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Abstract
Hardware transactional memory is a recently-introduced
concurrent programming paradigm which allows pro-
grammers to elide locks for performance in low-contention
workloads. However, it comes at a cost in implementa-
tion complexity: fast-path code must be accompanied by
backup paths to handle transaction failure. We extend
Landslide, a popular stateless model checker, with a con-
currency model for transactional memory and evaluate it
on several real-world transactional benchmarks and data
structure implementations.

Categories and Subject Descriptors D.1.3 [Program-
ming Techniques]: Concurrent Programming; D.2.4 [Soft-
ware Engineering]: Software/Program Verification

Keywords landslide terminal, baggage claim, ground
transportation, ticketing

1. Introduction
Transactional Synchronization Extensions (TSX) [23] is
an instruction set extension for x86 CPUs which adds
hardware-based transactional memory. The processor uses
its existing cache coherence algorithm to check for mem-
ory conflicts with other cores while temporarily staging a
sequence of memory accesses. If no other CPU accesses
the same memory during the transaction, the access se-
quence is committed to main memory atomically (with
respect to visibility by other CPUs). Otherwise, the ac-
cesses are discarded, the CPU’s local state is reverted, and
the transaction returns a failure code.

This feature can be used to replace conventional lock-
ing in performance-critical concurrent programs. When a
concurrent workload accesses largely thread-local data,
or disjoint sections of a shared data structure, the con-
tention rate between threads is low, and transactions will
often succeed. Compared to programs which use conven-
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tional locks, which use bus-locking atomic accesses even
in the fastest code path, TSX provides substantial perfor-
mance improvements in such programs [10, 12, 44]. How-
ever, the possibility of transaction failure introduces ad-
ditional implementation complexity: programmers must
also provide a backup plan to safely resolve contention
between threads, usually involving conventional synchro-
nization. These backup paths must coordinate not only
with other backup paths but also with other fast paths
which another thread may begin after the original trans-
action failed, which even in the simplest transactions re-
quires complex synchronization sequences [10]. This in-
troduces an additional dimension of nondeterminism into
an already concurrent program, and moreover, because
transaction failure is expected to be rare, obscure inter-
leavings between failure paths are difficult to expose dur-
ing stress testing.

This motivates the use of stateless model checking
(MC) [19] to comprehensively verify these transactional
programs, fast paths failure paths and all. MC aims to
force the system to execute all possible thread inter-
leavings under a given test case, exhaustively check-
ing for bugs or verifying their absence in the corre-
sponding state space. Many such model checkers ex-
ist, varying in interleaving granularity, memory analysis,
types of programs checked, and search ordering strategy
[9, 24, 25, 27, 28, 30, 32, 38, 43]. This work builds upon
Landslide [4], a simulator-based tester which checks both
user- and kernel-level programs and incorporates data-
race analysis [16, 36] to find new preemption points at
memory access granularity. Our contributions are as fol-
lows:

1. We extend Landslide’s concurrency model to include
transaction failure as an additional source of nonde-
terminism;

2. We provide a proof sketch that our implementation
matches TSX’s execution semantics,

3. We evaluate the extended Landslide on several trans-
actional programs, analyzing both its bug-finding and
verification performance.

The paper is organized as follows. Section 1 intro-
duces the problem domain and motivates our research.
The other sections state the rest of the paper.



2. Background
This section introduces the fundamental concepts and
prior work in both hardware transactional memory and
stateless model checking, which we propose to combine.

Hardware transactional memory. TSX was imple-
mented on consumer hardware for the first time by Intel’s
Haswell architecture [22], which extends the x86 instruc-
tion set to provide xbegin, xend, and xabort for begin-
ning, committing, and aborting transactions, respectively.
Higher-level programming languages or compilers may of-
fer libraries or intrinsics to access these instructions; for C
and C++ GCC provides intrinsics named _xbegin() and
so on [18]. Figure 1 shows an example program using
TSX to synchronize access to a shared counter, includ-
ing a failure path which defaults to a conventional lock.
This example actually has a bug, which we will discuss
in the next section; the reader is encouraged to try to
spot it before then. Several related works formally prove
the correctness of transactional memory implementations
[13, 20, 21, 34], but verifying the client programs written
to use transactions remains an open problem.

