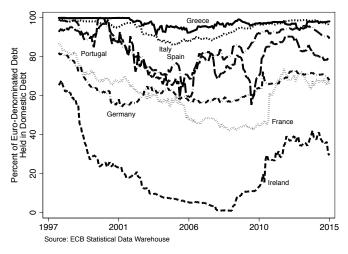
Bailouts, Moral Hazard, and Banks' Home Bias for Sovereign Debt

Gaetano Gaballo Banque de France & ECB Ariel Zetlin-Jones CMU - Tepper

September 23, 2016


FRB St. Louis Innovations in Central Banking Conference

- Well documented evidence of banks' home bias for sovereign debt
 - Euro-Zone: \approx 80% of €-Sovereign Debt is home Sovereign debt
 - No clear regulatory (Basel, ECB) incentive for home bias
 - May have expected greater diversification

- Home bias contributing to policy concerns:
 - "Diabolic Loop"
 - EZ financial segmentation

Motivation

• Evidence of banks' home bias for sovereign debt

• *Home Bias Measure:* Ratio of domestic Sovereign debt relative to euro-denominated Sovereign debt held by domestic banks

- Study interaction between home bias and Gov't Bailout policy
- Key Findings:
 - o Banks' home bias limits effectiveness of bailouts
 - Assumes gov't debt prices elastic to unexp. debt issues
 - Home bias a mechanism for Depositors to discipline Gov't Bailouts
 - Home bias deters goverment bailouts, which otherwise induce moral hazard in financial sector
 - Home bias both *privately* and socially valuable

A Market Mechanism _

- Government faces time inconsistency problem vis-à-vis bailouts
 - Bailouts improve outcomes ex post
 - Expectations of bailouts cause moral hazard in financial sector
- Home Bias is a private sector response to deter bailouts
 - Bailouts financed with new debt issues
 - Gov't debt prices sensitive to size of bailout
 - <u>**Critical Trade-Off</u>**: Public capital injections cause bank capital losses via depreciation of public debt (endogenous re-negotiation cost)</u>
 - Home bias resolves gov't time inconsistency problem (at cost)

Additional Findings

- Positive Implications: On the evolution of home bias
 - Decrease in "bailout capacity" implies decrease in home bias
 - Is an increase in Sovereign credit risk \equiv decrease in bailout capacity?
 - Show relationship more subtle
 - $\circ~$ Model capable of generating salient patterns of home bias
- Normative Implications: a bailout authority should issue debt
 - Should Eurobonds be part of the European Stability Mechanism?
 - Home bias for Eurobonds may limit Euro area bailout capacity
 - $\circ~$ Improved financial intermediation, but less resilient financial system

Related Literature

- Financial Intermediation, Liquidations as Disciplining Device
 - Holmstrom and Tirole (1998), Calomiris and Kahn (1991), Diamond and Rajan (2001)
- Bailouts, Time Inconsistency, and Home Bias
 - Chari and Kehoe (2013), Chari, Dovis, and Kehoe (2014), Uhlig (2013), Farhi and Tirole (2015)
- Evidence on Home Bias and Bailouts
 - Bailouts costly for Governments
 - Acharya et al (2014)
 - Risk of Sovereign Default costly for banks
 - Gennaioli et al (2014)
 - o Correlation between Financial and Sovereign Risk
 - Battistini et al (2013), Gilchrist and Mojon (2014), Acharya and Steffen (2013)

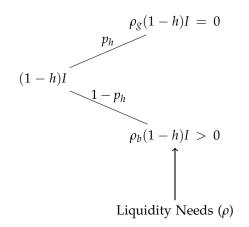
Benchmark Environment without Government Intervention

- 3 periods: *t* = 0, 1, 2
- 2 Agents
 - Lender: represents household depositors
 - Bank: represents aggregate financial sector
 - Preferences: $c_0 + c_1 + c_2$
- Bank protected by *limited liability* ($c_t \ge 0$)
- Bank endowed with A units of period 0 numeraire

