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Abstract

Concurrent programming presents a challenge to students and experts
alike because of the complexity of multithreaded interactions and the diffi-
culty to reproduce and reason about bugs. Stateless model checking is a con-
currency testing approach which forces a program to interleave its threads in
many different ways, checking for bugs each time. This technique is power-
ful, in principle capable of finding any nondeterministic bug in finite time, but
suffers from exponential explosion as program size increases. Checking an
exponential number of thread interleavings is not a practical or predictable
approach for programmers to find concurrency bugs before their project dead-
lines.

In this thesis, I develop several new techniques to make stateless model
checking more practical for human use. I have built Landslide, a stateless
model checker specializing in undergraduate operating systems class projects.
Landslide extends the traditional model checking algorithm with a new frame-
work for automatically managing multiple state spaces according to their esti-
mated completion times, which I show quickly finds bugs should they exist and
also quickly verifies correctness otherwise. I evaluate Landslide’s suitability
for inexpert use by presenting the results of many semesters providing it to stu-
dents in 15-410, CMU’s Operating System Design and Implementation class,
and more recently, students in similar classes at the University of Chicago and
Penn State University. Finally, I extend Landslide with a new concurrency
model for hardware transactional memory, and evaluate several real-world
transactional benchmarks to show that stateless model checking can keep up
with the developing concurrency demands of real-world programs.
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Chapter 1

Introduction

Motivation

Modern computer architectures have turned to increasing CPU core count, rather than
clock speed, to improve processing power [99]. To take advantage of multiple cores for
performance, programmers must write software to execute concurrently — using multi-
ple threads which execute multiple parts of a program’s logic simultaneously. However,
when threads access the same shared data, they may interleave in unexpected ways which
change the outcome of their execution. When an unexpected interleaving produces un-
desirable program behaviour, for example, by corrupting shared data structures, we call
it a concurrency bug. Concurrency bugs are notoriously hard for programmers to find and
debug because the specific thread interleaving required to trigger them arises at random
during normal execution, and often with very low probability.

Most commonly, a programmer searches for concurrency bugs in her code by running it
many times (in parallel, in serial, or both), hoping that eventually, it will run according to
the particular interleaving required to expose a hypothetical bug. This technique, known
as stress testing, is unreliable, providing no guarantee of finding the failing interleaving
in any finite amount of time. It also provides no assurance of correctness: when finished,
there is no way of knowing how many distinct thread interleavings were actually tested.
Nevertheless, stress testing remains popular because of how easily a programmer can use
it: she simply wraps her program in a loop, sets it to run overnight, and Kkills it if her
patience runs out before it finds a bug.

Stateless model checking [50] is an alternative way to test for concurrency bugs, or
to verify their absence, which provides more reliable coverage, progress, and verification
than stress testing. A stateless model checker tests a program by forcing it to execute a
new unique thread interleaving on each iteration of the test, capturing and controlling
the randomness in a finite state space of all possible interleavings.

Unfortunately, the size of these state spaces is exponentially proportional to the size
of the tested program. For even moderately-sized programs, there may be more possible
ways to interleave every thread’s every instruction than particles in the universe. Accord-
ingly, a programmer who wants her test to make reasonable progress through the state
space must choose a subset of ways that her threads could interleave, focusing on fully



testing that subset, while ignoring other possibilities she doesn’t care about. However, it
is difficult to choose a subset of thread interleavings that will produce a meaningful, yet
feasible test. Until computers can automatically navigate this trade-off in some intelligent
way, programmers will continue to fall back to the random approach of stress testing.

Another problem stateless model checking suffers is that certain types of programs
cannot be tested without the programmer putting forth some manual instrumentation
effort. For example, operating system kernels implement their own sources of concurrency
and their own synchronization primitives, so the checker needs to be told how to identify
and control the execution of each thread. Some expert concurrency research wizards may
be willing to add manual annotations to their code, but required manual effort is a serious
downside for anyone with a looming deadline, and especially so for students who are still
learning basic concurrency principles.

Contribution

This thesis will solve both problems discussed above. My thesis statement is as follows:

Combining both theoretically-founded automatic reduction techniques and user-informed
heuristic ones, stateless model checking can sufficiently mitigate exponential explosion to be
a practical testing technique even for inexperienced users.

I have built Landslide [12], a stateless model checker for thread libraries and ker-
nels, and I have developed some techniques for automatically choosing the best thread
interleavings to test and for automatically instrumenting operating system kernels in an
educational setting. This thesis will comprise three major contributions:

1. Meaningful state spaces (Chapter {). I will present Iterative Deepening, a new al-
gorithm for navigating the trade-off in how many preemption points to test at once.
Iterative Deepening incorporates state space estimation [[129] to decide on-the-fly
whether each state space is worth pursuing, and uses data race analysis [125] to
find new preemption point candidates based on a program’s dynamic behaviour.
This section will include a large evaluation of the technique, comparing its perfor-
mance to three prior work approaches across 600+ unique tests. I will show that
Iterative Deepening of preemption points outperforms prior work in terms both of
finding bugs quickly and of completely verifying correctness when no bug exists.

2. Educational use (Chapter [§). For the past five semesters, I have offered a fully-
automated version of Landslide to students in 15-410, CMU’s undergraduate Op-
erating System Design and Implementation class [35, 36], for use as a debugging
aid during the thread library project. Recently I have also extended Landslide to
handle Pintos kernel projects from other universities [[114]. In the two most recent
semesters, I collaborated with Operating Systems course staff at two such schools,
the University of Chicago and University of California at Berkeley, to provide debug-
ging feedback to their students.



At all three universities I then collected statistics on the numbers and types of bugs
found, and surveyed students to understand the human experience, This section will
present the study’s results to evaluate the suitability of stateless model checking in
an educational setting.

. Hardware Transactional Memory (HTM) (Chapter E). HTM is a relatively new

concurrent programming technique [32, 59] which is not yet addressed by modern
model checkers. I have extended Landslide’s concurrency model to support HTM’s
execution semantics and several advanced features, and tested several “real-world”
HTM programs and benchmarks. This section will discuss the theoretical techniques
I used to model the new form of concurrency, present associated correctness proofs
of my approach, and show the verification results.

Organization

The rest of this dissertation is organized as follows.

Background: Chapter 2 will present the requisite background material on concur-
rent programming, stateless model checking, and the various types of programs
targeted by Landslide.

Landslide: Chapter 3 explains the design and implementation of Landslide and all
the special features it’s been equipped with over the years. It is the foundation upon
which all three contributions above build.

Quicksand: Chapter B] presents the Iterative Deepening framework which more
intelligently chooses which state spaces to test, corresponding to contribution 1
above.

Education: Chapter 5 discusses my evaluation of Landslide in CMU’s 15-410 class
environment using the Pebbles kernel, and in the University of Chicago’s and Berke-
ley’s OS class environments using the Pintos kernel, corresponding to contribution
2 above.

Transactional Memory: Chapter |§ presents my extension of Landslide’s concur-
rency model to handle transactional concurrency and the evaluation thereof, corre-
sponding to contribution 3 above.

Related Work: Chapter [ honors my neighbours and ancestors in research spirit.
Future Work: Chapter
Conclusion: Chapter [ provides some thoughts on the future of the field.

Notes on reading this thesis

I have tried to make this document accessible to readers of all programming experience
levels, although some of the research being theoretical and several layers of abstractions
deep, I cannot promise all easy reading. Chapter [}, Background, provides what I hope
are friendly concrete examples to help the reader feel comfortable with each level of intu-
ition that upcoming algorithms will build upon. These should suffice for the experiments

3



and overall contributions, if not necessarily the details of each algorithm or soundness
proof. In particular, Chapter [, Education, may be approached with no knowledge of
concurrency or model checking, taking it merely as a study of a magic new debugging
tool in the classroom setting. The more ambitious reader may proceed to the Landslide
chapter’s algorithm walkthroughs (§@), which should equip them to understand every
detail herein. Readers who are here only to skim and skip around should at least be aware
of the glossary (§R.5)) to help clarify any terminology confusion.

Color will be used in figures and graphs to add visual contrast and make the data easier
to navigate at a glance, but only in redundant ways also signaled by symbols. I have made
some effort to choose palettes friendly to color-blindness; should the reader find contrasts
too low anyway, whether being color-blind or reading a physical copy printed in greyscale,
they may be assured all important distinctions still render in monochrome. For example,
ovals and rectangles typically depict different threads, and { distinguishes state space
estimates from completed verifications.

Pronoun use will vary between more specific and more ambiguous to convey additional
nuance. The singular “I” is associated with my own research contributions, while the
royal “we” should be taken to include the reader, such as when surveying background
material or related work, to which the author and reader share more similar relationships.
The impersonal “the programmer” will be referred to as she/her to highlight her role as
the intended user, separate from the underlying research, and also to challenge readers’
unconscious bias about gender in computer science. Individual students who participated
in the user studies will be given the more inclusive they/them. Gender-neutral pronouns
will also be used on the author themself.

This document is, in a way, only half the work of the thesis, the other half being
Landslide’s implementation. While some readers may prefer to be taught in prose and/or
mathematical notation how an algorithm works, others may find that disorienting and
wish to see things in a way a compiler would understand. The beginning of Chapter
provides source code links, and the rest of it serves as a guide to browsing the repository.
Later chapters will often make parenthetical references to specific files and/or functions
therein which implement a feature under discussion.



Chapter 2

Background

This chapter will introduce the necessary background material on concurrency, stateless
model checking, data-race analysis, and the relevant undergraduate operating systems
classes.

2.1 Concurrency

2.1.1 The Basics

Modern software often turns to multithreading to improve performance. In a multithreaded
program, multiple execution units (or threads) execute the same or different sections of
code simultaneously. This can provide speedups up to a factor of the number of threads
running in parallel, but may also provide surprising execution results.

Simultaneity

This simultaneity of threads is achieved either by executing each one on a separate CPU,
or by interleaving them nondeterministically (as controlled by clock interrupts) on the
same CPU. Because clock interrupts can occur at any instruction, we consider single-
CPU multithreading to be simultaneous at the granularity of individual instructions. Like-
wise, when multiple CPUs access the same memory, hardware protocols generally ensure
that the events of a single instruction are executed atomically from the perspective of all
CPUs. Although there are some exceptions — unlocked memory-to-memory instructions,
unaligned writes [89], and weak memory consistency models [5] — we model multicore
concurrency the same way as above, deferring these exceptions beyond the scope of this
work. We refer to an execution trace depicting the global sequence of events as a thread
interleaving or schedule.

1 With some exceptions in kernel-level programming, discussed later.

S



Shared state

When a programming language offers multithreaded parallelism but forbids access to any
shared state between threads [95], the simultaneity of threads is largely irrelevant to the
program’s behaviour. However, “thread-unsafe” languages such as C, C++, Java, and so
on remain popular, in which threads may access global or heap-allocated variables and
data structures with no enforced access discipline. The behaviour of such programs is
then subject to the manner in which these accesses interleave.

2.1.2 Identifying bugs

Even if a program’s behaviour is nondeterministic, that does not necessarily mean it has a
bug. After all, many programs use random number generation to intentionally generate
different outputs. We say a concurrency bug occurs when one or more of a program’s non-
deterministic behaviours is both unanticipated and undesired. Most often, a concurrency
novice who programs with shared state will consider the possible interleavings where
one thread’s access sequence occurs entirely before the other’s, but neglect to consider
intermediate outcomes in which the threads’ access sequences are interleaved.

Consider the program in Figure R.1: Any output between 2 and 2000 is possibleE, but
whether this constitutes a bug is a matter of perspective. Was the program written to count
to 2000, or was it written to compute a randomized distribution? In this thesis, we make
no attempt to reason about the “intent” of programs, so we further restrict concurrency bug
to denote a program behaviour which is mechanically identifiable, according to commonly-
accepted notions of what programs behaviours are always bad. Bug conditions include
assertion failures, memory access errors (i.e., segmentation fault or bus error), heap errors
(i.e., use-after-free or overflow), deadlocks, and infinite loops (which must be identified
heuristically [136]).

2.1.3 Concurrency Primitives

To prevent unexpected interleavings such as the example in Figure R.1(b), most con-
current programs use concurrency primitives to control which interleavings are possible.
Controlling nondeterminism is not typically provided by any features of programming
languages themselves; rather, it is achieved via special atomicity mechanisms provided
by the CPU and/or operating system — hence the term “primitive”. For example, x86
CPUs provide the xchg instruction, which performs both a read and subsequent write to
some shared memory, with no possibility for other logic to interleave in between. Us-
ing such atomic instructions as building blocks, concurrency libraries provide abstractions
for controlling nondeterminism in several commonly-desired ways. These include locks,
descheduling, condition variables, semaphores, reader-writer locks, and message-passing.
Each such abstraction provides certain semantics about what thread interleavings can
arise surrounding their use. When building a tool for testing concurrent programs, one

2 Fun exercise for the reader: Show why 2 is a possible output, but 1 is not!
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int x;
void count() {

. s = . i < . 1++
for }(;Iit i=0; i <1000; i++) Thread 1 Thread 2
load tmp <- x;

>

}

void main() {
tidl = thr_create(count);
tid2 = thr_create(count);
thr_join(tidl);
thr_join(tid2);
printf ("%d\n", x);

load tmp <- Xx;
add tmp <- 1;
store x <- tmp;
add tmp <- 1;
store x <- tmp;

(a) Source listing for a multithreaded (b) Example interleaving of the compiled as-
program which might count to 2000. sembly for (a), in which 2 concurrent itera-
tions of the loop yield 1 net increment of x.

Figure 2.1: Example concurrent program in which simultaneous accesses to shared state
may interleave to produce unexpected results.

may include some computational understanding of the behaviour of any, or all, of these
abstractions. Annotating a certain abstraction’s semantics treats it as a trusted concur-
rency primitive in its own right, and allows the testing tool to reduce the possible space of
interleavings (or the set of false positive data-race candidates reported, etc.), at the cost
of increasing the implementation and theoretical complexity of the analysis. This the-
sis will consider locks, descheduling, and transaction begin/end as the only concurrency
primitives, and assume the others listed above are implemented using those as building
blocks (an exercise for the reader [36]).

Locks (or mutexes, short for “mutual exclusion locks”) are objects, shared by multiple
threads, which allow the programmer to mark certain critical sections of code that must
not interleave with each other. When one thread completes a call to mutex_lock(mp), all
invocations by other threads on the same mp will wait (or “block”) until the corresponding
mutex_unlock(mp). Figure R.2(a) shows how a yielding mutex (not the best implementa-
tion, but the simplest) may be implemented using xchg, and (b) shows how a mutex may
be used to fix the example from Figure .1].

2.1.4 Transactional Memory

Critical sections of code must be protected from concurrent access, even when it’s not
known in advance whether the shared memory accesses between threads will actually
conflict on the same memory addresses. The concurrency primitives discussed above take
a pessimistic approach, imposing a uniform performance penalty (associated with the
primitives’ implementation logic) on all critical sections, whether or not a conflict is likely.
Some implementations may be optimized for “fast paths” in the absence of contention,
but must still access shared memory in which the primitive’s state resides.

Transactional memory [6Q] offers a more optimistic approach: critical sections of code
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typedef struct mutex {
volatile int held;

int owner; int x;
} mutex_t; mutex_t m;
void mutex_lock(mutex_t *mp) { void count() {
while (xchg(mp->held, 1)) for (int i = 0; i < 1000; i++) {
yield(mp->owner) ; mutex_lock(&m) ;
mp->owner = gettid(); X++;
} mutex_unlock (&m) ;
void mutex_unlock(mutex_t *mp) { }
mp->owner = -1; }
mp->held = O;
¥
(a) A simple mutual exclusion lock built (b) The count function from Figure , ad-
using the xchg instruction. justed to use a mutex to ensure each incre-

ment of x is uninterruptible.

Figure 2.2: Using a locking primitive to protect accesses to shared state.

are marked as “transactions”, analogously to locking a mutex, and allowed to speculatively
execute with no protection. If a conflict between transactions is detected, the program
state is rolled back to the beginning of the transaction, and a backup code path may
optionally be taken. Consequently, no intermediate state of a transacting thread is ever
visible to other threads; all changes to memory within a transaction become globally
visible “all at once” (or not at all). This method optimizes for a common no-contention
case of little-to-no overhead, pushing extra both code and implementation complexity to
handling conflicts.

Transactional memory (TM) may be implemented either in hardware, using special
instructions and existing cache coherence algorithms, or in software, via library calls and
a log-based commit approach. Software transactions (STM) [4] can be used on any com-
modity processor, but must impose runtime overhead associated with logging. Hardware
transactions (HTM) [68] achieve better performance by reusing existing cache coher-
ence logic to detect conflicts, but require explicit support from the CPU, which is not
yet widespread. Haswell [59] is the first x86 architecture to support HTM, offering three
new instructions: xbegin, xend, and xabort, to begin, commit, and fail a transaction,
respectively. The example program in Figure R.3 demonstrates how these primitives can
be used to synchronize a simple shared access without locking overhead in the common
caseE, using GCC’s compiler intrinsics [47].

Concerning possible execution patterns, the main difference between STM and HTM
is the circumstances under which a transaction may abort. A software-backed transaction
will abort if and only if a memory conflict occurs therein with another thread. HTM, how-
ever, is backed by the CPU’s cache, and is therefore subject to other circumstances such as
cache capacity or interrupt-triggered cache flushes which may force an abort even when
no memory conflict occurs. Chapter [ will explore the consequences of this difference

3 The solution presented here is actually incomplete; stay tuned until Chapter [ for the surprising twist!
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void count() {
for (int i = 0; i < 1000; i++) {
if ((status = _xbegin()) == _XBEGIN_STARTED) {
X++;
_xend () ;
} else {
mutex_lock(&m) ;
X++;

mutex_unlock(&m) ;

}

Figure 2.3: The example count routine from Figure 2.2, rewritten to use HTM. If the
transaction in the top branch aborts, whether from a memory conflict or random system
interrupt, execution will revert to the return of _xbegin, status will be assigned an error
code indicating the abort reason, and control will drop into the else branch. The pro-
grammer can then use explicit synchronization, such as a mutex, to resolve the conflict.

further. This thesis will focus on HTM as my platform for testing transactional programs,
to highlight the importance of researching advanced testing techniques in anticipation of
upcoming hardware features.

2.2 Stateless Model Checking

Model checking [50] is a testing technique for systematically exploring the possible thread
interleavings of a concurrent program. A model checker executes the program repeatedly,
each time according to a new thread interleaving, until all interleavings have been tested
or the CPU budget is exhausted. During each execution, it forces threads to execute
serially, thereby confining the program’s nondeterminism to scheduler thread switches. It
then controls the scheduling decisions to guarantee a unique interleaving is tested each
iteration.

2.2.1 The state space

To understand what it means to exhaustively test all possible thread interleavings, one
must define the possible execution sequences as a finite state space. To visualize this, using
a single iteration of the x++; loop from Figure as an example, with x++; expanded
into its three corresponding pseudo-assembly instructions, Figure 2.4(a) shows all possible
execution interleavings between 2 threads.



@ tmp2 <- x tmp2 <- x tmp2 <- x tmp2 <- x tmp2 <- x tmp2 <- x
L 4 A 4 A4 A 4 A 4 A 4
@ tmp2 <- x tmp2 <- x tmp2 <- x tmp2++ tmp2++ tmp2++ @
A 4 A 4 A 4 A 4 A4 A 4 Vv
tmp2 <- x tmp2++ tmp2++ @ X <- tmp2 @ tmp2++ tmp2++
A4 A4 A4 A4 A4
tmp2++ X <- tmp2 tmp2++ 0 @ X <- tmp2 tmp2++ X <- tmp2
A4 A4 A4 A4 A4 A4
(a) Interleavings visualized individually, as a list.
Beginning state: x=0
tmp2 <- x
tmp2++ @
4 N
tmp2 <- x tmp2++ @ X <- tmp2 @ @ tmp2++
|4 J 3 A 4 4 4
tmp2++ X <- tmp2 tmp2++ @ X <- tmp2 tmp2++ X <- tmp2
A 4 A 4 A 4 A 4 A 4 A 4
X <- tmp2 X <- tmp2 X <- tmp2 X <- tmp2 X <- tmp2 X <- tmp2
End state:
(A) x=2 (B) x=1 (C) x=1 (D) x=1 (E) x=1 (F) x=1 (6) x=1 (H) x=1 (I) x=1 (J) x=1

(b) Interleavings (same order as in (a)), with common prefixes
combined as “preemption points”, forming a tree.

Figure 2.4: Visualization of interleaving state space for the program in Figure . Thread
1 is represented by purple ovals, thread 2 by yellow squares, and time flows from top to
bottom. As the two threads execute the same code, without loss of generality thread 1 is
fixed to run first — the full state space is twice the size, and the other half is symmetric to
the one shown.
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Static versus dynamic analysis

Model checking is a dynamic program analysis, meaning that it observes the operations
and accesses performed by the program as its code is executed. In contrast, static program
analyses check certain properties at the source code level. Static analyses are ideal for
ensuring certain standards of code quality, which often correlates with correctness, but
cannot decide for certain whether a given program will fail during execution without
actually running the code [51]. Static analyses face the challenge of false alarms (or false
positives): code patterns which look suspicious but are actually correct. A debugging tool
which reports too many false alarms will dissuade developers from using it [41]]. Dynamic
analysis, our approach, identifies program behaviours that are definitely wrong, so each
bug report is accompanied by concrete evidence of the violation. Assertions, segfaults,
use-after-free of heap memory, and deadlock are examples of such failures we check for,
although a checker may also include arbitrary program-specific predicates.

Preemption points

During execution, a model checker identifies a subset of the program’s operations as “in-
teresting”, i.e., where interrupting the current thread to run a different one is likely to
produce different behaviour. These so-called preemption points may be identified by any
combination of human intuition and machine analysis. Typical preemption points include
the boundaries of synchronization APIs (e.g., mutex_lock) or accesses to shared variables.
Considering that at each preemption point multiple threads exist as options to run next,
the set of possible ways to execute the program can be viewed as a tree. Figure 2.4(b)
shows a visualization of the corresponding tree from our example program, using each
pseudo-assembly instruction as a preemption point.

The number of preemption points in each execution defines the depth of this tree, and
the number of threads available to run defines the branching factor. Hence, in a program
with n preemption points and k threads available to run at each, the state space size is
O(n*). Nevertheless, to fully test all of a program’s possible behaviours, we must check
the executions corresponding to every branch of the tree. Addressing the scaling problem
in this exponential relation is the central research problem for all model checkers.

Some model checkers explicitly store the set of visited program states as a means of
identifying equivalent interleavings [61]. From the perspective of such tools, state spaces
such as these wherein equivalent states may be reached by multiple paths are represented
as a directed acyclic graph (DAG) instead of as a tree. This approach is called stateful
model checking. This thesis focuses on stateless model checking (and execution trees, not
DAGs), which instead analyzes the sequence of execution events to avoid a prohibitive
memory footprint. Henceforth “stateless model checking” will be abbreviated simply as
“model checking” for brevity. Also, the term “state space” was originally coined to refer to
the stateful approach’s emphasis on the DAG’s nodes (i.e., program states); while stateless
checkers emphasize the tree’s branches (i.e., execution sequences) instead, I will continue
to use “state space” for consistency with prior work.
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2.2.2 On the size of state spaces

At its essence, stateless model checking research is a perpetual struggle to become more
and more efficient in order to test and verify bigger and bigger programs. But whence
this efficiency? Techniques for coping with the exponential explosion fall into two cate-
gories: (1) removing redundant interleavings from the state space when we can prove
they are equivalent to some interleaving already tested, or reduction techniques, and
(2) prioritizing interleavings judged as more likely to contain bugs should bugs exist in
case we are unable to exhaustively test all interleavings after all, or search heuristics.

Reduction techniques

Dynamic Partial Order Reduction [46] (henceforth, DPOR) is the most popular algorithm
for mitigating the exponential explosion that arises as program size increases.

Abstractly speaking: Let independent transitions denote a pair of executions of two
threads, each from one preemption point to the next, in which there are no read/write
or write/write access pairs to the same memory between threads. DPOR reduces a state
space, originally exponentially-sized in the number of thread transitions, to an equivalent
one (i.e., testing which suffices to check all program behaviours that could arise in the
original state space) exponentially-sized in the number of dependent thread transitions.
More technically, it identifies equivalent execution sequences according to Mazurkiewicz
trace theory [96], and tests at least one execution from each equivalence class.

Concretely speaking: Figure @ highlights part of an execution tree where the exe-
cution ordering of threads 1 and 2 are swapped, and each interleaving has a respective
“subtree” (i.e., possible interleavings given the fixed execution prefix leading up to it).
The specifics of execution before the thread 1/thread 2 sequence, other possible threads
to run instead of threads 1 or 2, and what logic the program executes in those subtrees are
all presumably arbitrary. In these two highlighted branches, if the transitions of threads
1 and 2 are independent, DPOR deduces that the subsequent program states (indicated by
the red arrow) are equivalent. Thence, only one of the two interleavings and its respec-
tive subtree needs to be executed in order to check all possible program states. §3.4.2
explains how DPOR implements such a deduction in more detail.

Over the years, researchers have developed many enhancements to DPOR, such as Op-
timal DPOR [[1], parallelizable DPOR [130], SAT-directed model checking [31], Maximal
Causality Reduction [63], and DPOR for relaxed memory architectures [[147].

Search heuristics

However, even though DPOR can prune an exponential number of redundant interleav-
ings, the state space size is still exponential in the number of dependent (conflicting) in-
terleavings. Developers will always want to test larger and larger programs, so no matter
the quality of our reduction algorithm, we must accept that some tests will be too large to
be fully tested in a reasonable time. Hence, recent model checking research has turned
to heuristic techniques for achieving further reduction, optimizing the search to try to
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Figure 2.5: DPOR identifies independent transitions by different threads which can com-
mute without affecting program behaviour. Here, if the transitions marked 1 and 2 have
no shared memory conflicts, the states marked with the red arrow are guaranteed identi-
cal. Hence, only one of the subtrees need be explored.

uncover bugs faster (should they exist) at the expense of possibly missing other bugs, or
missing the chance to complete a full verification.

Iterative Context Bounding [[101] is a popular such technique which heuristically re-
orders the search to prioritize interleavings with fewer preemptions first. This heuristic
is based on the insight that most bugs require few preemptions to uncover, so interleav-
ings with a number of preemptions that exceeds a certain bound will be de-prioritized,
only tested until after all the fewer-preemption interleavings are completed. Preemption
sealing [9] is another heuristic strategy which restricts the scope of the search by limiting
the model checker to use only preemption points arising from certain functions in the
source code. This allows developers to vastly reduce state space size by identifying which
program modules are already trusted, although it requires some human intuition to cor-
rectly mark those boundaries. Iterative Deepening, presented in Chapter [, is another
such search heuristic.

2.3 Data Race Analysis

2.3.1 Definition

Data race analysis [120] identifies pairs of unsynchronized memory accesses between
threads. Two instructions are said to race if:

1. they both access the same memory address,
2. at least one is a write,

3. the threads do not hold the same lock,

4

. and no synchronization enforces an order on the thread transitions (the Happens-
Before relation, described below).
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int x = 0; bool y = false; mutex_t mx;

Thread 1 Thread 2
1 x++; // A
2 mutex_lock(&mx) ;
3 mutex_unlock(&mx);
4 mutex_lock (&mx) ;
5 mutex_unlock (&mx) ;
6 x++; // A2

(a) True potential data race.

Thread 1 Thread 2
1 =x++; // Bl
2 mutex_lock(&mx) ;
3 y = true;
4 mutex_unlock(&mx) ;
5 mutex_lock (&mx) ;
6 bool tmp = y;
7 mutex_unlock (&mx) ;
8 if (tmp) x++; // B2

(b) No data race in any interleaving.

Figure 2.6: Data-race analyses may be prone to either false negatives or false positives.
Applying Happens-Before to program (a) will miss the potential race possible between
A1/A2 in an alternate interleaving, while using Limited Happens-Before on (b) will pro-
duce a false alarm on B1/B2.

In Figure .6, the pairs of lines marked with comments (A1l and A2, B1 and B2) race.

A data race analysis may be either static (inspecting source code) [41] or dynamic
(tracking individual accesses arising at run-time) [[125]. This paper focuses exclusively
on dynamic analysis, so although our example refers to numbered source lines for ease of
explanation, in practice we are actually classifying the individual memory access events
corresponding to those lines during execution. Actually, each x++ statement likely com-
piles to two separate load or store instructions, so each of those two instructions from
each of the two marked source lines pairwise will race (except for the two loads, which
are both reads).

2.3.2 Happens-Before

Condition 4 of the above definition expresses the notion that the access pair can be ex-
ecuted concurrently, regardless of whether the hardware actually carries out the opera-
tions in the same physical instant. Several approaches exist to formally representing this
condition.
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* Most prior work focuses on Happens-Before [81] as the order relation between ac-
cesses. [131] and [110] identify a problem with this approach: it cannot identify
access pairs separated by an unrelated lock operation which could race in an alter-
nate interleaving, as shown in the example program in Figure R.6(a). We call such
unreported access pairs false negatives.

* [110] introduces the Limited Happens-Before relation, which will report such po-
tential races by considering only blocking operations like cond_wait to enforce the
order. However, consider the similar program in Figure P.€(b), in which the access
pair ceases to exist in the alternate interleaving. Limited Happens-Before will re-
port all potential races, avoiding false negatives [[125], but at the cost of necessarily
reporting some such false positives.

* In recent work, the Causally-Precedes relation [131] extends Happens-Before to ad-
ditionally report a subset of potential races while soundly avoiding false positives.
It tracks conflicting accesses in intervening critical sections to determine whether
lock events are unrelated to a potential race. Causally-Precedes will identify the
potential race in Figure P.6(a), as the two critical sections do not conflict, although
it can still miss true potential races in other cases.

Landslide implements both Happens-Before (henceforth referred to as Pure Happens-
Before for clarity) and Limited Happens-Before. Chapter [ includes a comparison of the
two approaches for the purpose of finding new preemption points for model checking.

2.4 Education

This thesis will tackle Pebbles and Pintos, two different system architectures used in ed-
ucational operating systems courses. This section describes the projects which students
implement and which Landslide tests.

2.4.1 Pebbles

The Pebbles kernel architecture is used at Carnegie Mellon University (CMU) in 15-410,
Operating System Design and Education [35, 36]. In the course of a semester, students
work on five programming assignments; the first two are individual, and the remaining
three are the products of two-person teams. I will focus on the third and fourth of these,
the thread library and kernel, called “P2” and “P3” respectively (the project numbers start
at 0). The other three (a stack-crawling backtrace utility, a bare-metal game with device
drivers, and a small extension to the P3 kernel) are not of concern in this thesis. The
course’s prerequisite is 15-213, Introduction to Computer Systems [17]. Both P2 and P3
are built using the Pebbles system call specification, outlined in Table
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| System call name | Summary

Lifecycle management

fork
thread_fork
exec

set _status
vanish

wait

task _vanish*

Duplicates the invoking task, including all memory regions.
Creates a new thread in the current task.

Replaces the program currently running in the invoking task with
a new one specified.

Records the exit status of the current task.

Terminates execution of the calling thread.

Blocks execution until another task terminates, and collects its exit
status.

Causes all threads of a task to vanish.

Thread management

gettid Returns the ID of the invoking thread.

yield Defers execution to a specified thread.

deschedule Blocks execution of the invoking thread.

make runnable Wakes up another descheduled thread.

get_ticks Gets the number of timer ticks since bootup.

sleep Blocks a thread for a given number of ticks.

swexn Registers a user-space function as a software exception handler.
Memory management

new_pages Allocates a specified region of memory.

remove_pages

Deallocates same.

Console I/O

getchar*
readline

print

set_term color
set_cursor_pos
get_cursor_pos

Reads one character from keyboard input.
Reads the next line from keyboard input.
Prints a given memory buffer to the console.
Sets the color for future console output.
Sets the console cursor location.

Retrieves the console cursor location.

Miscellaneous
1s Loads a given buffer with the names of files stored in the RAM disk
“file system.”
halt Ceases execution of the operating system.
misbehave* Selects among several thread-scheduling policies.

Table 2.1: The Pebbles specifcation defines 25 system calls. Students are not required to
implement ones marked with an asterisk (*), though the reference kernel provides them.
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P2

The thread library project [36] has two main components: implementing concurrency
primitives, and implementing thread lifecycle and management routines. The required
concurrency primitives are as follows:

* Mutexes, with the interface mutex lock(mp) and mutex unlock(mp), whose func-
tionality is described earlier this chapter. Students may use any x86 atomic in-
struction(s) they desire, such as xchg, xadd, or cmpxchg, and/or the deschedule/
make_runnable system calls offered by the reference kernel.

* Condition variables, with the interface cond_wait(cvp, mp), cond_signal (cvp),
and cond_broadcast (cvp). cond_wait blocks the invoking thread, “simultaneously”
releasing a mutex which protects some associated state (atomically, with respect to
other calls to signal or broadcast under that mutex). cond_signal and cond_broadcast
wake one or all waiting threads. Students must use the deschedule and make_runnable
system calls to implement blocking (busy-waiting is forbidden), and typically in-
clude an internal mutex to protect the condition variable’s state as well. The pri-
mary challenge of this exercise is ensuring the aforementioned atomicity between
cond_wait’s unlock and deschedule, with respect to the rest of the interface.

* Semaphores, with the interface sem_wait(sp) and sem_signal(sp) (sometimes
called proberen and verhogen in other literature). The semaphore can be initialized
to any integer value; if initialized to 1, it behaves like a mutex. Students typically
implement semaphores using mutexes and condition variables, not using atomic
instructions or system calls directly.