Under software transactional memory (STM) [2], mem-
ory conflicts with other threads are the only reason for
transaction failure (apart from programmer-supplied ex-
plicit aborts); hence, depending on program semantics,
some transactions may be guaranteed to succeed. How-
ever, hardware transactions (HTM) may also fail for sev-
eral other reasons such as random system interrupts or
exhausting the CPU’s cache capacity. Because timer in-
terrupts can in principle occur at any moment, and with
arbitrary frequency (observable by the program, perhaps
as a result of a heavily-loaded system), in this paper we
will simplify the failure model by saying that HTM trans-
actions can fail for any reason. We defer discussion of
programs which distinguish the reason for aborts through
the failure code to Section 5.

Stateless model checking. Model checking (MC) [19]
is a testing technique for systematically executing and ver-
ifying the possible thread interleavings of a concurrent
program. The main research challenge is to cope with
exponential explosion of the state space, which is sized
O(nk) for a program with n operations and k threads.
Some stateful MCs explicitly store and compare all vis-
ited states of the program being tested [24], which both
keeps track of test coverage and allows identifying iden-
tical states to avoid testing redundant interleavings. By
contrast, stateless MC (henceforth abbreviated simply as
MC) stores only the current sequence of execution events
to avoid a prohibitive memory footprint. Reduction al-
gorithms [1, 11, 17, 25, 25, 45] can then analyze the
memory accesses in that sequence to identify interleavings
observationally-equivalent under Mazurkiewicz trace the-
ory [31] and hence safe to skip. The resulting state spaces
are still exponentially-sized, but only in the number of

1 if ((status = _xbegin()) == SUCCESS) {
2 x++;
3 _xend();
4 } else {
5 mutex_lock(&m);
6 x++;
7 mutex_unlock(&m);
8 }

Figure 1. Example transactional program. If the top
branch aborts, execution will revert to the return of
_xbegin() and control will drop into the else branch.
The programmer can then use explicit synchronization to
resolve the conflict.

conflicting operations rather than all operations. Of these,
Landslide uses Dynamic Partial Order Reduction (DPOR)
[17] to prune its state spaces.

MCs may instrument programs to introduce thread
switches at varying granularity, which affects the num-
ber of operations n. Some target distributed systems, in-
strumenting only message-passing events [42]; some run
multithreaded programs natively, instrumenting only the
pthread API for performance [38]; and some insert com-
piler instrumentation on statically-identified memory ac-
cesses [32, 43]. Landslide traces every memory access
through the use of a simulated environment [29], which
is important for identifying data races to use as new pre-
emption points [8], as well as for identifying when a mem-
ory conflict may cause transaction aborts. With regard to
checking for bugs, the “model” the name refers to be-
ing checked may be an external formal specification, the
program’s own internal consistency checks, or a set of ex-
pected properties encoded in the tool itself. Landslide uses
the latter two cases, checking for assertion failures as well
as deadlocks, use-after-frees, and segfaults. For this work
we also detect use of xend outside of a transaction or
xbegin within one as a bug.

3. Design
This section presents our formalization of transactional
memory in Landslide’s framework of thread concurrency.
We make two major simplifications: simulating transac-
tion aborts as immediate failure injections, and treating
transaction atomicity as a global mutex during data-race
analysis; and provide corresponding equivalence proofs.

Notation. Let I = T N1@L1, T N2@L2, ...T Nn@Ln, with
Ni a thread ID and Li a code line number, denote the
execution sequence of a program as it runs according to
the specified thread interleaving.1

1 This serialization of concurrent execution is told from the perspective
of all CPUs at once and hence assumes sequential consistency. For dis-
cussion of relaxed memory models refer to Section 5.



3.1 Example

Consider again the program in Figure 1. Note that the C-
style x++ operations, when compiled into assembly [41],
results in multiple memory accesses which can be inter-
leaved with other threads.

