: because it does not yield the CPU, a
uni-processor machine must wait for the next timer tick (several milliseconds!) before
making any progress; also, because it does not use atomic instructions, an optimizing
compiler may reorder or even delete the loop’s accesses. Landslide also cannot easily
identify it as similar to message-passing, appearing indistinguishable from a thread-
local infinite computation, which is of course impossible to judge for halting [73].
In such a case, Landslide will issue a bug report with the special message: I have run
a loop in [function name] an alarming number of times. This version of Landslide cannot
distinguish between this loop being infinite versus merely undesirable. Please refer to the
“Synchronization (2)” lecture.

• Recursive mutex use (i.e., locking the same mutex twice in the same thread, then
subsequently unlocking it twice). While it would not be difficult for Landslide’s lock-
sets to support recursive locking (using a nesting counter instead of a boolean flag), that
would assume the corresponding mutex implementation provides the same semantics,
which is risky business with student code. Furthermore, recursive locking is not an
obvious solution to any of P2’s challenges; far more often, it arises when a student’s
mutex tries to malloc some internal state, which itself requires a mutex for safe
allocation, which can lead to stack overflow and a crash.

In such a case, Landslide will issue a bug report with the special message: This version
of Landslide cannot debug recursive implementations of mutex_lock. Please examine this
stack trace and determine for yourself whether it indicates a bug.

4.3 Landslide as a Debugging Tool

In the Spring 2015, Fall 2015, and Spring 2016 semesters, I’ve made Landslide (with Quick-
sand) available to 15-410 students during the last week of P2. I introduced stateless model
checking in a guest lecture given to the class, and required students to pass the thread library
hurdle [23] to ensure a minimum of basic functionality necessary to use Landslide.

To analyze its effectiveness as a debugging tool for students, I configured Landslide to
record a snapshot of the inputs and results of each use by the students: which options were
used (test program and time limit), a snapshot of the student’s code, and the result of the

7Implemented in lockset_remove in lockset.c.
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test (completed, timed out, bug found, or ctrl-C’ed). I manually interpreted the snapshots to
determine:
• How many unique bugs the student found (discounting multiple runs that produced

“the same” bug);

• How many of those bugs were deterministic versus concurrency bugs (did Landslide
find the bug on the first interleaving or did it need to test multiple);

• How many of each category of bug the students fixed (determined when a subsequent
run of Landslide on the test case failed to find the bug again).

Results – bugs found. Of 90 two-student groups in those 3 semesters, 47 tested their
thread libraries with Landslide. Table 4.1 shows that Landslide found in total 44 deterministic
bugs and 85 concurrency bugs. It found at least one concurrency bug for 32 groups (68%),
24 of whom (51%) were able to fix at least one bug, verifying their update with a succesful
re-run of the same test. 8 I view this as a positive result – among other statistics, Landslide
was able to help the majority of students debug, among those who found concurrency bugs
at all – although it is difficult to control for the amount of time students spent with Landslide
that would otherwise have been spent on old-fashioned stress testing.

Number of groups
Number Deterministic bugs Concurrency bugs
of bugs found fixed found fixed

0 27 32 15 23
1 6 5 7 11
2 9 6 12 8
3 2 1 7 2
4 1 1 3 1
5 2 2 2 1

11 1 1
Total bugs 44 34 85 53

Table 4.1: Summary of how many bugs were found and/or fixed by how many groups. Each
column counts how many groups found/fixed the number of bugs in each row; for instance,
two groups found 5 concurrency bugs, one of which fixed all 5.

Results – impact on grades. Next, I investigated the impact Landslide ultimately had on
students’ performance. I collected the ultimate P2 and P3 grades from the last 6 semesters,
forming three categories: students from the past 3 semesters who volunteered to use Land-
slide, students from those semesters who opted out, and students from the other 3 semesters,
for whom Landslide was not available at all. I hoped to measure a correlation between use
of Landslide and ultimate P2 grades, which would show that it helps students submit more

8The table’s data presentation is somewhat confusing: the dependent columns count the number of groups,
categorized by how many bugs they found, not the raw number of bugs, instead indicated in the “Total bugs”
row at the bottom. So, the number of total bugs is the sum of the products between each cell in that column
and its corresponding number of bugs, e.g., 44= 27× 0+ 6× 1+ 9× 2+ 2× 3+ 1× 4+ 2× 5. I’ll try to find a
better way to present this data in the thesis.
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correct P2s, and/or a correlation with ultimate P3 grades, which would (tentatively) show
that it teaches better ways of thinking that students retain for future projects (i.e., measuring
actual learning).