* Reader-writer locks (rwlocks), with the interface rwlock_lock(rwp, mode) and
rwlock_unlock(rwp). mode may be either RWLOCK_READ or RWLOCK_WRITE. Behaves
as mutexes, but multiple readers may access the critical section simultaneously. Stu-
dents typically implement rwlocks using mutexes and condition variables, not using
atomic instructions or system calls directly.

The interface to each also includes an associated _init() and _destory() function.
The thread lifecycle/management routines are as follows:

* thr_init(stack_size) initializes the thread library, setting a default stack size to
be allocated to new threads.

* thr_create(child func, child_arg) spawns a new thread to run the specified
function with the specified argument. There is a semantic gap between this function
and the thread_fork system call (which takes no parameters, makes no changes to
the user’s address space, and cannot meaningfully be invoked from C code) which
students must bridge. Returns an integer thread ID of the newly created thread.

* thr_exit(status) aborts execution of the calling thread, recording an exit status
value. The main challenge of this function is to allow another thread to free the
memory used for the exiting thread’s stack, without risking any corruption as long
as the exiting thread continues to run.

* thr_join(tid, statusp) blocks the calling thread until the thread with the speci-

17



fied thread ID exits, then returns, collecting its exit status.
Other than thr_init (which is necessarily single-threaded), several concurrency errors
between any two (or all three) of these functions are very common in student submissions.
Finally, students also implement automatic stack growth using the swexn system call,
which is not relevant to this thesis.

P3

In P3, students implement a kernel which provides the same system calls shown in Ta-
ble R.1], previously provided by the reference kernel. Pebbles adopts the Mach [3] distinc-
tion between tasks, which are resource containers, and threads, each of which executes
within a single task. This requires less implementation complexity than the more feature-
ful Plan 9’s rfork [[115] or Linux’s clone models.

Although the internal interfaces are not mandated like they were in P2, all Pebbles
kernels must necessarily contain the same abstract components. These include:

* Around-robin scheduler, including context switching, timer handling, and runqueue

management;

* Some approach to locking, often analogous to P2’s concurrency primitives (hence-
forth referred to as “kernel mutexes”), 1l and some approach to blocking threads
indefinitely;

* A virtual memory implementation, including a program loader;

* Lifecycle management code for creation and destruction of kernel threads and pro-
cesses;

* Other miscellany such as a suite of fault handlers to ensure no user program can
cause the kernel itself to crash.

Because any combination of system calls or fault handlers can be invoked by user programs
simultaneously, concurrency bugs can arise from the interaction of any subset of kernel
components with each other. The most common bugs studence face arise from the interac-
tion of some component with itself (e.g., concurrent invocations of new_pages/remove_pages
in the same process), or from the interaction between an exiting thread and some other
thread trying to communicate with it (vanish versus, well, anything else, really). The
most difficult concurrency problem in P3 is that of coordinating a parent and a child task
that simultaneously exit: when a task completes, live children and exited zombies must be
handed off to the task’s parent or to the init process, when the task’s parent may itself be
exiting; meanwhile, threads in tasks that receive new children may need to be awakened
from wait. Careless solutions to this problem are prone to data races or deadlocks.

Secrecy

The 15-410 course staff is notoriously secretive about the nature of many concurrency
bugs students commonly encounter during P2 and P3. This is driven by a desire to cause
students to find, diagnose, and fix these bugs on their own during the projects, rather
than to be surprised by them afterwards during grading [37]. One such example is the
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paraguay unit test distributed with P2 (§5.1.3), which targets a subtle condition-variable
bug. The test uses the misbehave system call to target a particular thread interleaving
likely to expose the bug which is otherwise very unlikely to arise in normal execution. The
reference kernel specification [35] does not define the misbehave modes’ behaviours, as
doing so would deprive students of the learning experience of discovering the interleaving
in question on their own. I will occasionally use intentionally vague phrasing to preserve
the mystery of these bugs.

Use at other universities

In the Spring 2018 semester, the Operating Systems class at Penn State University (hence-
forth CMPSC 473 and PSU, respectively) offered the P2 thread library project as part of
its curriculum. Students in this class implement P2 on a 6 week project timeline (com-
pared to 2 weeks at CMU), work alone rather than in pairs, skip the swexn automatic stack
growth portion, and rather than running their code with a reference Pebbles kernel binary
in a simulator, use the Pebwine emulation layer [132] to run Pebbles-compatible program
binaries in the Linux userspace. Otherwise, the project is identical to CMU 15-410’s P2.

2.4.2 Pintos

The Pintos kernel architecture [[114] is used at several universities, including Berkeley,
Stanford, and the University of Chicago. The Pintos basecode implements a rudimentary
kernel, consisting of a context switcher, round-robin scheduler, locking primitives, and
program loader. upon which students add more features in several projects. Most relevant
to this thesis, the basecode provides the following functions/libraries, among others:
* Semaphores (the basic concurrency primitive, implemented using direct scheduler
calls): sema_up, sema_down, sema_try_down;

* Locks (which wrap a semaphore initialized to 1), lock_acquire, lock_release,
lock_try_acquire;

* Condition variables (also implemented using scheduler calls): cond_wait, cond_
signal, cond_broadcast, with the same semantics as Pebbles P2 condvars;

* Basic round-robin scheduling facilities: thread block (a kernel-level analogue to
Pebbles’s deschedule), thread_yield

* Kernel thread lifecycle management, thread create and thread_exit, including
stack space memory management;

* Interrupt and fault handlers;

* Apageallocator, palloc_get_page, palloc_get multiple, palloc_free_page, and
palloc_free multiple
Both Pebbles and Pintos basecodes offer a standard C library including malloc, string-
formatting, printing, etc.
Although there is some variety in supplemental assignments, all Pintos courses include
three core projects building on the Pintos basecode:
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* Threads: Students must implement an “alarm clock” (analogous to Pebbles’s sleep
system call), a priority scheduling algorithm, and a multi-level feedback queue
scheduler.

* Userprog: Provided with rudimentary virtual memory and ELF loader implemen-
tations, students must implement argument passing and several system calls asso-
ciated with userspace programs, including exec, exit, wait, and file descriptor
management.

* Filesys: Provided with a simple “flat” filesystem implementation, students must ex-
tend it with a buffer cache, extensible files, and subdirectories.

Some schools further offer a virtual memory project, extending the provided VM with
a frame table and supplemental page table and fault handler [56, 113], or supplemen-
tal HTTP server and malloc assignments [70]. Being largely architectural/algorithmic
projects rather than concurrency-oriented ones, this thesis is not concerned with these
assignments. The main concurrency challenges in Pintos projects arise from the threads
and userprog assignments: implementing a correct alarm routine, ensuring the priority
scheduler remains safe in the presence of concurrent threads of the same priority, and
designing correct interactions between the wait and exit system calls.

2.5 Glossary

This section provides a convenient reference of terminology used throughout the thesis.
1.
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Chapter 3

Landslide

Landslide is a model checker implemented as a plug-in module for x86 full-system simu-
lators. The program to be tested runs in a simulated environment, and Landslide uses its
access to the simulator’s internal state to inspect and manipulate the memory and thread
scheduling of the program as it executes. As of this thesis’s writing, Landslide supports
the use of two possible simulators:

* Simics [92], a proprietary simulator licensed commercially by Wind River, used at
CMU in 15-410 to run Pebbles thread libraries and kernels, and

* Bochs [83], an open-source (LGPL) simulator used at the University of Chicago,
Berkeley, Stanford, and other schools to run Pintos kernels.

The Bochs port of Landslide is likewise open-source and available at https://github.
com/bblum/landslide. The HEAD commit at the time of writing is 5d45e2c. The Simics
port uses Simics’s proprietary API and is hence unlicensed and available upon request for
educational use only. Development on the Simics port is largely frozen, as the Bochs port
implements all the same features and more, and is also roughly 3x faster.

This chapter will discuss Landslide’s outer and inner workings in all their gory de-
tail. It is intended for the aspiring developer or the ambitious user and hence unlike
other chapters is written in the style of documentation rather than as a report of research
results. The reader interested only in a theoretical introduction to model checking’s foun-
dational algorithms, with detailed and friendly examples to help establish intuitions the
later chapters may require, may skip to §3.4.

3.1 User interface

This section describes the features of Landslide the average student user should expect to
interact with. Separate user guides also exist, described in Chapter [5.
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3.1.1 Setup

Three setup scripts are provided, one for each supported kernel architecture: p2-setup.sh,
psu-setup.sh, and pintos-setup.sh. The user should supply the directory containing
her project implementation. The second of the three is largely the same as the first, with
CMU-specific project details replaced by PSU-specific ones. The latter of the three also
supports arguments specifying which of the Pintos projects to target. For example:
* ./p2-setup.sh /path/to/my/p2
* ./psu-setup.sh /path/to/my/thrlib
* ./pintos-setup.sh /path/to/my/threads (2nd argument defaults to “threads”)
* ./pintos-setup.sh /path/to/my/userprog userprog
These scripts accomplish the following setup tasks (among other trivialities):
* Copy the user’s code into pebsim/p2-basecode/ or pebsim/pintos/, which contain
a pre-annotated Pebbles reference kernel binary or pre-annotated Pintos basecode,
respectively.

* Build the code in its new location.

* Run the instrumentation script on the resulting binary to let Landslide know where
all the important functions are (see §).

3.1.2 Running Landslide through Quicksand

The preferred method of invoking Landslide is through Quicksand, the Iterative Deepen-
ing wrapper program which has all of Chapter | to itself. This is done via the ./landslide
script in the top-level directory, which:
* Checks if the user needs to run *-setup. sh again, in case her source code was more
recently updated than the existing annotated build (a common mistake),

* Passes its arguments through to id/landslide-id, the Quicksand binary, and

* (If during the student user study,) compresses the resulting log files, creates a snap-
shot tarball of them and the current version of the user’s code, and sends it to me
for nefarious research purposes.

Command-line argments

The following command line arguments are recommended for the common user.
* -p PROGRAM: the name of the test case to invoke

* -t TIME: wall-clock time limit, in seconds; or suffixed with one of ydhms for years,
days, hours, minutes, or seconds respectively (default 1h)

* -c CPUS: maximum number of Landslide instances to run in parallel (defaults to
half the number of system CPUs)

* -i INTERVAL: interval of time between printing progress reports (default 10s)
* -d TRACEDIR: directory for resulting bug traces (default current directory)
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-v: verbose mode (issues output for each executed interleaving by each instance of
landslide, makes progress reports more detailed, etc)

-1: leave Landslide log files from completed state spaces even when no bug was
found (deleted automatically by default)

-h: print help text and exit immediately

The following “secret” arguments also exist, primarily for my own use in running ex-
periments or debugging.

-C: enable “control experiment” mode, i.e., run only 1 instance of Landslide, with
all (non-data-race) preemption points enabled in advance

-1: enable Iterative Context Bounding (requires -C, although future work may relax
this restriction); this generally causes bugs to be found faster should they exist, but

degrades completion time (§3.4.5)
-0: enable Preempt-Everywhere mode (§4.3, requires -C)

-M: enable Maximal State Space mode, which prioritizes the maximal state space
to optimize for fast verification, abandoning all subset jobs even if they might find
bugs faster (§6.3, incompatible with -C). According to §4.2.1's soundness proofs,
this is equivalent to -0 (and according to my experience, way faster as well).

~H: use Limited Happens-Before for data-race analysis (§2.3.%) (default for Pebbles
kernelspace mode)

-V: use vector-clock-based Pure Happens-Before for data-race analysis (§2.3.2) (de-
fault for P2/PSU userspace and Pintos modes)

~-X: support transactional memory (Chapter [6)

-A: support multiple abort codes during transaction failure (86.2); required for test-
ing programs which behave differently under different abort circumstances, but im-
pacts the state space size

-3: suppress retry aborts during transaction failure (§)
-R: enable retry-set state space reduction for transactional tests (§6.2)

-P: support Pintos architecture (enabled automatically when pintos-setup.sh is
run)

-4: support Pebbles architecture (enabled automatically when either p2-setup.sh
or psu-setup.sh is run)

-e ETAFACTOR: configure heuristic state space ETA deferring factor (described in
detail in id/option.c)

-E ETATHRESH: configure heuristic threshold of state space progress for judging ETA
stability (described in detail in id/option.c)

Quicksand will automatically generate configuration files and invoke Landslide accord-
ing to the process described in the next section.
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3.1.3 Running Landslide directly

Rather than letting Quicksand juggle multiple instances of Landslide, the user may run
a single instance directly, optionally configuring the preemption points by hand. This is
recommended only for the enthusiastic user annotating her own kernel.

The script pebsim/landslide invokes Landslide thus. It should be run from within
the pebsim/ directory. When supplied no arguments, it reads configuration options from
pebsim/config.landslide (a bash script expected to define certain variables as described
in §B.3.9). The user may optionally specify a file containing additional config directives
as an argument.m Such supported options are as follows.

Dynamic configuration options

First, the following options may be changed without triggering a recompile of Landslide.
They are implemented as bash functions defined in pebsim/build. sh.

* within function FUNC - adds FUNC to a whitelist of functions required to appear
in the current stack trace before identifying a preemption point (see §B.4.1))

* without function FUNC - as above, but a blacklist instead of a whitelist

* within user_function FUNC - as two above but finds the function in the userspace
test program rather than the kernel code.

* without user_ function FUNC - difference to two above same as stated one above.

* data_race ADDR TID LAST_CALL CURRENT_SYSCALL - specifies a data-race preemp-
tion point.

* ADDR shall be the code address (in hex) of the racing address, before the execu-
tion of which a preemption will be issued.

* TID indicates a thread ID required to be running for this data race. To specify
data race PPs across all threads at once, set FILTER_DRS_BY_TID=0 (see next
section).

» LAST CALL indicates a code address required to be the site of the last call
instruction executed (similar to specifying a stack trace, but using a full stack
trace here degrades performance too much), or O to not use this feature. From
personal experience I found this option rather useless and recommend always
supplying 0. For further discussion see §4.1.

» CURRENT_SYSCALL indicates the system call number if a user-space data race
comes from within a kernel system call which accesses user memory (Pebbles
only). Usually O (i.e., not in kernel code) but deschedule’s system call number
is common as well.

! Quicksand actually supplies two such files as arguments: one “static” config file and one "dynamic”
config file. The former contains options which require recompiling Landslide (e.g., whether or not to use
ICB is controlled by an #ifdef in Landslide’s code), while the latter contains options which Landslide
interprets at runtime (e.g., which preemption points to use). The static options do not change between
Landslide instances in a single Quicksand run, avoiding long Landslide start-up times.
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* input_pipe FILENAME - FIFO file used for receiving messages from Quicksand (e.g.
to suspend or resume execution). Requires id_magic option to be set (next section
below). The odds that a human user will find spiritual enlightenment through using
this option by hand are infinitesimal.

* output_pipe FILENAME - as above but for sending messages.

Static configuration options

Next, configuration options which affect an #ifdef in Landslide and will trigger a recom-
pile upon changing. Unless otherwise specified these are boolean flags (1 or 0) and the
example value shown indicates the default used if unspecified.

* Search algorithm options

» ICB=0 - enable Iterative Context Bounding (§3.4.5); corresponds to -I in §3.1.2.
- PREEMPT_ EVERYWHERE=0 - enable Preempt-Everywhere mode (§4.3); corresponds

to -0 in §B3.1.9.

= EXPLORE_BACKWARDS=0 - configure whether, at each newly encountered pre-
emption point, to allow the current thread to run first then later upon back-
tracking to preempt (0), or to issue preemptions first and then try continuing
the current thread later (1). O tends to produce shorter preemption traces
while 1 tends to find bugs faster ([[12] §8.7.1). Not compatible with ICB.

* Memory analysis options

* PURE_HAPPENS BEFORE=1 - select Pure Happens-Before (1) or Limited Happens-
Before (2) (§) ; corresponds to -V/-H in §.

* FILTER_DRS_BY_TID=1 - configures whether to use the TID parameter of data_
race described above.

* FILTER_DRS_BY_LAST CALL=0 - configures whether to use the LAST_CALL pa-
rameter of data_race described above.

* ALLOW_LOCK_HANDOFF=0 - configures lockset tracking to permit or disallow a
lock taken by one thread to be released by another thread .2

* ALLOW_REENTRANT_MALLOC_FREE=0 - allow two threads to be in malloc, free,
or so on simultaneously without declaring it a bug.E

* TESTING_MUTEXES=0 - configure “mutex testing” mode (1), in which the data
race analysis will not consider a mutex’s implementation to be protected by
the mutex itself. In other words, the mutex’s internal memory accesses will be

flagged as data races, thereby enabling Landslide to verify the mutual exclusion
property. Normally (0), Landslide assumes mutual exclusion is provided in

2If enabled, accesses performed by the second thread before unlocking will not be considered protected
by that lock, as Landslide cannot infer what prior event abstractly represented the lock’s ownership chang-
ing, leading to spurious data race reports. This could be solved in future work with a new annotation.

3Used in Pintos, where those functions lock/unlock the heap mutex themselves rather than relying on a
wrapper function to do so before invoking them.
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order to efficiently find data races in the rest of the code. Quicksand will
automatically set this option for P2s when -t mutex_test is specified.

* Interface options

= TEST_CASE=NAME - configure the name of the test program to run (mandatory;
no default)

= VERBOSE=0 - enable more verbose output

* BREAK_ON_BUG=0 - configure whether to exit the simulator or drop into a debug
prompt when a bug is found. Simics only and not compatible with Quicksand.

» DONT_EXPLORE=0 - if enabled, Landslide will not perform stateless model check-
ing but rather will execute the default thread interleaving then exit (useful for
manual inspection of preemption points).

* PRINT_DATA_RACES=0 - as it says on the tin (for stand-alone use; will message
them to Quicksand regardless).

» TABULAR_TRACE=1 - configure whether to emit bug reports to the console (0)
or to an HTML trace file (1)

3.1.4 Test cases

Landslide depends on human intuition to construct a test case that will produce both
meaningful in quality and manageable in quantity thread interleavings.

The user may supply custom test cases for Pebbles (under pebsim/p2-basecode) by
creating a file in 410user/progs and adding it to config.mk as usual, or for Pintos (under
pebsim/pintos/src/tests/threads) by creating a file and adding it to both tests.c and
Make.tests. Tests for the most common interactions during the P2 and Pintos projects
are of course already supplied, as described in §5.1.3 and §5.2.3.

Use of tell landslide() annotations is not necessary, although tell landslide_
preempt () and tell landslide_dump_stack() may optionally be used at the user’s con-
venience. Additionally, the following “secret” annotations are occasionally used in the
pre-supplied test cases to accomplish several mysterious goals described hereupon.

Magic post-test assertions

Test cases may define global variables of the following names to instruct Landslide to
assert the following corresponding predicates at the end of each test execution, after all
threads exit. Each predicate will be checked iff its first listed variable name is defined; if
that variable is defined, all others associated must also be; any combination of the three
first-listed variables may be specified at the user’s option.

* magic_global expected_result == magic_global value

* magic_expected_sum == magic_thread_local_value_parent +
magic_thread_local_value_child
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* magic_expected_sum_minus_result == magic_thread_local_value_parent +
magic_thread_local_value_child - magic_global value
These could not be implemented as asserts in the test code itself without requiring the
student to implement thr_join() and thr_exit (), avoiding which is important for tests
to be student-accessible earlier in the project implementation timeline.

Misbehave

Many of the supplied P2 test cases invoke the misbehave system call with a mysterious
argument (usually BGND_BRWN >> FGND_CYAN) before the creation of any child threads.
The use of terminal color code constants is of course a red herring of obfuscation, as the
true nature of the Pathos reference kernel’s misbehave modes is a closely-guarded secret
among 15-410 course staff (§). The mode in question causes the reference kernel
to prioritize scheduling the child thread over the parent whenever thread_fork is called,
and the target thread over the invoking thread whenever make_runnable is called, which
are necessary to allow Landslide to recognize a yield() preemption point and be able to
run the newly-runnable thread as soon as possible.

To illustrate, consider the following program in Figure , and suppose Landslide
is configured to preempt only on mutex API calls (such as in the first step of Iterative
Deepening (84.2)). Because Landslide ignores all kernel-level synchronization short of
context switches when testing user-level code, if the kernel created the child thread and
returned from thread_fork (the system call underlying thr_create()) without yielding
first, the next preemption point will not occur until thr_join() waits for the child to exit.
Hence, DPOR will erroneously think everything before that thr_join() happens-before
(8B.4.2) anything the child does, and will fail to identify the racing accesses on x.

void child(int *xp) {
*xXpt+t;

}

void parent() {

int x = 0;

int tid = thr create(child, &x);

X++;
thr_join(tid, NULL);
assert(x == 2);

¥

Figure 3.1: Example demonstrating the need for misbehave to force the kernel to yield
during thread_fork.

Though Iterative Deepening’s soundness (§4.2.1)) guarantees all data races will eventu-

ally be detected starting from just synchronization preemption points, it assumes threads
becoming runnable counts among those. In that sense, misbehave serves to restore the
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last synchronization preemptions where they belong. If at this point the reader wonders
why Landslide doesn’t just identify the thread_create and make_runnable system calls in
the arbiter itself (§3.3.5) and skip this mysterious user-visible complexity, they would be
right to ask: I have left it this way for no better reason than to maintain consistency with
the upcoming chapters’ experimental environments, and intend on fixing it in a future
update.

Other misbehave modes may be used, but are likely to have no effect, since Land-
slide’s thread-scheduling algorithm will override any Pathos-internal scheduling priorities
that may arise therefrom. Hypothetically speaking, a reader with access to the top-secret
Pathos source code could find further misbehave documentation in its inc/misbehavior.h.

3.1.5 Bug reports

When Landslide finds a bug, it produces an execution trace of the particular interleaving
of threads that led to the bug. This takes the form of a two-dimensional table, with
a column for each thread, and each row representing the continuous execution of one
thread between two (not necessarily consecutive) preemption points. In each row, the cell
in the column corresponding to the executed thread will contain a stack trace, indicating
the code location of the preemption point at the end of that thread transition (i.e., each
stack trace indicates “this thread ran until it reached the indicated line of code”). The bug
reports are formatted in html, recommended to be viewed in a web browser. An example
is shown in Figure B.2.

In addition to the preemption trace, the bug report provides some additional helpful
information: a stack trace of the current thread at the ultimate point when the bug was
executed, a message indicating the nature of the bug encountered, statistics about the
size of the state space, and optionally additional information about the bug.E

3.2 Kernel annotations

The educational experiments in this thesis focus on projects which students implement
on top of provided kernel basecode which Landslide already “understands”. Such under-
standing is conferred via the annotations described in this section. For P2 and Pintos
students I supply these annotations behind the scenes, but a CMU 15-410 student who
wishes to use Landslide on her kernel project shall need to brave forth hereupon.

3.2.1 config.landslide annotations

The following annotations are specified in pebsim/config.landslide akin to the static
configuration options described in §B.1.3.. These specify the names of kernel functions,

“*For certain types of bugs, not pictured here; for example, use-after-frees will report separate stack traces
indicating when the corresponding heap block was last allocated and freed. The intrepid source-diver may
find all such cases of extra bug details by searching for the macro FOUND_A_BUG_HTML_INFO in Landslide’s
code.
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A bug was found!

Current stack (TID 5):

0x01000290 inpanic (p2-basecode/user/libthread/panic.c:35)
0x01000071 incritical_section (p2-basecode/410user/progs/paradise_lost.c:42)

0x01000100 inconsumer (p2-basecode/410user/progs/paradise_lost.

54)

0x01000340 inthread_wrappenp2-basecode/user/libthread/thread.c:46)

USERSPACE PANIC: 410user/progs/paradise_lost.c:41: failed assertion 'num_in_section == 1 && "long is the way, and hard, that

out of hell leads up to light"'

Distinct interleavings tested: 51
Estimated state space size: 150.000000
Estimated state space coverage: 34.000000%

TID 4

TID 5

TID 6

0x01000915 inmutex_unlock(p2-
basecode/user/libthread/mutex.c:96)

0x01000a19 insem_signal (p2-
basecode/user/libthread/sem.c:73)

0x010001e0 inproducer (p2-
basecode/410user/progs/paradise_lost.c:71)
0x01000259 inmain (p2-
basecode/410user/progs/paradise_lost.c:87)
0x01000288 in_main (p2-basecode/410user/crt0.c:18)
0xdeadd00d in<unknown in userspace>

0x00105c41 in|context switch](kermel pathos.o:0)
0x010030d7 inyield (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000037 incritical_section (p2-
basecode/410user/progs/paradise_lost.c:39)

0x01000100 inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)

0x01000340 inthread_wrappernp2-

[basecode/user/libthread/thread.c:46)

0x00105c41 in[context switch|(kernel  pathos.o:0)
0x010030e5 indeschedule (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000e67 incond_wait(p2-
basecode/user/libthread/cond.c:79)

0x010009c¢1 insem_wait(pl-basccudc user/libthread/sem.c:54)
0x010000fb inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)

0x01000340 inthread_wrappernp2-

basecode/user/libthread/thread.c:46)

0x00105¢41 in[context switch](kernel pathos.o:0)
0x0100314c¢ invanish (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000259 inmain (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000288 in_main(pZ-basecode 410user/crt0.c:18)
0xdeadd00d in<unknown in userspace>

0x00105¢c41 in[context switch|(kernel
0x010030d7 inyield (p2-
basecode/410user/progs/paradise_lost.c:87)
0x01000037 inc:
basecode/410user/progs/paradise_lost.c:39)
0x01000100 inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)
0x01000340 inthread_wrappernp2-

basecode/user/libthread/thread.c:46)

pathos.o:0)

cal_section (p2-

0x01000290 inpanic (p2-basecode/user/libthread/panic.c:35)
0x01000071 incritical_section (p2-
basecode/410user/progs/paradise_lost.c:42)

0x01000100 inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)

0x01000340 inthread_wrappernp2-

basecode/user/libthread/thread.c:46)

Figure 3.2: Example preemption trace bug report.
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global variables, default values, and so on which are required to accurately track the ker-
nel’s scheduler state: CONTEXT SWITCH, EXEC, FIRST TID, IDLE TID, INIT TID, MEMSET,
PAGE_FAULT WRAPPER, READLINE, SFREE, SHELL TID, SPURIOUS INTERRUPT WRAPPER,
THREAD KILLED ARG VAL, THREAD KILLED FUNC, TIMER WRAPPER, VM USER_COPY,
VM_USER_COPY TAIL, YIELD.

Following are the less self-explanatory options.

PINTOS_KERNEL=0 - configure Landslide for Pebbles (0) or Pintos (1) kernel archi-
tecture. Normally set automatically by the setup scripts.

TESTING_USERSPACE=1 - configure Landslide whether to test (i.e., focus preemption
points, memory analysis, etc. on) the userspace or kernelspace code.

CURRENT _THREAD LIVES ON_RQ=0 - Landslide infers the list of runnable threads from
the tell landslide_on_rq() and off_rq() annotations (described below). Some
kernelst remove the current thread from their runqueue, such that the abstract set of
all runnable threads is actually the runqueue plus the current thread rather than just
the runqueue. Other kernels® leave the current thread on the runqueue, removing
it only when it’s descheduling and should actually be considered blocked. Set this
option to 0 to support the former kernel type or 1 to support the latter.?

PREEMPT_ENABLE FLAG=NAME - name of a global variable which the kernel uses to
toggle scheduler preemptability, for kernels which may disable preemption without
disabling interrupts. For kernels wherein preemptability is corresponds directly by
interrupts, leave this option unspecified.

PREEMPT_ENABLE_VALUE=VAL - value of the above variable when preemption is en-
abled (usually 0; note that many kernels use a nesting depth counter where any
positive value corresponds to disabled) .

PATHOS_SYSCALL_IRET_DISTANCE=VALUE - indicate how much stack space is used by
the reference kernel’s system call wrappers. Used for cross-kernel-to-userspace stack
traces; if unset, stack traces from kernel space will end at the system call boundary.

PDE_PTE_POISON=VALUE - indicate a poison value used in the page tables to indicate
absent VM mappings to check for as well as checking the present bit (if unspecified,
will check present bit only)

BUG_ON_THREADS WEDGED=1 - set to O to disable deadlock detection but instead let
the kernel keep receiving system interrupts when all threads appear blocked.2
TIMER_WRAPPER_DISPATCH=NAME - used to manually indicate a label before the end
of the timer interrupt assembly wrapper, in case the iret instruction couldn’t be
found automatically (see pebsim/definegen.sh).

>most, actually

bthe author’s own student kernel from long ago

’This option replaces the deprecated kern_current_extra_runnable() annotation from student.c
described in [12] §6.2.3.

8These two options replace the deprecated kern_ready_for_timer_interrupt() annotation from
student . c described in [12] $6.2.3.

9

once used in the bad old days; now recommended for debugging use only
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starting threads TID STARTS_ON_RQ - specifies a system thread which already
exists at the time tell landslide sched init done() (see below) is called; TID
is the thread’s ID and STARTS_ON_RQ is O or 1 to indicate whether or not it starts on
the system runqueue. Typical threads to use this for are init and idle.

ignore_sym NAME SIZE - specifies a global variable NAME of a given SIZE in bytes
whose memory accesses should be ignored for the purposes of DPOR and data race
analysis. Typical symbols to use this for are the console or heap mutex.

sched_func NAME - specifies a function whose memory accesses should all be ig-
nored for the purposes of DPOR and data race analysis. Typical functions to use
this for are the timer handler and context switcher.

disk_io_func NAME - specifies a function which may block a thread waiting for disk
I/0 (or other external interrupt) rather than blocking on another thread. If any
threads are blocked in a disk I/O function during an apparent deadlock, Landslide
will allow the kernel to idle until the simulator delivers the appropriate interrupt,
rather than declaring a bug.

ignore_dr_function NAME USERSPACE - specifies a function whose memory access
should not be counted as data races (but still be considered memory conflicts for
DPOR). USERSPACE should be 0 or 1 to denote a kernel-space or user-space function
respectively.

thrlib_function NAME - specifies a function whose memory accesses should be
ignored both by the data race analysis and by DPOR. This is recommended for
marking trusted-correct thread library code when testing multithreaded client code
thereof, in order to avoid unnecessarily checking, for example, all the different ways
thr_exit() and thr_join() could interleave. The user should be careful with this
option to also enable the proper thr_create() misbehave mode in her test case
(83.1.9).

TRUSTED _THR_JOIN=0 - if set to 1, forces Landslide to add a happens-before edge
(88.4.2) between the exiting of some thread N and the end of any subsequent
thr_join(N) call, even if that join would not ordinarily block. This is useful for
state space reduction when testing threaded client code; for example, in the in-
terleaving TID1: x++; thr_exit();, TID2: thr_join(1); print(x);, DPOR, not
automatically trusting join’s behaviour, will attempt to test the TID2, TID1 inter-
leaving to reorder the accesses on x, whereupon join will block, forcing these in-
terleavings to be equivalent. This option allows DPOR to skip checking that join
behaves properly and to prune the second interleaving by teaching it the expected
blocking semantics. Obviously, not for use when actually testing thr_join itself!

3.2.2 In-kernel code annotations

The following annotations are provided as C functions which a kernel author shall in-
clude in her source code and call at appropriate times. The functions’ actual implementa-
tions are empty; rather they serve as labels whose positions the annotation scripts extract

31



along with the other various annotations from the previous section. Some of these are
mandatory for Landslide to function properly, while others serve to improve or otherwise
manipulate the state space.

Mandatory annotations

* tell landslide_thread switch(int new_tid) - to be called during context switch,
indicating the newly-running thread (must be called with interrupts and/or sched-
uler preemption disabled)

* tell landslide sched init_done() - to be called after scheduler initialization, in-
dicating the point after which Landslide should begin analysis. Any threads already
initialized before this point (init, idle, etc) should be specified with starting threads
(previous subsection).

* tell landslide_forking() - to be called whenever a new thread is created, “im-
mediately” before the next thread_switch() or on_rq() call for that new thread
(i.e., this call sets a flag which the next instance of either of the latter will check to
see if the indicated thread is new). Most Pebbles kernels will call this twice; once
in fork and once in thread fork.

* tell landslide_vanishing() - to be called whenever a thread ceases to exist, “im-
mediately” before the next thread_switch() or off_rq() call for the exiting thread
(works similarly to above).

* tell landslide_sleeping() - to be called whenever a thread is about to sleep()
waiting for timer interrupts, “immediately” before the next thread switch() or
off_rq() call for the sleeping thread (similar to the above). Landslide considers
sleeping threads to be runnable as normal (they will just take more timer interrupts
to arrive at), so this call is necessary to distinguish from the case when a thread is
descheduled on a non-timer event.

* tell landslide_thread on_rq(int tid) - to be called when a thread is added

to the runqueue (must be called with interrupts and/or scheduler preemption dis-
abled).

* tell landslide_thread off rq(int tid) - dual of the above. If CURRENT _THREAD _
LIVES_ON_RQ=0 (described above), this should be invoked (among other times) dur-
ing context switch with the TID of the thread about to start running. Alternatively
(thanks sully), even for a kernel which takes the current thread off its literal run-
queue, the annotator may use these two calls to indicate the “abstract runqueue”
which includes the current thread as well, and set CURRENT _THREAD LIVES ON_RQ=1.

Optional annotations

* tell landslide_preempt() - specifies a preemption point. Subject to the con-
straints of within_function/without_function; hence may be ignored if used with
Quicksand.

32



* tell landslide_dump_stack() - instructs Landslide to print a stack trace whenever
this point is reached (for debugging purposes).

Optional but strongly recommended annotations

The following annotations enable Landslide to track locksets for data race analysis. If
not provided, it will be as if Landslide assumes no guarantees about mutual exclusion or
happens-before, and hence will identify all memory conflicts as data races. (Note that
the corresponding instrumentation for P2s is achieved automatically, as the names of the
mutex interface are mandated by the project specification.)

* tell landslide_mutex_locking(void *mutex_addr) - indicates the beginning of
the lock routine for whatever synchronization API Landslide should treat as the
primitive for data race detection. In Pintos this is the sema_x* () function family; in
Pebbles they may be called anything.