2a temp <- x;
2b temp <- temp + 1;
2c x <- temp;

If these instructions from the x++ in the transaction are
preempted, with another thread’s access to x interleaved
in between, the transaction will abort. So, the interleaving

T1@1,T1@2a,T1@2b,T2@1,T2@2,T2@3,T1@2c,T1@3

or, henceforth abbreviated for clarity:

T1@1− 2b,T2@1− 3,T1@2c − 3

is not possible; rather, T1 will fall into the backup path:

T1@1− 2b,T2@1− 3,T1@4− 7

However, the x++ operation from the failure path (corre-
spondingly 6a, 6b, 6c) can be thusly separated with con-
flicting accesses interleaved in between, since the mutex
only protects the failure path against other failure paths,
but not against the transaction itself. So (assuming x is in-
tended to be a precise counter rather than a sloppy one),
we observe a bug in the following interleaving.2

T1@1− 2b,T2@1− 3,T1@4− 6b,T3@1− 3,T1@6c − 7

Prior work [10] proposed the idiom shown in Figure 2 to
exclude this family of interleavings, which shows that cor-
rectly synchronizing even the simplest transactions may
be surprisingly difficult or complex.

3.2 Modeling Transaction Failure

Left unstated in interleavings such as T1@1−2c,T2@1−
3,T1@4− 73 are HTM’s execution semantics, namely:

1. any modifications to shared state (such as 2c) by T1
are not visible to T2 during its execution, despite T2
being executed afterwards, and

2. all local and global state changes by T1 between lines
1 and 2c are discarded when jumping to line 4.

While use of TSX in production requires the performance
advantage of temporarily staging such accesses in local
CPU cache, model checking such programs need be con-
cerned only with the program’s observable behaviours. We

2 Note also that this bug requires either at least 3 threads or at least 2
iterations between 2 threads to expose; this highlights MC’s dependence
on its test cases to produce meaningful state spaces in the first place.
3 For a clearer example we reorder T1’s write to x before T2’s part here.

prevent_transactions = false;

0 while (prevent_transactions) continue;
1 if ((status = _xbegin()) == SUCCESS) {
2 if (prevent_transactions)
3 _xabort();
4 x++;
5 _xend();
6 } else {
7 mutex_lock(&m);
8 prevent_transactions = true;
9 x++;
A prevent_transactions = false;
B mutex_unlock(&m);
C }

Figure 2. Variant of the program in Figure 1, with addi-
tional synchronization to protect the failure path from the
transactional path. The optional line 0 serves to prevent
a cascade of failure paths for the sake of performance by
allowing threads to wait until transacting is safe again.

claim that MCing the simpler interleaving T1@1,T2@1−
3,T1@4−7 is an equivalent verification as MCing the one
above; in fact, this interleaving suffices to check all ob-
servable behaviours of all interleavings of all subsets of
T2@1 − 3 with all subsets of T1@2a − 2c, whether they
share a memory conflict or not. Stated formally:

Lemma 1 (Equivalence of Aborts). Let:

• Ti@α be an HTM begin operation,
• Ti@β1 . . .Ti@βn be the transaction body (with βn the

HTM end call),
• Ti@φ1 . . .Ti@φm be the failure path, and
• Ti@ω1 . . .Ti@ωl be the subsequent code executed un-

conditionally.4

Then, for any interleaving prefix5

Ti@α,Ti@β1 . . .Ti@βb,
Tj@γ1 . . .Tj@γ j ,

Tk@κ1 . . .Tk@κk,
Ti@βb+1

with b < n, j 6= i, k 6= i, etc., either:

1. Ti@α,Tj@γ1 . . .Tj@γ j ,Tk@κ1 . . .Tk@κk,Ti@φ1 . . .
(conflicting case), or

2. Ti@α,Ti@β1 . . .Ti@βb . . .Ti@βn,Tj@γ1 . . .Tj@γ j ,
Tk@κ1 . . .Tk@κk (independent case)

exists and is observationally equivalent.
4 Arbitrary code may not be structured to distinguish these as nicely as
in our examples; e.g., more code may exist in the success branch after
_xend(); such would be considered part of ω here.
5 Without loss of generality: for any number of other threads Tj/Tk, and
for any number of thread switches away from Ti during the transaction.