Unfortunately, this turned out to be a negative result, as shown in Figure 4.1. The distri-
bution of Landslide users’ ultimate grades is indistinguishable from that of students for whom
Landslide was unavailable. While there was a 3% increase in P2 grades between opt-out-ers
and Landslide users, it’s prone to selection bias: perhaps those who opted out of Landslide
were already the worst of the class who simply didn’t have any free time for it. The distri-
bution of P3 grades is indistinguishable as well. In the thesis, I will discuss possible factors
contributing to this failure, and how they might be controlled for in future work.

Figure 4.1: Distribution of P2 (thrlib) and P3 (kernel) grades among students who did or
didn’t use Landslide.

Future work. One evaluation question remains which I will answer in the thesis: what
is the accuracy of Landslide’s automation heuristics? In other words, were false-positive
infinite loops or deadlocks ever reported where Landslide failed to recognize an ad-hoc syn-
chronization? (I expect a near 100% success rate, having tuned the heuristics by hand on an
(independent) set of P2 submissions already.) Finally, I will conclude this chapter in the the-
sis by discussing how future work could adapt Pebbles’s interface to support fully-automatic
model checking without compromising the educational value of P3.
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Chapter 5

Pintos

The Pintos architecture [61], outlined in Section 2.4.2, provides an opportunity to test Land-
slide’s pedagogical mettle beyond CMU’s walls. Supporting Pintos as well as Pebbles will
broaden Landslide’s impact considerably, as Pintos is already used by many more universities
than Pebbles.

The scheduler and concurrency primitives which Pintos’s basecode provides limit the re-
maining concurrency-critical code left for students to write, which limits the degree to which
Landslide can test student submissions. This is in contrast to the Pebbles assignments at
CMU, in which students must implement all the functionality listed in Section 2.4.2. On the
other hand, the upside of Pintos providing substantially more basecode than Pebbles is that
most, if not all, of Landslide’s kernel instrumentation can be done automatically, using the
names of the core scheduler functions already provided. For the experiments in Chapter 3,
I already implemented rudimentary support to test Pintos kernels, but more remains to be
done.

5.1 Existing Progress

So far, just enough Pintos support exists to have run Chapter 3’s experiments. This includes:
• a new set of annotations (e.g., mutex_lock in Pebbles is now called sema_down;

• handling several quirks of the basecode’s scheduling behaviour;

• extending the heap tracker to handle Pintos’s page allocator palloc as well as the
kernel malloc, as well as the fact that kernel memory is not direct-mapped like in
Pebbles;

• new thread-liveness code to detect when a test case terminates;

• skipping some busy-wait loops in the boot sequence used for device communication;

• an extra fall-back case in Landslide’s timer injection algorithm;

• and extending the lock-set and vector-clock analyses to include disabling interrupts.
All these features apply to behaviours included with the stock base-code, so should apply
generally to all but the most adventurous student implementations.
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5.2 Proposed Work

There are still a few cases where the existing instrumentation is not fully general. When
preparing Chapter 3’s experiments, I manually adjusted some student submissions to be
compatible with Landslide’s existing annotation process. In order to distribute Landslide
for student use beyond CMU, it will need to support these cases automatically. Examples of
such ad-hoc fixes I would need to automate include:
• Allowing for the priority scheduler’s runqueues to be implemented as an array of queues,

rather than the single queue head as provided in the basecode.

• Insert the tell_landslide_sleeping annotation more intelligently than look-
ing for a list_insert_ordered call (a basecode function which most, but not
all, students use).

• Some versions of the basecode distribute a sema_up implementation which yields
unconditionally, which Landslide must bypass.

• Some students use timer_sleep or while (!flag) continue when they
should use yield, which can lead to false-positive deadlocks if not automatically
replaced.

When fixing my sample of Pintoses by hand, there were also myriad deterministic bugs, such
as use-after-frees e.g. arising from unsafe strlen calls. As with Pebbles student experi-
ments, however, I intend the students to encounter such bug reports and fix them on their
own, despite not being concurrency bugs. Automatically ensuring stable determinized exe-
cution of arbitrary student code is beyond the scope of this thesis (if not outright impossible).