* tell landslide mutex_blocking(int owner_tid) - called “immediately” before
a thread becomes blocked on the mutex. Definition of “immediately” similar to
the forking() and friends annotations above. owner_tid allows Landslide to ef-
ficiently unblock/re-block threads when the mutex holder changes (rather than
relying on heuristic yield-loop detection); see kern mutex_block others() and
deadlocked() in schedule.c for implementation details.

* tell landslide_mutex_locking done(void *mutex_addr) - indicates the end of
the lock routine.

* tell landslide mutex_trylocking(void *mutex_addr) - indicates the beginning
of the trylock routine (if present).

* tell landslide mutex_trylocking done(void *mutex_addr, int succeeded) -
indicates when a thread is finished trylocking, even if it failed to get the lock (indi-
cated by succeeded).

* tell landslide mutex_unlocking(void *mutex_addr) - indicates the beginning
of the unlock routine.

* tell landslide mutex_unlocking done() - indicates the end of the unlock rou-
tine.

3.3 Architecture

This section documents the organization of code within Landslide. Unless otherwise
specified, Landslide’s code lives in work/modules/landslide/ (Simics implemenation)
or src/bochs-2.6.8/instrument/landslide/ (Bochs implementation) relative to the
repository root.

Both simulators invoke Landslide once per instruction and once per memory read or
write. The entry point is the aptly-named landslide_entrypoint() in landslide.c,
which then dispatches to various other modules’ respective analyses, described as follows.
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3.3.1 Execution tree

The execution tree is stored as a chain of preemption point nodes named struct hax
defined in tree.h. Although the state space of possible interleavings is exponentially-
sized, Landslide does not actually need to store any nodes for execution sequences outside
the current variation (see §3.4.3 and §B3.4.9 for why), so the total memory consumption is
only O(n) in the number of preemption points in a single program run (for the test cases
used in this thesis, typically 20-1000). Each hax stores the following information:

* Basic statistics such as the current instruction pointer, thread ID, stack trace of cur-
rent thread at the moment of preemption, depth in the tree, parent node pointer,
etc.;

* Snapshots of the current state of the scheduler (§B.3.2) and memory accesses and
heaps (§B.3.3);

* Simulator-dependent data needed to time travel and resume execution from this
checkpoint (§3.3.5);

* List of parent/ancestor nodes with memory conflicts and/or happens-before edges

to this one for DPOR (§B.4.2);

* Current estimated state space proportion and execution time for the subtree rooted
at this node (not necessarily fully explored yet) for estimation §3.4.3;

* Whether this point is an xbegin invocation and if so what xabort codes are possible
and/or already explored for this transaction (§f).

3.3.2 Scheduler

The Landslide scheduler, which lives in schedule.c, has two main duties: to maintain
an accurate representation of all the existing threads on the simulated system and track
what concurrency-relevant actions each is performing at any given time, and to orches-
trate the sequence of timer interrupts necessary to cause the simulated system to context
switch to any given thread at any given time. System-wide state is stored in a single
struct sched_state, including the thread queues (runqueue, deschedule queue, and
sleep queue), while per-thread state is stored in struct agents (named after the termi-
nology of [[127]) which live on said queues.

It has one main entrypoint, sched_update(), in which both the state machine is up-
dated and scheduling decisions are made. The interface also offers helper functions for
finding and manipulating agents, and sched_recover (), which prepares the scheduler
to force a new thread to run after a time travel (§).

State machine

The first part of sched_update() is to update the state machine of thread actions and
runnability. Much of this functionality is found in sched_update_kern_state_machine()
and sched_update_user_state_machine(). The current intruction pointer is compared
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against the known locations of the mutex API, system calls, runnable/descheduling tell
landslide annotations, and so on, and locksets, action flags, and runqueue membership
are updated accordingly.

Interrupt injection

The second part of sched_update(), conditional on the arbiter identifying preemption
points (§B.3.5), manages timer interrupts to switch to a desired thread. Whenever a
preemption point is reached, the scheduler first creates a checkpoint in the execution tree
(8B.3.1)), asks the arbiter which thread to run next, and if that thread is different from the
current one, forces the kernel into its timer interrupt handler (§).

Because the kernel is part of the system being tested, Landslide can’t necessarily always
switch directly to a specific thread, but rather must keep triggering context switches until
the desired thread is reached; any mechanism to tell the kernel which thread it wants
would necessarily involve modgying the code being testsed and hence possibly obscuring
bugs or introducing new ones.

The scheduler marks up to one thread as the “schedule target”, which when set makes
Landslide wait until that thread is reached before looking for more preemption points, so
the kernel may finish its context switches undisturbed. Whenever the schedule target is
set and the end of the context switcher is reached, if the schedule target is not the current
thread, the scheduler repeats this process until it is.LI

3.3.3 Memory analysis

memory . ¢ is responsible for all manner of memory access analysis. It tracks heap alloca-
tions, checks reads and writes in the heap region against same; tracks reads and writes
(in any region) from each thread and checks them against each other for DPOR (§3.4.2)
and data race analysis (§3.4.4). For userspace tests, it also tracks which virtual address
space (cr3) belongs to the test program via a state machine of the test lifecycle, which lets
it avoid false positive heap errors from other programs which have differently-addressed
heaps (check_user_address_space() and ignore_user_access().

Heap checking

mem_update () serves as the main entrypoint for tracking heap allocations. It’s called every
instruction to check for the boundaries of the malloc library, and behaves in a similar
way to the scheduler state machine described above. Then, mem check_shared_access()
checks (after some elaborate manoeuvres to figure out whether to use the kernel- or

OFor userspace testing, where I supply a pre-annotated reference kernel, such an approach would be
more straightforward, but the kernel-testing repeated-context-switch approach infrastructure was already
in place and it was easier to reuse that than to add more code.

Note that this “loop” is not structured as an explicit loop in Landslide’s code, but rather as part of the
state machine which updates each time a new instruction is traced.
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userspace heap) whether, if in the heap region, the memory is contained in a currently-
allocated heap block, reporting a bug if not.

Memory conflicts

mem_check_shared_access() also records each such access in a per-thread-transition rb-
tree, which is saved and then cleared at each preemption point. This allows mem_shm_
intersect (), called at each preemption point once for each of its ancestors (n? total calls
per interleaving), to perform a set intersection to find any memory conflicts. Any such
conflicts which also fail a lockset and/or happens-before check (§) are then reported
as data races. Regardless, all such conflicts are later used by DPOR (§) to find de-
pendent transition pairs.

3.3.4 Machine state manipulation

The interface to inspect and manipulate the simulated machine state lives in x86. c.

Memory

read_memory() and write_memory() are both provided (with various wrapper macros
in x86.h). The former is used basically everywhere throughout Landslide to query the
machine state; the latter is used only by the interrupt manipulation below and by the
scheduler to force Pintos to skip certain parts of its init sequence (§B.3.8). Both rely
on the helper function mem_translate() for virtual address resolution, which at present
supports only the normal x86 32-bit addressing mode (no PAE, long mode, etc.).

Interrupts

Several routines are provided for manipulating system interrupts. Note that the Land-
slide is called once per fetch-decode-execute loop of the CPU, after the CPU processes all
already-pending interrupts and decides which instruction to execute, but before actually
executing the instruction (true of both Bochs and Simics). I refer to this as the upcoming
instruction. Whether or not Landslide wants that instruction to execute before triggering
a thread switch is a matter of some concern in the following API.

* cause_timer_interrupt () triggers a pending timer interrupt, whose handler will
be entered as soon as the upcoming instruction is executed.

* cause_timer_interrupt_immediately() does as above, but forces the system to
enter the interrupt handler before the upcoming instruction is executed. That in-
struction will be executed upon return from the interrupt.

* avoid_timer_interrupt_immediately() suppresses a timer interrupt triggered by
the simulator from outside of Landslide’s control. It acknowledges the APIC and
forces the system to jump to the end of the interrupt handler.
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* delay_instruction() forces the system to execute a no-op before the upcoming
instruction, effectively converting an invocation of cause_timer_interrupt() to
cause_timer_interrupt_immediately().

* cause_keypress () triggers a keyboard event corresponding to the specified charac-
ter. The interrupt will be taken after the upcoming instruction is executed (provided
no timer interrupt is simultaneously pending). Only a-z, 0-9, _, space, and newline
are supported (enough to name any Pebbles test case).

* interrupts_enabled() queries the CPU’s interrupt flag (eflags:IF).
* cause_transaction_failure() forces xbegin() to return a specified abort code.

Note that kern_ready_ for_timer_interrupt() should generally be invoked sepa-
rately from interrupts_enabled() if needed; while interrupts_enabled () must be true
before invoking cause_timer_interrupt (), if the kernel is not ready the interrupt may
not be received for a long time. Also, cause_timer_interrupt_immediately () must not
be used while the kernel is not ready.

3.3.5 State space traversal

Traversal of the state space is implemented in three parts: first, identifying preemption
points when first encountered and selecting which thread to run for its first execution,
in arbiter.c, second, selecting which preemption point to backtrack to after completing
an execution and which thread to “have switched to” instead, in explore.c, and third,
rewinding the machine state to implement said backtracking, in timetravel.c (Bochs
version) and timetravel-simics.c (Simics version).

Arbiter

The arbiter (named after the corresponding component of dBug [127]) is responsible for
checking which code locations during execution should be identified as preemption points
(arbiter_interested()), and thereupon for choosing whether to keep running the cur-
rent thread or to preempt and switch to a new one (arbiter choose()). Its behaviour
in the former case is configured by the options listed in §B.1.3, and in the latter case by
the options listed in §. For example, EXPLORE_BACKWARDS is interpreted here; if set,
it will cause Landslide to always preempt and switch threads the first time it encounters
each new preemption point.

Explorer

Landslide invokes the explorer at the end of each execution of the test case, which analyzes
the current branch of the interleaving state space tree to figure out which alternate branch

12 Another secret option, CHOOSE_RANDOMLY, also exists here to randomize whether to “explore backwards”
(choosing independently at each preemption point, resulting in an overall unpredictable exploration order).
It’s not exposed to config.landslide but rather the user must edit it in arbiter.c directly, whereupon
the probability may also be adjusted via numerator and denominator.
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to try executing next. Its contents are largely algorithmic rather than architectural and
hence further described in §38.4.2 and §B.4.5.

Time travel

After the explorer picks a past point of the program to preempt, Landslide collaborates
with the simulator to revert the machine state to that point before switching to the de-
sired thread. The Simics version is merely a bunch of wrapper glue code around the
set-bookmark and skip-to backtracking commands. Bochs however does not support
backtracking, so I instead use fork() to get Linux to copy the machine state for me.

The big issue to note here is that, while the simulation state should be completely
reverted, parts of Landslide’s state (e.g., scheduler runqueues, thread action flags) should
likewise be reverted to mirror the change in program state, while others (tagged ancestor
branches from DPOR, state space estimates) should be preserved from branch to branch.
In Simics, I simply copy every data structure of the former case (copy_sched () and friends
in save.c), leaving those of the latter undisturbed across backtracks.23

In Bochs, fork() automatically copies everything, so the reverse holds: all data of
the latter case must whenever updated be propagaged to all fork()ed children processes
explicitly. I worried while implementing this that I might miss a case, or that future
updates to the code could easily forget this step, resulting undoubtedly in state corruption
bugs which to diagnose would be a thesis in their own right, so I enlisted help from my
compiler via the oft-ridiculed const. Every preemption point node in the execution tree
(tree.h), each of whose state is kept generally read-only, and all modifications must go
through modify_hax() (timetravel.h) using a modification callback, which internally
casts away the const, performs the requested modification, and also messages all relevant
child processes to perform the same (timetravel set() in timetravel.c). The const is
absolute% inviolably, not to be casted away, at the sacred cost of what little type safety
C offers.®® Thence the typechecker enforces that all exploration-related state is properly
propagated while scheduler state is automatically reverted.

3.3.6 Bug-finding output

The infrastructure for producing the diagnostic output to help users understand their bugs
can be classified in three parts: the symbol table glue, the excessively clever stack tracer,
and the preemption table generator.

13Simics actually wants to save/restore all its modules’ internal state on its own, offering an attribute
set/get API for modules to expose such state (used for other purposes in simics_glue.c), but doing deep
copies of data structures this way would be more trouble than it’s worth.

140Of course this would be followed by a footnote describing the one place where I cast it away anyway,
mem_check_shared_access() in memory.c; why it’s ok is documented in an XXX comment in the code.
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Symbol table

The symbol table logic lives in symtable.c and is pretty much a lot of glue code. In
the Simics version, Landslide relies on the deflsym Simics object created by the 15-410
python scripts, and queries its attributes using Simics API calls. In the Bochs version,
function names and line numbers are handled separately: Bochs is patched with a new API
function named bx_dbg_symbolic_address_landsl idel¥ which provides function names
and hexadecimal offsets; while for line numbers, pebsim/pintos/build.shlé generates
a header file 1ine_numbers.h using objdump and addr2line, which the aforementioned
hex offset then serves as an index into.

Stack traces

The stack tracer is implemented in stack.c. It does the standard approach of following
the base pointer chain (not supporting code compiled with -fomit-frame-pointer by
doing anything clever like understanding how much stack frame is allocated for each
function), and printing symbol table information for the pushed return addresses at the
top of each frame.

However, it also offers several special-case features which even some students have
sometimes noticed as being more clever than Simics’s stack tracer. I document those
features here. As a common point of implementation among them, Landslide traces the
stack pointer esp in addition to the base pointer ebp; not only updating it whenever
dereferencing the base pointer, but also when decoding simple assembly routines, finding
“hidden” stack frames without base pointers, identifying system call wrappers, and so on.
The corresponding code lives in stack_trace() in stack.c.

* If a function is preempted at its beginning or end such that its corresponding base
pointer is missing from the base pointer chain, Landslide will find its “hidden” frame
and include it in the stack trace in the following cases.Z

» If the last pushed return address is at offset O into the body of its containing
function, Landslide will find the next pushed return address at esp+0.

« If as above but the function is the page fault handler, at esp+4.

= If the return address is at offset 1 and the previous instruction was push ebp,
Landslide will find the next pushed return address at esp+4.

= If the return address is a multiple of 4 offset and all previous instructions are
of the form mov m32,r32, Landslide will find the next pushed return address
at esp+0. (This is common in student hand-written assembly functions.)

* If the instruction at a pushed return address is a pop or popa, Landslide will search
for the next non-pop(a) instruction, and if it’s ret or iret, treat the function as a

5does the same thing as the existing bx_dbg_symbolic_address, but with a better type signature

161 ine numbers in Bochs for Pebbles/P2s are not supported yet; see p2-setup . sh for the work-in-progress.

17Note that in such cases, most other debuggers’ stack tracers will be missing not the name of the inter-
rupted function, but the name of the function which called that function, because it’s the former’s stack
frame which should enable the debugger to find the pushed return address for the latter.
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system call wrapper (which tend not to preserve the base pointer chain) and find
the next return address above where all those registers were pushed.

* If a return address was pushed during a fault or interrupt (determined by checking
for the iret opcode or the page fault wrapper special case mentioned above), Land-
slide will read the iret block to determine whether a stack switched happened and
if so what esp used to be.

* If a return address’s offset into its containing function is 0, and the last instruction
in the preceding function (binary-wise) is a call, Landslide will recognize it as a
noreturn tail-call, and print the correct function name.l8

* Landslide runs the tortoise/rabbit algorithm to detect cyclic ebp chains and termi-
nate after the first time around.

* Two other Pebbles-specifc special cases described in §3.3.7.

Also implemented in stack. c is the backend of the within_function/without_function
configuration command, which searches a given stack trace for the presence of a function
return address within a specified range.

Preemption traces

The preemption traces, described and exemplified in §B.1.5, are generated by found a_
bug.c, in cooperation with save.c. Whenever save.c creates a preemption point, it cap-
tures a stack trace of the current thread at the point it was interrupted, and saves it
in the preemption point tree. found_a_bug.c then traverses the current branch of the
tree, potentially producing both console output and HTML output (controlled by the
HTML_PRINTF macro family). It should be invoked by the FOUND_A BUG macro defined
in found_a_bug.h, or by FOUND_A_BUG_HTML_INFO, which also allows the caller to specify
a callback to print extra details (such as use-after-free stack traces) in the bug report.

3.3.7 Pebbles-specific features

This section lists special cases of instrumentation specific to the Pebbles kernel.

* mem_check_shared_access() (memory.c) will assert that kernel memory is direct-
mapped.

* use_after_free() (memory.c) will ignore use-after-free reads originating from ker-
nel code during the swexn system call (an extremely common and neither harmful
nor technically interesting bug among student implementations).

* cause_test() (test.c) will issue keyboard input to type the test case name and
press enter when the initialization sequence completes and the shell is blocked on
readline.

18Normally Landslide reports function/line number information for the return address as-is, which indi-
cates the next line of code after the relevant call rather than the call itself.
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kern_mutex_block_others() (schedule.c) will handle the special “blocked on via
mutex” state changes whenever a mutex is acquired or released, for kernels which
use the tell landslide_kern mutex_blocking() annotation.

sched_update_kern state machine() (schedule.c) will handle the reference ker-
nel’s invocation of sched_unblock() within cond_signal() as a signal event for
happens-before analysis.

cause_timer_ interrupt_immediately() (x86.c) will read the esp0O value out of
the TSS to support user-to-kernel mode switches in timer interrupts injected during
userspace execution.

splice_pre_vanish_trace (stack.c) will, when a vanishing thread has already
deleted its Simics symbol table object, splice in a saved “pre-vanish” stack trace
(saved previously in sched_update_kern_state_machine()) so the user can see the
userspace execution sequence preceding the vanish invocation.

stack_trace (stack.c) will, when ebp crosses from kernel- to userspace across a
system call boundary (a reference kernel feature to allow Simics stack traces to cross
same), use PATHOS SYSCALL IRET DISTANCE (§) to track esp’s value across the
stack switch.

3.3.8 Pintos-specific features

This section lists special cases of instrumentation specific to the Pintos kernel.

arbiter_interested() (arbiter.c) will automatically insert preemption points on
intr_disable() and intr_enable() calls (immediately before and after the inter-
rupt state is changed, respectively) (as long as they aren’t part of the mutex imple-
mentation, which has preemption points of its own).

lockset_remove() (lockset.c) will warn instead of panic if a lock is unlocked
twice, to allow for double sema_up () in cases where the lock is actually a multi-use
semaphore rather than a mutex.

build.sh will edit the bootfd.img binary to implant the name of the test case to
be run in the kernel’s boot command.

sched_check_pintos_init_sequence() (schedule.c) will force the kernel to skip
the timer_calibrate() and timer_msleep() routines used in I/O initialization.

keep_schedule_inflight() (schedule.c) will detect when an attempted thread
switch is impossible because the timer handler’s try-lock will fail, and will abort the
interleaving early as if it never existed (which it shouldn’t).

sched update kern_state _machine() (schedule.c) will:

= track invocations of timer_sleep() and list_insert_ordered() to infer when
a thread is sleeping rather than blocked automatically, rather than relying on
the tell landslide_sleeping() annotation.

» allow sema_up () to reenter itself, which may happen when an IDE interrupt is
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taken when interrupts are re-enabled at the end of said function.

= handle interrupt disabling/enabling as an abstract global lock for the purposes
of happens-before analysis.

sched_update() (schedule.c) will handle “lock handoff” of the abstract disable-
interrupts lock during a context switch for happens-before analysis.

memory . c (various functions) will handle page allocations from the palloc family
of functions in a separate memory heap, allowing the usual allocator malloc to
allocate and free from palloc’ed memory, and checking both allocation heaps when
checking for use-after-frees.

kern_address_in_heap() (kernel_specifics.c) will ignore DMA accesses to the
VGA console, which appear to be in Pintos’s heap region.

test_update_state() (test.c) will use the boundaries of run_test () to denote
the test lifecycle.

3.3.9 Handy scripts

The options specified in §B8.1.3 are handled by a family of gross shell scripts that live in
pebsim/.

(]

landslide is the outermost script invoked by Quicksand (or by a §B.1.3 aficionado).
It exports several key environment variables used by the other scripts, ensures the
instrumentation is up-to-date, and launches the simulator.

getfunc.sh defines several functions commonly used by build. sh and definegen. sh
to extract function or global variable addresses from the program binary.

symbols.sh defines the names of kernel functions that can be instrumented auto-
matically without a corresponding manual annotation (e.g., malloc and friends, the
names of the tell landslide family, various library helpers such as panic).

build.sh ensures the build of Landslide is up-to-date, and processes any dynamic
configuration options which don’t require updating the build (§B3.1.3) It verifies
all required tell_landslide annotations are present, verifies all required config.
landslide options, processes the dynamic config options, checks whether or not
definegen.sh needs to be run again (via hashes stored in student_specifics.h of
the program binary and static config options), and does so if necessary.

definegen.sh produces the content of student_specifics.h. It repeatedly invokes
the helpers defined in getfunc.sh to find the addresses of both functions specified
in the config options and functions whose names are known in advance.

p2-basecode/import-p2.sh and pintos/import-pintos.sh are invoked by their
respective setup scripts to copy the student implementation into their respective
directories. §5.1.9 and §5.2.2 describe their office in more detail.

19You might think it should invoke objdump but once and keep the output in a shell variable, but I tried
that and it was mysteriously slower, so I gave up without ever figuring out why.
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The final output of these scripts is an auto-generated header, student_specifics.h,
containing a bunch of #defines of the addresses of important functions in the compiled
binary, specific features enabled or disabled by the static config options (§3.1.3), and so
on. The files kernel specifics.c, user_specifics.c, and student.c provide several
interface functions for interpreting the current program state with respect to these values.

3.4 Algorithms

This section describes Landslide’s model-checking algorithms from a theoretical perspec-
tive. The more complex ones are accompanied by concrete examples to hopefully help the
reader build a solid intuition, which upcoming chapters will require in their soundness
proofs.

3.4.1 Preemption point identification

When should Landslide sunder the universe into alternate realities, in which each a differ-
ent thread executes immediately following the current instruction? This singular question
determines to what extent the state space of possible interleavings explodes exponentially.
While other parts of the great work decide which lock API calls to consider, or which mem-
ory accesses constitute a data race, interpreting those combinations of preemption point
predicates to decide if the current program state constitutes a single preemption point
warrants discussion.

Preemption point identification is implemented largely in pp. c. At startup, pps_init ()
and load_dynamic_pps() process the statically-configured preemption points (§)
and dynamically-configured preemption points (§), respectively. Each of these con-
figurations may contain any number of within_function, without_function, and data_
race commands.

Stack trace inclusion/exclusion

check_withins() implements the whitelist/blacklist behaviour for the former two of
those commands (in a similar manner to the Preemption Sealing technique described
in prior work [9]). It invokes the stack tracer (§) for a list of which functions are
on the call stack (hence the importance of the stack tracer’s complex logic to not miss
any frames even when interrupts or system calls are involved). Then, to determine if
the current program state should be considered a valid preemption point, or whether it
should be rejected, it compares each within or without function directive in the follow-
ing sequence-dependent manner:

* If no within_function commands are given, operate in “blacklist mode”: the pre-
emption point is by default valid as long as no without_function calls reject it.
Otherwise, operate in “whitelist mode”: the preemption point is by default rejected
unless at least one within_function directive matches.
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* Subject to the above, find the sequentially-last *_function directive (static preemp-
tion point commands considered before dynamic ones) which matches any function
in the stack trace. If within, accept the preemption point; if without, reject it.

The same comparison is done for within_user_function and without_user_function.

Data race predicates

The data_race command specifies an instruction pointer value to identify as a data race
preemption point. The point can optionally be qualified by a thread ID, most recent system
call number, etc., as described in §, and is queried through suspected_data_race().

In Preempt-Everywhere mode, instead Landslide marks all shared memory accesses
as long as they are not either part of the mutex implementation or part of the running
thread’s stack frame. The data_race command is ignored and suspected_data_race()
instead checks whether the instruction pointer is associated with any such shared memory
access.

Preemption point predicates

arbiter_interested() in arbiter.c then checks various annotations and hard-coded
preemption point predicates to decide whether the current program state constitutes a
preemption point. The following predicates are constrained by check_withins():

* suspected_data_race()
* User or kernel mutex_lock() or mutex_unlock() call

* Custom kernel preemption point using tell landslide_preempt () (relic of [12],
largely obsoleted by data-race preemption pooints)

The following predicates ignore any within_ function settings (mandatory preemp-
tion points needed, for example, to maintain the one-thread-per-transition invariant):

* Voluntary reschedule, e.g. explicit yield ()
* hlt instruction (kernel waiting for interrupt)

User thread becomes yield- or xchg-blocked (§B.4.6)
+ xbegin() or _xend(), if testing transactional memory (Chapter )

Whenever arbiter interested() returns true, Landslide creates a new struct hax
in the execution tree (§B.3.1)), creates a checkpoint (§B.3.5)), and queries arbiter_choose ()
to decide which thread to run next (§3.3.5).

Example

Consider the following examples to illustrate the behaviour of the stack trace directives.
1. mutex_lock(), inmalloc(), in thr_create(), in main()

2. mutex_lock(), in cond_wait(), in thr_join(), in main()
and the following within/without user_function combinations:
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* within user_function mutex_lock, without user_function malloc
Rejects stack trace 1 (last matching directive is to exclude malloc), accepts stack
trace 2 (last matching directive is to include mutex_lock)

* within_user_function thr_join
No withouts present, so behaves as a whitelist, rejecting stack trace 1 (not in
thr_join()), accepting stack trace 2 (in thr_join()).

* without user function cond wait
No withins present, so behaves as a blacklist, accepting stack trace 1 (not in cond_
wait()), rejecting stack trace 2 (in cond_wait()).

* without_user_function main, within_user_ function mutex_lock

Accepts both (last matching directive is to accept mutex_lock (), regardless of main())

3.4.2 Dynamic Partial Order Reduction

Landslide implements Dynamic Partial Order Reduction (DPOR) [46] to identify concur-
rent yet independent thread transitions whose permutations can safely be pruned from
the state space while still testing all possible program behaviours.

The DPOR implementation consists of 3 parts: computing happens-before, comput-
ing memory conflicts, and tagging alternate branches to explore to drive the state space
exploration. The former two are computed as each preemption point is reached, for the
associated thread transition pairwise with all other preceding thread transitions. The lat-
ter is computed at the end of each full interleaving executed, using the results of the two
former, and constitutes the bulk of the algorithm.

In this section ¢; will denote a transition between two program states during execution,
with each state being a preemption point as identified in §3.4.1], and 7'(¢;) will denote the
thread which was scheduled to produce that transition. A visual example will be given at
the end to help reinforce the intuition behind the formalism.

Happens-before

The happens-before relation expresses when two thread transitions can potentially be re-
ordered, or in other words, are concurrent (despite the serialized nature of the simulated
execution). This relation is expressed in the following definitions paraphrased from [46].

* Enabled: A transition ¢; is enabled in a state s when a state s’ exists such that s N
exists. In systems terms, the scheduler at state s considers 7°(¢;) to be runnable.

* Dependent: Two transitions ¢; and ¢; are dependent if

. . t
1. ¢, is enabled in s and s = s/, and
2. t, is enabled in s but not enabled in s’, or vice versa.

In systems terms, either 7'(t;) = T'(¢2), or the execution of ¢; at s causes T'(t5) to
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change state from blocked to runnable or vice versa. Landslide computes this
relation in enabled by () in save.c.

* Happens-Before: The happens-before relation for a transition sequence S = ¢; .. .t,
is the smallest relation —g on 1...n such that

1. ifi < j and S; and S; are dependent then i —¢ j, and
2. —g is transitively closed.
Landslide computes this relation in compute_happens_before() in save.c.

The happens-before relation is a partial order expressing the scheduling constraints of a
given interleaving. All pairs of interleavings not included are subject to reordering, and
hence candidates for new interleavings to test.

Note that DPOR’s notion of happens-before differs from the traditional distributed sys-
tems definition [81] as used in Pure Happens-Before §R.3.2; rather, it coincides with
condition 3 of Limited Happens-Before (in fact, Landslide’s Limited HB implementation
simply reuses the same result computed for DPOR’s purpose).

Memory conflicts

The memory conflict relation expresses when two transitions are dependent, or in other
words, when their behaviour could potentially vary depending which executes first.

Upon execution of each ¢; € S, Landslide saves the current set of all memory accesses
since the previous preemption point (call this M (t;)), compares it to all M (¢;) with i < j
and i 45 j, and then begins recording subsequent memory accesses in a new empty
set for ¢;;1. (shimsham_shm() in save.c). These M (¢) sets are mappings from memory
addresses to instruction pointer value, read-or-write boolean, lockset or vector clock, and
various other metadata (struct mem_lockset in memory.h).

The set intersection is implemented in mem_shm_intersect() in memory.c. It checks
for read/write and write/write pairs to the same address with an O(max(m,n)) scan of
both access sets (pre-sorted). If any address a exists with a € M(¢;) and a € M(¢;) and
M(t;)(a) = write V M(t;)(a) = write then ¢; and ¢; are said to conflict, which I will denote
ti e g tj.

Whenever a conflict is identified, it also invokes the data race analysis (§3.4.4). It
checks for free () /access conflicts as well as access pairs, effectively treating deallocation
of a heap block as a “poisoning” write to its entire contents, which is considered to conflict
with accesses to any address therein on the grounds that reordering may expose a use-
after-free.

State space exploration

The core of the DPOR algorithm is implemented in explore() in explore.c.

20The original paper’s definition includes a second criterion that, from s, a state s’ exists such that both
tit tat . . . . .
s —2 s’ and s =% s'. This captures the memory independence relation, but computationally requires
direct comparison of program states. Stateless model checkers compute memory conflicts separately from

happens-before, to find and prune such identical states implicitly, as described in the next two subsections.
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Definition. Given a transition sequence (execution, interleaving, preemption trace)
S =t;...t,, the DPOR algorithm identifies any number of alternate interleavings that
must be tested. Each such interleaving I will denote in this section as [;; = (¢ ...t;,—1,1}),
where t;...t;,_; is the common execution prefix shared between S and the new inter-
leaving, and 7 is the thread ID to be scheduled after ¢;_4, T; # T'(¢;). 1 [andslide’s
implementation represents S as a list of struct haxes, defined in tree.h, each one rep-
resenting a preemption point, or intermediate state between two transitions.

Identifying new interleavings. To find which alternate interleavings need to be
tested, DPOR compares pairwise each pair of transitions ¢; and ¢;, ¢ < 4, in the current
interleaving S. If t; —¢ t; then they cannot be reordered, and if ¢; #~g ¢; then reordering
them will produce a state already encountered in this interleaving; hence, DPOR marks
new interleavings only when ¢; /5 ¢; and ¢; «vg t; (is_evil_ancestor()). b2

For each such pair, let s denote the state (preemption point) before ¢;. Then:

* If T'(t;) is runnable at s, return I;; = (¢;...t;—1,7;) (tag_good_sibling()).

* Otherwise, there must be some third thread runnable at s; b3 then, return all ;;, =
(t1...ti—1,Ty) such that T}, # T'(t;) and T}, is runnable at s (tag_all_siblings()).

To summarize, DPOR identifies /;;s which will (eventually) reorder each conflicting,
concurrent transition pair in S to reach a (possibly) new program state not exposed in
the current interleaving. Prior work [1, 46, 49] refers to the set of these [;;s, for a given
i, as the persistent set at the preemption point after ¢; ;.

Tracking already-visited interleavings. Let U(/;;) denote the sub-state-space (or sub-
tree) beginning at the next preemption point reached after executing 7} after ¢; ...¢;_1; in
other words, the set of all sequences S’ = t;...¢,_1,u;,...u, with T'(u;) = T}. Landslide
orders its search depth-first, so for any such U outside the current interleaving, either all or
none of its S’s will have been tested already. Therefore, to avoid repeating interleavings,
Landslide need only store at each struct hax a list of threads such that their correspond-
ing subtree U is fully explored, and can omit any non-constant-size information about the
contents of that U (struct hax_child). Hence the memory cost of Landslide’s DPOR im-
plementation is O(nk), k being the maximum runnable threads at any preemption point
(which in turn is always single digits for model checking tests).

Choosing which new interleaving to test next. Among all interleavings chosen by
DPOR not already marked as explored, Landslide chooses the one with the longest exe-
cution prefix matching the current S, to maintain the depth-first search invariant. (In
the case of a tie, differing only by which thread to run, it chooses arbitrarily.) All other
new interleavings are marked to explore later in their corresponding struct hax, and
automatically included in the result of any future iterations of DPOR until they are tested.

211 describe T; as a thread ID here, rather than as a thread transition, because the nature of the transition
(its memory accesses, the subsequent state, etc) is unknown until actually executed.

22T aid intuition, consider the two extremes: if all transitions are related by happens-before, the program
is not concurrent and no alternate interleavings are possible; if all transitions are memory-independent, the
program exhibits full data isolation between threads and all schedules are observably equivalent.

BAFSOC T(t;) is the only runnable thread at s, then either T'(;)’s execution at s enabled T'(;), or it
enabled an intermediate transition (whether by T'(¢;) or a third thread) which in turn enabled T'(¢;). In
either case ¢; is transitively dependent with ¢;, contradicting ¢; /g t;.
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Because the one with the longest execution prefix was chosen to test next, all others must
share their execution prefixes with it, preserving the O(nk) memory bound described
above.

Termination. When DPOR returns no new /;;s not already marked in the set of visited
subtrees, the exploration is complete.

Example

Although a superhuman reader may quickly reach intuitive understanding of complex al-
gorithms from dense prose and mathematical notation alone, I also present here a friendly
example of using DPOR on Figure R.1's example program, whose original state space
is shown in Figure R.4. In this program both threads are always enabled, imposing no
scheduling constraints, so memory conflicts alone will drive exploration. First, let us con-
sider a single iteration of DPOR, applied after executing the first branch. The result is
shown in Figure B.3.