Proof Sketch. We case on whether the operations by Tj
and/or Tk have any memory conflicts (read/write or
write/write) with Ti@β1 . . .Ti@βn. If so, then the hard-
ware will abort Ti’s transaction, discarding the effects of
Ti@β1 . . .Ti@βn and jumping to Ti@φ1, satisfying case
1. Otherwise, by DPOR’s definition of transition depen-
dence [17], Ti@βb+1 . . .Ti@βn is independent with the
transitions of Tj and Tk, may be successfully executed un-
til transaction commit, and reordering them produces an
equivalent interleaving, satisfying case 2.

The second part of our claim follows naturally.

Theorem 1 (Atomicity of Transactions). For any state
space S of a transactionally-concurrent program, an equiv-
alent state space exists in which all transactions are either
executed atomically or aborted immediately.

Proof Sketch. For every I ∈ S with Ti@α,Ti@β1 . . .Ti@βb,
Tj@. . . ,Tk@. . . ,Ti@βb+1 ∈ I , apply Lemma 1 to obtain
an equivalent interleaving I ′ satisfying the theorem con-
dition. The resulting S′ can then be MCed without ever
simulating HTM rollbacks.

3.3 Memory Access Analysis

Next, we address the memory accesses within transactions
with regard to data-race analysis. From Theorem 1 we
have that the body of all transactions may be executed
atomically within the MC environment. While they may
interleave between other non-transactional sequences, no
other operations (whether transactional or not) will inter-
rupt them. We claim this level of atomicity is equivalent to
that provided by a global lock, and hence abstracting it as
such in Landslide’s data-race analysis is sound.

Let Ti@µ,Tj@ν be a pair of memory accesses to the
same address, at least one a write, in some transac-
tional execution I normalized under Lemma 1. Then let
lockifym(Tk@L) denote a function over instructions in I ,
which replaces Tk@L with Tk@lock(m) if L is a success-
ful HTM begin, with a no-op if L is a transaction abort,
or with Tk@unlock(m) if L is an HTM end, or no replace-
ment otherwise. Finally, let I ′ = ∃m.lockifym(I), the exe-
cution with the boundaries of all successful transactions
replaced by an abstract global lock. Lemma 1 guarantees
mutual exclusion of m.

Theorem 2 (Transactions are a Global Lock). Ti@µ,Tj@ν
is a data race in I iff it is a data race in I ′.

Proof Sketch. We prove one case for each variant definiton
for data races supported in Landslide [8]. For each, we
semiformally state what it means to race in an execution
with synchronizing HTM instructions.

• Limited Happens-Before. To race in I they must be
reorderable at instruction granularity, at least one with
a thread switch immediately before or after. [33, 36].

I ⇒ I ′: If Ti@µ,Tj@ν race in I , then they cannot
both be in successful transactions, or else placing
Ti@µ within the boundaries of Tj@ν’s transaction
would cause the latter to abort, invalidating Tj@ν,
or vice versa. Hence they will not both hold m in
I ′. Otherwise their lock-sets and DPOR dependence
relation remain unchanged.
I ′ ⇒ I : If Ti@µ,Tj@ν race in I ′, both correspond-
ing threads cannot hold m; WLOG let Ti not hold m
during Ti@µ. Then in I , Ti@µ is not in a transac-
tion. With the remainder of their lock-sets still dis-
joint, and still not DPOR-dependent, Tj@ν (or its
containing transaction) can then be reordered di-
rectly before or after Ti@µ.

• Pure Happens-Before. WLOG fix Ti@µ ≺ Tj@ν ∈ I .
Then to race in I there must be no pair of synchroniz-
ing instructions Ti@ε (a release edge) and Tj@χ (an
acquire edge) such that

Ti@µ≺ Ti@ε≺ Tj@χ ≺ Tj@ν ∈ I

to update the vector clock epoch between Ti@µ and
Tj@ν [16, 35].

I ⇒ I ′: If Ti@µ,Tj@ν race in I , then they cannot
both be in successful transactions, or else Lemma 1
normalization would provide the corresponding
HTM end and begin for Ti@ε and Tj@χ respec-
tively. Hence there will be no unlock/lock pair on m
in I ′ to satisfy the above sequence.
I ′ ⇒ I : If Ti@µ,Tj@ν race in I ′, then they cannot
both hold m, or else lockifym would provide the
corresponding unlock and lock for Ti@ε and Tj@χ
respectively. Hence there will be no HTM end/begin
pair in I to satisfy the above sequence.