5.2.1 New emulation platform

Most practically, I will need to free Landslide from its dependence on Simics, which requires
paid licenses for its use. Other candidate emulation (simulation or virtualization) platforms
for Landslide include Bochs, QEMU, VMWare, and Xen. I have begun work porting Landslide
to Bochs, which is open-source and provides both instruction and memory tracing, and which
the Berkeley, Stanford, and U. of Chicago classes already use as their simulator.

5.2.2 Experimental goals

I aim to run a similar user study with Pathos students as I’ve done so far with Pebbles. After
finding one or more Pintos-using classes at other schools to collaborate with, I will distribute
Landslide to the students during the ’threads’ and ’userprog’ projects, have them run a similar
suite of tests to those in Chapter 3’s experiments, and collect and analyze the results. I plan to
analyze the overall incidences and types of bugs found between Pebbles and Pintos popula-
tions, which will perhaps shed light on the advantages and/or shortcomings of either project,
and lead to recommendations for improving either project’s educational value (whether by
incorporating MC or otherwise).
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Chapter 6

Transactional Memory

In this chapter I propose to extend Landslide’s concurrency model to support Transactional
Memory (TM) [37]. This is the last of the four projects I am proposing for this thesis and so
far exists only in dreams.

TM is a mechanism by which programmers may avoid conventional concurrency primi-
tives, optimizing for performance in the common case when threads do not conflict. A trans-
actional program surrounds its critical section(s) with transaction begin/end statements,
which ensure that no other thread can observe an intermediate state during the transaction.
If a conflict is observed, the transaction aborts, rolling the program back to the transaction’s
initial state, and executing an optional back-up code path. The programmer may also ex-
plicitly abort the transaction using an abort statement. An example transactional program is
shown in Figure 6.1 (slightly extended from the prior example in Section 2.1.3).

TM may be implemented either in hardware (HTM) [36], or in software (STM) [3].
Though their interfaces to the programmer are similar, their semantics demand a slightly
different treatment from Landslide’s perspective. The key difference is that HTM transac-
tions may fail for any reason, beyond the scope of the program’s behaviour, such as the CPU’s
cache being too full. STM transactions, on the other hand, will fail only if an actual conflict
is observed from another thread. Consider again the example program: The transactions of
the two threads do not conflict, so they may abort only under HTM. However, when they
abort for a reason other than a conflict on foo or bar, the assertions in the backup code
will fail. Hence, some programs which are correct under STM may contain bugs under HTM.

Supporting TM in Landslide will consist of two major steps: extending the concurrency
model to incorporate failure injections and extending DPOR to determine when transaction
aborts are possible. Failure injections can model the semantics of transaction aborts, as each
_xbegin() call can nondeterministically return either success (_XBEGIN_STARTED)
or some abort failure code (such as _XABORT_CONFLICT or _XABORT_CAPACITY).
Moreover, the extent of this nondeterminism depends on the underlying TM mechanism,
which I will discuss shortly. (The _XABORT_EXPLICIT code is never generated nonde-
terministically but rather by a user invocation of _xabort() from within the success path.)
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Initially int foo, bar = 0; mutex_t m;

Thread 1
if (_xbegin() ==

_XBEGIN_STARTED) {
foo++;
_xend();

} else {
mutex_lock(&m);
assert(foo > 0 ||

bar > 0);
mutex_unlock(&m);

}

Thread 2
if (_xbegin() ==

_XBEGIN_STARTED) {
bar++;
_xend();

} else {
mutex_lock(&m);
assert(foo > 0 ||

bar > 0);
mutex_unlock(&m);

}

Figure 6.1: Example transactional program, written using GCC’s transactional memory com-
piler intrinsics [29]. These transactions would only abort if backed by HTM, while under
STM their disjoint memory accesses guarantee them to succeed.

6.1 HTM

6.1.1 Mutex Isomorphism

When modelling TM in Landslide, we do not care about fidelity to performance characteristics
or non-observable roll-back semantics. The goal of model checking is to exercise all observ-
able program behaviours, so Landslide can model the execution of transactional programs
using existing primitives if possible. In the first stage of the project, I will prove that a trans-
actional program using is equivalent to one with a global mutex swapped for its xbegins
and xends. Here I will assume a retry-only policy for handling aborts; in other words, trans-
action aborts could never direct the program to execute a different logic branch entirely. This
will allow Landslide to test all observable TM behaviours using its existing infrastructure for
mutexes, rather than relying on the platform providing accurate TM emulation.