(start)

‘.‘__ — —
| tmp2 <- x
tmp1 <- x L | O_)D Executed thread interleaving
o
tmpl++ tmp2 <- x T k\ﬂ Write/write memory conflict
- sk
X <- tmpl - = i i
|tz < x /\1 Write/read memory conflict
- = =J _
tmp2 <- x D'\ * Alternate interleaving marked for exploration
v (...) I
tmp2++ Alternate interleaving not (yet) marked

A 4

X <- tmp2

Figure 3.3: Result of a single iteration of DPOR.

In this interleaving, DPOR identifies 3 memory conflicts, two read/write and one
write/write, among the threads’ 4 accesses to x. For each such pair, it “marks” an al-
ternate interleaving, which shall begin by preempting the thread of the first half of the
conflict just before its execution thereof. The ultimate goal is to execute an interleaving
which reorders the conflict, which may expose new behaviour. These marked interleav-
ings form a work-queue which defines the exploration. DPOR consumes from this set in
depth-first order (note the reversed order of %1 and %2) to avoid storing in memory any
representation of exponentially-sized subtrees outside of the current branch. Note also
that in %2, the reordered tmp2 <- x is not directly part of the memory conflict which
marked it, but it must be executed first to reach the conflicting x <- tmp2.
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Now, let us run multiple iterations of DPOR to advance through the first half of the full
state space shown in Figure 2.4(b). Figure B.4 shows the outcome (with the previously-
marked %2, now re-labeled as %3, having its subtree abbreviated).

(start)

tmpl <- x tmp2 <- x

tmpl++ tmp2 <- x

X <- tmpl tmp2 <- x i tmp2++ tmpl++

tmp2 <- x tmp2++ X <- tmpl X <- tmp2 tmpl++ X <- tmpl tmp2++

4 /3
tmp2++ X <- tmp2 X <- tmpl tmp2++ tmpl++ X <- tmpl X <- tmp2 tmp2++ X <- tmp2 X <- tmpl
A 4
X <- tmp2 X <- tmpl X <- tmp2 X <- tmp2 X <- tmpl X <- tmp2 X <- tmpl X <- tmp2 X <- tmpl X <- tmp2
A B 3 D E F G H I 3
O_)D Executed thread interleaving * Alternate interleaving marked for exploration
k‘\; Write/write memory conflict Pruned (never executed) interleaving
/\” Write/read memory conflict Equivalent interleavings (up to reordering of tmpN++)

Figure 3.4: Result of 3 DPOR iterations, pruning 7 redundant branches.

After marking %1 and %3 from Figure @’s interleaving, now labeled A, DPOR ad-
vances to interleaving B, preferring to schedule the second thread before switching back
to the first to ensure the memory access is properly reordered. From there, it identifies a
new memory conflict, marks %2, and advances to C, where it finds no memory conflicts
that would mark anything not already marked and/or explored (memory conflicts that
were already reordered in old branches are not highlighted with arrows). From C, %3
alone remains in the work-queue, so DPOR advances to the second (symmetric) half of
the state space, skipping (thereby pruning) branches D through J.

To see why branches D through J need not be tested, consider that each thread’s
tmpN++ is a thread-local event, participating in no memory conflicts, and hence any two
interleavings differing only by reordering tmpN++s must be equivalent. The dashed blue
arrows denote such equivalences; note the two disjoint equivalence classes {B,E,G,I} and
{C,D,F,H,J}, distinguished by the order of the two final x <- tmpNs. Note also that al-
though B and C also have the same outcome (x==1), this depends on the values written to
memory rather than addresses (and would change if one thread’s tmpN++ were a tmpN+=2,
for example), which DPOR does not consider. Recent work [63] has extended DPOR to
find such value-based equivalences, although is beyond this explanation’s scope.

Finally, let us consider the final result after DPOR runs out of remaining unexplored
marked branches, shown in Figure B.5.
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(start)

tmpl <- x tmp2 <- x

tmpl++ tmpl <- x
X <- tmpl tmp2 <- x
| tmp2 <- x |1tmp2++ X <- tmpl X <- tmp2
tmp2++ X <- tmp2 X <- tmpl
\ 4
X <- tmp2 X <- tmpl X <- tmp2
A B Cc

Pruned subtrees (equivalent up to reordering of tmpN++)

Equivalent interleavings (up to reordering of tmpN <- x)

Figure 3.5: DPOR’s termination state, having reduced 20 interleavings to 6.

Ultimately, the second half of the state space is pruned symmetrically. In general, the
number of ways to interleave two threads executing N and M events each is given by
(NMYB; in this case, the original state space’s size was (*!*) = 20. DPOR’s reduction is
characterized by replacing N and M with the number of conflicting events only; in this

case, ignoring all tmpN++ reorderings and testing only (*}?) = 6 branches.

Sleep set reduction

In the presence of non-conflicting transitions as well as conflicting ones, DPOR’s approach
as described so far can still end up testing equivalent interleavings. As the presence of
more equivalence arrows in Figure @ hints, its reduced subset state space still contains
redundancy, arising from the fact that one pair of those 4 events is two reads, and hence
not actually in conflict. Visual inspection shows that %4, while locally justified in trying
to reorder tmpl <- x before x <- tmp2, effectively serves only to reorder it with tmp2
<- x relative to the first symmetric subtree (% 1). In other words, even though DPOR
marked each new branch with the intent only to reorder conflicting accesses, %1 and %4
contained interleavings equivalent up to independent reorderings anyway. Figure .6
summarizes the relevant interleavings to highlight one such equivalence.

24Generalizing to K threads, and simplifying to the same number N of events each, this formula becomes

nlk!
nlk *
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Ty: tmpl <- x (read) Ty: tmp2 <- x (read) To: tmp2 <- x (read)
Tsy: tmp2 <- x (read) Ty: x <= tmp2 (write) Ty: tmpl <- x (read)
Ty: x <= tmpl (write) Ty: tmpl <- x (read) Ty: x <= tmpl (write)
Ty: x <= tmp2 (write) Ty: x <= tmpl (write) Ty: x <- tmp2 (write)

(a) Original branch (C). (b) Goal branch (K). (¢) Redundant branch (L).

Figure 3.6: Motivating example for the sleep sets optimization. Three of Figure B.5s
interleavings are highlighted, with the always-independent tmpN++s omitted for brevity.

Intuitively speaking, when DPOR entered the % 3 subtree, it did not “remember” which
memory conflict it wanted to reorder T; around (i.e., that x <- tmp2 should come before
tmpl <- x). Upon witnessing the conflict in the new (intended) order, it then tried to
reorder it again, producing interleavings regrettably equivalent to ones already tested (all
told, only tmp2 <- x and tmp2++ having been reordered around tmp1 <- x). To “remem-
ber” the original purpose of testing subtree %3, which was already fulfilled by testing K,
DPOR can check just before tagging a new subtree (here, %4) among all preceding tran-
sitions independent with the conflicting one (here, tmp2 <- x and tmp2++ independent
with tmp1 <- x) for an already-explored interleaving beginning with the target thread.
If such exists, the new subtree is guaranteed to be equivalent to one already checked, and
can safely be skipped.

Landslide implements this check in equiv_already_explored(), which checks (in
this case after executing K), that if the first event to be reordered (here, tmpl <- x) has
already been tested in an equivalent reordering around any number of preceding events
(here, tmp2 <- x and tmp2++), then the newly marked subtree is safe to prune. Note
that this does not require storing any full subtrees outside of the current branch; only the
subtree’s root node need be saved to prove that an equivalent interleaving beginning with
T, therein was already checked, preserving DPOR’s O(n) memory footprint.

This corresponds to the sleep sets optimization described by prior work [[1], 46, 49], so
named because it effectively puts T; “to sleep” until after the true conflicting access of x
<- tmp2. Landslide’s implementation differs from prior work, which explicitly tracks sets
of reordered threads and expected conflicting accesses, by instead identifying where the
reduction should occur during subsequent DPOR iterations. This approach also relies on
the search ordering strategy (arbiter_choose()) to prefer scheduling the thread previ-
ously chosen for reordering by DPOR, to ensure the conflicting access happens before the
preempted thread gets a chance to run again. Further optimizations such as source sets
and wakeup trees, which prior work has shown achieve optimality (i.e., executing exactly
one interleaving per equivalence class) [1] are not yet implemented. To the best of my
knowledge, they provide further reduction only in cases of 3 or more threads; I suspect
(without proof) that sleep-set DPOR is optimal for 2 threads.

Chapter {'s experiments and Chapter [5's user studies were conducted before this opti-
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mization was implemented. Note that its absence has no bearing on DPOR’s soundness,
only its efficiency, and that Landslide showed good bug-finding performance even without
it. Chapter s experiments include this optimization, because its presence was required
to fairly compare the other reduction strategies presented therein.

3.4.3 State space estimation

For both the user’s convenience and for Quicksand’s prioritization algorithm (§4.2), Land-
slide attempts to guess how big partially-explored state spaces will ultimately end up
being upon completion. Because the backtracking implementation uses checkpointing
rather than replaying similar interleavings’ shared execution prefixes from the beginning
§, the total number of interleavings (i.e., leaf nodes in the execution tree) must be
estimated separately from the total runtime (i.e., sum of all edge weights in the tree).

As a concrete example, consider the state space of Figure B.5, and suppose each tran-
sition to the next preemption point takes 1 second to execute. While the first branch
executes in 6 seconds, the second branch, sharing the first transition as a common prefix,
takes 4 seconds, and the one after that only 2; the state space being ultimately completed
in 24 seconds. Even with perfect hindsight, naively multiplying the total interleavings
(6) by the total execution time per branch (6) would double-count common prefixes and
grossly overestimate (36) the total runtime.

Hence, Landslide uses two differently suitable algorithms for each of size and runtime
estimation: the Weighted Backtrack Estimator (WBE) and the Recursive Estimator (RE),
respectively, first introduced in [72] and later adapted to DPOR by [129]. In principle,
both calculate the current progress as a proportion of the expected total by counting how
many branches DPOR has marked for future exploration (§) and assuming the sizes
of their resulting subtrees are predicted by the known sizes of similar already-explored
subtrees. In practice, the calculation strategy differs between the two approaches, which
can occasionally result in drastically differing outputs (86.3.2).

Implementation-wise, Landslide reports size estimates as both the percentage and as
a total number of branches, and time estimates as an ETA. Quicksand’s -v option (§3.1.2)
will cause it to print them each time a new interleaving is tested; for example:

[JOB 1] progress: 66101/94825 brs (69.708252%), ETA 13m 37s (elapsed 46m 10s)
Both estimates are computed simultaneously in _estimate() in estimate.c (which, I
might add, is well-commented in case the following prose is insufficient). Chapter g will
discuss their limitations and some opportunities for future improvement.

Size (Weighted Backtrack) estimation

The WBE, used to estimate total number of interleavings, computes the proportion of
the total size that the already-explored branches are expected to comprise, using DPOR’s
workqueue to anticipate how many unexplored marked branches remain. This serves
as a progress bar [103] that represents the estimated percentage towards completion,
approaching 100% (not necessarily monotonically) as exploration continues.
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Summarizing prior work’s formal definition [129], the proportion at a terminal node
v,23, preceded by an execution sequence (v1...v,-1), is computed as:28

n—1

1
ti uy) =
proportion(vy ... vn) E |marked children(v;)|

where marked children(v;) is the number of enabled thread transitions at v; which have
either already been explored or been marked by DPOR. Then, the total estimate is given
as the sum over all branches b = (v, ... v,) explored so far:2Z

1
> pep Proportion(b)

It is easy to see how these formulas might fit into DPOR’s incremental search proce-
dure: at the end of each branch compute its proportion and add it in to a global estimate
value. However, DPOR may tag new branches to explore that would affect past branches’
proportions, requiring them to be recomputed, which is not feasible without storing the
entire exponentially-sized tree in memory. Instead, Landslide also stores per-subtree es-
timates at intermediate v; nodes, 1 < i < n, along the current branch. Whenever DPOR
marks a new kth branch for exploration at some v; its estimate is multiplied by (k — 1)/k
to retroactively adjust all past branches’ proportions contributing to that estimate. The
change is also propagated to its sub-subtrees, whose estimates must also incorporate the
new marked children value. This allows Landslide to update the global estimate after each
branch in O(n) time and memory, without recomputing past branch proportions individ-
ually.

estimate =

Runtime (Recursive) estimation

The RE, used to estimate total execution time, computes at each node the expected time
to execute all subtrees rooted at children of that node, assuming unvisited subtrees’ times
will be an average of their visited siblings. This estimate at the root node, minus the
current time elapsed so far, serves as a guess at how long until completion. Let usecs(v;)
denote the time elapsed during execution of the transition v;_; — v;. Then a node’s
estimate is given by:

estimate(v;) = usecs(v;) +

ked child i
|marked children(v;)| Z estimate(v;)

’eXplored Chlldren(vi” vj€explored children(v;)
Like the WBE, whenever DPOR tags a new kth child at some v;, its estimate is mul-
tiplied by k/(k — 1) (note the reciprocal of before) to retroactively re-weight previously

25Prior work [72, 129] refers to this instead as probability, i.e., the probability that the node will appear in
a branch chosen uniformly at random from the completed tree. I find “proportion” to be more illuminating
on how the algorithm works.

26 simplified from [129]: the missing F(v;) is 0, using the empty fit strategy.

27 Simplified from [129]: #(b), the time for each branch, is 1, because we are counting them.
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explored subtrees’ estimates. Unlike the WBE, this change does not need to be propagated
to descendant subtrees’ estimates. This estimate also takes O(n) time and memory.

Example

To illustrate how the two estimators can under-estimate the total tree size and/or diverge
from each other, consider the state space from Figure 3.5, of size 6. Suppose for RE that
each transition takes 1 second to execute.

1. After branch A, two tags exist, %1 and %3. Under WBE, the subtree estimate at
tmp1++ will first be 1/2 (half its children being fully explored), and the root estimate
will be 1/4, half that, which is propagated back down to tmp1++, becoming also 1/4.
Dividing the current progress (1) by that yields 4 total branches, an underestimate.

Under RE, the estimate at tmp1++ will be 9 seconds (incorrectly assuming % 1’s sub-
tree will be 1 branch), and the root estimate will be 20 seconds, an underestimate.

2. After branch B, %2 is now marked. Under WBE, the subtree estimate at tmp2++ is
1/2, which at tmp1++ is then divided by its marked children and added to its estimate,
yielding 3/4. Note that it has “forgotten” that only branch A, alone, contributed to
its original 1/2, rather than two branches as in this subtree. The root and tmp1++’s
subtree estimates are updated (and propagated down) to 3/8. Dividing the current
progress (2) by that yields 5.33 branches, an underestimate.

Under RE, the estimate at tmp2++ is 5 seconds, the estimate at tmp1++ is updated
to 11 seconds, and the root estimate to 24 seconds, accurate.

3. After branch C, nothing new was marked. The subtree estimate at tmp2++ is 1 (hav-
ing been completely explored) and the root estimate is 1/2. Dividing the current
progress (3) by that yields 6, accurate.

Under RE, no estimates change from after B.
4. After branch K, %4 now exists. tmp2++’s subtree estimate is at first 1/2, then the

root estimate and it get updated to 3/4. Dividing into the current progress (4),
5.33, an underestimate.

Under RE, the estimate at tmp2++ is 9 seconds, and the root estimate is 22 seconds,
an underestimate.

5. After branch L, %5 joins the party. tmp2++’s estimate is updated to 3/4, and the
root estimate ultimately becomes 7/8. Dividing into the current progress (5), 5.7,
an underestimate.

Under RE, the estimate at tmp2++ is 11 seconds, and the root estimate is 24 seconds,
accurate.

6. After branch M, both estimators have perfect information and converge to accuracy.

To illustrate how the estimators can over-estimate the total tree size, consider the
same state space, except with the %4 subtree also pruned by DPOR’s sleep sets extension
(§) ; i.e., only branches A, B, C, and K remain, with an 18 second execution time.
Both estimators’ behaviour is identical through branch C, only now WBE’s prediction hap-
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pens to be accurate at A (although for the wrong reasons), but overestimates at B and
C, while RFE’s predictions are all overestimates. As before, both reach perfect accuracy
upon completion, now occurring at K. Intuitively speaking, the estimators underpredict
when DPOR keeps finding new branches to tag as it makes progress, and overpredict
when sleep set reduction achieves extra pruning on right subtrees. Not shown in this ex-
ample, interleaving-dependent control flow can, of course, beget unexpected state space
structure in essentially arbitrary other ways.

3.4.4 Data race analysis

Whenever a memory conflict is identified for DPOR as described above, the access pair’s
corresponding locksets and/or happens-before edges are checked to determine if it’s also
a data race. Note the distinction: DPOR memory conflicts indicate that two thread tran-
sitions, if reordered, could produce different behaviour, even if all accesses therein are
adequately synchronized; while a data race indicates furthermore that the two threads
can be interleaved precisely at the moment of one or both accesses, supposing that a new
preemption point were introduced to split one or both transitions in half.

The core of the comparison is in check_locksets() inmemory.c. It checks each DPOR
memory conflict’s locksets, for limited happens-before, and happens-before edges, for

pure happens-before (§2.3.2).

Limited Happens-Before

Conditions #1, #2, and #4 defined in §Q2.3.9, provided the Limited Happens-Before def-
inition for #4, coincide with DPOR’s version of happens-before described in the previous
section. Hence all that remains to be checked is #3, the set of locks held by each thread
at the time of access.

Routines for recording lockset changes and computing set intersection are found in
lockset.c. Apart from standard data structure manipulation, one algorithmic point of
note is that locks are distinguished by types in addition to address. This allows (e.g.)
mutexes stored as part of the implementation of semaphores to protect a different set of
accesses than are protected by the semaphore they implement.

Pure Happens-Before

In Pure Happens-Before, condition 4 is replaced with the traditional distributed systems
notion of Happens-Before [81]. Landslide implements this via the vector clocks approach
described by FASTTRAcCK [45]. I refer the reader interested in the vector clock algorithm
itself to the FASTTRACK paper, limiting discussion here to Landslide’s corresponding im-
plementation of each inference rule.

I use the Djrt+ rules for reads and writes rather than the FASTTRACK ones, even
though they more often incur O(n) runtime in the size of the vector clocks: because
Landslide tests should be limited to few threads in order to manage the state space size,
n is always in the single digits, so I optimize for code simplicity.
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* Reads and writes (memory.c)
* DJIT+ READ/WRITE SAME EPOCH - vc_eq() case of add_lockset_to_shm()
* DJIT+ READ/WRITE - vc_happens_before() case of check_locksets()
* Synchronization (schedule.c)
* FT ACQUIRE
— kern _mutex_{,try}locking done() casesofkern update_state_machine()
— user_mutex_{,try}lock_exiting() casesof user_ update_state_machine()
— cli case of kern_update_state machine() (Pintos only)
— cli/sti lock handoff case in sched_update() (Pebbles only)
* FT RELEASE
— kern_mutex_unlocking() case of kern_update_state_machine()
— user_mutex_unlock_entering() case of user_update_state_machine()
— sti case of kern_update_state machine() (Pintos only)
— cli/sti lock handoff case in sched_update() (Pebbles only)
* FT FORK - agent_fork()

* FT JOIN - sched_unblock() case of kern_update_state_machine() (Pebbles
only; Pintos case is handled by above c1i/sti cases in context switch)

3.4.5 Iterative Context Bounding

Iterative Context Bounding [101] is a state space exploration strategy that prioritizes
interleavings with fewer total preemptions first. Let P(S) denote the number of preemp-
tions in an execution sequence S. Then, to summarize in pseudocode a naive exploration
of some state space U as:

Algorithm 1: Straightforward exploration ordering
1 foreach S € U do

2 | Execute(S)
3 end

ICB’s approach could likewise be summarized as follows:

Implementation

First of all, note that Algorithm [ is structured in a way that repeats interleavings with
fewer than n preemptions that have already been checked in previous iterations of the
outer loop. This is because the number of preemptions in each branch is not known in ad-
vance; rather, the state space must always be explored in an overall depth-first approach,
at best skipping too-preemptful interleavings as they are encountered. As simple as it
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Algorithm 2: ICB exploration ordering

1 for B € [0..maxp(U)] do
2 foreach S € U, P(S) < B do

3 | Execute(S)
4 end
5 end

would be to state “foreach S € sortp(U)” in pseudocode, implementing such an ordering
would be much less straightforward.

Therefore, Landslide’s ICB implementation combines with DPOR when tagging new
branches to explore at the end of each branch: just as DPOR skips alternate interleavings
that are memory-independent, ICB further filters interleavings requiring more preemp-
tions than the current bound out of the to-explore set. The macro ICB_BLOCKED, defined
in schedule.h, decides if a given thread would require a preemption beyond the current
bound to switch to?8. The DPOR implementation then checks, for some I;; it wants to
mark for exploration, whether ICB_BLOCKED(7}) at the state after ¢;, and skips it if so
(tag_good_sibling()/tag_all_siblings()).

Then, the entire state space is repeated with increasing bound until no such are fil-
tered. This core ICB loop appears in time_travel() in landslide.c. Although not ex-
plicitly structured as a C-style loop in the code, it resets Landslide’s progress through the
state space, allowing exploration to continue until it finally observes all interleavings to
have fewer preemptions than the bound.

Complexity

If the search is terminated early after reaching a predetermined fixed bound for B, ICB
in principle reduces the state space from exponentially-sized?d in both K, the number
of threads, and NV, the number of events, to still exponential in K (typically small) but
only polynomial in NV (typically large). Under a preemption bound of B, there are only
B + K opportunities for context switching, so the corresponding state space size is at
most (I;N )(B + K)!. All N-related factors therein are bounded above by N,

Prior work often recommends 2 for such a cutoff [[101], 135, 141], although §@’s
larger dataset suggests 3 would be considerably more thorough. On the other hand, any
finite such bound can provide only a heuristic verification guarantee anymore. Preserving
the full formal verification, i.e., continuing iteration until B = maxp(U) not only remains
exponential in N, but also introduces a factor of maxp(U) repeated work. Future work
could memoize already-tested interleavings so that each iteration of B could test only

28Gince “voluntary” context switches (e.g. arising from yield()) are often necessary for correct execu-
tion, ICB_BLOCKED does not count such switches towards the preemption count. Therefore, within a certain
preemption bound B, interleavings with more than B context switches may still be tested.

29Combinatorial, to be precise; see §3.4.9.

30This K appears from the “mandatory” context switches at thread exit; more of which could also be
introduced from blocking synchronization.
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those schedules with exactly B preemptions, restoring the original B-independent (but
still exponential) complexity.

Bounded Partial-Order Reduction

Prior work [24] has shown that when combined with DPOR to prune equivalent interleav-
ings, DPOR’s reduction might not be sound with respect to the subset of U under P < n.
That work introduced Bounded Partial Order Reduction (BPOR), a compatibility extension
to DPOR for ICB to address this problem.

To summarize, when DPOR identifies some interleaving /;; to test, it may not be possi-
ble to execute 7'(¢;) after ¢, without exceeding the current preemption bound. However,
there may exist another interleaving .J;;; within the bound which runs 7'(¢;) before ¢,.
If a DPOR implementation naively configured with ICB simply skipped I on account of
the preemption bound, J may not get marked for exploration from any other iteration
and/or pair of conflicting transitions. Even though restricting the state space to a cer-
tain maximum preemption bound is already unsound in terms of losing full interleaving
coverage, failing to test even J would be a failure of DPOR itself to soundly prune the
already-reduced state space defined by that bound. Hence the need for BPOR, to ensure
that if such an alternative J to I exists within the bound, it gets marked for exploration
immediately.

To implement BPOR, whenever ICB_BLOCKED causes DPOR to skip an interleaving,
Landslide searches all transitions ¢, € S such that ¢, <g t; and T'(t;) = T(t;) and
—{3t, € S such that t, <g t; <5 t; and T'(t;) = T;} (stop_bpor_backtracking()).
All Ii;s which can be tested within the preemption bound are marked instead of I;;
(tag_reachable_aunts()). The reader interested in further algorithm details and the
corresponding soundness proof is referred to [24].

3.4.6 Heuristic loop, deadlock, and synchronization detection
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Chapter 5

Education

Concurrency is taught in as many different ways as there are systems programming classes
at universities which teach the subject. Yet one thing they all have in common is presenting
the concurrency bug as some elusive menace, against which humanity’s best weapon is
mere random stress testing. This chapter will prove stateless model checking’s mettle as
a better alternative in the educational theatre.

While the previous chapter demonstrated Landslide’s bug-finding power compared to
prior MC techniques in a controlled environment, whether it offers pedagogical merit in
the hands of students and/or TAs is a separate question. And while my MS thesis [[12]
showed that students could annotate P3 Pebbles kernels and thence use Landslide to de-
bug them, the annotations alone required 2 hours of effort on average per user, meaning
the only students who could benefit were the ones already succeeding enough to have
such free time. Since then, I have extended Landslide with a fully-automatic instrumen-
tation process for Pebbles thread libraries (P2s) (§) and Pintos kernels (§) to
improve its accessibility.

I have run several user studies in the Operating Systems classes at Carnegie Mellon
University (CMU), University of Chicago (U. Chicago), and Penn State University (PSU),
wherein students get to use Landslide to find and diagnose their own bugs during the
semester. At CMU, I analyzed logs and code snapshots taken as students used Landslide
during P2 (§), as well as the grades ultimately assigned after students who either did
or didn’t use Landslide submitted their projects (§5.3.2). At CMU and PSU, I surveyed
students on their experience after submitting their Landslide-debugged P2s (85.3.3). At
U. Chicago, I collaborated with a TA to check submitted Pintos kernels, then returned any
resulting bug reports to students (§5.3.1)) and likewise surveyed them on the quality of

the diagnostic output (§5.3.3).

5.1 Pebbles

This section presents the user studies done in CMU’s 15-410 in semesters Fall 2015 to
Spring 2018, taught by David Eckhardt, and in PSU’s CMPSC 473 in Spring 2018, taught
by Timothy Zhu. In both cases the instructors assisted to introduce me during the guest
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lecture and to distribute the recruiting emails; TAs were not involved. The in-house user
study has CMU IRB approval under study number STUDY2016_00000425, and the exter-
nal user study under STUDY2017 _00000429.

5.1.1 Recruiting

Since the Spring 2015 semester I have given a guest lecture in 15-410 to recruit students
to participate in the user study. The 50-minute lecture is given 1 week into the 2.5-
week-long P2 project, approximately when the students should be getting child threads
running in thr_create() and experiencing concurrency bugs for the first time. It in-
troduces the research subject abstractly using an example “Paradise Lost” bug from a
previous lecture [38], explains how Landslide works concretely, shows a short demo
of effortlessly using Landslide to find the example bug, and provides the necessary IRB
legalese about the risks and benefits of participation. The most recent lecture slides are
available on the course website at http://www.cs.cmu.edu/~410-s18/lectures/L14
Landslide.pdf, and all semesters’ editions at https://github.com/bblum/talks/tree/
master/landslide-lecture.

The PSU version of the lecture is available at http://www.contrib.andrew.cmu.edu/
~bblum/psu-lecture.pdf as well as under the github link above. Being a 70-minute
lecture slot rather than 50, I extended the demo to both find and (attempt to) verify a fix
for two bugs: one a simple data race and the other the more complicated Paradise Lost
bug as above. After finding each bug, I demonstrated using Landslide on a fixed version
of the code to show how it proves the test case correct by completing all state spaces, or
(in the case of Paradise Lost) suffers an exponentially-exploding state space. Not that I
scientifically measured it or anything, but this extended demo seemed to help students
more clearly understand Landslide’s intended workflow, at the cost of about 10-15 extra
minutes of lecture time.

At both schools students then signed up using a Google form I emailed them, which
upon completion linked them to the Landslide user guide, which is available at http:
//www.contrib.andrew.cmu.edu/~bblum/landslide-guide-p2.pdf (CMU version) and
http://www.contrib.andrew.cmu.edu/~bblum/landslide-guide-psu.pdf (PSU version)
and https://github.com/bblum/talks/tree/master/irb (both versions).

During the last week of P2 at CMU, I held several “Landslide clinic” sessions (basically
office hours, but given a different name to remind students to limit themselves to questions
a normal TA couldn’t answer), where students could receive in-person technical and/or
moral support. Collecting study information during these sessions was not included in
the IRB protocol. In the PSU study, I had returned to Pittsburgh shortly after giving the
lecture, so technical support for PSU students was limited to email correspondence.

62


http://www.cs.cmu.edu/~410-s18/lectures/L14_Landslide.pdf
http://www.cs.cmu.edu/~410-s18/lectures/L14_Landslide.pdf
https://github.com/bblum/talks/tree/master/landslide-lecture
https://github.com/bblum/talks/tree/master/landslide-lecture
http://www.contrib.andrew.cmu.edu/~bblum/psu-lecture.pdf
http://www.contrib.andrew.cmu.edu/~bblum/psu-lecture.pdf
http://www.contrib.andrew.cmu.edu/~bblum/landslide-guide-p2.pdf
http://www.contrib.andrew.cmu.edu/~bblum/landslide-guide-p2.pdf
http://www.contrib.andrew.cmu.edu/~bblum/landslide-guide-psu.pdf
https://github.com/bblum/talks/tree/master/irb

5.1.2 Automatic instrumentation

As described in §, all setup from the user’s point of view is handled through the
p2-setup. sh scriptl. It, its helper scripts (§3.3.9), and the 1ands1ide script itself contain
several checks to prevent studence from accidentally misusing Landslide in ways that
could produce mysterious crashes, false bug reports, and so on (the need for each one, as
the reader might imagine, discovered through bitter experience). These include:
* p2-setup.sh checks if the directory argument correctly points at the top-level P2
basecode directory rather than any subdirectories such as user/libthread/.

* check-need-p2-setup-again.sh checks if any source files in the original P2 source
directory (the argument supplied to p2-setup.sh), in case the student hoped to fix
some bug and verify their fix but forgot to re-run the setup script.

* landslide checks the supplied test name matches one of the endorsed Landslide-
friendly tests (students love trying to run Landslide with racer, largetest, or even
the string OPTIONS).

* landslide checks if any other instance of itself is simultaneously running in the
same directory, and if so, refuses to do so and advises the student to git clone the
repository afresh for simultaneous useZ.

Landslide also includes several P2-specific instrumentations and features to cope with
various student irregularities:

* Quicksand emits different combinations of within_function/without function di-
rectives for Landslide depending on the name of the test. For example, for paradise _
lost Landslide will not preempt in a function named critical_section(), which
the test case uses to protect an internal counter used to detect the bug; and it will
not preempt in any of the thr_*() thread library API functions for tests intended
to target just the concurrency primitives. In future work this could be improved as
annotations to be placed inside the test case code itself.

* Landslide finds ad-hoc synchronization patterns, such as while (!flag) yield()
or while (xchg(...)) continue, which students often open-code rather than us-
ing the prescribed synchronization API, and treats them as synchronization points

as described in §B.4.6.

* Landslide finds “too suspicious” spinwait-loops in mutex implementations which are
neither yield- nor xchg-loops (as described above), which would ordinarily be classi-
fied as infinite loop bugs, and reports them with a suggestive message (undesirable_
loop_html() in landslide.c) referring the student to the appropriate lecture ma-
terial [39].

* The landslide wrapper script logs the time and command-line options of invocation
and captures a snapshot of the student code and results of the test and saves them
to AFS (CMU’s network file system) after each run.

1PSU’s version is called psu-setup . sh; in this section p2-setup . sh refers to both unless otherwise noted.
2This is ironically implemented with a non-atomic lock file and should really be using flock instead.
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5.1.3 Test cases

Landslide ships with several “approved” test cases, i.e., programs copied from, derived
from, or at least vaguely resembling the tests distributed with P2, which I curated to pro-
duce concurrent behaviour suitable for stateless model checking. Some tests are crafted to
target specific bugs which, from personal experience as a TA, are common in many student
submissions; others are crafted to exercise generally concurrency-heavy code paths and
uncover any number of unforeseen problems. Many use some of the features/annotations

described in §B.1.4.

The following tests were released to CMU students:

* broadcast_test: Tests the cond_broadcast () signalling path with a single waiter.

* mutex_test: Tests student mutexes under 2 threads with 2 iterations (the 2nd it-
eration serves to expose problems with mutex_unlock() as well as mutex_lock()).
This test uses the TESTING_MUTEXES described in §B.1.3 to enable data-race preemp-
tion points within the mutex implementation.

* paradise_lost: Written for the sake of the Landslide lecture demo (§5.1.1). Tests
for the Paradise Lost bug by attempting to break mutual exclusion.

* paraguay: Copied directly from the P2 test suite; tests for proper handling of seem-
ingly “spurious” wakeups in cond_wait (). Written by Michael Sullivan.

* rwlock_downgrade read_test: Copied directly from the P2 test suite; tests for
mutually-exclusive and deadlock-free rwlock_downgrade(). Written by me (as a
TA).

* thr_exit_join: Copied directly from the P2 test suite; tests for a variety of prob-
lems between thr_exit () and thr_join(), but especially for memory issues per-
taining to stack deallocation.

The following tests were released to PSU students, in addition to the ones above:

* atomic_compare_swap: Tests the cmpxchg assembly function for being properly
atomic. Uses the magic_x global variables described below, and invokes vanish ()
directly, to avoid requiring the student to implement thr_join()/thr_exit() be-
fore being able to run this test.

* atomic_exchange: As above for xchg.
* atomic_fetch_add: As above for xadd.
* atomic_fetch_ sub: As above for xadd.

* broadcast_two_waiters: As broadcast_test, but uses two waiting threads to en-
sure both get signalled.