Hence, data-race analysis is sound when transaction bound-
aries are replaced by an abstract global lock.

3.4 Implementation

Our implementation of HTM-equivalent semantics has
been incorporated by the Landslide maintainers upstream.
It is available open-source at https://github.com/bbl
um/landslide. Programs should be ported to the Peb-
bles userland [14, 15], their use of compiler HTM intrin-
sics should be replaced with the Landslide stubs provided
in 410user/inc/htm.h, and HTM nondeterminism can
then be enabled with the -X command-line flag. We have
also extended its Iterative Deepening implementation [8]
with a new option (-M flag) to to optimize for comple-
tion time by prioritizing the maximal state space job and
cancelling all others (which maintains its soundness guar-
antee) which we will use in our evaluation. All test cases
therein are also available in the repository linked above.

https://github.com/bblum/landslide
https://github.com/bblum/landslide


Quicksand mode Maximal state space mode (-M)
buggy test params cpu (s) wall (s) int’s cpu (s) wall (s) int’s SS size (est.)

htm1 2,1 45.78 9.70 21 *9.47 *6.40 21 213
(assertion) 2,2 84.14 13.59 *33 *10.39 *7.70 49 1536

2,3 131.91 20.44 *73 *12.83 *9.67 113 10752
2,4 255.75 37.56 257 *18.63 *15.86 257 73728
3,1 114.06 17.45 *15 *9.50 *6.79 21 13653
3,2 109.60 26.16 49 *10.72 *7.97 49 393216
3,3 124.80 20.40 *73 *13.84 *11.01 113 11010048
3,4 227.49 35.15 *161 *31.37 *28.53 257 301989888
4,1 53.08 9.79 *15 *9.82 *7.00 21 873813
4,2 117.07 19.09 *33 *11.54 *8.55 49 100663296

swapbug 2,1 70.95 13.45 *16 *38.96 *13.15 109 194
(deadlock) 2,2 107.28 *17.45 *146 *44.73 19.47 281 1620

2,3 280.05 38.70 *352 *60.30 *35.55 718 12748
2,4 617.94 *81.50 *834 *108.58 82.60 1820 97823
3,1 *1275.04 *163.42 *771 – >30m – 184984
3,2 – >30m – – >30m – 3099225

avl_insert 2,2 488.07 64.77 *83 *81.00 *40.30 336 379982
(segfault+) 2,3 2670.87 *330.45 *3066 *1331.79 1274.36 13926 96248131

2,4 *3259.37 *436.50 *1639 – >30m – 36019973
3,1 222.02 40.04 *28 *69.99 *24.25 78 1572107
3,2 *1569.09 *216.85 *209 – >30m – 1402363529

Table 1. Landslide’s bug-finding performance on various test configurations. Quicksand’s workqueue approach optimized
for fast bug-finding is compared against our maximum-state-space-prioritizing approach for fast verification. For each, we
list the CPU-time and wall-clock time elapsed, plus the number of interleavings of the ultimately buggy state space tested,
before the bug was found. * marks the winning measurements between each series. Lastly, Landslide’s state space size
estimation [39], though approximate at best, confers a sense of the exponential explosion.

4. Evaluation
To the best of our knowledge, this is the first work to test
transactional programs in a model-checking environment,
so no other MC State of the Art6 exists to compare to in
controlled experiments. Nevertheless, we pose the follow-
ing evaluation questions.

1. How quickly does Landslide find bugs in incorrect
transactional programs of varying sizes?

2. How quickly does Landslide verify correct transactional
programs of varying sizes?

3. By the way, should MC research papers quantify vari-
ance in their CPU-time performance experiments?

Our evaluation suite comprises several hand-written
unit tests and [10]’s microbenchmarks and transactional
AVL tree and separate-chaining hashmap, as follows.

• htm1: The bug from Figure 1.

• htm2: The fixed version as in Figure 2.

• counter: Microbenchmark version of htm2 which re-
places the complex failure path with a simple xadd.