6.1.2 Abort Nondeterminism

Next, I will extend the concurrency model to support the nondeterminism arising from trans-
action aborts. During execution, Landslide will inject a failure to force threads to branch
into backup code paths. Failure injections add an extra “dimension” of non-determinism: at
each xbegin operation which is a preemption point, Landslide may force a normal con-
text switch to re-interleave threads, or it may inject a transaction abort to test the backup
code. (This also avoids the need to speculatively execute and/or roll-back failing transac-
tions. Being not testing the TM implementation itself, I’ll assume it correctly rolls-back failed
transactions non-observably.)

HTM transactions can fail for several reasons outside of a programmer’s control, includ-
ing cache evictions, false sharing (disjoint simultaneous accesses which nevertheless share
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Figure 6.2: State space corresponding to the program in Figure 6.1. Conflicting transitions
are marked in bold; transitions which are independent from their predecessors are italicized.
End states colored the same (the cyan and yellow ones) are equivalent.

the same cache line), and page faults or interrupts [48]. For example, in Figure 6.1, the
globals foo and bar are likely to share the same cache-line and lead to false sharing con-
flicts. Accordingly, Landslide’s DPOR implementation will consider failure injections always
“enabled” under HTM.

6.1.3 Reduction Challenge

I’ve identified at least one case under abort nondeterminism in which the current implemen-
tation of DPOR will fail to achieve a possible reduction. Let 1A, 1B, 2A, and 2B denote the
transitions which execute the if and else branches by each thread in Figure 6.1 respec-
tively. Note that 1A conflicts with 2B (thread 1 writes foo; thread 2 reads). and 1B with
2A (same for bar). Meanwhile, 1A and 2A are independent (disjint writes to foo or bar
only), as are 1B and 2B (reads versus reads). Figure 6.2 provides a visual aid.

There are two possible reductions: pruning 2A, 1A after testing 1A, 2A, and pruning 2B, 1B
after testing 1B, 2B; in other words, branches 5 and 8 can be skipped. However, our current
DPOR implementation will tag the 2B subtree to explore after observing the conflict in branch
2 (likewise the 2A subtree from branch 3), but then have no memory of whether it was
subsequently supposed to run 1A or 1B, and have to try both. To fix this will require an
optimization analogous to “sleep sets” [28]: the tag to explore the 2A or 2B subtree must
include an annotation to remember whether or not the conflict arose after a failure injection
in 1.

6.2 STM

STM transactions abort only when multiple threads conflict directly on the same memory
address(es) – the same sense of conflict that DPOR already considers. Because Landslide
already computes memory conflicts among each pair of transitions, it will be natural to extend
DPOR to consult the conflict set when deciding whether to exercise a failure injection. I will
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extend Landslide in this manner, and even support programs with both types of transactions,
as long as the different xbegin invocations are suitably annotated.

6.3 Hybrid HTM/STM

A recent paper [12] introduced several ways of combining HTM and STM in the same pro-
gram, nesting transactions of different types. It presented several semantics for such trans-
actions transactions, the most interesting of which being “open nesting”, in which a nested
transaction’s state becomes visible to other threads even during a containing transaction.
That state can then be rolled back if the latter aborts. I plan to develop a theoretical model
for how such transactions would affect Landslide’s concurrency model, and justify its correct-
ness as an extension of the HTM or STM models alone.

6.4 Evaluation Plan

Because this will be the first model checker for testing transactional programs (to my knowl-
edge; see Section 7.4), I don’t expect any prior work will exist for a direct performance com-
parison. Nevertheless, I would pose two main questions to evaluate Landslide’s proposed TM
support:
• Does Landslide model TM concurrency accurately enough to find all the bugs and verify

all the correct programs in a benchmark suite?

• To what degree can an improved DPOR reduce these programs’ state spaces? Assuming
I achieve the reduction challenge (Section 6.1.3), how much benefit is conferred, and
how commonly across different types of programs?