Period 0 Investment Technologies

• Public debt: hI

• Implicit period 1 or 2 rate of return *R^S*

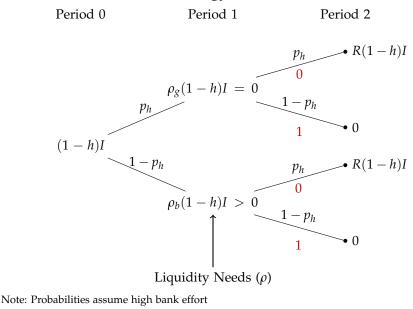

- *Private* investment: (1 h)I
 - Yields stochastic returns in period 2
 - Requires additional financing or liquidity needs in period 1
 - Subject to two instances of moral hazard:
 - Bank's period 1 effort impacts distribution of liquidity needs
 - Bank's period 2 effort impacts distribution of returns
 - Low effort yields private bank benefit B(1-h)I with B > 0

Period 0 Period 1 Period 2

Period 0 Period 1 Period 2

$$(1-h)I$$

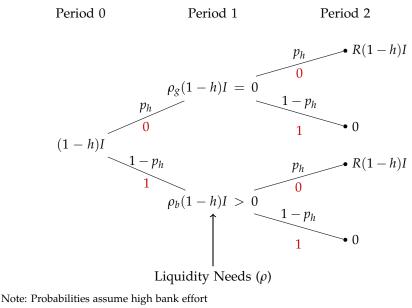
Period 0 Period 1 Period 2


Note: Probabilities assume high bank effort

Gaballo & Zetlin-Jones

Bailouts and Banks' Home Bias

Private Investment Technology Period 0 Period 1 Period 2 $\sim R(1-h)I$ p_h $\rho_g(1-h)I = 0$ $1 - p_h$ 0 (1 - h)I $-p_h$ • R(1-h)I p_h $ho_b(1-h)I >$ 0 Liquidity Needs (ρ)


Note: Probabilities assume high bank effort

Note: Red probabilities assume low bank effort, simplified relative to paper

Gaballo & Zetlin-Jones

Bailouts and Banks' Home Bias

Note: Red probabilities assume low bank effort, simplified relative to paper

Gaballo & Zetlin-Jones

Bailouts and Banks' Home Bias

Optimal Contracts ____

- A Contract is $C = \{I, h, x(\rho), R_f(\rho)\}$
 - *I*: scale of investment
 - *h*: fraction in public investment
 - $x(\rho)$: continuation rule
 - $R_f(\rho)$: rate of return paid to bank in event of success

Optimal Contracts ____

- A Contract is $C = \{I, h, x(\rho), R_f(\rho)\}$
 - *I*: scale of investment
 - *h*: fraction in public investment
 - $x(\rho)$: continuation rule
 - $R_f(\rho)$: rate of return paid to bank in event of success
- Maximize bank's welfare subject to
 - Lender's participation
 - Bank's period 1 and 2 incentives
 - Credibility constraints:
 - For each ρ, no pareto improving continuation contract exists
 - Re-negotiation costs = $\kappa (1 h)I$ with $\kappa > 0$

• Value of optimal contract can be written as

$$V(h, x_g, x_b) = m(h, x_g, x_b)I(h, x_g, x_b)$$

where

- $\circ m(\cdot)$ represents social rate of return
- I represents scale of investment, nests moral hazard distortions

• Value of optimal contract can be written as

$$V(h, x_g, x_b) = m(h, x_g, x_b)I(h, x_g, x_b)$$

where

- $\circ m(\cdot)$ represents social rate of return
- I represents scale of investment, nests moral hazard distortions
- $m(\cdot)$ increasing in x_g and x_b
 - \circ Projects are positive NPV for all liquidity needs ρ

• Value of optimal contract can be written as

$$V(h, x_g, x_b) = m(h, x_g, x_b)I(h, x_g, x_b)$$

where

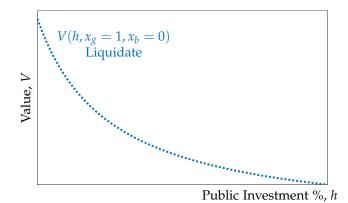
- $\circ m(\cdot)$ represents social rate of return
- I represents scale of investment, nests moral hazard distortions
- $m(\cdot)$ increasing in x_g and x_b