6 The author’s DJ name.

• swap: Microbenchmark that swaps values in an array.

• swapbug: swap modified to introduce circular locking
in the failure path.

• avl_insert: AVL tree concurrent insertion test.

• avl_fixed: avl_insert with the AVL bug fixed
(spoilers!!).

• map_basic: Separate-chaining hashmap concurrent
insertion test.

• map_basicer: map_basicmodified with a larger ini-
tial size to skip the resizing step.

The notation testname(K , N) will denote a test con-
figuration of K threads, each running N iterations of the
test logic. All tests were run on an 8-core 2.7GHz Core i7
with 32 GB RAM.

4.1 Bugs

Table 1 presents our bug-finding results. We configured
Landslide to run the Quicksand algorithm [8] shown left,
as well as to prioritize the maximal state space as dis-
cussed above, shown right, each with a time limit of 30
minutes. We draw three main conclusions from this data.



while (_retry);
if (_xbegin() == SUCCESS) {

tie(_root,inserted) = _insert(_root,n);
_xend();

} else {
pthread_mutex_lock(&_tree_lock);
_retry = true;
tie(_root,inserted) = _insert(_root,n);
_retry = false;
pthread_mutex_unlock(&_tree_lock);

}

Figure 3. Unmodified code from htmavl.cpp showing
the previously-unknown bug found by Landslide. The
transaction path fails to check _retry, leading to data
races and corruption just as in htm1.

Finding bugs quickly. As the test parameters increase,
the multiplicative factor in bug-finding speed (2-4x, eye-
balling) is generally smaller than that of the total number
of interleavings (10-100x). In other words, should they ex-
ist, Landslide find bugs reasonably quickly in these trans-
actional programs despite prohibitive exponential explo-
sion in total state space size. This corroborates the prior
work [8], extending its good news to the world of HTM.

New bugs. In addition to the bugs we intentionally
wrote in htm1 and swapbug, to our pleasant surprise
Landslide also found a previously-unknown bug in the
transactional AVL tree, exposed by avl_insert with any
parameters higher than (2,1). Figure 3 shows the root
cause, essentially the htm1 bug in disguise. This mani-
fested alternately as a segfault and as a consistency-check
assertion failure. The presence of while (_retry);
makes the necessary preemption window extremely small
in practice (between it and _xbegin()), whereas MC is
blind to such matters of chance.7 Moreover, we conclude
that even Figure 2’s protocol’s very proposer getting it
wrong motivates the need for MC on such programs, and
suggests TSX primitives should be encapsulated behind
higher-level abstractions such as lock elision [26], which
can be verified in isolation with smaller state spaces then
trusted in turn when checking their client programs [37].

Performance comparison. Quicksand’s ability to find
bugs in fewer distinct interleavings does not necessarily
correlate with better performance. Most of our tests are
too small for its approach to pay off, with swapbug(3,1)
and avl_insert as its notable wins. While the prior work
showed plenty more wins [8], future MCs could prioritize
state spaces using not just size estimation but state space
maximality as well to soften the trade-off both for smaller
tests and for verification. Speaking of which...

7 Considering the loop does not affect the test’s possible behaviours, only
its likely ones, we removed it in Landslide’s version of the test to keep
the state space size manageable.

4.2 Verification

Landslide proved the following tests correct. With no bugs
to find, comparing the different testing modes against
each other is meaningless; we simply present their state
space sizes and runtime (using -M) in Table 2.

cpu (s) SS size
test params (or †ETA) (or †est.)

htm2 2,1 18.57 294
2,2 133.78 4902
2,3 1986.98 79017
3,1 11672.15 467730
3,2 †10d 14h †13763999

counter 2,1 5.57 30
2,2 15.53 384
2,3 155.00 5280
2,4 2211.10 75264
3,1 57.90 1960
3,2 10028.93 329888

swap 2,1 32.98 193
2,2 3652.91 101150
3,1 †8d 12h †411312

avl_insert 2,1 1083.35 40062
avl_fixed 2,1 1079.03 45078

2,2 †2762y †8714863
3,1 †12d 2h †11498545

map_basic 2,1 †10d 17h †16388977
map_basicer 2,1 877.44 28635

2,2 †2d 7h †5925634
3,1 †468d 13h †35893653

Table 2. Transactional tests verified (or not) by Landslide.