The tests can all be viewed at https://github.com/bblum/landslide/tree/master/pebsim/
p2-basecode/410user/progs.
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5.1.4 Survey

Starting in Fall 2017, I sought to gauge the students’ personal opinions on their experience
with Landslide, in addition to simply counting from the automatic snapshots how many
bugs were found. Shortly after the P2 submission deadline, I asked participants to answer
several survey questions, reproduced below.

1.

10.

11.

How many bugs did Landslide help you find in your code? (Please indicate a num-
ber.)

How many of the bugs you found with Landslide do you believe you fixed before
submitting your project? (You may answer “all”, “none”, or a number.)

. How many of the bugs you found with Landslide did you verify you had fixed by

running Landslide again to make sure the bug was gone? (You may answer “all”,
“none”, or a number.)

In addition to the bugs Landslide found, did it report anything that you believe was
NOT a bug? For example, Landslide printed an execution trace that was actually
impossible, or Landlside reported a bug about some behaviour that was actually
allowed by the P2 specification. (If so, please describe.)

. I found Landslide’s debugging output easy to understand. (Multiple choice from

strongly disagree to strongly agree.)

It’s easier to diagnose the root cause of a bug with Landslide than with a stress test
(e.g. juggle). (Multiple choice from strongly disagree to strongly agree; plus “Not
sure” and “Easier for some bugs but harder for others”)

I felt the time I saved by having Landslide to help debug was worth the time it
took me to learn how to use Landslide. (Multiple choice from strongly disagree to
strongly agree.)

I feel that by using Landslide I learned to understand concurrency better. (Multiple
choice from strongly disagree to strongly agree.)

Suppose after you submitted your project, we gave you 100 CPU-hours on the cloud
provider of your choice to test it. Then we extended the project deadline by a day for
you to use the results to fix bugs and get partial credit. How would you divide that
CPU time between the staff-provided stress tests and Landslide? (Multiple choice:
0/10/.../100 CPU-hours on Landslide, 100/90/.../0 CPU-hours on stress tests.)

If I found out next semester that a friend of mine (or a student in my degree pro-
gram) were taking OS, I would recommend that they should probably invest some
time during the project to learn Landslide and try to find bugs with it. (Multiple
choice from strongly disagree to strongly agree.)

Regarding the previous question, why or why not?

The following questions were served only on the CMU version of the survey.

12.

Did you answer this survey together with your partner, or on your own while they
were busy? (If you both have time for it, please try to submit one survey together.)
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(Multiple choice: together or alone)
13. Your andrew ID
14. Your partner’s andrew ID (if any)

The following questions were served only on the PSU version of the survey.
15. Any feedback on how Landslide’s user interface could be improved / made easier to
use or understand? (setup process, messages printed while running, or the execu-
tion trace / stack traces emitted after a bug is found?)

16. Your PSU username

5.2 Pintos

This section presents the user study done in U. Chicago’s CMSC 23000 class in the Fall
2017 semester, taught by Haryadi Gunawi. Kevin Zhao, the TA, assisted to run Landslide
on student submissions and to distribute recruiting materials and testing results. The
study has CMU IRB approval under study number STUDY2017_00000429.

5.2.1 Recruiting

For this study students were recruited remotely via email. After each of the threads and
userprog project deadlines (§), CMSC 23000 staff sent students an email inviting
them to volunteer to receive Landslide’s bug reports, disclaiming that it did not represent
part of the official grading process but could help improve their future submissions.

5.2.2 Automatic instrumentation

As described in §B.1.1, all setup from the user’s point of view is handled through the
pintos-setup.sh script. It and its helper pebsim/pintos/import-pintos.sh perform
most of the same sanity checks as listed in §5.1.9, then applies the patch annotate-
pintos.patch (plus several more hacks in the script itself) to insert the tell landslide()
annotations (§) into the student’s kernel code. The following tricks were developed
after trial-and-error on student submissions from the same semester, and serve to make
sure the annotations apply consistently to (almost) all variations of commonly-submitted
code.

* Finds the declaration of ready_list, the scheduler runqueue declared by the basec-
ode, and detects if the student has modified to be an array of lists rather than a single
one. If so, defines the length of that array in a macro to be used by is_runqueue ()
(part of the patch described below). Either way defines a function get_rq_addr ()
to return the address of the (first) list.

* Changes the basecode’s definition of TIME_SLICE from 4 to 1 (units of timer ticks)
so Landslide’s timer injection will properly drive the context switcher.
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(]

Inserts tell landslide_forking() into thread.c (using sed rather than the patch,
described below, because it must go in a function which students have to implement,
which is likely to disturb the context and make a patch fail).

Adds the new priority-donate-multiple test.

Applies the annotate-pintos.patch patch to the imported student implementa-
tion, which:

* Addstell landslide_thread_on_rq() and tell landslide_thread off_rq()
annotations to 1ist_insert() and 1ist_remove () respectively (in 1ib/kernel/
list.c, which the students don’t modify), which check whether the argument
list is the scheduler runqueue using a helper function is_runqueue, which in
turn uses get_rq_addr () and READY_LIST_LENGTH described above.

* Modifies the existing priority-sema and alarm-simultaneous tests to be more
Landslide-friendly.

* Insertsthe tell_landslide_sched_init_done(), tell _landslide_vanishing(),
and tell landslide_thread switch() annotations in the appropriate places
(which the students generally do not modify).

Detects if the student has renamed the elem field of the TCB struct, and if so renames
its use in is_runqueue () (described above) correspondingly.

Detects if the student has renamed the cur (currently running thread) variable in
the context switcher, and if so renames it back.

5.2.3 Test cases

Like the P2 tests, the Pintos test cases are either hand-picked from the provided unit tests,
with an eye for which will produce interesting concurrent behaviour, or created using a
TA’s intuition for the most likely student bugs. The following tests are approved to be
Landslide-friendly:

priority-sema: Modified to be Landslide-friendly from the basecode, for threads.
Creates two child threads to wait on a semaphore and signals them. Replaces
threads with different priorities (originally chosen to produce deterministic output
which the test checked for) with threads of the same priority.

alarm-simultaneous: Modified to be Landslide-friendly from the basecode, for
threads. Creates two child threads which each invoke timer_sleep() for a different
amount of time. Number of (threads,iterations) reduced from (3,5) to (2,1).

wait-simple: Unmodified from the basecode’s version, for userprog. Userspace pro-
cess exec (s a child process, which immediately exits, and wait ()s on it.

wait-twice: Unmodified from the basecode’s version, for userprog. Slightly more
complicated version of wait-simple, intended to expose failure-path bugs if the
former finds no easier ones.
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* priority-donate-multiple: Written by Kevin Zhao, TA at U. Chicago, for threads.
Tests for a priority donation race during lock_release() in which a thread holding
a lock can accidentally keep a contending thread’s donated priority after finishing
releasing it.

The (unpatched versions of) the first four tests are available at https://github.com/
bblum/pintos (a fork of the main Pintos basecode repository). The fifth test is available at
https://github.com/bblum/landslide/blob/master/pebsim/pintos/priority-donate-
multiple.c.

5.2.4 Survey

Similar to the survey for Pebbles projects §5.1.4, I surveyed the Pintos user study partici-
pants for their opinions. Because of the different nature of the user study, of course, the
questions here focus more on the debugging experience than on using Landslide directly.

1. How many Landslide bug reports did you receive from course staff? (Please indicate
a number.)

2. Among those bug reports, how many were you able to diagnose and recognize the
root cause in your code? (You may answer “all”, “none”, or a number.)

3. Among those bug reports, how many described a behaviour that you believe was
NOT a bug? For example, Landslide printed an execution trace that was actually
impossible, or Landslide reported a bug about some behaviour that was actually
allowed by the Pintos specification. (You may answer “all”, “none”, or a number.)

4. About how much time did you spend interpreting Landslide’s debugging output?
(Please indicate a number of minutes, or a range if uncertain, e.g. “30-60 minutes”.)

5. I found Landslide’s debugging output easy to understand. (Multiple choice from
strongly disagree to strongly agree.)

6. It’s easier to diagnose the root cause of a bug with Landslide than with a stress test
(for example exec-multiple). (Multiple choice from strongly disagree to strongly
agree; plus “Not sure” and “Easier for some bugs but harder for others”)

7. 1 feel that by interpreting Landslide’s debugging output I learned to understand
concurrency better. (Multiple choice from strongly disagree to strongly agree.)

8. These kinds of concurrency bugs are important to fix, even though they don’t count
against my grade. (Multiple choice from strongly disagree to strongly agree.)

9. Suppose after you submitted your pintos, we gave you 100 CPU-hours on the cloud
provider of your choice to test it. Then we extended the project deadline by a day for
you to use the results to fix bugs and get partial credit. How would you divide that
CPU time between the staff-provided stress tests and Landslide? (Multiple choice:
0/10/.../100 CPU-hours on Landslide, 100/90/.../0 CPU-hours on stress tests.)

10. If course staff were to allow students to resubmit updated code after reviewing
Landslide bug reports to receive partial credit for each bug that had been fixed, it
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would be worth my time to try that (even if I could be spending that time working
on the next project instead). (Multiple choice from strongly disagree to strongly
agree.)

11. If a friend of mine took OS next semester, I would recommend that they should sign
up to receive Landslide bug reports during projects in the future. (Multiple choice
from strongly disagree to strongly agree.)

12. Regarding the previous question, why or why not?
13. Your name.
14. Your project partner’s name (if applicable)

5.3 Evaluation

I pose the following evaluation questions.

* How many bugs, and of what severities, does Landslide help students find and fix
before submitting their code?

* Does Landslide use result in higher quality submissions, whether directly for P2, or
for subsequent projects as well?

* Do students feel the experience is worthwhile, as compared to stress testing?
* How well does Landslide apply to operating systems projects outside of CMU?

The data set is comprised of Landslide’s automatically-generated usage snapshots from
CMU students from semesters Spring 2015 to Spring 2018 inclusive, CMU’s official project
grades from same, CMU students’ survey responses and submitted project code from Fall
2017 and Spring 2018 PSU students’ survey responses and submitted project code from
Spring 2018, and U. Chicago students’ survey responses from Fall 2017. Table shows
the student participation rate across semesters for the thread library studyE.

5.3.1 Bug-finding

Firstly, I sought to prove Landslide does as advertised: finds concurrency bugs of severity,
subtlety, and difficulty consistent with the lessons an advanced operating systems class
should hope to teach its students, and provides diagnostic output that helps students
understand and solve them.

At CMU, I configured Landslide to save a usage snapshot every time a student ran
Landslide, including command-line options issued, the current version of their project
code, a log of Landslide’s output, and the preemption traces for any bugs found. These I
analyzed by hand to determine how many distinct bugs were reported (as multiple pre-
emption traces may refer to the same bug; inspecting their code if necessary), how many

3 Participation at CMU was determined by receiving any automatic usage snapshots; participation at
PSU was determined, for lack of snapshots, by sign-up form submissions, which might over-count slightly.
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Used Landslide?
Semester yes no Total
CMU S’15 8 18 26
CMU F’15 22 8 30
CMU S’16 18 16 34
CMU F’16 12 6 18
CMU S’17 19 13 32
CMU F’17 14 S 19
CMU S’18 10 8 18
U. Chicago F’'17 4 17 21
PSU S’18 38 98 136
CMU total 103 74 177
Non-CMU total 42 115 157
Total 145 189 327

Table 5.1: Participation rates across semesters, among students who submitted thread
libraries (CMU, PSU) or kernels (U. Chicago).

were deterministic (i.e., Landslide reported them on the very first interleaving tested, with
no need for artificial preemptions) how many were concurrency bugs, whether any were
false positives, and whether the student was able to fix them thereafter (determined if a
subsequent snapshot showed them re-running the test and verifying the bug’s absence;
an approximate measure at best, but far easier to implement than checking all the bugs
by hand).

At U. Chicago, course staff ran Landslide on student submissions behind-the-scenes
after each project deadline had passed, and returned its preemption traces to the study
volunteers. I collaborated with the course staff to confirm whether each trace represented
a real bug and not a false positive before distributing them to the students. On account of
the small sample size (4 volunteering groups), we decided on this approach, rather than
to study how students would cope with false positives themselves, to optimize for student
happiness over scientific rigor.

As PSU’s version of the study was planned on relatively short notice, and without
immediate access to a shared, yet confidential, academic file system (such as CMU’s AFS),
I was unable to examine its students’ objective usage data or bug reports for this section.
Results from PSU are presented instead in §5.3.3.

CMU

In the recruiting lectures for every semester after the first, I included tallies of Landslide’s
bug-finding achievements to date as an extra advertisement to entice students to partic-
ipate. These included each of the measures I counted by hand as described above, as
well as aggregate totals of how many groups participated, how many groups found bugs,
how many found at least one concurrency bug, and how many were able to fix and sub-
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$°’15 | P15 | §’16 | F’16 | S’17 | F’'17 | S’18 || Total

Participating groups 8 22 18 12 19 14 10 103

Groups w/any bugs found 5 21 12 7 14 10 6 75
Groups w/any bugs fixed 4 18 9 6 9 7 5 58
Groups wyall (#0) bugs fixed 2 11 3 3 7 5 4 35
Known false positives 1 2 6 5 3 1 0 18
Deteterministic bugs found (<) 5 20 18 18 30 15 9 115
Concurrency bugs found 5 56 19 15 13 9 5 122

Total bugs found 10 76 37 33 43 24 14 | 237
Deteterministic bugs fixed (>/<) 3 19 9 15 22 12 7 87
Concurrency bugs fixed (>) 1 38 11 10 12 4 4 80
Total bugs fixed 4 57 20 25 34 16 11 167

Table 5.2: Landslide’s bug-finding performance across all semesters of the CMU 15-410
study. < marks possible overcounts on account of unidentified false positives; > marks
possible undercounts on account of students not necessarily re-running to verify bugfixes.

sequently verify any or all thereof. Among the concurrency bugs, a wide variety of types
were found: deadlocks, use-after-frees, segfaults, infinite loops, assertion failure, and unit
test failure. Table 5.2 shows these statistics for each semester. Note that the tallies of bugs
fixed may be undercounting on account of the possibility some students may have truly
fixed them but skipped the verification step thereafter.

This table also shows the number of false positives, as self-reported by Landslide as de-
scribed in §5.1.2. Please note that this approach is limited by Landslide’s ability to classify
them as “suspicious”, even if not definitely bugs. These represent technical obstacles that
either prevented Landslide from being able to analyze the synchronization in play (e.g.,
recursive mutex_lock() invocations) or were deemed too pedagogically important to al-
low the student to proceed without fixing (e.g., busy spin-wait synchronization loops)g.
Other false positives arising from bugs in Landslide itself required more individual effort
to confirm; to classify these I relied on students to help report them during the Landslide
clinics and survey, and I report on them in §5.3.3. Nevertheless, apart from the spin-wait
synchronization loops (which can arise nondeterministically due to lock contention, but
which Landslide already self-identifies), I am aware of no cases of false positive nondeter-
ministic bugs; all unexpected false positives encountered to date were output on the first
interleaving tested. Though unscientific, this provides some assurance that Table ’s
count of concurrency bugs is accurate, even if the deterministic tally may overcount.

Overall, Landslide helped students find and fix a lot of bugs. Among the 103 partici-
pating groups across all semesters, roughly three-quarters received bug reports, slightly
more than half were able to verify their fix for at least one, and one-third overall were
able to fix and verify all such bugs. Even avoiding the deterministic bug series for their
possible overcounting, it’s fair to conclude that Landslide caused at least two-thirds of all

4 Landslide was also configured to issue a “bug report” if MAGIC_BREAK, a Simics debugging trap, was

ever invoked, with specific instructions to remove it; I consider these closer in spirit to compilation errors
than bug reports and so did not count them even among false positives.
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concurrency bugs it found to get fixed before project handin. Although lacking a control
experiment to make a more scientific comparison of these tallies, I tentatively conclude
the students were well rewarded for their time. The questions of whether it was a better
use of time than conventional stress testing, or whether the bug-finding resulted in sub-
missions that course staff also, independently, judged better than before, are beyond the
scope of just tallying bug reports and will instead be addressed in the upcoming sections.

University of Chicago

Among the 4 groups volunteering to receive Landslide bug reports, Landslide found 7
distinct bugs across the two projects tested, which I confirmed by manual inspection of
the students’ code. 3 among these were deterministic; 4 were concurrency bugs.

1. priority-donate-multiple found 2 deterministic bugs and 1 concurrency bug in
threads projects. It found the targeted priority-leak bug described in §5.2.3 in
one group, and exposed a NULL pointer dereference in another when attempting
to donate priority to an already-exited thread. The latter bug was observed de-
terministically. A third group neglected to implement priority donation during
lock_release() at all, which was found deterministically.

2. wait-simple found 1 deterministic bug and 3 concurrency bugs in userprog projects.
It found a deadlock in two groups’ implementations, wherein process_wait ()’s syn-
chronization assumed it would always be called before process_exit(). In both
cases the former’s cond_wait () call would block forever if reordered after the lat-
ter. This test also found several use-after-frees for one of those two groups, whose
process_exit () didn’t guard against a parent process exiting and deallocating its
memory first; this root cause manifested in heap errors in 3 separate locations.
Lastly, the heap checking alone found a deterministic use-after-free in a third group’s
exec().

In cases where Landslide emitted multiple preemption traces for the same bug, whether
manifested the same way through different combinations of preemption points or with dif-
ferent stack traces entirely arising from the same underlying cause, course staff sent them
all to the student, including a disclaimer along the lines of “some of these may indicate
the same bug”. The other 3 tests, priority-sema, alarm-simultaneous, and wait-twice,
found no bugs among the 4 groups (wait-twice being run only on the group that passed
wait-simple). One of the 4 groups had no bugs found among any of the 5 tests.

Finally, one false positive was found while testing wait-simple. Landslide mistakenly
reported that free() had reentered malloc() due to a technical discrepancy between
when Pebbles and Pintos kernels take and release their heap allocation lock with regard
to the rest of the malloc () APL This typically indicates a heap corruption bug, but in this
case, malloc() was preempted after it released the heap lock, which was perfectly safe.
After discarding the bug report and suppressing this false positive, Landslide moved on to
find the true deterministic use-after-free described above.

Overall, I consider all of the 7 bugs to be “severe”: they are all either correctness
violations (priority mis-donation) or stability issues (crash, deadlock, or data corruption).
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In the upcoming survey section, although only one of these groups did the survey, they
enthusiastically reported finding the bug reports very helpful (§5.3.3). Despite the small
sample size, I consider this a positive result that Landslide can be a useful concurrency
programming aid even at universities with different class projects than CMU’s 15-410. As
for 1 false positive among 8 total reports, it is difficult to decide what rate of mistakes
is acceptable when the user’s patience is at stake [41], but the upcoming survey results
(85.3.3) suggest that students are generally at least willing to ask for help and make
progress when technical support is available.

5.3.2 Student submission quality

I evaluated Landslide’s impact on student submission quality in two ways. First, I analyzed
CMU 15-410 students’ overall project grades between Landslide users and non-users to see
if Landslide helped them submit overall better implementations. Second, I studied several
individual concurrency bugs that I thought Landslide was likely to detect, all already well-
known by 15-410 course staff, to see if using Landslide correlated with submitting projects
absent those bugs.

Impact on grades

Figure shows the distribution of project grades in CMU 15-410 between Fall 2013 and
Spring 2018, grouped by whether or not students used Landslide during P2. The control
group is further distinguished by whether Landslide was offered and the student declined,
or whether the study had not yet begun that semester. Intuition suggests students in the
former group would be more likely to be struggling too much to have free time to volun-
teer in the first place, so any comparison between them and Landslide users is vulnerable
to selection bias. The latter control group, in which students did not have a choice, mit-
igates such bias, although itself may be vulnerable to other confounding factors such as
grading criteria varying across semesters. In addition to P2, I also show the subsequent P3
(kernel project) grades, likewise broken down by who used Landslide previously during
P28. Should Landslide use be correlated with higher grades on the later, more difficult
concurrency project, one explanation could be that Landslide helped students internal-
ize new concurrency programming and/or debugging skills that would help them write
better kernels even without Landslide’s aid.

Results. Overall, Landslide users did indeed receive slightly better grades overall on
their P2 submissions than non-users from the same semesters, although comparing to
the second control group lessens that difference somewhat. The difference is also less
pronounced in both comparisons among P3 grades (unsurprisingly, as learning lasting
lessons about concurrency should be harder than fixing bugs case-by-case), although the
experimental group still maintains a tiny lead.

>The P3 distributions are slightly smaller than those from P2, as some students dropped the class in

between. Some new project groups also tend to appear during P3 as students either solo or find new
partners, but as these cannot be meaningfully classified as Landslide users or non-users, I omit them here.
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Figure 5.1: Distribution of project grades among Landslide users and non-users. Study
participants (S’15 to S’18) are the experimental group; non-participants (S’15 to S’18)
and students from semesters predating the study (F’13-F14) are the control groups. Com-
pare Landslide users to non-users for within-semester differences, or users to pre-study
students to mitigate selection bias.
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Population Distribution Significance
project group | N || min | mean | max | stddev || p vs users cutoff
users | 103 42 | 74.8 95 10.3 - -
P2 non-users | 74 38| 709 96 12.5 0.036 0.05
pre-study | 86 43 | 73.7 93 9.7 0.671 0.05
users | 98 65| 83.6 95 6.2 - -
P3 non-users | 63 45 | 80.7 93 8.2 0.034 0.05
pre-study | 79 60 | 81.6 95 7.6 0.145 0.05

Figure 5.2: Detailed statistics from student grade distributions.

Statistical significance. Table presents more detailed statistics from these six
distributions. To assess whether the differences are significant, I use the k-sample dis-
crete Anderson-Darling test [121] provided by the R statistical programming environ-
ment [117, 122], comparing each control group to its respective Landslide users group.
Anderson-Darling uses a weighted sum-of-squares distance metric to compare two em-
pirical distribution functions (EDFs), testing if their samples are likely to arise from the
same underlying, though unspecified, distributionf. I deem the difference in grade distri-
butions significant when p < 0.052, although as in all p-value calculations, this rejects only
the null hypothesis, not alternative hypotheses, such as “more skilled students were more
likely to sign up to begin with”. Ultimately, only the same-semester comparisons were
significant. However, the distribution difference being smaller in P3 than in P2 further
suggests, albeit informally, that the larger impact in P2 is not attributable only to selection
bias, or else a similar difference should have been observed in the P3 distributions. An-
other possible explanation could simply be that the P3 grading critera result in less grade
variance overall, but this pattern is at least consistent with the “Landslide helps students
submit better P2s” hypothesis.

Common bugs

Based on the results from §5.3.1], I selected 4 bugs to study in depth to ascertain whether
Landslide played an instrumental difference in helping the students ultimately submit
respectively correct implementations. To avoid bias of picking too obscure and/or trivial
bugs that Landslide alone might find but even course staff would not expect students to
solve, I chose only bugs which had substantial penalties in the grading rubric (guided,
as well, by my own intuition as a former TA). While checking for a given bug’s presence
by manual inspection, I blinded myself to whether each group had been a Landslide user
or not. After unblinding, I then re-classified students who used Landslide in general, but
whose usage snapshots showed they did not run the test case in question, as non-users.

6 I choose Anderson-Darling over the simpler Kolmogorov-Smirnov, which computes only the maximum
instantaneous distance between EDFs, for its better sensitivity both to repeated deviations and to tail dif-
ferences [43].

’I choose not to correct for multiplicity among these 4 comparsons like I do in the next section because
each tests a different hypothesis.
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Landslide users Non-users Significance
Bug name | #correct #buggy | #correct #buggy | A%correct P cutoff
Exit UAF 11 10 0 16 +52.4% | 0.00061 0.0125
Mutex 17 1 19 0 —05.6% 0.49 0.0125
Paraguay 20 1 14 2 +07.7% 0.57 0.0125
Downgrade 10 3 19 4 —05.7% 0.69 0.0125
Total 58 15 52 22 +09.2% 0.26 0.05

Table 5.3: Correlation of student Landslide use with solving certain bugs in their final
submission during Fall 2017 and Spring 2018 semesters. Note that the totals in the bottom
row double-count students, which makes sense only if you believe the incidences of each
bug in a given submission are independent.

Table presents the results.
Each of the four bugs studied is described in detail as follows.

1. Thread exit/join. After a thread finishes exiting, the memory allocated for its
stack must be reclaimed for other uses. A common student pitfall is to allow a
thr_join()ing thread to free said stack space while thr_exit() is still executing
userspace C code (which typically accesses the stack), or even for thr_exit () to free
it itself. In the former case, threads must interleave specifically to exhibit a use-after-
free; in the latter case, the use-after-free will be deterministic (i.e., present in all
interleavings). Other than Landslide, however, the students have no Valgrind-like
heap debugging tool which would report a bug immediately upon any illegal heap
access. This means that a subsequent thr_create () invocation would need to race
to recycle the memory for a new thread stack and conflict with the old exiting thread
before any problem could be detected. The Landslide-friendly test thr_exit_join
is most likely to expose this bug. Whether each student’s submitted P2 solved or
suffered from this bug was determined by me personally inspecting their code.

2. Mutex. The Landslide-friendly mutex_test checks for the possibility of two contend-
ing threads accessing a mutex-protected critical section simultaneously. It includes
one thread repeating once the lock, unlock cycle so as to check for unlock/lock races
as well as lock/lock interactions, and, as mentioned previously (§), checks for
data race access pairs inside the mutex implementation itself. As students have
free rein to design their mutex internals, this refers to the general class of mutex
bugs in which any number of things can go wrong, depending on the implemen-
tation, leading to mutual exclusion (or otherwise assertion) failure. Whether each
student’s submitted P2 solved or suffered from such bugs was determined by check-
ing their grade files for any mutex-related penalties (assessed by the TAs), then me
double-checking their implementations by hand to confirm.

Further investigating the one group who submitted a buggy mutex, I found that
while they had run mutex_test in Landslide (and even found and fixed a separate
deterministic bug already), Landslide found no bug in what was presumably a cor-
rect implementation, then they updated their code, introducing the bug, without
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testing it again thereafter.

3. Paraguay. Named after Ivan Jager, the Paraguayan 15-410 TA from 2004-2006 who
originally discovered it, this refers to a condition-variable bug in which a thread
which sequentially sleeps on two different condition variables can spuriously wake
up early from the second cond_wait(). The precise reasoning why many naive
student implementations are susceptible to this bug, as well as the 3 major ways
of fixing it, are one of 15-410 staff’s closely-guarded secrets (§R.4.1)). Suffice it to
say that the paraguay test invokes a custom Pathos misbehave mode which biases
thread scheduling towards the interleaving required to exhibit the bug (Landslide,
of course, replaces this misbehaviour with model checking). Hence, despite being a
subtle concurrency bug, the official course test suite is likely to expose it, so compar-
ing how many Landslide users and non-users submitted this bug in particular would
speak more to the impact of Landslide’s preemption traces in helping to diagnose a
bug that a “stress” test could already find. paraguay is itself the Landslide-friendly
test for its eponymous bug. Whether each student’s submitted P2 solved or suffered
from this bug was determined by me personally inspecting their code.

4. R/W-lock downgrade. In addition to the standard R/W-lock interface, P2 requires
students to implement rwlock_downgrade(): called with the lock held in write
mode, the caller adopts the reader role instead, allowing other waiting reader threads
to proceed simultaneously, all while allowing no waiting writers to access in be-
tween. The Landslide-friendly test rwlock_downgrade _read_test checks that read-
ers are allowed simultaneous access after a downgrade with no possibility for dead-
lock. Rather than one specific bug, this refers to any of several failures that can arise
during a downgrade. Whether each student’s submitted P2 solved or suffered from
these bugs was determined by checking their grade files for any downgrade-related
penalties (which were assessed by the TAs as a result of their manual inspection,
rather than mine).

Statistical significance. The p values in Table are calculated in R [117] using
Fisher’s exact test [44], treating each row as an independent 2x2 contingency table. I
divide 0.05, the standard significance cutoff, by the number of bugs to conservatively
account for multiplicity [100] (not that it matters with these p values).

The latter three bugs’ occurences are thoroughly uncorrelated with Landslide use, the
thr_exit () bug standing alone with extremely high significance: not a single student
who did not use Landslide these semesters submitted a correct implementation. This
difference is easily explainable: the class-provided unit tests already do a good enough job
catching the other three bugs that students are able to find and fix them before submission
regardless of what testing tool they used. (The high correct-to-buggy ratio corroborates
this.) Nevertheless, that does not mean Landslide is pointless for these bugs; it may well
have helped the students reproduce them more reliably and/or diagnose them faster. This
is merely a null result for submission quality, not necessarily a negative one, and the next
section will attempt to evaluate such quality-of-life improvements instead.

On the other hand, because the thr_exit() bug typically manifests as a use-after-
free, the official tests must stress the thread library until the memory in question gets
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re-allocated in just the right interleaving pattern to cause corruption that leads to a vis-
ible crash. Landslide, meanwhile, detects this error immediately upon access (§8.3.3),
with no need for complex corruption conditions. Among the 11 Landslide users who sub-
mitted correct thr_exit ()s in this regard, it is difficult to say whether the heap checking
alone, together with unit or stress tests, would have been sufficient, or whether heap
checking and model checking were both necessary in concert to help them. To isolate the
impact of model checking, I simulated the students having access to a stand-alone heap
checker by checking only the first thread interleaving with Landslide (similarly to §4.3)
and assuming the students would find and fix any such “deterministic” use-after-free bugs
before the deadline. Re-classifying these into the “correct” group, the 11-10-0-16 distri-
bution becomes 11-10-3-13, with a new p value of 0.048: still positively correlated, but
no longer significant under the multiplicity-corrected cutoff.

5.3.3 Survey responses

Analyzing only the raw technical data of how users interacted with Landslide can paint
only part of the picture. For one, offering students better testing and debugging tools
may not necessarily find strictly more bugs or help students submit more correct imple-
mentations than with stress testing; it may instead find the same bugs faster, affording
the students more free time apart from the project, a quality-of-life improvement normally
invisible to graders. For two, Landslide’s automatic snapshots, being captured at the time
of issuing each preemption trace, necessarily miss the student’s subsequent experience
interpreting them. The surveys listed in sections §5.1.4 and §b.2.4 serve to probe these
more qualitative aspects of the Landslide experience.

Response data

The response distributions for each of the surveys’ multiple choice questions are shown
in Figure 5.3. In total, 28 students (or pairs thereof) answered the survey: 12 pairs
from CMU, 15 individuals from PSU, and 1 pair from U. Chicago. The first four ques-
tions/graphs focus on concrete debugging results, and the latter six on the students’ sub-
jective opinions. Note that two of the questions (3 and 7 from §b.1.4) were not asked on
U. Chicago’s version of the survey, so their corresponding graphs show only CMU and PSU
response data. Likewise, U. Chicago’s questions 4, 8, and 10 (see §), which were not
asked on CMU’s and PSU’s surveys, having only one respondent, are not pictured; the
answers thereto were “15-20 minutes”, “Agree”, and “Agree”, respectively. Also, this re-
spondent’s answer of 6 on the “How many bugs” question appears to indicate the total
number of preemption trace files course staff sent them; upon further investigation, the
6 traces seem to represent 2 distinct bugs among them (§5.3.1)).

The survey responses were very positive: students reported being able both to di-
agnose and to verify as fixed the vast majority of Landslide’s reported bugs, compared
Landslide favorably to stress testing, and found the experience worthwhile and worth
recommending. Regarding the 100 CPU-hours question in particular, students could ap-
proach answering it in several different ways: do the three students who answered 20/80
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Figure 5.3: Student survey responses. SD/D/N/A/SA stands for strongly disagree/
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think stress testing is four times as good as Landslide at finding bugs, or that stress test-
ing requires four times as long to reach the same point of diminishing returns? On the
other extreme, one student said they would spend all 100 CPU-hours on Landslide, which
probably speaks more to their enthusiasm than to a careful attempt to maximize expected
number of bugs found (even the author themself recognizes stress testing’s advantages for
certain types of bugs, such as resource exhaustion). Nevertheless, the responses’ overall
bias to spending at least half the CPU-time on Landslide shows clearly that the students
found the experience worthwhile.

Three questions with open-form answers bear further discussion: what kind of false
positives Landslide reported, reasons they found it worth recommending to a friend, and
suggestions for improving the interface (PSU onlya).

False positives

Even though 71% of students reported receiving no false positive bug reports, the nature
of Landslide’s bug-detection algorithms is such that it should ideally never report any
correct behaviour as wrong, so I consider those 29% that did report such the most nega-
tive result among the survey responses. They described their false positives, and I either
make excuses or own up, as appropriate, as follows. Reports from CMU students (Simics
version):

1. Landslide complained of a nonexistent MAGIC_BREAK (Simics debugging function),
despite the student’s code never invoking it. This arose because of technical con-
fusion between the test program’s and the shell’s address spaces, and was subse-
quently fixed in commit 3f24d67 (Simics repository only).

2. Landslide reported “some weird errors” and/or mysteriously crashed when multiple
instances were run from the same directory. (Multiple students suffering this failure
mode contacted me for support, though only one reported it on the survey; in some
cases, I recall said weird errors manifesting as false positive invalid heap access re-
ports.) Simultaneous Landslides can clobber certain auto-generated header and/or
temporary files, scrambling its instrumentation and leading to chaotic behaviour. I
introduced a guard against this in commit 977e8fb (Simics repository) and e49b5df
(Bochs repository).

3. One student reported “Data races which I believe they are not”. Looking at their
usage snapshots to corroborate this, these appear to be true, yet benign, data races
(in several cases corresponding to mutex_test’s verification of the mutex’s internal
memory accesses (see §5.1.3)); i.e., expected behaviour rather than false positive
bug reports. Student confusion about these could be alleviated by improving Land-
slide’s user interface messages when printing data race information.