 \circ Projects are positive NPV for all liquidity needs ρ

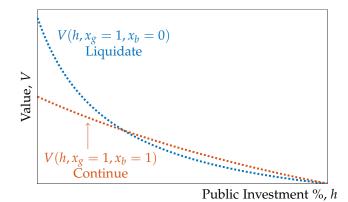
- $I(\cdot)$ increasing in x_g , decreasing in x_b
 - Optimal to "reward" bank after good liquidity shock & high returns
 - Optimal to "punish" bank after bad liquidity shock
 - Re-financing after bad liquidity shock ($x_b = 1$) limits punishments

• In paper, develop conditions so that optimality features

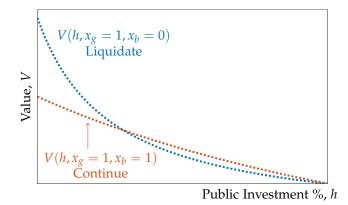
- In paper, develop conditions so that optimality features
 - 1. No public investment (h = 0)
 - R^S small so that $V_h < 0$

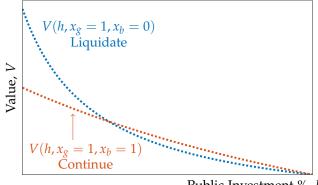

- In paper, develop conditions so that optimality features
 - 1. No public investment (h = 0)
 - R^S small so that $V_h < 0$
 - 2. Commitment to liquidate after bad liquidity shock ($x_b = 0$)
 - Moral hazard severe so that $V_{x_b}(h = 0, x_g = 1, x_b) < 0$

- In paper, develop conditions so that optimality features
 - 1. No public investment (h = 0)
 - R^S small so that $V_h < 0$
 - 2. Commitment to liquidate after bad liquidity shock ($x_b = 0$)
 - Moral hazard severe so that $V_{x_b}(h = 0, x_g = 1, x_b) < 0$
 - 3. Commitment to liquidate is *credible*
 - *κ*, renegotiation costs, large:


$$\kappa > p_h R - \rho_b - B > 0$$

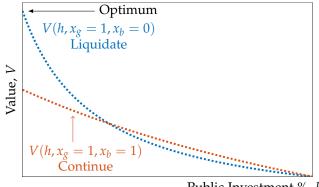
- In paper, develop conditions so that optimality features
 - 1. No public investment (h = 0)
 - R^S small so that $V_h < 0$
 - 2. Commitment to liquidate after bad liquidity shock ($x_b = 0$)
 - Moral hazard severe so that $V_{x_b}(h = 0, x_g = 1, x_b) < 0$
 - 3. Commitment to liquidate is *credible*
 - *κ*, renegotiation costs, large:


$$\kappa > \underbrace{p_h R - \rho_b}_{\text{Social Return to Refinancing}} - \underbrace{B}_{\text{Moral Hazard Cost}} > 0$$


• $V(\cdot)$ decreasing in h

• $V(\cdot)$ decreasing in h

- $V(\cdot)$ decreasing in h
- When *h* small, incentive benefit of $x_b = 0$ large
 - \circ Optimal to liquidate after ρ_b



Public Investment %, h

- $V(\cdot)$ decreasing in h
- When *h* small, incentive benefit of *x_b* = 0 large
 Optimal to liquidate after *ρ_b*
- When *h* large, incentive benefit of $x_b = 0$ small
 - Optimal to continue after ρ_b

Gaballo & Zetlin-Jones

Bailouts and Banks' Home Bias

Public Investment %, h

- $V(\cdot)$ decreasing in h
- When *h* small, incentive benefit of *x_b* = 0 large
 Optimal to liquidate after *ρ_b*
- When *h* large, incentive benefit of $x_b = 0$ small
 - \circ Optimal to continue after ρ_b