Several larger tests we were unable to complete before
the submission deadline are also shown. These are indi-
cated with † and their listed ETAs and state space sizes
represent Landslide’s estimate after a timeout of 1 hour
(hopefully enough for data-race PPs to saturate and esti-
mates to stablize, although note the two estimate types
use different algorithms so may disagree significantly).
Though these tests proved beyond our reach, in contrast
with the instant gratification expected of bug-finding, the
verification guarantee may in some cases be worth the esti-
mated time requirement for widely-used industrial imple-
mentations. Future work may also expand our coverage
upon this frontier [7].

4.3 Variance

Because many of the verification tests are long-running,
and we are writing this too close to the submission dead-
line (who doesn’t), we regret being unable to present ev-
ery performance measurement above as an average of
multiple samples with error bars [40]. Nevertheless, we
make some effort to address variance.



We noticed significant slowdowns when varying sev-
eral aspects of our experimental environment. For exam-
ple, multiple Landslides running at once slow each other
down, likely arising from kernel resource contention as
Landslide uses fork() to save simulation state. Table 3
shows the impact of running a single Landslide instance
with -M on counter(2,2) with various programs also run-
ning, despite never saturating our test system’s 8 CPUs.

Table 4 shows the impact of Landslide needing to au-
tomatically annotate counter(2,2) being run for the first
time, rather than reusing existing instrumentation, as well
as the variance of Quicksand mode. Because Quicksand
repeats more work across jobs, rather than comparing it
to a baseline, we show in the right column how many to-
tal interleavings each approach executed. (The maximal
state space alone comprises 384 in all cases.) The quick-
sand variance was surprisingly bimodal, with 6 samples in
a distribution of 106.14±1.22 and 4 in 142.11±1.67, sug-
gesting two distinct scheduling patterns for its workqueue
threads. Future work should figure out why.

We conclude that MC performance evaluations must
address experimental environment variables to ensure
consistent performance between runs. So doing, multi-
ple samples and error bars are then necessary only when
using nondeterministic search ordering strategies such as
Iterative Deepening. Otherwise, considering the low vari-
ance shown in Table 3, they need be shown only for a
token small test to provide reader some assurance of sim-
ilar consistency in the larger tests (especially if the time
tradeoff to measure them would sacrifice testing larger
state spaces to begin with).

For all tests outside of Table 3, we fixed our environ-
ment by measuring all performance numbers with Firefox
and Chrome as the only other significant machine load.
We believe the exponential differences among completion
times justifies the absence of error bars, which one would
expect to show 2% variance if extrapolating from these
results. The numbers of interleavings in each state space
are, of course, deterministic and do not vary across runs.

5. Limitations
This section should be mandatory in all systems papers.

Transaction failure codes. When a transaction fails,
_xbegin() returns a failure code denoting the rea-
son, or combination thereof, therefor [18]. If a program
then cases on that failure code to select between differ-
ent backup paths, model checking it by simply inject-
ing a single type of failure may be unsound. For exam-
ple, a program executing a transaction which is guar-
anteed to never conflict with any other threads, and
hence never abort without _XABORT_RETRY, could legally
assert(false); in its failure path, while our approach
in Section 3 would erroneously trigger that assertion and
report a bug. Likewise, the transactional data structures

load cpu (s) vs self avg vs baseline
none 14.95 ± 0.17 0.99-1.02x (baseline)
vid-L 15.13 ± 0.10 0.99-1.01x 1.01x
ff/c 15.55 ± 0.16 0.99-1.02x 1.04x
sm5 16.63 ± 0.07 0.99-1.01x 1.11x
ff/c+vid-S 17.09 ± 0.34 0.98-1.05x 1.14x
ls 19.11 ± 0.32 0.97-1.03x 1.28x
ff/c+ls 19.66 ± 0.50 0.96-1.02x 1.31x

Table 3. Performance variance on counter(2,2) with
other programs running on the test machine. vid-L is full-
screen video (played locally with mplayer), ff/c is Firefox
and Chrome (idle, ≤20 tabs), sm5 is StepMania 5.1 (dur-
ing gameplay [5]), vid-S is full-screen video (streamed via
Crunchyroll), ls is a 2nd instance of Landslide. Average of
10 samples, ±N is 1 stddev.