Part of this work will be assembling a benchmark suite itself. I will investigate the bench-
marks used in the Hybrid HTM/STM paper [12] (porting them to C if necessary), as well as
more from various personal projects found online such as [67] and [18].
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Chapter 7

Related Work

This chapter provides a brief tour of the related work.

7.1 History of Stateless Model Checking

Hall of Fame. Stateless model checking dates back to Verisoft [30], the 1997 tool which
first attempted to exhaustively explore the possibile ways to interleave threads. Since then,
researchers have built many tools along the same lines to test many kinds of programs. The
most popular model checker, according to citation count, is Microsoft Research’s CHESS [56],
a checker for userspace C++ programs which preempts at synchronization APIs. Other check-
ers include MaceMC [43], MoDist [75], SAMC [47], ETA [69], each of which limit thread
communication to the boundaries of a message-passing API; dBug [68], another CMU orig-
inal, similar to CHESS; and finally SPIN [38] and Inspect [76] which can preempt at any
shared variable access. Perhaps by now, Landslide itself deserves a spot on this list: I first
introduced it in my MS thesis [7], and it is most notable for checking all shared memory
accesses and supporting kernel-level code through the use of a simulator.

Search Strategies To date a number of techniques have been proposed to mitigate expo-
nential explosion, the Sisyphean rock of stateless model checkers. Dynamic Partial Order Re-
duction (DPOR) [28], the baseline approach, prunes redundant interleavings by identifying
independent thread transitions which can commute without changing the program state. It
is a sound reduction algorithm, meaning it will never fail to test a possible program behavior,
despite skipping many execution sequences. DPOR has since been extended in several ways:
a provably optimal version which guarantees to explore no more than one interleaving from
each equivalence class [1], and an extension of the algorithm to include nondeterminism
arising from weak memory models [78]. Recently, SATCheck and Maximal Causality Reduc-
tion have emerged as better-performing alternatives to DPOR. These algorithms use SMT
solvers [17] to identify additional equivalences by analyzing the values read and written by
each memory access.

Other theoretical advances. A number of other techniques address the problem that
even with DPOR, a state space may be too large. Iterative Context Bounding (ICB) [55] is a
search ordering heuristic which prioritizes interleavings with fewer preemptions, according

35



April 4, 2017
DRAFT

to the insight that most bugs require fewer preemptions to expose. Bounded Partial Order
Reduction [14] adapts DPOR to be soundly compatible with ICB. Preemption Sealing [6]
allows programmers to exclude preemption points arising from trusted source code modules,
reducing the state space by limiting the scope of the test. Probabilistic Concurrency Testing
[11] eschews DPOR’s depth-first approach entirely (as well as any potential for completing
the state space), randomly sampling a broad cross-section of the state space and providing
probabilistic bounds on uncovering bugs.

7.2 Concurrency in Education

I built Landslide upon the Pebbles [22] curriculum and concurrency model, naturally, as
it is closest to home. Pintos [61] has recently emerged as the most popular educational
kernel (by count of top CS schools in the USA who teach by it); it trades off the prevalence
of its concurrency challenges to cover various OS topics more broadly, especially advanced
scheduling algorithms. Pintos is the stand-alone evolution of its predecessor, Nachos [13],
which originally ran as a UNIX process with simulated device drivers. Xv6 [15], from MIT, is
another major educational kernel, which is also UNIX-like and runs in QEMU, and a natural
target for model checking in future work. Recently, Columbia introduced a new Android-
focused OS course [5], which perhaps highlights the importance of related work on model-
checking event-driven applications [40].

To my knowledge, this is the first study of model checking in an educational setting, al-
though teaching concurrency is not itself an unstudied problem. Eytani et al. [26] present a
promising framework for testing concurrent programs, which can incorporate model check-
ing as well as static analysis, resource exhaustion, data-race analysis, and coverage analysis.
However, it lacks an evaluation, and makes mention of its educational value only in its future
work remarks. Lönnberg et al. [49] present a survey of how students think about concur-
rent program behaviour and debugging, while Kolikant [44] investigates how students form
cognitive patterns about concurrent programming that could either aid or stunt their reason-
ing. Both of these studies could help optimize Landslide’s bug reports for clarity and student
enlightenment.