Gaballo & Zetlin-Jones

Bailouts and Banks' Home Bias

Government Interventions and Optimal Home Bias

The Government

- Third Agent: Sovereign, or *domestic government*
- Issues risky claims to period 2 cons. in period 0 and period 1
- Debt Prices: $q_0(D_0)$ and $q_1(D_0, D_1)$ with $q_{t,D_t} < 0$

The Government

- Third Agent: Sovereign, or *domestic government*
- Issues risky claims to period 2 cons. in period 0 and period 1
- Debt Prices: $q_0(D_0)$ and $q_1(D_0, D_1)$ with $q_{t,D_t} < 0$
- Government may "bailout" bank by injecting resources in period 1
 - Benevolent government without commitment to not intervene
 - $\circ~$ Bailout conditional on bank engaging in successful re-negotiation
- Bailout financed with new debt issues in period 1
 - $\circ~$ New issues equal in seniority to period 0 debt

The Government

- Third Agent: Sovereign, or *domestic government*
- Issues risky claims to period 2 cons. in period 0 and period 1
- Debt Prices: $q_0(D_0)$ and $q_1(D_0, D_1)$ with $q_{t,D_t} < 0$
- Government may "bailout" bank by injecting resources in period 1
 - Benevolent government without commitment to not intervene
 - $\circ~$ Bailout conditional on bank engaging in successful re-negotiation
- Bailout financed with new debt issues in period 1
 New issues equal in seniority to period 0 debt
- In (forecasted) absence of intervention, $R^S = q_1(D_0, 0)/q_0(D_0)$

- Optimal Contracts Maximize bank's welfare subject to
 - Lender's participation
 - Bank's period 1 and 2 incentives
 - Credibility constraint with Active Government:

For each ρ , there exists no D_1 s.t. a pareto improving continuation exists

Credibility with an Active Government

- Plan to re-finance $x(\rho) = 1$ always credible
- Credibility only constrains plans to liquidate $x(\rho) = 0$

Credibility with an Active Government

- Plan to re-finance $x(\rho) = 1$ always credible
- Credibility only constrains plans to liquidate $x(\rho) = 0$
- Consider plan to liquidate in bad state: $x(\rho_b) = 0$

Credibility with an Active Government ____

- Plan to re-finance $x(\rho) = 1$ always credible
- Credibility only constrains plans to liquidate $x(\rho) = 0$
- Consider plan to liquidate in bad state: $x(\rho_b) = 0$
- Plan to liquidate is credible if and only if for all *D*₁,

 $F(h, I, D_1) \leq hIR^S$

where $F(\cdot)$ is renegotiated value of bank and

$$F(h, I, D_1) = q_1(D_0, D_1)D_1 + Ih\frac{q_1(D_0, D_1)}{q_0(D_0)} + I(1-h)\left(p_h R - \rho_b - B - \kappa\right)$$

Credibility with an Active Government

- Plan to re-finance $x(\rho) = 1$ always credible
- Credibility only constrains plans to liquidate $x(\rho) = 0$
- Consider plan to liquidate in bad state: $x(\rho_b) = 0$
- Plan to liquidate is credible if and only if for all *D*₁,

$$F(h, I, D_1) \leq hIR^S$$

where $F(\cdot)$ is renegotiated value of bank and

$$F(h, I, D_1) = \underbrace{q_1(D_0, D_1)D_1}_{\text{Bailout}} + \underbrace{Ih \frac{q_1(D_0, D_1)}{q_0(D_0)}}_{\text{Dilution Effect}} + \underbrace{I(1-h) \left(p_h R - \rho_b - B - \kappa\right)}_{\substack{\text{Re-financed Value of}\\Private Investment}}$$

Proposition (Optimal Public Investment)

Suppose an initial level of domestic debt, \bar{D}_0 , exists satisfying

- 1. Given, \overline{D}_0 exists such that plan to liquidate is credible when h = 0;
- 2. Plan to liquidate is *not* credible with h = 0 when $D_0 = \overline{D}_0 + \epsilon$;
- 3. Dilution effect at \overline{D}_0 is sufficiently strong.