Landslide mode cpu (s) total int’s
verif (-M) 14.95 ± 00.17 403
reinstrument 24.72 ± 00.10 403
quicksand (no -M) 120.53 ± 18.62 2128

Table 4. Performance variance on counter(2,2) in vari-
ous modes. Average of 10 samples, ±N is 1 stddev.

from [10] abstract away any spurious _XABORT_RETRY
aborts behind a retry loop; a MC unwise to that idiom
would call it an infinite loop bug.

Our HTM implementation includes an experimental
feature to track the set of abort codes possible for each
transaction. _XABORT_RETRY is always enabled; then, it
harnesses DPOR’s existing memory analysis to identify
when _XABORT_CONFLICT is possible, and instruments
_xabort() calls to record any user-supplied codes for
_XABORT_EXPLICIT. This comes at a cost of even more
state space explosion, increasing the exponent at each
_xbegin() preemption point by (usually) 1 plus how-
ever many distinct _xabort() codes the program uses.

Many such branches may be equivalent; for example,
explicit and conflict aborts need not be tested separately
in transactions whose failure paths do not distinguish the
cause, and the perennial _XABORT_RETRY abort can be
skipped entirely if the client abstracts it away behind a
retry loop. In fact, applying both reductions simultane-
ously amounts to the STM concurrency model [2]8 and
may reduce the state space even smaller than the origi-
nal. Testing them by hand 9 reduced map_basicer(2,1)’s
28635 interleavings to 11577, and produced the same
384-interleaving state space on counter(2,2) (in which
DPOR triggers conflict aborts on every transaction any-

8 Proof left to future work. We’ve proved enough here already.
9 Using visual inspection of the test to trust the reductions’ soundness.



way). Future work could use static or dynamic flow analy-
sis to identify such reduction opportunities automatically;
for now, this feature is disabled by default but accessible
via the -A command-line option (in addition to -X).

Relaxed memory orderings. Section 3’s formalization
of thread interleavings does not account for read/write
reorderings possible on relaxed consistency architectures
[3]. In fact, even after [10]’s proposed fix, our running
example program is still incorrect on Total Store Order
(TSO) architectures such as x86. Despite stores being
totally-ordered, x86 may still reorder stores after sub-
sequent loads. Accordingly, an execution of 8, 9a, 9b, 9c
in Figure 2 may be locally visible to another thread as
9a, 8, 9b, 9c, and hence an apparent interleaving of

T1@1,T2@1−5,T1@7,T1@9a,T3@1−5,T1@8,T1@9b−B

is possible (reordered accesses underlined for emphasis).
An mfence barrier is needed between lines 8 and 9 to
solve this problem on TSO [6]. On Partial Store Order
(PSO) architectures, even more barriers may be necessary.

Because Landslide’s concurrency model includes only
instruction-level thread nondeterminism, not per-CPU
memory buffer reorderings, our current HTM implemen-
tation cannot find this bug. In fact, it erroneously verifies
the corresponding test htm2(3,1) in 3 CPU-hours, with
467730 distinct interleavings in total, none of which in-
clude the above-listed sequence. Recent work extended
DPOR to support TSO and PSO memory nondeterminism
[45]; if incorporated into Landslide, we could find or ver-
ify the absence of such bugs. Visual inspection of [10]’s
HTM data structures found no barriers used in this imple-
mentation pattern; we would urge any reader interested
in using those to add them in by hand first.

6. Conclusion
Stateless model checking research is a perpetual exis-
tence of staring up the sheer cliff face that is the expo-
nential curve. As new concurrency paradigms emerge,
we make our living by adapting our reduction algo-
rithms and search strategies to them to climb ever higher
on that curve, eking out a few more loop iterations or
slightly higher thread counts in our verification guaran-
tees. Whether that is beautiful in its imperfection or cause
for despair is merely a matter of perspective. Also, the
author hopes their committee won’t mind the publication
venue when they cite this in their thesis.
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