7.3 Other Concurrency Techniques

Data race analysis, originating with the lockset-only analysis of Eraser [64], has since grown
into a mature field. Race detectors are largely distinguished by their particular flavour of the
Happens-Before (HB) relation: some tools [27, 63] soundly avoid false positives using “Pure”
HB in the Lamport sense [46]; others [58, 66] introduced the “Limited” HB relation to find
more potential races in a single pass. I implemented both approaches in Landslide and evalu-
ated their trade-offs in Section 3.4. Recently, the Causally-Precedes relation [72] emerged as
a refinement of Limited HB which avoids the most common cases of false positives; it would
be a welcome enhancement in Landslide.
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Replay analysis extends single-pass data-race analysis to apply model checking (in lim-
ited quantities) to classify data-race candidates by their impact on program behaviour. It was
first introduced by Narayanasamy et al. [57], which compares the program states immedi-
ately after the access pair for differences, preferring still to err on the side of false positives.
RaceFuzzer [65] avoids false positives by requiring an actual failure be exhibited, as we do,
although it uses random schedule fuzzing rather than model checking. Portend [42] is closest
in spirit to Quicksand: it tests alternate executions based on single-pass data-race candidates
to classify them in a taxonomy of likely severity. It uses symbolic execution to test input non-
determinism as well as schedule nondeterminism, although its verification properties are not
as strong as Quicksand’s.

7.4 Transactional Memory

Transactional memory (TM), first introduced in 1993 [37], has received renewed attention
in recent years with the announcement of Intel’s Haswell architecture [36], which supports
hardware transactions using new x86 instructions. Because hardware transactions can fail
for any reason, not just on memory conflicts, software TM remains relevant, and recent works
[12, 34] enhance it to be nested with hardware transactions, or to be used on weak memory
architectures, respectively; which in turn produce ever more complicated concurrency mod-
els for people like me to tackle. Testing approaches for transactional programs are sparsely
represented in the literature so far. Several related works [21, 32, 33] are building up to for-
mal proofs of the correctness of TM implementations, but not that of client programs which
use TM. SI-TM [48] introduces techniques for reducing HTM’s abort rates, but without fully
eliminating aborts, MCs must still consider them possible anywhere. Getting closer, McRT
STM [59] uses SPIN [38] to model check an STM implementation up to 2 threads running
1 transaction each with up to 3 memory accesses. This kind of verification is an important
stepping stone for trusting the results Landslide will provide. Learning from Mistakes [51]
studies the characteristics of many types of concurrency bugs; it found that TM could poten-
tially fix some, but not all, of the studied bugs, although in some cases it must be combined
with other concurrency primitives, which indicates a major need for verifying transactional
code with model checking.
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Chapter 8

Conclusion and Timeline

Stateless model checking is a powerful technique for testing concurrent programs, capable
in theory of rooting out any nondeterministic bug or providing total verification on any pro-
gram, but suffers several problems which relegate that theory to fantasy land [74]. Chief
among those problems is exponential explosion of state spaces, making it difficult to decide
in advance which combinations of preemption points can be productively tested within a
given time limit. Another major problem is the manual annotation effort required to test
certain types of concurrent programs, which is especially relevant for operating systems stu-
dents who implement their own kernels. In this document I have proposed a thesis which
will solve both problems. I leave you now with a proposed timeline for bringing each project
to fruition.

• 2017 January: Submit thesis proposal, submit revised IRB proposal for planned user
studies.

• 2017 ???uary: Present thesis proposal (whenever the committee is free).

• 2017 February-March: Deploy 15-410 student user study for more data (Section 4.3).

• 2017 March-August: Port Landslide to Bochs for use in Pintos OS classes (Section 5).

• 2017 March-August: Implement, evaluate, and write paper about transactional mem-
ory project (Section 6).

• 2017 August-October: Polish and deploy Pintos user study (Section 5).

• 2017 ???ember: Resubmit paper about 410 user studies (Section 4.3) (previously re-
jected from SIGCSE) (whenever an appropriate conference deadline arises).

• 2017 October-November: Deploy 410 student study again for more data.

• 2017 December: Begin writing thesis.

• 2018 January-April: Write thesis. Also fill in miscellaneous gaps, such as the “vari-
ance” Quicksand experiments (Section 3) and measuring Landslide’s heuristics’ accu-
racy (Section 4.3).

• 2018 February-March: Deploy Pintos student and 410 TA studies one final time.

• 2018 April-May: Defend & graduate.
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