Then D_0 exists such that strictly positive public investment is optimal.

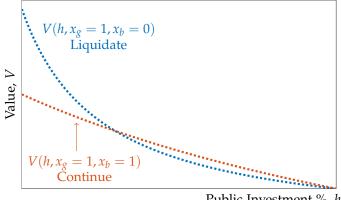
Proposition (Optimal Public Investment)

Suppose an initial level of domestic debt, \bar{D}_0 , exists satisfying

- 1. Given, \overline{D}_0 exists such that plan to liquidate is credible when h = 0;
- 2. Plan to liquidate is *not* credible with h = 0 when $D_0 = \overline{D}_0 + \epsilon$;
- 3. Dilution effect at \overline{D}_0 is sufficiently strong.

Then D_0 exists such that strictly positive public investment is optimal.

- Proof (sketch):
 - $\circ~$ At $\bar{D}_0,$ gov't cannot finance a bailout even when h=0
 - Small change in D_0 makes bailouts easier \Rightarrow *tightens* credibility constraint
 - Dilution effect strong implies increase in *h* makes bailouts harder
 ⇒ *relaxes* credibility constraint

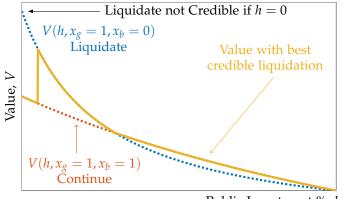

Proposition (Optimal Public Investment)

Suppose an initial level of domestic debt, \bar{D}_0 , exists satisfying

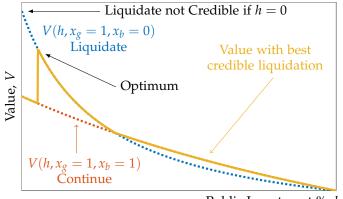
- 1. Given, \overline{D}_0 exists such that plan to liquidate is credible when h = 0;
- 2. Plan to liquidate is *not* credible with h = 0 when $D_0 = \overline{D}_0 + \epsilon$;
- 3. Dilution effect at \overline{D}_0 is sufficiently strong.

Then D_0 exists such that strictly positive public investment is optimal.

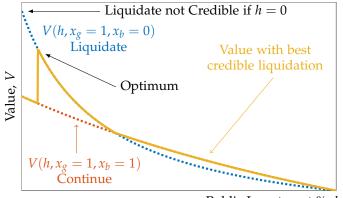
- Proof (sketch):
 - $\circ~$ At $\bar{D}_0,$ gov't cannot finance a bailout even when h=0
 - Small change in D_0 makes bailouts easier \Rightarrow *tightens* credibility constraint
 - Dilution effect strong implies increase in *h* makes bailouts harder
 ⇒ *relaxes* credibility constraint
- Increasing *h* resolves gov't time inconsistency problem (at cost)



Public Investment %, h


Public Investment %, h

• With bailouts, h = 0 not credible


Public Investment %, *h*

- With bailouts, h = 0 not credible
- Credible liquidation requires public investment

Public Investment %, h

- With bailouts, h = 0 not credible
- Credible liquidation requires public investment

Public Investment %, h

- With bailouts, h = 0 not credible
- Credible liquidation requires public investment
- Credible liquidation implies ex ante costs for Bank

Bailouts and Home Bias

• Necessary condition for *h* > 0: *dilution effect*

$$\frac{q_1(D_0, D_1)}{q_0(D_0)} < \frac{q_1(D_0, 0)}{q_0(D_0)} = R^S$$

- Sub-optimal for bank to buy public debt without this property
- Natural to think Foreign Sovereign debt lacks this property
 - If foreign Sovereigns do not bailout domestic banks, then bailouts impose no dilution effect on foreign holdings
 - Then domestic banks do not invest in foreign sovereign debt

Bailouts and Home Bias

• Necessary condition for *h* > 0: *dilution effect*

$$\frac{q_1(D_0, D_1)}{q_0(D_0)} < \frac{q_1(D_0, 0)}{q_0(D_0)} = R^S$$

- Sub-optimal for bank to buy public debt without this property
- Natural to think Foreign Sovereign debt lacks this property
 - If foreign Sovereigns do not bailout domestic banks, then bailouts impose no dilution effect on foreign holdings
 - Then domestic banks do not invest in foreign sovereign debt

Proposition (Optimal Home Bias)

If h > 0, banks choose to home bias their portfolio of sovereign debt.