4. One student complained of a bug report that, while truly a bug, showed wrong
filenames and line numbers in stack traces, and (quite naturally) suggested that
accurate stack traces would make debugging easier. Checking against their usage

81 thought to ask this question too late for CMU’s surveys.
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snapshots, this seems to be an issue with Simics’s symtable’s handling of assembly
functions. The Bochs version handles these correctly.

Reports from PSU students (Bochs version):

5. Landslide kept crashing for one student while running paraguay. This is likely due to
exceeding Linux’s process limit and/or exhausting the class’s official VM’s memory,
which can arise when many data race candidates cause Quicksand to spawn many
Landslide jobs, and (as on paraguay) each with very large state spaces that must
defer. I had been working on mitigating this problem just before beginning the
PSU study; properly addressing it would involve improving Quicksand’s memory-
exhaustion detection code and/or making Quicksand at all aware of the process
limit to begin with. (Note that this is not strictly a false positive bug report, just a
Landslide crash.)

6. Students who initialized child threads with a base pointer value of Oxffffffff ob-
served Landslide crashes, as it attempted to stack trace through that address and
access memory that wrapped around the address space. (Several students contacted
me about this via email, and I issued a prompt fix; one student later reported it on
the survey.) Commits 0573e34 (Bochs repository) and 654f459 (Simics repository)
fixed this bug. (Like the above, not actually a false positive bug report.)

7. Landslide issued false invalid heap access reports to one student who had been using
new_pages to allocate thread stacks “very close” to the malloc heap. They reported
this during the study and I fixed it promptly for them in commit 4a26da7 (Bochs
repository only), then reminded me of it again in the survey.

8. Finally, one student reported simply, “Race condition”. Without the same usage
snapshots to consult as I'd have for a CMU student, or more self-reported detail, I
regrettably can offer no comment.

Overall, most of the issues reported as answers to the “false positive” survey question
were merely Landslide crashes or user interface confusion. Those few truly erroneous
bug reports (items 1, 2, and 7), while certainly guilty of burdening students with worry
over whether the problem is their own code or in Landslide itself, are at least not too
discouraging for two reasons. Firstly, in all cases the students were able to recognize the
false positive quickly enough to ask for help, and I was able to deploy a fix and let them
proceed before the project came due. Secondly, each such problem, now having been
fixed, will befall no future student again — not to assert Landslide is completely bug-free
now, but at least that it grows more and more stable with each passing semester.

Reasons worthwhile

After the question asking “Would you recommend a friend taking OS next semester to
use Landslide?”, I asked the students for open-form reasons why or why not. As the
former question’s answers were exclusively positive (only 1 student even answering “no
opinion”), this question’s answers turned out to be mostly praise. 3 students declined
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to answer this question; I reproduce the rest here, paraphrasing for clarity and brevityg.
Answers from CMU:

1.
2.

Easy to use and found nontrivial bugs.

Useful to find some bugs, but other types of bugs (such as memory corruption) were
impossible to find with Landslide.

Helped verify our atomic primitives were correct.

4. Would recommend, but takes too much time (unclear, but seems to be referring to

v ® N

10.

execution time rather than setup/usage).

Tests are automated and can be left running for a long time. However, faced up-
time issues with CMU’s linux servers (which reboot every night); wished for a more
reliable execution environment.

It’s pretty helpful.
Seems more reliable than stress tests.
Found a bug not found by stress tests.

Finds concurrency bugs with little effort that may be undiscovered otherwise. (Also
provided some interface feedback here, since I didn’t ask CMU students a separate
question for such; see next section.)

Easy to learn and a simple way to test our P2.

Answers from PSU:

11.

12.
13.
14.

15.
16.
17.
18.
19.
20.
21.

22.

Although didn’t find any concurrency bugs for me, gives me more confidence about
my code.

Helpful, just didn’t have a lot of time to use it.
Does not make concurrency debugging easy, but definitely makes it easier.

Helpful to find bugs you weren’t previously aware of. Makes more sense to use an
expressly designed tool rather than (unit/stress) tests.

Helpful and easy to use.

Saves time overall, can run long tests overnight.

Helps to find concurrency bugs and their root causes better than stress tests.

It finds the concurrency bugs you need to fix for full credit.

Helpful for finding some uncommon bugs I hadn’t found or wasn’t looking for.
Found bugs I kept overlooking, which may have taken many hours to find otherwise.

Helpful for the difficult step from code being “finished” (scare-quotes theirs; pre-
sumably meaning “feature-complete”) to getting rid of all concurrency bugs.

Easy to use, setup taking no more than 5-10 minutes, and allowing being run
overnight.

°Note that most students used the term “race condition” rather than “concurrency bug”, as taught in
CMU and PSU lecture material; I replaced these while paraphrasing in accordance with §P.5.
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23. Very efficient at concurrency testing. Stress test crash reports do not necessarily
point to the root cause, due to memory corruption for example; plus bugs may not
show up every time due to nondeterminism.

24. Helped find a bug I wouldn’t have found otherwise. Did not show an interleaving
directly (i.e., did not issue a bug report), but reported a data race that turned out
to be a concurrency bug upon inspection.

Answer from U. Chicago:

25. Found several subtle, legitimate bugs we wouldn’t have easily caught otherwise, but
made sense once revealed. Fixing them took little time but allowed us to proceed
confidently on the next project. Often wished for Landslide to have been available
to use during the next project as well.

Overall, students most commonly praised Landslide’s ease of use, its ability to find bugs
that elude stress testing, and the confidence instilled from verifying bugs had been fixed.

Interface suggestions

Lastly, I asked the PSU students for any feedback they might have on making Landslide’s
interface easier to use or understand.

1. Requested for preemption traces to be more clear about the meaning of each stack
trace in each table cell, and complained of inaccurate line numbers (likely referring
to how the current behaviour indicates the line of code after a function call, corre-
sponding to the call instruction’s pushed return address, rather than the function
call itself). (This answer from CMU; see above.)

2. Including a manual or tutorial would be helpful (presumably beyond the user guide’s
instructions, such as recapping the procedure shown in the lecture demo which
wasn’t written down anywhere).

3. Don’t print warnings about line length exceeding 80 characters (inconsistency be-
tween 15-410 and CMPSC 473 compilation options).

4. “It takes too long. But I guess that’s impossible to fix.” (Well, it’s an open research
problem to fix!)

5. Preemption traces should explicitly indicate where in the interleaving the bug oc-
curred. (Root cause identification is its own research area, but more detail is cer-
tainly possible.)

6. Improve explanation of data races (in the user guide, perhaps).
7. Happy with it as-is (3 students)
8. No response (7 students)

Though I did not ask this question on the CMU survey, my experience handling student
questions in person suggests CMU students also mostly wish for better explanations of
data races and more detail and clarity in the preemption traces. Though I present the
formal definition of data races in the lecture (§) and refer back to it in Landslide’s
documentation and output, showing a concrete example in future iterations of the user
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guide would go a long way to illustrate the abstract concepts. The preemption traces could
be improved by making it clearer that the stack trace in each cell of the table represents
executing the thread in question from wherever it previously left off (or its inception)
all the way until it reaches that stack trace, then preempting it to run another thread.
They could also easily report more diagnostic information; for example, showing the sets
of memory conflicts between each thread, annotating the type of each preemption point
(yvield, mutex, or data race), and/or indicating the adversarial memory access for each
data race preemption point.

Other universities

Comparing the survey response distributions between CMU versus PSU and U. Chicago
(Figure ), CMU students tended to verify their bugfixes more often by re-running Land-
slide and found the preemption traces easier to understand, while PSU and U. Chicago
students generally compared Landslide more favourably to stress testing (while CMU stu-
dents comparatively preferred the more nuanced answer that it depends on the type of
bug), and reported more often that helped them understand concurrency better. Consid-
ering the higher demand CMU’s 15-410 makes for prerequisite concurrency experience
compared to PSU’s relative tempering of P2’s difficulty to make it more accessible (§2.4.1)),
these trends seem to correlate with the different levels of preparation each course’s stu-
dents had, showing that students of various skill levels can each benefit from the experi-
ence in different ways.

5.4 Discussion

Human subjects research is inherently messy. Each of the previous section’s approaches
to evaluating Landslide’s educational value was accompanied by some drawback which
prevented it from being perfectly objective science, but many of them presented tenta-
tively positive results nonetheless. Landslide helped many students find and fix many
bugs (§), but making a direct comparison to stress testing, the prior state of the
art, is not straightforward. Immediate improvement in students’ project grades was ob-
served (8§5.3.2), although statistical significance was lost when attempting to account for
selection bias; and impact on grades alone is a very narrow measure of pedagogical value
anyway. Landslide’s debugging power was also found to be statistically significant for
the thr_exit_join bug in particular. Students responded overwhelmingly positively in
the survey (85.3.3), although it is easy to imagine students being equally happy with a
“debugging tool” that just tells them all the answers.

Nevertheless, I believe each of these partial results taken together paint an overall pic-
ture of success: students fixed their own bugs and were happy about it; students were able
to ask for help rather than be deterred by inevitable technical difficulties as far as I know;
students provided intelligent feedback suggesting they truly understood the debugging
process; et cetera. The rest of this section will discuss the study’s limitations and provide
some perspective for the future.
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5.4.1 Bias

As long as an educational user study is run on a volunteer basis, one cannot completely
avoid selection bias: those with enough free time to participate are more likely to be the
most capable students already, who are least in need of the extra debugging help. This was
especially evident in the annotation-required P3 study from [12], in which only 5 groups
volunteered (15% of the 34 total who submitted P3 that semester), among which 2 had
enough after just the annotation phase and did not continue to do any in-depth testing. In
contrast, since switching to the automatically-annotatable P2, the participation rate rose
to 58% (Table b.1)) among all P2-submitting groups. Reaching over half the class could
already be seen as a major step in mitigating said selection bias.

The survey may also be susceptible to several sources of bias beyond participation
itself. I suspected students might feel inclined to be overly polite in their answers (whether
consciously or subconsciously). I attempted to counteract this by concluding my survey
link emails with, Please try to answer honestly rather than flatteringly—if any part of the
experience was bad for you, I want to hear about it to make Landslide better in the future! It’s
also possible that survey respondents were more likely to be those who enjoyed Landslide
the most, meaning I might not hear as much negative feedback as I should.

I took no special measures to compensate for bias in gender, race, or being non-
natively English-speaking during recruitment or the survey. Surveying students to mea-
sure any differences in these demographics between study participants and the overall
class population would have required mandatory survey participation, and in turn, a more
rigorous IRB approval process. According only to my memory of students who attended
the Landslide clinics (§5.1.1)), the racial diversity was roughly representative of the class
at large, and the proportion of women I perceived was in fact somewhat higher than the
overall gender ratio. More scientific analysis of such statistics was deemed beyond the
study’s scope for now.

5.4.2 Retrospect

More than just trying to draw firm conclusions from the opinions of students who are
just learning concurrency to begin with, student feedback in turn guided the constant
development of Landslide, and the experimental design itself, as the semesters went by.
In this section I will fantasize about how I might have run more perfect experiments
granted the impossible wish of knowing then what I know now.

Pebbles

The survey was introduced into the study only in time for two semesters’ worth of student

responses, after several iterations of collecting only usage and bug report snapshots. Apart

from the obvious improvement of having been surveying students from the beginning, the
following questions could have improved the survey.

1. Didyou have any technical difficulties with Landslide that I had to intervene on, whether

in person or over email? (Some students reported this in the “false positives” ques-
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tion, although fewer than I helped overall, so others must have not mentioned it.)
Comparing answers to this question across subsequent semesters would give a sense
of how much Landslide’s stability was improving over time and whether it was ma-
ture enough for unsupervised use in the future.

2. How well do you feel you understood the research challenges explained in the lecture?
and, How well do you feel a user should need to understand same in order to benefit
from Landslide’s bug reports? (Answers on a scale from “Not at all; Landslide is a
magic black box to me” to “I'm ready to work on research in this field myself”.)
These questions would help fine-tune the lecture material and user guide to maxi-
mize student comfort, and potentially also corroborate the claim that Landslide is
accessible even to novice users.

3. What additional debugging information would you want displayed on the preemption
traces? Knowing now that interpreting preemption traces was a sticking point for
many users, I would hope to identify the most wished-for features to know what to
prioritize improving. This could also assess students’ understanding of what kinds
of information would or would not be reasonable for Landslide to record and report.

4. For each bug Landslide found in your code, how trivial or severe do you feel it was?
This would help get a sense of how the students regarded Landslide on a spectrum
between annoying style checker or a life-saver, and potentially suggest options to
make Landslide suppress certain types of bug reports. For example, it currently
reports spin-wait loops in mutex_lock() as bugs with a special message referring
students to relevant lecture slides, but it’s possible refusing to test any code beyond
until that bug was fixed might have made Landslide less useful overall.

Some students (around O to 2 per semester if memory serves) emailed me during P3
to ask if they could test their kernels with Landslide just like their thread libraries. I
answered each by explaining that it would take more effort on their part, and then if they
were still interested, guided them through the annotations on a case-by-case basis. This
process was not included in the IRB-approved study protocol, so I collected no results from
them. If I had planned in advance, I could have supported this “bonus stage” officially,
and further surveyed the brave volunteers about how P3 Landslide could be made more
generally accessible.

Finally, to evaluate whether the experience of using Landslide left the students with
any lasting lessons learned, a follow-up survey could have been given one or two years
later. Such a survey would ask, for example, Have you encountered any debugging problems
since finishing OS that made you wish for a tool like Landslide? and Do you feel the way you
think about testing, debugging, and program correctness has been influenced in any way by
using Landslide? to evaluate its lasting impact on their understanding of concurrency.

Pintos

While part of the point of this experimental design was to evaluate Landslide as a grading
tool in the hands of TAs, I would be remiss to mention that I also feared the automatic
annotation process would not be as robust as the P2 version. Indeed, while helping Kevin
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get oriented with using Landslide, I implemented several fixes/improvements to the setup
scripts as I found student kernels that failed to automatically annotate (for example, those
with ready list changed to an array, as described in §5.2.2). Had I given Landslide
directly to students that semester, the students themselves would have had to email me
for tech support.

I attribute the comparatively low participation rate of Pintos students to two major
factors: one, not incentivizing the students to directly improve their grades (instead of-
fering only the vague promise of a “learning experience” debugging their code only after
handin), and two, not traveling to the university to introduce the research topic in an in-
person lecture (leaving the students potentially confused about what advantage, if any,
was offered over stress testing). Hypothetically, I could have achieved greater user study
participation either by offering extra credit to students or by offering an autograder-like
interface for students to receive bug reports before their deadlines instead of after (either
way requiring a more rigorous IRB review process).

5.4.3 Future educational use

Now being done collecting student usage data to publish as research results, and no longer
bound by the IRB’s requirement that Landslide be isolated from the grading process lest
it be seen as coercion to participate, Professor Eckhardt and I have discussed options
to deploy it as an official part of 15-410’s curriculum. This section has already clearly
shown students are capable of debugging with it on their own time, and I believe it well-
automated enough to supplement Fritz (the existing stress testing infrastructure) in the
class’s grading process as well. TAs could also, at their option, use Landslide by hand
to confirm any bugs encountered during manual inspection and/or write new Landslide-
friendly tests to expose bugs not yet targeted by the 6 tests offered here.

Over the study’s seven semesters, I believe the stability of Landslide’s instrumentation
process has improved enough to require little to no ongoing technical support anymore,
although Landslide-specific office hours may still prove helpful. I am willing to continue
giving the guest lecture as long as proximity and curriculum allow, although I also hope
the documentation herein be enough to pass the mantle like any other piece of the course
infrastructure. Future problems to address include grading bias (i.e., students submit-
ting blindly-hacked code that just barely passes Landslide, even if not necessarily correct,
thereby gaming the autograder), and improving usability to reach even the most strug-
gling students (i.e., that last 42% who submitted P2s without participating in the study).

Regarding non-research use in Pintos classes, Landslide can now handle a consider-
ably wider variety of student implementation quirks on account of the fixes from this
time (§5.2.2). In its original shape (before the F'17 semester, having only enough in-
strumentation necessary for the Pintoses used in §@’s experiments), Landslide was al-
ready able to automatically instrument 18 out of the 21 threads project submissions at
U. Chicago. I was able to quickly deploy a fix to make the annotation scripts handle the
other 3 cases, although such technical support is not something any TA would be able to
do. In its current shape I would recommend it for TA use grading, but not necessarily
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directly to students without someone familiar with the codebase on immediate hand for
tech support. However, I also believe Landslide’s success in these user studies, provided
me present to handle technical issues, serves as testament for stateless model checking
in general in the educational theatre. While Pintos’s kernel-level environment presents a
unique challenge for concurrency testing, other, more readily automatic model checkers
for user-space programs, such as dBug [127] or CHESS [[102], could easily be used on
other thread-library-like programming projects at any university.
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Chapter 6

Transactions

Transactional memory (TM) is a concurrency primitive by which programmers may at-
tempt an arbitrary sequence of shared memory accesses, which will either be committed
(made visible to other processors/threads) atomically, such that no intermediate state
modification is ever visible, or in the case of a conflict which would prevent such, dis-
carded with an error code returned to allow the programmer to write a synchronized
backup path. Transactional memory specifications typically have three API functions, ab-
stractly speaking:

* xbegin begins a transaction, staging any subsequent shared memory accesses in
some temporary thread-/processor-local storage, and checking for conflicts with
the accesses of any other threads or CPUs. If the transaction is unsuccessful, as
described below, begin instead returns an error code indicating the programmer
should fall back to some other, possibly slower, synchronization method.

* xend ends a transaction, attempting to commit all staged accesses to the shared mem-
ory atomically with respect to reads or writes from other concurrently-executing
code. If any of those accesses conflict (i.e., read/write or write/write) with any
other access to the same memory since the transaction started, they are instead
discarded and execution state reverts to the begin with an error code as described
above.

* xabort explicitly aborts a transaction, regardless of any memory conflicts, discarding
changes and reverting execution as described above. Some implementations allow
an arbitrary abort code to be specified which will appear in begin’s error code.

Implementations. Software TM implementations (STM) typically function as a li-
brary, tracking staged memory accesses in local memory, and aborting whenever a con-
flict is detected between two transactions’ tracked accesses [4]. Hardware TM implemen-
tations (HTM) use processor-level hardware support, which stages changes in per-CPU
cache lines, and may abort for STM’s reason above [68], or additionally whenever a con-
flict is detected between one transaction’s traced access and any other memory access, or
whenever a conflict occurs on the same cache line, not necessarily the same address, or
in case of any system interrupt or cache overflow. Intel’s commercial implementation of
HTM has a rocky history of hardware bugs [58, 671, attesting to the feature’s complexity
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and the need for formal verification on both sides of its AP

Terminology. The world of hardware transactional memory is home to several more
confusing acronyms in addition to “HTM”. Transactional Synchronization Extensions (TSX)
refers to Intel’s implementation of HTM on Haswell and more recent microarchitectures
[59]. Restricted Transactional Memory (RTM) refers to the xbegin, xend, and xabort
subset of TSX instructions, which of course correspond to begin, end, and abort listed
above, as well as xtest, an instruction which returns whether or not the CPU is execut-
ing transactionally. GCC and Clang expose these as C/C+ + intrinsics named _xbegin(),
_xend(), _xabort(), and _xtest() [47]. Hardware Lock Elision (HLE) refers to the
xacquire and xrelease subset of TSX instructions, which extend the traditional interface
to offer a slightly higher-level way to access the CPU feature, optimized for simplicity for
locking-like synchronization patterns [66, 118] In this thesis I focus on RTM, the more
general (i.e., expressive (i.e., bug-prone)) interface, and among all these acronyms restrict
myself to “HTM” (when referring to transactional memory as a concurrency primitive in
the abstract) and “TSX” (when referring to Intel’s implementation and/or GCC’s intrinsics
interface). The non-pedantic reader may treat these as interchangeable.

The example TSX program from Figure (82.1.4) is reproduced here for the reader’s
convenience.

if ((status = xbegin()) == XBEGIN STARTED) {
X++;
_xend () ;

} else {
mutex_lock(&m) ;
X++;

I

mutex_unlock (&m) ;

OOV A~ WD

Figure 6.1: Example TSX program.

6.1 Concurrency Model

While up to now Landslide’s tested programs’ concurrency has been limited to timer-
driven thread scheduling, HTM presents a fundamentally new dimension of nondetermin-
ism, namely the hardware’s ability to revert execution sequences and the delayed visibility
of changes to other threads. In order to efficiently test HTM programs in Landslide, in this
section I develop a simpler concurrency model and offer a proof of equivalence to HTM
execution semantics. I make two major simplifications: simulating transaction aborts as
immediate failure injections, and treating transaction atomicity as a global mutex during
data-race analysis; and provide corresponding equivalence proofs.

Notation. Let / = TN,@L,, TNy@L,, .. TN,@L,, with N; a thread ID and L; a code
line number, denote the execution sequence of a program as it runs according to the
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specified thread interleaving. This serialization of concurrent execution is told from the
perspective of all CPUs at once and hence assumes sequential consistency. For discussion
of relaxed memory models refer to Section [6.4.

6.1.1 Example

Consider again the program in Figure 6.1 Note that the C-style x++ operations, when
compiled into assembly, become multiple memory accesses which can be interleaved with

other threads.
2a temp <- Xx;
2b  temp <- temp + 1;
2c x <- temp;

If these instructions from the x++ in the transaction are preempted, with another
thread’s access to x interleaved in between, the transaction will abort. So, the interleaving

T1@1, T1@2a, T1@2b, T2@1, T2@2, T2@3, T1@2¢, T1@3
or, henceforth abbreviated for clarity:
Ti@1 — 20, T2@1 — 3, T1@2c — 3
is not possible; rather, T1 will fall into the backup path:
Tl@1 — 20, T2@1 — 3, T1@4 — 7

However, the x++ operation from the failure path (correspondingly 6a, 6b, 6¢) can be
thusly separated with conflicting accesses interleaved in between, since the mutex only
protects the failure path against other failure paths, but not against the transaction itself.
So (assuming x is intended to be a precise counter rather than a sloppy one), the following
interleaving exposes a bug:

Tl@1 — 20, T2@1 — 3, T1@4 — 60, T3@1 — 3, T1@6¢c — 7

Prior work [29] proposed the idiom shown in Figure to exclude this family of inter-
leavings, which shows that correctly synchronizing even the simplest transactions may be
surprisingly difficult or complex.

6.1.2 Modeling Transaction Failure

In the previous section’s examples, the way I stated interleavings suchas T1@1—2¢, T2@1—
3, T1@4 — 72 glossed over how such a sequence of operations would be carried out under

!Note also that this bug requires either at least 3 threads or at least 2 iterations between 2 threads to
expose; this highlights MC’s dependence on its test cases to produce meaningful state spaces in the first
place.

2For a clearer example to follow, I have reordered T1’s write to x before T2’s part, compared to before.
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bool prevent transactions = false;

while (prevent_transactions) continue;

if ((status = _xbegin()) == _XBEGIN_STARTED) A{
if (prevent_transactions)

_xabort();

X++;
~xend() ;

} else {
mutex lock(&m);
prevent_transactions = true;
X++;

I

prevent_transactions
mutex_unlock(&m) ;

false;

NEP>OVOONITUD~WNRO

b

Figure 6.2: Variant of the program in Figure .1, with additional synchronization to pro-
tect the failure path from the transactional path. The optional line O serves to prevent
a cascade of failure paths for the sake of performance by allowing threads to wait until
transacting is safe again.

HTM. For example, T1’s write during 2c¢ is not actually visible to T2, although it would be
under a thread-scheduling-only concurrency model.

Intel’s official TSX documentation summarizes its interface and behaviour in prose
[68]. Recent work has used proof assistants to formalize some of the execution semantics
of x86 in general [119] and of transactions in particular (at both hardware- and language-
level) [21]. However, state-of-the-art advances in model checking algorithms still state
their theorems and proofs in prose [}, 16, 24, 31|, 63, 76, 147], so this section’s proofs
will regrettably do likewise, leaving the rigor of mechanization to future work. The reader
may at least rest assured that the proofs herein rely on transactional semantics that have
themselves been formally verified.

To summarize HTM’s execution semantics:

1. Any modifications to shared state (such as 2¢) by a transacting thread are not visible
to any other during the transaction (such as 2c¢ in this example, despite T2 executing
afterwards).

2. All local and global state changes during a transaction (such as T1’s lines 1 — 2¢ in
this example) are discarded when returning an abort code from xbegin (jumping
to line 4, in this example).

While use of HTM in production requires the performance advantage of temporarily
staging such accesses in local CPU cache, model checking such programs need be con-
cerned only with the program’s observable behaviours. I claim that MCing the simpler
interleaving T1@1, T2@1 — 3, T1@4 — 7 is an equivalent verification as MCing the one
above; in fact, this interleaving suffices to check all observable behaviours of all interleav-
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ings of all subsets of T2@1 — 3 with all subsets of T1@2a — 2¢, whether they share a
memory conflict or not. Stated formally, let:

* Ti@a be an HTM begin operation,

* Ti@p, ... Ti@p, be the transaction body (with 3, the HTM end call),
* Ti@¢,...Ti@¢,, be the failure path, and

* Ti@uw, ... Ti@w, be the subsequent code executed unconditionally.

Note that arbitrary code may not be structured to distinguish these as nicely as in the
examples; e.g., more code may exist in the success branch after _xend(); such would be
considered part of w here.

Then, without loss of generality (for any number of other threads Tj/Tk, and for any
number of thread switches away from Ti during the transaction):

Lemma 1 (Equivalence of Aborts). For any interleaving prefix

Ti@a, Ti@5, ... Ti@S,,

Tj@ ... Tj@v;,
Tk@f'{l . Tk@h’k,
Ti@6h+1

with b < n, j # 1, k # 1, etc., either:

1. Ti@a, Tj@, ... Tj@v;, Tk@r; ... Tk@ry, Ti@¢, . .. (conflicting case), or

2. Ti@o, Ti@p, ... Ti@p, ... Ti@pF,, Tj@y, ... Tj@~;, Tk@r, ... Tk@r/ (independent case)
exists and is observationally equivalent.

Proof. Case on whether the operations by Tj and/or Tk have any memory conflicts (read/
write or write/write) with Ti@p, ... Ti@/,. If so, then the hardware will abort Ti’s
transaction, discarding the effects of Ti@/; ... Ti@/, and jumping to Ti@¢,, satisfy-
ing case 1. Otherwise, by DPOR’s definition of transition dependence ([46], §3.4.2),
Ti@p,, ... Ti@p, is independent with the transitions of Tj and Tk, may be successfully
executed until transaction commit, and reordering them produces an equivalent interleav-
ing, satisfying case 2. O

The claim’s second part follows naturally.

Theorem 1 (Atomicity of Transactions). For any state space S of a transactionally-concurrent
program, an equivalent state space exists in which all transactions are either executed atom-
ically or aborted immediately.

Proof. Forevery I € SwithTi@a, Ti@p; ... Ti@, Tj@ ..., Tk@ ..., Ti@pg,., € I, apply
Lemma [Il to obtain an equivalent interleaving I’ satisfying the theorem condition. The
resulting S’ can then be MCed without ever simulating HTM rollbacks. O
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6.1.3 Memory Access Analysis

Next comes the issue of memory accesses within transactions with regard to data-race
analysis (§2.3). Theorem [I| provides that the body of all transactions may be executed
atomically within the MC environment. While they may interleave between other non-
transactional sequences, no other operations (whether transactional or not) will interrupt
them. I claim this level of atomicity is equivalent to that provided by a global lock, and
hence abstracting it as such in Landslide’s data-race analysis is sound.

Let Ti@y, Tj@v be a pair of memory accesses to the same address, at least one a write,
in some transactional execution / normalized under Lemma [I]. Then let lockify,,(Tk@1)
denote a function over instructions in 7, which replaces Tk@ L with Tk@lock(m) if L is
a successful HTM begin, with a no-op if L is a transaction abort, or with Tk@unlock(m)
if L is an HTM end, or no replacement otherwise. Finally, let I’ = Jm.lockify,, (1), the
execution with the boundaries of all successful transactions replaced by an abstract global
lock. Lemma [l guarantees mutual exclusion of m.

Theorem 2 (Transactions are a Global Lock). Ti@, Tj@v is a data race in I iff it is a data
race in I'.

Proof. 1 prove one case for each variant definiton for data races supported in Landslide
[16]. For each, I state below what it means to race in an execution with synchronizing
HTM instructions.

* Limited Happens-Before. To race in / they must be reorderable at instruction
granularity, at least one with a thread switch immediately before or after. [110,
125].

w [ = I:1IfTi@u, Tj@v race in I, then they cannot both be in successful transac-
tions, or else placing Ti@ within the boundaries of Tj@:’s transaction would
cause the latter to abort, invalidating Tj@, or vice versa. Hence they will not
both hold m in I’. Otherwise their lock-sets and DPOR dependence relation
remain unchanged.

w [I' = I: If Ti@u, Tj@v race in I’, both corresponding threads cannot hold
m; WLOG let Ti not hold m during Ti@;.. Then in /, Ti@y is not in a trans-
action. With the remainder of their lock-sets still disjoint, and still not DPOR-
dependent, Tj@wv (or its containing transaction) can then be reordered directly
before or after Ti@/..

* Pure Happens-Before. WLOG fix Ti@;, < Tj@v € I. Then to race in / there must
be no pair of synchronizing instructions Ti@e (a release edge) and Tj@  (an acquire
edge) such that

Ti@ou < Ti@e < Tj@y < Tj@v €
to update the vector clock epoch between Ti@, and Tj@v [45, 116].

w [ = I":1IfTi@u, Tj@v racein I, then they cannot both be in successful transac-
tions, or else Lemma [l| normalization would provide the corresponding HTM
end and begin for Ti@e and Tj@ ) respectively. Hence there will be no un-
lock/lock pair on m in I’ to satisfy the above sequence.
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w ['= [:1fTi@u, Tj@r race in I’, then they cannot both hold m, or else lockify,,
would provide the corresponding unlock and lock for Ti@e¢ and Tj@ respec-
tively. Hence there will be no HTM end/begin pair in [ to satisfy the above
sequence.

Hence, data-race analysis is sound when transaction boundaries are replaced by an ab-
stract global lock. O

6.2 Implementation

Support for TSX programs in Landslide is implemented in four parts, broadly speaking:
the user interface, plus one internal part corresponding to each proof above, plus a bonus
optimization for pruning equivalent interleavings under the new concurrency model.

6.2.1 User Interface

Landslide provides its own “implementation” of the TSX interface, which matches GCC’s
interface exactly, located in 410user/inc/htm.h under pebsim/p2-basecode/. The in-
terface is implemented in 410user/libhtm/htm.c, perhaps surprisingly, as totally empty
functions; Landslide hooks these functions’ addresses during instrumentation and inserts
preemption points, failure injections, et cetera as necessary whenever the execution en-
counters them.

Transactional test programs should be ported to the Pebbles userspace if not already,
then any use of compiler HTM intrinsics replaced with Landslide’s interfacel. They should
then be put in either 410user/progs/ or user/progs/ and the 410TESTS or STUDENTTESTS
line (respectively) of config-incomplete.mk be edited to add the test name, before run-
ning p2-setup.sh (§B.1.1)) on a (hopefully) correct P2 as usual. Several example HTM
tests are provided as 410user/progs/htm*.c.

Finally, Quicksand supports the following command-line options to enable various sets
of HTM features within Landslide.

* -X (for “tsX” or “Xbegin”) enables the basic features: preemption points on each
_xbegin() and _xend() call, failure injection on each of the former (always return-
ing XABORT_RETRY as the failure code) (§), and treatment of transactional
regions during data-race analysis (§6.2.3).

* -A (for “xAbort codes”) enables multiple xabort failure codes (§). Requires -X.

* -S (for “Stm” or “Suppress retries”) disables the XABORT_RETRY failure reason, caus-
ing Landslide to emulate the semantics of STM rather than HTM. Requires -X -A.

* -R (for “Retry sets”) enables state space reduction based on independences between
individual xbegin results (86.2.4). Requires -X and not -A.

3 Attempts to execute a real TSX instruction under Landslide, instead of using the custom interface, will
be reported as “invalid opcode” bugs, as neither of its supported simulation platforms support the feature.
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6.2.2 Failure Injection

Each preemption point (struct hax as defined in tree.h) includes three new fields. The
boolean h->xbegin is set if the preemption point occurred at an _xbegin() call. Then if
set (as the tag of an option type), the twin lists of integers h->xabort_codes_ever and
h->xabort_codes_todo store possible error codes this _xbegin() call should be tested to
possibly return. The former list stores all such error codes, whether already tested or yet
to be tested, while the latter serves as a workqueue that indicates only those not already
tested yet (serving an analogous purpose as the all_explored flag for thread scheduling).
The state space estimators (§3.4.3) check the length of these lists, in addition to DPOR’s
tagged threads, when computing the number of marked children.

Adding possible abort codes

Up to four abort codes are considered depending on the testing options listed in the previ-
ous section. All abort codes are simultaneously added to both lists, unless already present
on xabort_codes_ever, in which case not added to xabort_codes_todo to avoid dupli-
cate work.
* _XABORT_RETRY: When a xbegin preemption point is created (save_setjmp()), if
-3 is not set, both xabort_codes lists are initialized to contain this code. This rep-
resents the possibility for a hardware transaction to fail for reasons outside of the
programmer’s control such as system interrupts or cache eviction. If -S is set they
are initialized to empty, representing either STM’s policy of failing only when a true
memory conflict arises, or a TSX user wrapping all her _xbegin()s in a retry loop
such as in [13].

* _XABORT_CONFLICT: Whenever DPOR detects a memory conflict between two tran-
sitions (shimsham shm()), if -A is set, if the later-executed transition is a trans-
actional success path, it adds this code to both lists of the immediately preced-
ing preemption point. Note that a transaction should suffer a conflict abort only
when executed after a conflicting memory access to avoid circular causality (see
410user/progs/htm_causality.c for rationale). Should the transaction happen to
be executed first, DPOR will first try to reorder it as normal, and then abort it as
described if the conflict persists.