Positive and Normative Implications of the Model

Positive Implications: The Evolution of Home Bias_

- How does home bias respond to change in Sovereign Credit Risk?
 - Since onset of Sovereign Debt crisis in Europe, home bias decreases in Greece, increases in Italy, Spain (among others)
 - Will show our model capable of generating different patterns

Positive Implications: The Evolution of Home Bias_

- How does home bias respond to change in Sovereign Credit Risk?
 - Since onset of Sovereign Debt crisis in Europe, home bias decreases in Greece, increases in Italy, Spain (among others)
 - $\circ~$ Will show our model capable of generating different patterns
- Change in bailout capacity \neq change in Sovereign credit risk

Positive Implications: The Evolution of Home Bias_

- How does home bias respond to change in Sovereign Credit Risk?
 - Since onset of Sovereign Debt crisis in Europe, home bias decreases in Greece, increases in Italy, Spain (among others)
 - $\circ~$ Will show our model capable of generating different patterns
- Change in bailout capacity \neq change in Sovereign credit risk
- Change in bailout capacity depends on $q_{1,D_0}(D_0, D_1^*)$
 - Implied change on counterfactual price under "best" bailout
 "Best" bailout is D₁^{*} that maximizes re-negotiated value of bank

Sovereign Debt Pricing _

• Government revenue in period 2:

 $T \sim U[\underline{T}, \overline{T}(D_0)]$, with $\overline{T}(D_0) = T_{\max} + \phi D_0$

• Repayment probability η given by $\eta_0(D_0), \eta_1(D_0, D_1)$

Sovereign Debt Pricing _

• Government revenue in period 2:

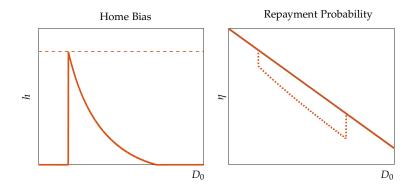
 $T \sim U[\underline{T}, \overline{T}(D_0)]$, with $\overline{T}(D_0) = T_{\max} + \phi D_0$

- Repayment probability η given by $\eta_0(D_0), \eta_1(D_0, D_1)$
- Debt Prices:

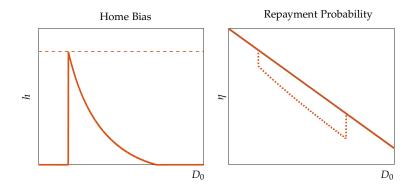
$$q_0(D_0) = rac{\eta(D_0)}{\sigma^2}, \qquad q_1(D_0, D_1) = rac{\eta_1(D_0, D_1)}{\sigma}, \qquad \sigma < 1$$

Sovereign Debt Pricing _

• Government revenue in period 2:

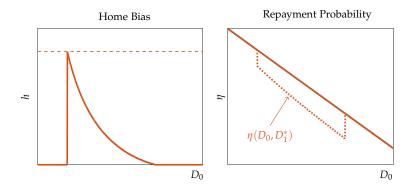

 $T \sim U[\underline{T}, \overline{T}(D_0)]$, with $\overline{T}(D_0) = T_{\max} + \phi D_0$

- Repayment probability η given by $\eta_0(D_0), \eta_1(D_0, D_1)$
- Debt Prices:

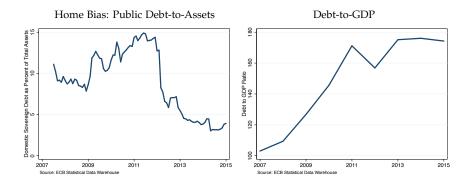

$$q_0(D_0) = rac{\eta(D_0)}{\sigma^2}, \qquad q_1(D_0, D_1) = rac{\eta_1(D_0, D_1)}{\sigma}, \qquad \sigma < 1$$

- Two Models of Default Risk:
 - *Unbacked* Debt: $\phi = 0$
 - Increase in outstanding debt associated with increase in default risk
 - *Partially Backed* Debt: $\phi > 0$
 - Increase in outstanding debt associated with increase in fiscal capacity

Impact of Changes in <u>Unbacked</u> Debt

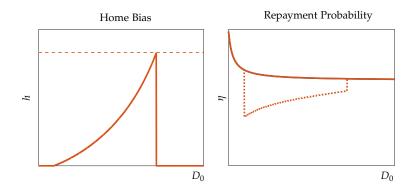


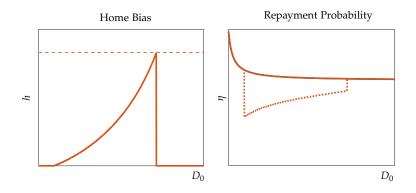
Impact of Changes in <u>Unbacked</u> Debt


• Increase in unbacked *D*₀ decreases home bias

Impact of Changes in <u>Unbacked</u> Debt

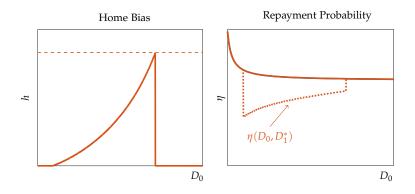
- Increase in unbacked *D*⁰ decreases home bias
- Associated with reduced bailout capacity
 - \circ Counterfactual repayment decreasing in D_0


Unbacked Debt Rationalizes Greek Experience

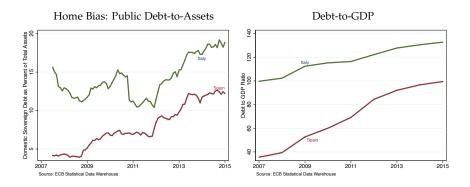

- Trend decline in home bias in Greece associated with increase in Debt-to-GDP
- Marked decline after Greek debt-devaluation
- Consistent with predictions of unbacked debt model

Bailouts and Banks' Home Bias

Impact of Changes in Partially Backed Debt _



Impact of Changes in Partially Backed Debt


• Increase in partially backed *D*₀ *increases* home bias

Impact of Changes in Partially Backed Debt

- Increase in partially backed *D*₀ *increases* home bias
- Associated with increased bailout capacity
 - \circ Counterfactual repayment increasing in D_0
 - Note: Equilibrium repayment rate still decreasing

Partially Backed Debt Rationalizes Italy and Spain

- Trend rise in home bias in Italy and Spain
- Trend rise in Debt-to-GDP in these countries
- Consistent with predictions of partially backed debt model

Bailouts and Banks' Home Bias

Normative Implications

- Bailout mechanisms created since onset of Euro Zone Crisis
 - Examples: European Stability Mechanism, EFSF, and EFSM
- An authority that does not issue debt and has bailout capacity:
 - increases ex post welfare: bailouts are possible
 - o decreases ex ante welfare: induces managerial moral hazard
- Recent proposals for EU to issue Eurobonds
 - Euro Banks will be prospective clients?
 - o Implies increase in ex ante welfare: reduced bank moral hazard
 - $\circ~$ Implies more fragility: reduced EU bailout capacity
- Eurobonds may reinforce ex ante incentives, making European financial system *less* resilient to shocks

- Home Bias limits effectiveness of Gov't Bailouts
- Home Bias may arise as privately optimal response of depositors and banks to bailout expectations which induce moral hazard in financial sector
- Home Bias is a market-based mechanism to resolve government's time inconsistency problem
- Model capable of generating salient features of evolution of home bias during recent European experience
- Preventing home bias may entail unintended costs