* _XABORT_EXPLICIT: Whenever the program invokes _xabort () (sched_update_user_
state_machine()), if -A is set, this code is added to both lists, bitwise-ored with the
user-supplied argument code as specified in [47], and execution of the transactional
path immediately stops.

* XABORT_CAPACITY: Whenever the program invokes a system call during a transac-
tion, if -A is set, this code is added to both lists, and execution of the transactional
path immediately stops.

Limitations. Landslide does not yet check for false sharing, i.e. read/write or write/

write access pairs to different memory addresses that share a cache line. On real hard-
ware, these would produce _XABORT_CONFLICT failures, but to find such access pairs would
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require extending mem_shm_intersect()’s set intersection algorithm to consider a cer-
tain degree of (/N-byte-aligned) fuzziness when comparing addresses, as well as adding
a command-line option to configure said N, the cache-line size to simulate. For now,
Landslide (wrongly) lumps false sharing in among the “spurious” _XABORT_RETRY failure
reasons. On HTM, even if the user wraps all such spurious failure reasons in a retry
loop, false sharing (i.e., disjoint memory accesses that share a cache line) should still pro-
duce a non-retryable abort, begetting a discrepancy with STM, which aborts only when
the memory addresses match exactly. Accordingly, the -S option described above pro-
vides STM semantics as currently implemented. Future work could extend Landslide
with an option to configure false sharing conflicts to remain faithful to HTM semantics
and still abort even under -S. Likewise, Landslide does not check for a transaction’s mem-
ory footprint exceeding the CPU’s cache capacity, which on real hardware would trigger a
_XABORT_CAPACITY abort. Landslide’s memory tracking could simulate this check as well,
perhaps with a configurable cache size, but would likely be theoretically uninteresting (all
programs in the upcoming evaluation have trivial memory usage), and so is left unimple-
mented for now. Finally, XABORT_NESTED, the last abort code specified by [47], depends
on currently-unsupported xbegin nesting, which I discuss further in §6.4.

Injecting abort codes

When traversing the state space (§3.3.5), in addition to performing DPOR to select non-
independent thread interleavings (§8.4.2), the abort codes under each xbegin preemp-
tion point are also considered “marked” paths which must be tested. Hence explore(),
by way of any_tagged _child(), will pop off the xabort_codes_todo queue when it’s
time to explore that preemption point in the usual depth-first manner®. The optional
abort code is then passed through arbiter_append choice()/arbiter_pop_choice()
to cause_transaction_failure(), which edits the simulation state (%eip and %eax) to
force _xbegin() to return the provided code.

6.2.3 Data Race Analysis

When a thread returns _XBEGIN_STARTED from _xbegin() (analogoustomutex_trylock()),
Landslide’s scheduler sets the user_txn action flag for that thread (§B3.3.2), and if using
Pure Happens-Before, applies FT ACQUIRE (§B.4.4) using a dummy lock address to rep-
resent the abstract global lock. When a thread reaches xend(), the flag is cleared, and
under Pure Happens-Before, FT RELEASE is applied. Then when check_locksets() com-
pares an access pair, under Limited Happens-Before, it is considered a data race only if
at least one thread’s user_txn was not set in addition to the usual conditions; under Pure
Happens-Before, the vector clocks are simply checked as usual.

4The search order prioritizes abort codes before scheduling other threads at such preemption points,
which is just an implementation detail, not theoretically necessary.
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6.2.4 Retry independence

Finally, I identified a specific pattern of transactional code where existing state-space re-
duction algorithms will fail to identify and prune equivalent thread interleavings. Fig-
ure shows a minimal example program which exhibits this problem. In this program,
each thread’s transactional path conflicts with the other thread’s abort path, while the
two transactional paths (disjoint memory accesses) and the two abort paths (reads only)
are pairwise independent.

Initially int foo, bar = 0;

Thread 1 Thread 2
if (_xbegin() == STARTED) { if (_xbegin() == STARTED) {
foo++; bar++;
_xend(); _xend();
} else { } else {
assert(foo + bar < 2); assert(foo + bar < 2);
} }

Figure 6.3: Motivating example for retry independence reduction.

Ordinarily, in the state space subset which schedules thread 1 before thread 2, there
would be 4 combinations of each thread succeeding or aborting their respective transac-
tions; among those, at least one would show a memory conflict, causing DPOR to explore
into the other half of the state space which schedules thread 2 first, where the same 4
combinations of transaction reuslts would be tested in the other order, even though 2
are redundant under schedule reordering. Consequently, naively testing both success
and retry aborts in both threads regardless of reordering will unnecessarily execute both
equivalent interleavings from each such pair; to identify such equivalences, DPOR must
somehow remember which combination of xbegin results led to the memory conflict in
the first place.

While Figure @’s example may seem contrived (what program’s transactions would
just give up and do no work if aborted?), it is easy to imagine a larger transactional
data structure, two insertions into which might operate on disjoint nodes or array in-
dices, allowing simultaneous transactions to usually succeed, while the more uncommon
abort paths might take the opportunity to assert a full consistency check of all elements,
ultimately resulting in a similar conflict pattern. Also, the evaluation will later show
(86.3.2) that even programs with fully conflicting success/abort paths may still exhibit
some equivalent thread interleavings of this pattern after their failure paths are split apart
into smaller transitions by data-race preemption points.

To address this, I extended Landslide with retry set reduction (commit 86657c7), an
experimental feature named after prior work’s analogous sleep sets ([[1, 46, 491, §).
Whenever DPOR tags a new branch for exploration (§3.4.2), if either or both sides of a
memory conflict were part of a transaction, it records a retry set, i.e., the pair of xbegin re-
sults executed by the conflicting threads, to accompany that branch. Like the xabort_codes
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lists, the state space estimators (§B.4.3) check the number of retry sets when counting the
number of marked children. Later, when traversing the new branch, Landslide remem-
bers those threads’ expected xbegin results and refuses to test any others (unless DPOR
separately found them, too, to conflict), thereby skipping over (i.e., pruning) reorderings
of any other xbegin results that would be independent. Like sleep sets, it also considers
the preempted thread “retry-set blocked” (like sleep-set blocking [1]), and refuses to run
it until the conflicting thread runs its transaction first, unless such would result in dead-
lockE. Upcoming in the evaluation, Figure 6.6 will visualize the reduction achieved in two
test cases.

6.3 Evaluation

While prior work has focused on verifying implementations of transactional memory them-
selves [33, 53, 54, [111]], Landslide is to the best of my knowledge the first model checker
to support transactional client code. Accordingly, there is no baseline against which to
compare Landslide’s performance. Likewise, since Landslide’s HTM semantics emulation
relies on the equivalences proved in §6.1, I did not actually implement an HTM-style
speculative-execution-and-rollback simulation mode. On this count, at least, I hope the
reader finds it self-evident that the equivalence proofs provide exponential state space
reduction compared to actually testing (and thereafter aborting) every combination of
instructions within transactions. Beyond those, this chapter’s evaluation will take a rela-
tively green-field and exploratory approach. I pose the following evaluation questions.

1. How quickly does Landslide find bugs in incorrect transactional programs?
2. Does Landslide find any previously-unknown bugs in real-world transactional code?t
3. How does Iterative Deepening’s (§) performance compare to Maximal State Space

mode (§) i

4. How well does Landslide’s verification scale with increasing thread/iteration count
for correct transactional programs?

5. What further reduction can be achieved beyond the baseline provided by the global-
lock/failure-injection equivalences?

5 Before the search ordering update to Landslide’s normal sleep sets implementation (§3.4.2), I observed
false-positive retry-set-blocked deadlocks fairly often; after the update, it took until 981773 interleavings
(>9 hours) into htm2(3,2) to find one and confirm the need to still explicitly avoid them by abandoning the
retry set in such cases.

®The savvy reader will realize that whether or not the author poses this evaluation question to begin
with spoils its answer.

7Not necessarily related to HTM, but the latter was implemented well after Chapter {'s conference paper
was published, so this was the most convenient test suite to evaluate it on.
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Experimental setup

The evaluation suite comprises several unit tests hand-written by yours truly, microbench-
marks and transactional data structures from [29], a transactional spinlock from [123],
and various combinations thereof, as follows.

* Unit tests and microbenchmarks

htm1: The bug from Figure R.3/6.1.
htm2: The fixed version as in Figure 6.2.

counter: Microbenchmark version of htm2 which replaces the complex locking
failure path with an atomic xadd, from [29].

swap: Microbenchmark that swaps values in an array, from [29].
swapbug: swap modified to introduce circular locking in the failure path.

fig63: Generalized version of Figure [6.3, contrived to induce as much reduc-
tion as possible from the retry sets optimization.

¢ Data structure tests

avl_insert: AVL tree concurrent insertion test [29].
avl_fixed: avl_insert with the AVL bug fixed (spoilers!!).
map_basic: Separate-chaining hashmap concurrent insertion test [29].

map_basicer: map_basic modified with a larger initial size to skip the resizing
step.

avl mutex: avl_fixed with transactional sections simplified by abstraction
into a mutex.

map_mutex: map_basic simplified likewise.

* Lock abstraction tests

lock(): Checks that multiple threads using a transactional lock cannot access
the critical section simultaneously.

lock_fast(): Checks that a transactional lock’s fast path will not suffer conflict
aborts if its client threads’ critical sections are independent.

These are each parameterized over implementations spinlock (from [123]), spin_
fixed (spoilers!!), and mutex (replaces the spinlock with a Landslide-annotated P2
mutex to reduce state space size).

The notation testname (K, N) will denote a test configuration of K threads, each run-
ning N iterations of the test logic. All tests were run on an 8-core 2.7GHz Core i7 with
32 GB RAM. Reported CPU-times include time spent on all state spaces Quicksand saw fit
to run, not just the maximal or the buggy state space; for verification tests (run with -M),
this still includes abandoned smaller jobs that were run to saturate the set of data-race
preemption points (Chapter B]). To minimize variance in CPU-time measurements, I en-
sured the test machine was not loaded beyond normal web browser use, and ran only one
instance of Landslide at a time; for further discussion of variance see [13]. The number
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of interleavings in each state space are, of course, deterministic and do not vary across
runs.

I investigated the popular transactional benchmark suite STAMP [98] to include in
this test suite, but found that all transactional code therein was written without failure
paths, so would likely not contribute any theoretical depth to the evaluation. STAMP uses
the OpenTM interface [8], which allows the programmer to specify transactional code
regions to be implemented atomically, however the underlying architecture may require
(whether HTM or STM; presumably with retry loops on HTM). On one hand, this lends
credence to my upcoming conclusion that HTM programs should be written at a higher
abstraction level than calling _xbegin() directly; on the other, OpenTM’s requirement of
virtualized transaction semantics (i.e., being unconstrained by memory footprint, able to
make system calls, and able to nest arbitrarily) is more suited to STM and glosses over
many pitfalls of HTM programming.

Finally, the keen-eyed reader will notice the state space sizes reported here differ
from those reported in [13]. All experiments have been re-run on account of three up-
dates to Landslide’s exploration algorithm implemented since then: the sleep sets opti-
mization for DPOR (§, commits 0447666 and 588687c), the thrlib_function and
TRUSTED_THR_JOIN directives to mark internal thread library logic as trusted (§8.2.1, com-
mits 64a02e4 and a50d4ea), and fixing a soundness bug in which Landslide could neglect
to inject transaction failures immediately after a thread switch (commit dcae85b). On
account of the former two updates, some state spaces may be smaller than before; on
account of the third, some may be larger. These updates do not discredit the bug-finding
results (a bug is a bug), but the previously-published verification results should be consid-
ered outdated.

6.3.1 Bug-finding

Table presents the bug-finding results. I configured Landslide to run Quicksand’s
Iterative Deepening algorithm on 8 cores, shown left, as well as to prioritize the maximal
state space, shown right, each with a time limit of 1 hour. Tests htm1, swapbug, and
avl_insert were run with landslide -X (i.e., retry aborts enabled and different abort
codes not distinguished); lock_fast was run with landslide -X -A -S (i.e., suppressing
retry aborts, due to the spinlock’s use of a retry loop confirmed with manual inspection).

Finding bugs quickly

As the test parameters increase, the multiplicative factor in bug-finding speed (2-4x, eye-
balling) is generally smaller than that of the total number of interleavings (10-1000x). In
other words, should transactional bugs exist, Landslide is likely to find them reasonably
quickly despite prohibitive exponential explosion in total state space size. This corrobo-
rates the results from Chapter {4, extending its good news to the world of HTM.
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Quicksand mode

Maximal state space mode (-M)

buggy test KN cpu(s) | wall(s) | int’s || cpu(s) | wall (s) | int’s | SS size (est.)
htmil 2,1 26.48 6.48 5 *8.21 *5.78 5 12
(assertion) 2,2 45.23 8.28 9 *8.42 *5.97 9 102
2,3 53.88 9.92 17 *8.80 *6.31 17 819

2,4 90.24 14.63 33 *9.72 *7.19 33 6553

3,1 39.75 8.21 5 *8.15 *5.71 5 76

3,2 46.91 8.40 9 *8.37 *5.91 9 3686

3,3 41.39 8.50 17 *8.71 *6.26 17 176947

3,4 92.98 15.19 33 *10.36 *7.15 33 8493465

4,1 45.13 8.56 5 *7.77 *5.30 5 460

4,2 64.99 11.33 9 *8.32 *5.59 9 132710

swapbug 2,1 *26.25 *6.42 *6 47.80 13.43 33 73
(deadlock) 2,2 *18.08 *4,98 *10 51.37 16.78 85 860
2,3 *20.93 *5.57 *18 57.87 23.99 217 9120

2,4 *38.92 *8.61 *34 82.95 48.31 537 91239

3,1 *38.59 *8.50 *32 88.28 72.41 | 1016 3543

3,2 *1572.83 | *199.98 *262 — >1h — 1683509

avl_insert 2,2 2494.77 315.46 *29 *95.53 *30.56 79 158505
(segfault+) 2,3 308.10 *43.95 *33 || *249.42 144.33 835 13664203
2,4 || *2979.29 | *390.34 | *1457 — >1h - 61882736

3,1 *87.10 *14.81 *14 94.08 23.60 24 207575

3,2 *3672.84 | *475.03 *145 - >1h - 1635075071

lock_fast 2,1 18.33 5.19 2 *3.12 *3.12 2 4
(perf) 9,9 22.43 6.24 2| *471| 471 2 inf

Table 6.1: Landslide’s bug-finding performance on various test configurations. Iterative
Deepening (84.2), optimized for fast bug-finding, is compared against Maximal State
Space mode (88.1.2), optimized for fast verification. For each, I list the CPU-time and
wall-clock time elapsed, plus the number of interleavings tested in the ultimately buggy
state space until the bug was found. * marks the winning measurements between each
series. Lastly, state space estimation (§) confers a sense of the exponential explosion.

Finding new bugs

In addition to the bugs I intentionally wrote in htm1 and swapbug, Landslide also found

two bugs in the “real-world” transactional algorithms I tested.

* Atomicity violation. avl_insert with any parameters higher than (2,1) exposed
a previously-unknown bug in the transactional AVL tree. Figure 6.4 shows the root
cause, essentially the htm1 bug in disguise. This manifested alternately as a segfault
(for test parameters (2,2) and (3,1)) and as a consistency-check assertion failure
(for test parameters (2,3)). The presence of while (_retry); makes the necessary
preemption window extremely small (between it and _xbegin()), making the bug
extremely unlikely to manifest under stress testing, but Landslide is blind to such

matters of chance.

As a matter of full disclosure, I noted that the loop does not affect the test’s possible
behaviours, only its likely ones, and so removed it to make the test more Landslide-
friendly. To dispel any doubt about bias or test hacking, I confirmed that Landslide
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while (_retry);

if (_xbegin() == SUCCESS) {
tie(_root,inserted) = _insert(_root,n);
_xend () ;

} else {
pthread mutex lock(&_tree_lock);
_retry = true;
tie(_root,inserted) = insert(_root,n);
_retry = false;
pthread mutex unlock(&_tree_lock);

}

Figure 6.4: Unmodified code from htmavl.hpp showing the previously-unknown bug
Landslide found in avl_insert. The transaction path fails to check _retry, leading to
data races and corruption just as in htm1.

still finds the bug with the spin loop unmodified, on (3,1) in the same 53 interleav-
ings, although it suffers resource exhaustion on parameters of (2,2) or greater.

* Spurious spinlock abort. lock_fast discovered a spurious transactional-path write
conflict in the spinlock HTM-lock implementation.® This “performance bug” causes
the lock to suffer slow-path spin-locking even in cases where the user’s thread tran-
sitions are completely independent (for example, locking the root of an AVL tree,
then traversing in different directions to make disjoint modifications), which the
test case detects with _xtest (). Figure 6.5 shows the root cause: the isfree() rou-
tine (corresponding to the AVLs _retry) used an atomic compare-and-swap that
would always write to memory even without modifying it. I corrected this in the
spin_fixed implementation by replacing it with a normal read (being used only in
the transactional path, no barriers are required to protect it). A cursory search on
Github found one user of this code, a transactional LevelDB implementation [137],
whose author had also noticed and corrected this problem in the same way.

As another matter of full disclosure, I noticed this bug through manual inspec-

tion while adapting the spinlock’s client code to be Landslide-friendly, then wrote

lock_fast specifically to target this behaviour, so unlike avl_insert, it does not

count as Landslide finding a previously-unknown bug. However, I feel in retrospect

that how and when an HTM-backed concurrency abstraction will fall into its slow

path is a reasonable performance property for a user to want to verify, so I consider

Landslide confirming the bug (and later verifying its absence, in §6.3.2) a positive
result anyway.

Note that in the AVL tree bug, the code’s author was the very same person who pro-

posed the protocol in Figure 6.9, yet still got it wrong once, having to write it out by hand

81ock_fast’s unusual (9,9) parameter shows that this state space size is constant: DPOR will always

either deem all thread transitions independent and end exploration immediately, or the test’s assertion will
trip as soon as the first conflict is found.
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bool hle_spinlock_isfree(spinlock_t *lock) {
// XXX: should be "return lock->v == 0;"
return __sync_bool_compare_and_swap(&lock->v, 0, 0);

+
void rtm_spinlock_acquire(spinlock_t #*lock) {
if ((tm_status = _xbegin()) == _XBEGIN_STARTED) {
if (hle_spinlock_isfree(lock)) return;
_xabort (0xff);
} else {
// ... retrying &c abbreviated for brevity ...
hle spinlock_acquire(lock);
}
+

void rtm_spinlock_release(spinlock_t *lock){
if (hle_spinlock_isfree(lock)) {
_xend () ;
} else {
hle spinlock_release(lock);

by

Figure 6.5: Code from spinlock-rtm.c, modified only to remove unrelated logic for
brevity, showing the performance bug Landslide found in lock_fast(spinlock). The
isfree() routine uses an atomic read-and-write operation where just a read would suf-
fice, which leads to superfluous memory conflicts in the transactional path (seen at both
of its callsites below).

throughout both data structures. This motivates the need for model checking such pro-
grams, no matter how much of a concurrency expert the author may be. It also suggests
HTM primitives should be encapsulated behind higher-level abstractions, such as lock eli-
sion [66] or a simple spinlock [123], which can be verified in isolation with smaller state
spaces then trusted in turn when checking their client programs [126]. §6.3.2 explores
this further.

Regarding the spinlock bug, as HTM is fundamentally a performance-minded concur-
rency extension, the user may also care about more probabilistic properties of her code,
such as requiring a transaction abort rate below a certain threshhold owing to the nature
of its workload. Landslide cannot in general test for performance degradation bugs, be-
cause all interleavings are equal in Landslide’s eyes, and probability is no object. However,
lock_fast illustrates that model checking can still check some interesting performance
properties as long as the element of probability can be removed. Future work may attempt
to verify a wider range of performance properties, but with a hybrid approach between
model checking and what other technique is not yet known.
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Performance

Quicksand’s ability to find bugs in fewer distinct interleavings (i.e., overall smaller state
spaces) does not necessarily correlate with better performance in terms of CPU-time. Com-
paring Table 6.1's trends to the break-even point in Quicksand’s evaluation (§4.3), most
of these tests are too small for its approach to pay off, with swapbug and avl_insert
as its notable wins. While plenty more wins were observed in §4.3, this suggests future
MCs could prioritize state spaces using not just size estimation but a hybrid approach also
conisdering state space maximality and preemption bounds [101] to soften the trade-off
both for smaller tests and for verification.

6.3.2 Verification

For the test cases with no bugs found, I sought to provide Landslide’s verification guaran-
tee (§4.2.1) for up to as many threads and test iterations as possible under a reasonable
time limit. The results, obtained using the same -X -M configuration options as in the
previous section, are shown in Table in the “Baseline DPOR” column. For test config-
urations which could not be verified within 10 wall-clock hours, I report their estimated
state space size and runtime measured after that timeout instead, ftypeset thusly.

Interpreting the verification guarantee

Landslide was able to verify most of these tests for a fair range of thread and iteration
counts, often reaching up to 2 threads with 3-4 iterations each, 3 with 2 each, or 4 with
1. In the case of htm2, for example, verifying up to (K, N) represents a guarantee that,
even repeating Figure [6.%'s atomicity protocol N times in any scheduling sequence or
combination of transaction aborts, it is impossible for K threads to violate the intended
atomicity property (i.e., get 2 threads in the critical section simultaneously).

It is difficult to discern from prior work a concrete standard for what values of (K, N)
constitute a “good” degree of verification. One recent paper [147], which likewise ex-
tended DPOR with a new dimension of concurrency (weak memory orderings), reported
verifying programs with up to 10 concurrent events, presumably shared memory accesses.
Another [1] reported test cases with as many as 19 threads, although with what must be
very little synchronization or memory conflicts, as even their baseline DPOR checked only
4096 interleavings on that test. Table confers a sense of the complexity of this eval-
uation’s test suite, with the final column showing the approximate maximum number of
preemption points reached among Landslide’s verifications (i.e., (txn+sync+race) x K x N
for the highest K x N completed).

In the case of htm2, it is easy to look at the program with human intuition and judge
that, because the protocol’s only state is stored in a single boolean, with no unbounded-
capacity data structures or contention-dependent exponential backoff loops, it would be
unimaginable that adding a 5th thread to the system could make any difference in correct-
ness where 4 threads could not, or that a 4th repetition between 2 threads could make a
difference where 3 could not, and ultimately that it must safely generalize to all (K, V).
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Baseline DPOR Retry sets (-R) STM (-A -S)
cpu (s) SS size cpu (s) SS size cpu (s) SS size
test K,N (or test.) (or test.) (or test.) | (or fest.) (or fest.) (or test.)
htm2 2,1 18.26 22 17.99 15 3.25 4
2,2 63.61 1446 26.40 334 28.04 286
2,3 3429.04 86536 196.18 6366 997.91 24740
2,4 129d 8h 12710056 4771.17 123140 75d 1h 11792330
3,1 43.24 774 24.02 224 22.79 140
3,2 11y 299d 14510472 Ttodo Ttodo 110d 16h 12322150
4,1 9225.52 212146 376.70 11973 2158.93 44995
counter 2,1 6.92 10 6.81 8 3.28 4
2,2 13.27 190 10.59 102 8.73 48
2,3 155.09 3970 67.82 1558 40.08 904
2,4 3664.66 86950 1150.34 25398 805.85 19128
3,1 11.26 120 9.30 64 8.26 40
3,2 2572.13 60606 2363.41 44862 639.62 14304
4,1 129.25 3006 64.91 1296 40.78 848
swap 2,1 65.72 99 66.05 59 3.40 4
2,2 18124.06 277824 1030.23 19542 703.82 11600
3,1 3820.64 60912 608.48 10706 89.69 1014
fig63 2,1 7.12 10 6.92 6 3.40 1
2,2 9.24 108 8.61 76 3.46 1
2,3 54.68 1934 31.76 977 3.39 1
2.4 1054.80 36600 417.99 14512 3.58 1
3,1 11.15 148 7.76 22 3.53 1
3,2 717.53 21642 217.30 6467 3.52 1
4,1 111.83 3064 11.32 130 3.49 1
avl_insert 2,1 672.68 15125 307.94 6287 136.60 2774
avl_fixed 2,1 739.60 20459 332.32 9675 122.40 2774
2,2 158880y 146150466 Ttodo Ttodo 136393y 135094477
3,1 T5y 292d | 12873664642 Ttodo Ttodo || 197y 100d | 11698185036
map_basic 2,1 1950.48 30719 867.68 13237 367.91 5446
2,2 || 11y 176d 175516602 ttodo ttodo || 113d 11h 1565334
3,1 16y 133d | 11847957714 Ttodo Ttodo T4y 156d 1888242178
map_basicer 2,1 28.40 150 26.55 94 14.88 9
2,2 t11h 17m 1727759 || 16455.24 283756 1285.06 21684
3,1 126h 15m 11451708 || 21153.64 366030 705.04 12707

Table 6.2: Transactional tests verified (or not) by Landslide. Run with -M -X, plus any ad-
ditional reduction options listed. “Baseline DPOR” always tests every abort path, without
distinguishing among failure reasons (i.e., injecting only XABORT RETRY). “Retry sets”
skips equivalent success path and/or retry abort reorderings (86.2.4); “STM” suppresses
retry aborts and dynamically detects when to inject conflict aborts and so on (86.2.2).
State space estimates measured after a timeout of 10 hours (and include those 10 hours
in the predicted total).
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test #txn | #sync | #race | max events verified
htm?2 1 2 4 42
counter 1 0 1 16
swap 1 4 8 52
fig63 1 0 K-1 18
avl_insert 1 2 7 20
avl_fixed 1 2 9 24
map_basic 1 4 13 36
map_basicer 1 2 5 32
lock(spinlock) 1 2 4 28
lock(spin_fixed) 1 2 4 28
lock(mutex) 1 2 2 30

Table 6.3: Number of concurrency events per iteration of each test case. Note that no test
used any synchronization besides mutexes (the P2 thread API was annotated as trusted
(§) and so does not contribute to state space size). Also note that “#race” means the
number of unique accesses identified as racy, rather than racing pairs (the other half of a
pair might well be within a transaction, which cannot be preempted on).

Generalizing the verification is not so straightforward for more complicated algorithms,
which may involve complex conflict patterns such as tree rebalancing or map resizing.
Other formal verification approaches aside, the user must ultimately be content with the
probabilistic assurance that as verified K and N increase, the likelihood that a bug exists
which requires more threads or iterations to expose grows ever lower (for example, none
of the bugs in §6.3.1 required any higher parameters than (2,2) to expose).

Nevertheless, pushing K and N higher is obviously desirable, even if it means applying
reductions that require human intuition to trust are sound. Moreover, much as verifying
htm2’s soundness is a positive result, the attempts at larger data structures quickly suf-
fered exponential explosion for even small thread/iteration counts, in one case failing to
verify whether or not a previously-found bug had actually been fixed. In the following
subsections I explore three possible mitigation approaches.

Retry set reduction

Firstly, the middle column of Table shows the impact of Landslide’s experimental retry
set reduction (§). Despite its conservative implementation, it provides roughly 2-6x
reduction in most tests, with up to 17x in extreme cases. The biggest win is apparent in
fig63, the test contrived to induce as much reduction as possible using transactional paths
that conflict only with aborts and not with each other, and vice versa. In fig63(2,1), cor-
responding to Figure 6.3, retry-set-enabled DPOR correctly prunes down to the optimal 6
interleavings, while the baseline treats it identically to the fully-conflicting counter(2,1).
Figure .6 depicts the difference between the state spaces explored by the two approaches.

Perhaps surprisingly, retry sets also provide reduction even when transactional suc-
cess and abort paths are fully conflicting, (i.e., all tests besides fig63). With just syn-
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fige3:  {Abort only,  Success only }

counter: {Success+Abort, Success only }

fige3:  {Success only, (no txn)}

counter: {Success+Abort, (no txn)}
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Figure 6.6: Visualization of retry set state space reduction. On both counter(2,1) and
fig63(2,1), baseline DPOR tests all 10 interleavings pictured, with the middle 2 arising
from the data-race preemption point within the abort path. With the reduction enabled,
after the 4th and 6th branches (i.e., when preempting to reorder threads), Landslide
activates the retry set indicated at the top of the next upcoming subtree, allowing it to
identify and skip 2 redundant branches in counter and 4 in fig63.

chronization preemption points (including _xbegin() and _xend()), both the baseline
and retry sets would explore exactly all 8 permutations of success and abort between
two threads. However, in the presence of data-race preemption points, even for example
on counter(2,1) (whose abort path is just 1 xadd operation), and whose optimal state
space size should be 8 regardless of data-race preemption points), baseline DPOR tests
reorderings of one thread’s transaction both with the other’s failure path, and with the
other’s data race thereinf. Retry sets on the other hand identify and skip that equivalence
(technically speaking, retry set DPOR reorders with the data race first during depth-first
search, then skips generating a retry set for reordering the full abort path).

9 Not pictured in Figure .6 is the symmetric subtree of branches 5-6 in the right half of the state
space, which would occur after branch 10, reordering the blue thread before the pink’s data race. Such
would be equivalent to branches 2 and 4, and is pruned by the normal sleep set algorithm (§B3.4.2,
equiv_already_explored()) even in baseline DPOR, with no need for retry sets.
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STM (abort code) reduction

Secondly, the state spaces could be reduced simply by restricting the concurrency model
to only a subset of nondeterministic xbegin outcomes possible under HTM. Concretely
speaking, the -X -A -S combination of Landslide options suppresses retry aborts (86.2.2),
which must be checked at every transactional preemption point, replacing them with ex-
plicit and conflict aborts, which Landslide injects only after identifying memory conflicts
through DPOR or encountering an xabort, respectively, ultimately simulating the seman-
tics of STM rather than HTM. This can allow for state space reduction when transactions
happen to be non-conflicting, but more impactfully, conflict aborts can occur only after
the other thread’s conflicting access, so between a pair of transactions only the success,
success and success, abort sequences need be tested; abort, success and abort, abort may
(in fact, must) be skipped. The final column in Table shows the result of STM seman-
tics verification, which always results in at least 2x reduction compared to the baseline,
although retry sets can make up some of the lost ground in some cases.

Abstraction reduction

Visual inspection of the AVL tree and separate-chaining map implementations [29], after
correcting the former’s atomicity bug (Figure @), reveals that every use of HTM followed
exactly the same pattern: running identical data structure logic in both the transactional
and abort paths, as though HTM were merely a mutual exclusion lock with fancy perfor-
mance characteristics. Prior work [126] proposed abstraction reduction, in which the user
identifies program components that can be separated by a well-understood API, then tests
each one against the API individually, effectively turning multiplicative state space size
factors into additive ones.

In this case, I split the lock-like HTM use and the mutually-exclusive data structure
code into separate tests, 1ock, which checks that the use of HTM guarantees mutual exclu-
sion, and avl_mutex/map_mutex, which replace the open-coded HTM use with an already-
trusted P2 mutex. lock_fast, a bonus test, checks the transactional lock’s performance
by asserting that its internal logic won’t trigger conflict aborts even when the client’s ac-
cesses are independent. Figure 6.7 shows their core logic. Finally, I parameterized them
over how the lock was implemented: a real-world spinlock implementation from [[123],
spin_fixed, the same with the performance bug from §6.3.1 fixed, and mutex, using
Landslide-annotated P2 mutexes (as the AVL and map implementations do).

Table [6.4 shows the new resulting levels of verification Landslide reached before the
same 10-hour timeout. Provided that one trusts the lock tests correctly check the desired
properties, and that open-coding hadn’t introduced any new bugs (such as Figure 6.4s),
the benefit is clear: the data structure tests’ state spaces become much more tractable,
their state space growth now defined only by internal conflicts from tree rebalancing,
map resizing, and so on. In total, summing the testing times of lock(mutex) (K, N) and
avl_mutex (K, N) produces the same verification as avl_fixed(K, N) far more cheaply.
Furthermore, lock’s verification can be reused, whereas avl_fixed and map_basic effec-
tively duplicated the mutex verification between them.
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static int num_in_section = O;
for (int i = 0; i < NITERS; i++) {
rtm_spinlock_acquire(&lock);
num_in_section++;
if (! _xtest())
thr_yield(-1);
assert(num_in_section == 1);

for (int i = 0; i < NITERS; i++) {
rtm_spinlock_acquire(&lock) ;
assert(_xtest());
rtm_spinlock release(&lock);

. . +
num_in_section——;
rtm_spinlock release(&lock);
}
(a) 1ock(), tests mutual exclusion. (b) 1lock_fast(), tests for no spurious aborts.

Figure 6.7: Abstraction reduction test cases.

Note two curiosities: firstly, the impact that fixing Figure b.5's performance bug (chang-
ing a read +write to a read only) had on even the correctness tests: lock(spin_fixed)’s
state spaces were reduced by nearly half compared to lock(spinlock), on account of
DPOR no longer needing to reorder the (now) read-read access pairs. Secondly, spinlock
and spin_fixed take longer to test per interleaving than mutex (roughly 9 interleavings
per second for the former, 22 for the latter), because while mutex abstracts away threads
needing to wait their turn for the critical section behind an API Landslide understands, the
spinlock’s wait loop is open-coded, and Landslide must fall back on its costlier heuristic
synchronization detection (§B.4.6). In this way (and also, of course, because mutex’s state
spaces are smaller overall), mutex can be seen in turn as a further abstraction reduction
of spinlock.

6.4 Discussion

In this section I review some of the evaluation’s results in a broader context, list the current
limitations of Landslide’s implementation, and discuss open problems for future work.

Retry set optimality

For all the reduction retry sets demonstrated in Table [6.Z, some inefficiencies remain in
its strategy. For example, it is not clear how to prune soundly when three or more threads
must be reorderd around one transactional preemption point, or when a second pair of
partially-independent transactions interleaves while an existing retry set is already ac-
tive. Accordingly, I implemented the optimization as conservatively as possible in these
cases, “saturating” the retry sets to fall back to no pruning (update_hax_abort_set()
and update_hax_abandon_abort_set (), respectively).

Likewise, the cases of htm2(2,3), (2,4), and (4,1), in which retry sets achieved better
reduction than STM mode, show that the latter does not necessarily subsume the former,
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STM (-A -S)
cpu (s) SS size .
test K,N (or test.) | (or fest.) Non-transacnonal.
lock 2.1 341 4 cpu (s) SS. size
(spinlock) 2.2 198.77 1702 test KN || (or tETA) | (or test.)
3:1 35.28 246 avl_mutex 2,1 3.48 7
lock 2,1 3.55 4 gg 222; 5?)?
(spin_fixed) 2,2 105.57 998 2,4 217-98 s
2,3 t33h 13m 1321553 3’1 8.26 i
> Py 186 3.2 || 1403.46 30653
3,2 || 113y 281d | 11443676 > o °
4,1 | t16h 26m | 1432628 . ftodo ttodo
Tock 2,1 3.44 ) 4,1 199.96 4488
(mutex) 2,2 16.83 180 4,2 ttodo ttodo
2,3 405.21 9379 map_mutex 2,1 39.81 | 83
2,4 || 24999.68 | 489480 2,2 || f26h2Im | 11085126
3:1 15.00 132 3,1 1173d 17h | 112572187
3,2 || 126h42m | 11223955
4,1 665.89 15064
lock_fast 2,1 3.25 1
(spin_fixed) 9,9 4.61 1
lock_fast 2,1 3.19 1
(mutex) 9,9 4.62 1
(a) Verifying HTM locks alone. (b) Verifying the lock’s client code.

Table 6.4: Continuation of Table [6.9, demonstrating abstraction reduction [126] on the
avl_fixed and map_basic tests by verifying HTM mutex implementations separately.
Tested with STM semantics, as both lock implementations include a retry loop.

and that combining the two could in theory achieve further reduction still. However,
xbegin results other than _XABORT_RETRY may depend on the execution logic (explicit
aborts may be conditional on some change by a conflicting thread, and conflict aborts
cannot occur before their conflicting transaction to begin with29), so how to soundly prune
either success paths or retry aborts while other abort codes are in play remains an open
problem.

While motivated by straightforward analogy to the known-sound sleep sets, the in-
tersection of retry sets with Landslide’s other exploration features may cause unforeseen
problems. For now, its use is prohibited in conjunction with other state-space-affecting
features such as ICB (§B3.4.5) as well as multiple abort codes. I personally believe retry set
reduction to be sound under these restrictions, having carefully scrutinized its behaviour
while constructing Figure 6.3 and from inspecting state spaces arising from larger test
parameters as well; nevertheless, this falls well short of formal proof, which I must leave
to future work.

10See 410user/progs/htm_causality.c; that was a fun realization to have already halfway into imple-
menting retry sets the wrong way at first.
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STM reduction soundness

In §6.3.7 I showed that state spaces could be reduced even further than with retry sets
by assuming an HTM interface which abstracts away XABORT _RETRY behind a loop. How-
ever, suppressing retry aborts is not guaranteed to faithfully test all possible behaviours
observable under HTM. As an example, note in Table how STM semantics reduced
fig63’s state space on all (K, N) configurations to 1. Because its transactional paths are
all mutually independent, DPOR identifies no need either to inject conflict aborts or to re-
order threads. However, this skips the slow-path consistency assertion completely. If the
programmer had intended it to run “every so often” at the whim of the timer interrupt,
applying this reduction would be unsound. Also note the state space size of 4 for many
(2,1) test configurations, corresponding exactly to the aforementioned success, success
and success, abort sequences (times two ways to interleave the two threads). Because
of the scheduling dependency for conflict aborts, Landslide cannot recognize the failure
path’s data races without a third freely-reorderable iteration; STM mode must be run with
K x N > 3 to meaningfully test conflicts between failure and success paths at all. A user
wishing to distinguish conflict aborts, retry aborts, and so on during testing without gloss-
ing over any of HTM'’s peculiarities could supply the -X -A options without -S; however,
this will inevitably result in state spaces at least as large as the baseline.

On the other hand, some programs may clearly annotate their intention for abort paths
to be executed only in case of actual memory conflicts. swap, avl_insert, and map_basic
abstract their _xbegin() calls behind an interface which can be implemented either with
or without retry loops, while lock(spinlock) and lock(mutex) implement the retry loop
directly. In these cases, the user can assure herself of STM reduction’s soundness by
visual inspection. In fact, Landslide’s current implementation gets stuck in infinitely deep
interleavings whenever it encounters a retry loop (bypassing even its heuristic infinite
loop detection), so for now the user must inspect the test case to determine which testing
mode to use. Future work could automatically identify a program’s retry loops and give up
on _XABORT_RETRY by switching to STM mode on-the-fly, much like Landslide’s heuristic
synchronization detection does for yield loops (§B.4.6).

Nested transactions

Whenever _xbegin() is called with a transaction already active, or _xend() while not,
Landslide’s current implementation immediately stops and reports a bug. However, just
as concurrent programs often hold multiple locks simultaneously, one may wish to conduct
multiple transactional routines simultaneously, especially as they may be abstracted across
different code modules as a project grows in scale. Recent work [[19, 34] has developed
both implementations and formal semantics for executing nested transactions, so future
work should extend the verification concurrency model to permit such programs. For now,
the best Landslide can offer is to check the transactional components and their client code
separately against their APIs with abstraction reduction (§6.3.), then check the rest of
the program with (for example) traditional mutexes that can nest safely.
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Relaxed memory orderings

Section . 1]'s formalization of thread interleavings does not account for read/write reorder-
ings possible on relaxed consistency architectures [5]. In fact, even after [29]’s proposed
fix to the atomicity protocol in Figure [6.2, it is still incorrect on Total Store Order (TSO)
architectures such as x86, let alone on weaker memory models. Despite stores being
totally-ordered, x86 may still reorder stores after subsequent loads [[133]. Accordingly,
an execution of lines 8, 9a, 9b, 9¢c may be locally visible to another thread as 9a, 8,95, 9c,
and hence an apparent interleaving of

T1@1, T2@1 — 5, T1@7, T1@%, T3@1 — 5, T1@8, T1@9% — B

is possible (reordered accesses underlined for emphasis). An acquire barrier is needed
between lines 8 and 9 to solve this problem on TSO [15] (on x86, either mfence or
xchg/xadd). Recent work [21] also demonstrated unsoundness in a similar lock elision
implementation on ARMv8 (PSO), in which the transactional path reads the lock’s inter-
nal state directly rather than using a separate flag. In Figure [6.9, a release barrier before
line A is also necessary under PSO.

Because Landslide’s concurrency model includes only instruction-level thread nonde-
terminism, not per-CPU memory buffer reorderings, its current HTM implementation can-
not find this bug. In fact, it erroneously verifies the corresponding test htm2(3,1) in 40
CPU-seconds, with 774 interleavings in total, none of which include the above-listed se-
quence. Recent work has extended DPOR to support TSO and PSO memory nondetermin-
ism [147], as well as proposed formal execution semantics for HTM on these architec-
tures [21, 34]; if both of these advances were incorporated into Landslide’s concurrency
model, it could find or verify the absence of such bugs. Visual inspection of [29]’s HTM
data structures found no barriers used in this implementation pattern; I would urge any
reader interested in using those to add them in by hand first. The test case lock(mutex)
(410user/progs/htm_mutex.c in the repository) provides an example of how to use com-
piler intrinsics to emit the necessary barriers.
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Chapter 7
Related Work

This field is built of the contributions of many a brilliant mind trying to carve out a pre-
sentable space in an overall impossible problem, each making their own tradeoffs along
the way. While previous chapters cited prior work as necessary in background discus-
sions, algorithm descriptions, and so on, this chapter aims to comprehensively tour the
field, orienting the reader’s understanding of Landslide in the space of said tradeoffs.

7.1 Stateless Model Checking

Equal partners in concurrency testing are the practical and the theoretical: the former
meaning tool implementations that target specific problem domains and help users as
best one can, and the latter meaning algorithmic advances to bring ever-larger state spaces
within the realm of computational feasibility. I discuss my most closely related works split
in two sections accordingly.

Tools

Systematic concurrency testing dates back to Verisoft [50], the 1997 tool which first at-
tempted to exhaustively explore the possibile ways to interleave threads. Since then,
researchers have built many tools along the same lines to test many kinds of programs.
One of the best-known stateless model checkers is Microsoft Research’s CHESS [[102], a
checker for userspace C+ + programs which preempts on synchronization APIs by default,
supporting compiler instrumentation to preempt on memory accesses as well, and which
pioneered the ICB search strategy discussed below.

Many checkers exist which target programs written for various different types of con-
current execution and/or programming environments. MaceMC [73], MoDist [142],
SAMC [84], ETA [[128], and Concuerror [22], focus on distributed systems, where con-
current events are limited to message-passing and may span across multiple machines.
R4 [69] and EventRacer [11] check event-driven concurrent programs typical in mobile
applications. Like Landslide, SimTester [[145] is a Simics [92]-based tool for kernel-level
code, although it focuses on interrupt nondeterminism for testing device drivers, and is
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limited to injecting at most one interrupt per test run (as if under ICB with a bound of
1). dBug [127], another CMU original similar to CHESS, tests natively-executing pro-
grams using a dynamic library preload to insert preemption points at pthread and MPI
interface boundaries. Inspect [[143] uses a static alias analysis to instrument and preempt
all memory accesses to potentially-shared data at compile time, in addition to common
synchronization APIs. RacePRO [79] targets multi-process programs using system calls
such as the filesystem API as preemption points to find bugs which can corrupt persistent
system resources. SPIN [61] tests algorithms defined in the PROMELA domain-specific
language, instruments every memory access, uses explicit state tracking rather than the
stateless approach (§), and specializes in verifying synchronization primitives such as
RCU [97]. TLC [146] checks formal models of concurrent program behaviour written in
the specification language TLA+ [82], and is arguably one of the only true concurrency
model checkers as it checks specifications separate from the programs themselves rather
than attempting to exhaustively exercise every thread interleaving directly. Déja Fu [[141]
is a model checker for the Haskell language, whose strong type system guarantees that
thread communication be confined to trusted, type-safe APIs. It instruments these inter-
faces (STM among them) to check for deadlocks or nondeterministic behaviour in general,
which either may arise despite the static no-data-race guarantee.

The problem of relaxed memory nondeterminism alone has inspired the creation of
several new model checkers in the past few years. Relacy [140], a header-only C++
model checking library for checking synchronization primitives, was the first to broach
this field, although requires custom annotations for non-atomic memory accesses and
does not fully model all possible relaxed memory behaviours. CDSChecker [109] extends
DPOR with a reads-from relation to capture most of the C++11 memory model’s new
behaviours. Nidhugg [2] is a checker for TSO and PSO which instruments LLVM abstract
assembly, although does not yet support the C++11 memory model. rInspect [147] offers
further heuristic state space reduction using buffer bounding (described below). RCMC
[76] models a “repaired” version of the C++11 memory model known as RC11 [80], and
professes to achieve the best state space reduction to date. These tools each use various
heuristics to account for spin-wait loops, ranging from delay bounding [24] to a rigid
rewrite rule, and provide only limited support so far for read-modify-write atomics (at
best, supporting them by introducing some redundant exploration). No relaxed-memory
model checker has yet proposed a satisfactory model for the “thin-air” problem [133],
which can cause state space cycles in a way not yet well-understood and remains future
work. They also identify all data races (under the C+ + definition rather than §’s) as
bugs immediately, rather than checking them for benign or buggy outcomes. All the tools
in this paragraph are notably open-source — an encouraging recent trend in the field.

If T might indulge by listing Landslide in its own related work section [14], I would
distinguish it by its ability to find shared memory preemption points via dynamic tracing,
rather than relying on user annotations or imprecise compiler instrumentation as other
tools do. Compared to all other tools I know of, it implements a wider range of exponential
explosion coping techniques, some theoretical and some heuristic, some inherited and
some novel, to help the user receive meaningful results as promptly as possible. Its choice
of a familiar pthread-like synchronization API makes it suitable for inexpert users, and its
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recent extension to HTM adds support for more modern concurrency patterns as well.

Algorithms

To date a number of techniques have been proposed to mitigate exponential explosion,
the Sisyphean rock of stateless model checking. The notion that some interleavings of
concurrent threads could lead to indistinguishable program states and be therefore re-
dundant, known as partial order reduction (POR), was first proposed in [48] and explored
in detail in [49]. Dynamic POR (DPOR) was later developed in [46], proposing to track
communication events between threads on-the-fly (i.e., dynamically) rather than to rely
on imprecise static alias analyses, and is now considered the baseline for all subsequent
state space reduction approaches in the field. That paper includes the sleep sets extension,
which Landslide includes in its implementation. It is a sound reduction algorithm, mean-
ing it will never fail to test a possible program behavior, despite skipping many execution
sequences. §B.4.2 provides a detailed walk-through of how DPOR works, as many of this
thesis’s contributions build directly upon it.

DPOR has since been extended in several ways to achieve further reduction and to
incorporate new concurrency models. Optimal DPOR [[1] extends sleep sets into the more
expressive wakeup trees, which provably tests exactly one interleaving from each equiva-
lence class, i.e., the optimal possible reduction, at least under the memory independence
definition of equivalence. Extending the equivalence relation itself to capture not just
memory address conflicts but also the values read and written, SATCheck [31] and Maxi-
mal Causality Reduction (MCR) [63] use an SMT solver [28] to identify additional prun-
ing opportunities. Implementing wakeup trees or SMT-driven exploration in Landslide is
left to future work.

Several other recent advances extend DPOR to new concurrency models, beyond the
shared-memory-threading model outlined in §8.4.2. TransDPOR [134] provides extra
domain-specific reduction for message-passing actor programs by exploiting the fact that
the dependency relation is transitive in the absence of shared state. The R* algorithm [69]
(corresponding to the R4 checker mentioned above) extends DPOR to event-driven pro-
grams by separating the notion of enabled events from that of multiple threads. TaxDC
[85], a taxonomy study of distributed systems concurrency bugs, showed that for com-
pleteness distributed model checkers must incorporate many forms of nondeterminism, in-
cluding message reordering, timeouts, network disconnections, and crashes and reboots,
in addition to local threads. DPOR for TSO and PSO [[147] extends the concurrency model
using shadow threads, which interleave with traditional threads to represent store buffer
nondeterminism, which can expose bugs not even possible in the strong consistency model
such as discussed in §6.4. It also introduced a heuristic buffer bounding technique, anal-
ogous to ICB, to mitigate the corresponding increase in state space size. The same year,
Nidhugg [2] proposed a DPOR extension to account for TSO and PSO using chronologi-
cal traces. MCR was recently extended to support relaxed memory models likewise [64].
Just this year, RCMC [[76] proposed to replace the interleaving model entirely with execu-
tion graphs, which precisely model the executions legal under the RC11 memory model,
offering further reduction still. Somewhat analogously for HTM, this work’s Chapter f
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extended DPOR’s concurrency model to include failure injection, and proposed three re-
duction strategies, one sound and two heuristic, to keep state spaces manageable.

Of course, no matter how optimal a sound reduction, there will always be programs
too large to test. To provide even partial results for state spaces that exceed the testing
budget (whether as predicted by automatic estimation [[129] or by a human’s wild guess),
various heuristic exploration strategies have been proposed. Preemption Sealing [9] al-
lows programmers to manually exclude preemption points arising from trusted source
code modules; Landslide implements this as the without function command (§).
Iterative Context Bounding (ICB) [101] (§) orders the search space by increasing
number of preemptions in each branch, which is empirically more likely to expose bugs
sooner should they exist; BPOR [24] extends DPOR to preserve soundness thereunder.
Landslide implements ICB and BPOR for Chapter i's control experiments, although does
not yet incorporate it into this thesis’s own contributions (as discussed in Chapter E).
Chapter H's Quicksand algorithm is, effectively, another such heuristic search strategy, fo-
cusing on preemption point subsets rather than context switch bounding. DeMeter [57]
adapted abstraction reduction to distributed systems verification under the name Dynamic
Interface Reduction, while dBug [126] applied abstraction reduction to synchronization
primitives, and I showed how it could be applied similarly to transactional memory in
§. Each of these approaches is compatible (and indeed, throughout this thesis used
often in concert) with the sound reduction analyses listed above.

7.2 Data race analysis

Data race analysis, originating with the lockset-only analysis of Eraser [120], has since
grown into a mature field in its own right, which Landslide more borrows as building
blocks for its own methods rather than contributing new techniques to. Race detectors
are largely distinguished by their particular flavour of the Happens-Before (HB) relation,
as discussed in §2.3.2. Djit+ [116] and FastTrack [45] are among those which soundly
avoid false positives using “Pure” HB, tracking Lamport-style vector clocks [81] for each
lock and each thread to compute a global partial order on shared state accesses, and flag
any access pair not related thereby. FastTrack optimizes Djit+’s analysis rules to remove
O(K) runtime factors (i.e., linear in the number of threads) from several common read
and write tracing events; however, because K is relatively small in model checking’s use
cases, Landslide uses the Djit+ rules for the sake of implementation simplicity. Mean-
while, the “hybrid” approach which combines DPOR-style happens-before with locksets
[110], used in tools such as ThreadSanitizer [[125], compute a more relaxed partial order
to find more potential races in a single pass at the cost of false positives. I called this
“Limited” HB on account of how it excludes only those access pairs separated by block-
ing synchronization, not those separated by just locks or barriers, as compared to Pure
HB. Landslide’s Limited HB implementation piggy-backs on DPOR’s computed happens-
before relation, supplemented with straightforward lock-sets and heuristic treatment of
lock hand-off (often common in kernels).

Since these foundational algorithms, many more recent works have contributed to
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make data-race analysis more precise, more performant, and/or more domain-specific.
The Causally-Precedes relation [[131] is a refinement of Limited HB which avoids the most
common cases of false positives, including §4.2.1s reallocation false positives. It could
strike a middle ground in the bug-finding/verification tradeoff between Pure and Limited
HB (§) that would be a welcome enhancement in Quicksand. IFRit [40] improves
the performance of Pure HB using an interference analysis, which could allow future
work to avoid tracing every memory access in a simulator such as Bochs [83] or Simics
[92]. DroidRacer [93] and CAFA [62] find data races in Android applications, using
domain-specific heuristics (orthogonal to Quicksand’s method) to reduce false positives.
DataCollider [42] finds data races in kernel code by using hardware breakpoints and
random sampling to achieve high performance.

Although many checkers listed in the previous section are content to report any data
races as outright bugs, RacerX [41] showed that tools must be careful not to overwhelm
users with benign warnings they don’t care about fixing. This has motivated replay anal-
ysis to classify data-race candidates by their impact on program behaviour by extending
single-pass data-race analysis to many thread interleavings. It was first introduced in
[105], which compares the program states immediately after the access pair for differ-
ences, preferring still to err on the side of false positives (as different program states
might not necessarily lead to a failure). RaceFuzzer [124] avoids false positives by requir-
ing an actual failure be exhibited, as Quicksand does, although it uses random schedule
fuzzing rather than systematic testing for its concurrency coverage. Portend [[71] is closest
in spirit to Quicksand: it tests alternate executions based on single-pass data-race candi-
dates to classify them in a taxonomy of likely severity, including non-failing races which
nevertheless cause nondeterministic output in addition to obvious failures. However, it
does not test alternate interleavings in advance of knowing any specific data races, which
§4.3 showed is necessary to find certain bugs. Quicksand builds on Portend’s approach by
introducing a feedback loop between the data-race analysis and model checking, which
results in a stronger verification property when the test can be fully completed (§4.2.1)).
Portend also uses symbolic execution to test input nondeterminism as well as schedule
nondeterminism, while Quicksand remains at the mercy of manual test case design. Fu-
ture work could incorporate Portend’s taxonomy to better help the user understand any
non-failing data races when the test is too large to complete, as well as its symbolic exe-
cution to help user-provided tests achieve better coverage automatically.

7.3 Concurrency in education

The operating systems curriculum at CMU has used the Pebbles project infrastructure
and assigned the thread library [36] and kernel [35] projects in something recognizably
close to their modern forms since the Fall 2003 semester. I chose Pebbles to target with
Landslide because it is closest to home, naturally. To indulge my bias as a former member
of 15-410 course staff, I also believe that Pebbles’s open-ended, design-oriented project
structure is best suited to train students to design robust concurrent code and debug it
efficiently, as it forces them to consider interactions between many different parts of their
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design simultaneously. However, the difficulty of its concurrency problems (mostly having
to do with thread lifecycle) leaves little time left in the semester to cover more modern
topics such as multicore scheduling let alone transactions or relaxed memory (all relegated
to lecture material not reinforced by the assignments).

Pintos [114] has recently emerged as the most popular educational kernel (by count
of top CS schools in the United States who teach by it); it trades off the prevalence of
its concurrency challenges to cover various OS topics more broadly, especially advanced
scheduling algorithms and filesystems. Pintos is the stand-alone evolution of its predeces-
sor, Nachos [23], which originally ran as a UNIX process with simulated device drivers.
Its popularity motivated me to extend Landslide to support it as an additional kernel archi-
tecture (an unfortunately arduous task) to prove Landslide’s mettle beyond CMU’s walls.
Xv6 [25], from MIT, is another major educational kernel, which is also UNIX-like and runs
in QEMU, and a natural target for model checking in future work. Recently, Columbia in-
troduced a new Android-focused OS course [7], which perhaps highlights the importance
of related work on model-checking event-driven applications [69].

To my knowledge, this is the first study of model checking in an educational setting,
although teaching concurrency is not itself an unstudied problem. [88] surveyed how
students think about testing and debugging during a concurrent programming project,
finding that unguided, students often approach testing haphazardly, not understanding
the goal of good concurrency coverage, and also had difficulty understanding single fail-
ing executions. In fact, the study explicitly recommended tool support for testing many
thread interleavings automatically and for execution traces to communicate sequences
of important events (preemption traces), which I dare say I have achieved in this the-
sis. A more recent study [§] examined in detail the students’ thought process during the
diagnosis and fixing phases, although its participants were drawn from novice-level pro-
gramming classes, and the experiment was set up with more elementary bugs like syntax
and logic errors correspondingly. Nevertheless, the authors recommended teaching de-
bugging skills explicitly via systematic exposure to different kinds of bugs, which suggests
future work for even advanced operating systems curricula to offer a “warm up” Landslide
assignment (for example, the atomic_x tests from §5.1.3) that could ultimately lead to a
higher solve rate on Landslide’s bug reports during P2 (85.3.1)).

Willgrind [[104] is a tool recently developed at Virginia Tech that targets a fork-join
parallelism project and checks for memory errors (using the Valgrind [[107] framework)
as well as deadlocks, assertion failures, and data races, similarly to Landslide, although
unlike Landslide, its thread interleaving coverage is as yet limited to stress testing. Its
GUI-based debugging output is perhaps more friendly than Landslide’s HTML preemp-
tion traces, and its user survey found that students appreciated detailed debugging info
especially for deadlocks (future work for Landslide), but also that students had little pa-
tience for even a 5-minute stress test when no assurance against false negatives could be
provided. This suggests motivating students with Landslide’s verification guarantee, al-
though it is tricky to avoid accientally encouraging them to limit possible interleavings by
just using one global lock for everything, which is counter to 15-410’s educational goals.
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7.4 Transactional memory

Transactional memory (TM), first introduced in 1993 [6Q], has received renewed atten-
tion in recent years with the announcement of Intel’s Haswell architecture [59], which
supports hardware transactions (HTM) using new x86 instructions. Since then, many
studies have evaluated the increased performance it offers over traditional locking and/or
STM [29, 32, 144]. HTM’s performance comes at an increased cost in complexity to the
programmer, who must avoid system calls or transaction nesting, respect the CPU cache
capacity, and consider retry loops for spurious failure. SI-TM [86] introduces techniques
for reducing HTM’s abort rates for performance’s sake, but without eliminating them alto-
gether, any full verification must still consider them possible anywhere. For programmers
who wish to avoid such concerns, the simpler STM programming model remains relevant.
One recent work [[19] enhances STM transactions to nest with HTM ones, while another
[55] adds support for relaxed memory models. Meanwhile, two recent papers [21, 34]
have proposed formal models of HTM’s execution semantics under relaxed memory like-
wise. Such extensions come with the challenge of even more complicated behavioural
semantics for stateless model checking to accurately model and verify in future work.

Testing approaches for transactional programs are sparsely represented in the litera-
ture so far. Although several related works [33, 53, 54] are building up to formal proofs of
the correctness of underlying TM implementations, Landslide is the first I know of to verify
client programs thereof. McRT STM [111] uses SPIN [61] to model check an STM imple-
mentation up to 2 threads running 1 transaction each with up to 3 memory accesses. This
kind of verification, analogous to §5.1.3's mutex_test, is an important stepping stone for
trusting the results Landslide will provide. STAMP [98] is a benchmark suite transactional
programs, implemented using the OpenTM interface [8], used by many papers in the field
to evaluate the performance of both STM and HTM implementations alike, although as
discussed in §6.3, focuses more on performance than on interesting concurrency proper-
ties. Even so, the more recent Stampede suite [108] argues that STAMP’s benchmarks
were constructed under a programming model poorly-suited to fully take advantage of
HTM'’s performance, and that scalable HTM programs should seek to minimize incidental
conflicts and to handle aborts more flexibly than with blind retry loops. The programming
complexity needed to achieve these goals calls, of course, for correspondingly advanced
verification approaches such as Landslide. Finally, TxRace [[148] tests non-transactional
programs for data races by inserting HTM calls via compiler instrumentation, relying on
conflict aborts to point out access pairs that would be unsafe in the original program. This
citation perhaps half belongs in § as well; I include it here to highlight the importance
of Landslide’s ability to distinguish different abort reasons (§6.2.2).

An article from relatively early in the timeline of TSX [94] warns of several false equiv-
alence pitfalls when converting conventionally-locking code to use transactions, although
these pitfalls depend on multiple existing locks used locally and disjointly, so this does not
invalidate the equivalence proved in §6.1.3. Rather, Landslide could be used to ensure
that freshly-converted transactional code avoids the warned-of pitfalls. Learning from Mis-
takes [90], a survey of the characteristics of many types of concurrency bugs, found that
TM could potentially fix some, but not all, of the studied bugs, while in other cases it must
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be combined with other concurrency primitives to be fully correct. A subsequent paper
[139] found a majority of bugs in their study to be easily fixable with hand-written trans-
actions, while others remained out of scope due to blocking cond wait () operations and
the like; more recently, the tool BugTM [20] aims to deploy such repairs in production
code fully automatically. However, these studies all optimize for empirical correctness
at best, as well as maintaining good performance, which motivates the use of tools like
Landslide to ensure these rewrites are actually correct, rather than merely shrinking the
necessary preemption window required to expose them.

7.5 Other concurrency verification approaches

Naturally, many avenues of research towards writing correct programs have been explored
apart from just executing them a bunch of times to check all the interleavings. Though not
as directly related as the works referenced above, this section explores such approaches,
ranging from expressing safety guarantees in a language’s type system to checking, prov-
ing, and/or enforcing execution properties post-hoc.

Programming language design

While C’s extremely rudimentary type system allows the compiler to statically check pro-
grams for properties such as not accidentally dereferencing raw integer values as if they
were pointers, more advanced programming languages may make guarantees about con-
current execution. Erlang [138], an early concurrent functional language, introduced the
actor model for concurrency, in which threads share no state and must communicate only
by message-passing. While this statically guarantees the absence of data races, programs
may still execute nondeterministically, so concurrency bugs, especially deadlocks, are not
ruled out. Concuerror [22], discussed above, is a model checking tool for Erlang pro-
grams. Haskell [65] offers a more sophisticated interface to concurrency: threads may
reference the same objects and even update shared references using monads that encap-
sulate mutation, but at the (garbage-collected) execution level all data is immutable once
created, which preserves type soundness and data-race freedom. The aforementioned
Déja Fu [141] checks concurrent Haskell programs. Rust [95] presents a type system
with more explicit memory management, in-place mutation, and mutable references to
appear familiar and approachable to those already versed in C+ +. It proposes a borrow-
check analysis to ensure memory and type safety despite mutable references, and a trait
system to ensure no shared state between threads by default. Its concurrency libraries
then offer interfaces which relax this restriction, allowing threads even to simultaneously
reference shared mutable state, using the type system to enforce sound locking discipline
across such accesses, again preserving type soundness and data-race freedoml. I know
of no existing model checker for Rust as of yet. The Relaxed Memory Calculus [133] pro-
poses to extend C++ with annotations for weak memory atomics, which allows for static

!'The author themself contributed the original design for this latter feature.
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formal analysis of memory access reorderings. Although not ruling out data races, this ap-
proach is an important step towards compilers which can statically reason about program
execution under more advanced concurrency models. Finally, ILVish [78] features a type
system that enforces deterministic behaviour by construction, using shared state called
[Vars which allow writes only in ways that update order is not observable. This renders
thread interleavings entirely irrelevant, obviating any need for runtime verification, but
at the cost of a more restrictive programming model.

Deterministic multithreading

Coming at nondeterminsm from the opposite angle as this thesis, which aims to push the
frontier of testing coverage to expand as many interleavings as possible, is deterministic
multithreading, which reduces the number of interleavings possible to begin with enough
that said frontier can reach it more easily. Unlike LVish, described above, these systems
provide deterministic execution even for the familiar, C-like, shared-state multithreading
programming model. Kendo [112] and CoreDet [10] were among the first systems to
implement this, but were limited in which sources of nondeterminism they could con-
trol and suffered high performance overhead. DThreads [87] then extended the scope
of determinization to include data races, while Peregrine [26] improved performance by
using record-and-replay to compute a set of possible safe schedules. Parrot [27] later in-
tegrated with the aforementioned dBug [[127] to offer a partially-determinizing runtime
scheduler that offered near-baseline performance by allowing the programmer to manu-
ally annotate speed-critical nondeterministic sections and then check the resulting state
spaces using dBug as normal. Most recently, Sofritas [30] proposed the Ordering-Free Re-
gion execution model which restricts nondeterminism to only order-enforcing operations
such as blocking, and automatically suggests refinement annotations to the programmer
when that would be too aggressive for the intended behaviour. These determinizing run-
times serve a different purpose than model checking: they seek to preserve the stability
of existing code already running in production, whether or not concurrency bugs may
exist, while this thesis aims to eradicate as many such bugs as possible beforehand. As
Parrot demonstrated, the two approaches are compatible in cases where either extreme
be infeasible.

Symbolic execution

Analogous to stateless model checking, which seeks good coverage of possible thread
execution paths under schedule nondeterminism, another popular testing approach is
symbolic execution [[74], which seeks good coverage of possible flow control paths under
input nondeterminism. Symbolic executors abstract a program’s variables and use con-
straint solvers such as Z3 [28] to work backwards and synthesize combinations of test
inputs which can lead to a failure. KLEE [[18], one well-known and open-source imple-
mentation, offers over 90% code coverage on average across many tests, often outdoing
that achieved by programmers’ own hand-written tests. Later, Contessa [77] extended
symbolic execution to include concurrency nondeterminism as well, by using a DPOR-
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like analysis on individual execution traces then including reordering possibilities in its
SMT constraints. This simultaneously exercises both input and schedule nondetermin-
ism, but does not provide the same verification guarantees as repeated DPOR iterations
with explicit scheduling. Exploring both kinds of state space at once thoroughly enough
to provide strong verification is undoubtedly subject to further state space explosion, and
remains future work. Symbiosis [91] starts from the known root cause of an existing
failure and uses symbolic execution to synthesize a schedule to reproduce it, then further
searches for a non-failing schedule and compares them to produce a minimum sequence
of events necessary for the failure. This approach skips the initial verification step en-
tirely, but greatly reduces the diagnosis effort required of the user, which was a common
complaint about Landslide’s preemption traces.

Kernel verification

seL4 [75] is a microkernel fully designed and specified in Haskell and translated into C.
Its proofs guarantee not only standard security properties such as process isolation and
bounded interrupt latency, but also that the C code faithfully implements the specifica-
tion. It addresses concurrency by enabling system interrupts only at carefully-chosen code
points, and proving bounded runtime besides to ensure good preemptibility. This degree
of verification must however come at a cost: seL4’s authors reported over 2 person-years
of development effort, with the majority spent on the Haskell specification. CertiKOS
[52] extends this approach to include full concurrency and fine-grained locking in the
scope of verification, using a proof in Coq that also took 2 person-years to complete. Its
safety properties hold under all possible interleavings, and include data-race freedom as
well as standard sequential properties such as no null dereference and no buffer or integer
overflow, although it stops short of reasoning about relaxed memory orderings or the TLB
cache. Many programmers would find a verification cost measured in person-years far too
prohibitive, while others might argue that for safety-critical kernel code you can’t afford
not to verify so thoroughly. More recently, Hyperkernel [106] extended the xv6 educa-
tional kernel [25] to allow for partial, case-by-case verification of system call behaviour
using state-machine specification in Python checked by an SMT solver. To limit verifica-
tion complexity, it assumes not only uniprocessor execution but also that interrupts be
perpetually disabled, taking concurrency entirely out of the equation to allow for greater
extensibility and lessen the programmer’s verification burden. Heroic as such end-to-end
formal verification projects are, this thesis finds that trading off thoroughness for accessi-
bility is also acceptable if it means helping more users overall. Future work could check
preemptive and/or multiprocessor kernels by first checking safety properties in the ab-
sence of concurrency, then checking with Landslide that concurrency introduces no new
program behaviour not already verified, to provide a less formal, but still hopefully useful,
verification guarantee.
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