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Abstract

Blockchain is a database technology that enables a group of self-interested users to main-
tain a distributed ledger without relying on a trusted third party, such as a bank. In this
paper, we develop a new game-theoretic framework for analyzing blockchain systems,
wherein each user determines how to update the distributed ledger. The usefulness of
blockchains depends on whether users’ updating strategies achieve consensus—meaning
that they agree on the correct version of the ledger and have no incentive to omit or
alter past data. We show that the currently implemented strategy—the longest chain
rule—fails to achieve consensus when users are sufficiently heterogeneous. We then
establish the existence of new equilibrium strategies, which are slight modifications of
the longest chain rule and ensure consensus regardless of the degree of heterogeneity.
In practice, these equilibrium strategies enhance the resilience of blockchain systems
against threats such as double-spending and 51% attacks. Our findings underscore
the critical role economic incentives play in determining the security and stability of
blockchain ledgers.
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1 Introduction
Blockchains are decentralized, distributed ledgers. They are records of (sequenced) data,
possibly transactions as with bank ledgers, maintained by a disperse group of self-interested
individuals or users. Unlike ledgers maintained by banks, governments, or other parties,
in a blockchain setting, there is no single party responsible for maintenance and security
of the ledger, nor is there a single party to resolve conflicts in the ledgers held by distinct
individuals. For such decentralized, distributed ledgers to be socially valuable, the dispersed
group of individuals who each maintain their own record of the blockchain’s data must come
to an agreement on what is the “correct” version of the ledger. In other words, establishing
and maintaining consensus among the individuals who maintain the data is paramount for
blockchain systems.

A long tradition from theoretical computer science studies various consensus protocols
and their security properties (see Lynch (1996) for a textbook treatment of such protocols).
The analysis of consensus protocols inspired by this literature typically proceeds by positing
strong assumptions on the nature of agents’ strategies, effectively imposing certain behavioral
types. So-called honest agents have singleton strategy sets: they are required to follow
the consensus protocol as proposed by the protocol designer. In the face of these honest
types, models typically also include malicious or Byzantine agents who may adopt arbitrary
strategies (with potentially unlimited costs) to disrupt the nature of consensus among the
honest types. Classical results on consensus protocols explore the extent to which these
protocols can achieve specific security properties under varying assumptions on the relative
mix of honest and malicious agents.1

Nakamoto (2008) famously proposed a novel protocol that powers the Bitcoin blockchain.
This protocol makes no underlying assumptions about the mix of honest or malicious types.
Indeed, Nakamoto effectively treats protocol participants as “rational” and free to choose any
record validation process they find individually optimal. In practice, the Bitcoin consensus
protocol has been remarkably secure since its inception.

However, almost two decades after Nakamoto first published the Bitcoin protocol, we have
a limited understanding of why the Bitcoin protocol is secure in the absence of guarantees
on the number of honest miners in the system. What is well understood are the limitations
of the specific mining strategies proposed in Nakamoto (2008). In Bitcoin, the most widely

1A leading example is Fischer et al. (1985) who show that single faulty node makes it impossible to reach
consensus among deterministic asynchronous processes.
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studied blockchain, the proposed consensus protocol (or strategy) is for users to agree that
the longest chain—technically, the chain that represents the most computational work—is
the correct chain. For example, Biais et al. (2019) and Budish (2025) have both shown that
if the value of modifying the data on the blockchain is sufficiently large or the users’ ability
to write data to the blockchain is not evenly distributed, then the longest chain consensus
protocol is not sufficient to prevent users from modifying past data. Such critiques call into
question the economic viability and security of blockchain-based ledgers.

Our paper’s main contribution is to develop a new theoretical model of blockchain con-
sensus that permits us to study and develop new protocols—strategies for appending data to
blockchain ledgers—that generate consensus. The key innovation in our model relative to the
nascent literature on consensus with rational agents is that agents in our model have direct
preferences over information in different versions of the blockchain ledger. This innovation
allows us to derive the relevant incentive constraints for any candidate protocol as opposed
to only that proposed in Nakamoto (2008). We use this new model to derive a new protocol
that generates consensus as an equilibrium outcome even when an individual agent may have
an outsize ability to append data to the blockchain (e.g. concentrated mining power under
Proof-of-Work or concentrated stake under Proof-of-Stake). We demonstrate how a sim-
ple modification of Nakamoto (2008)’s longest chain strategy may resolve the double-spend
attacks raised as a critical technological fault underlying the Bitcoin protocol by Budish
(2025). Finally, we explore how technological features of the blockchain protocol interact
with strategies that generate equilibrium consensus.

We begin by proposing a dynamic model of decentralized, distributed record-keeping.
We interpret the records being kept in our model as records of transactions involving agents’
balances of a unit of account—as in the Bitcoin blockchain. However, we may also interpret
this data as computational code intended to be conducted by the network of validators as
well—as with smart contracts in the Ethereum blockchain. In each period, rational, self-
interested agents we call “miners” decide where to append a new block of transactions to
a blockchain. Given this “locational” choice, the likelihood a miner’s block is added to the
blockchain depends on her (exogenous) mining power, which we model as a probability.
If a miner’s block of data is added, the block not only includes transactions but also a
mining reward for that miner—the reward is an increment to the miner’s balance of a unit of
account on the blockchain. This process of mining implies that in any period, the blockchain
resembles a graph (or tree) of blocks. Each possible path from the first, “genesis” block to
any other block in the tree of blocks, which may be thought of as a fork from any chain in
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the tree, represents a distinct ledger with a possibly distinct value for each miners’ aggregate
balances.

We assume that miners value these ledger balances because positive net balances are in
theory spendable for physical goods, services, or other currencies. However, these balances
are only spendable if other miners agree that the balances are valid. To formalize a notion
of agreement, we assume miners “vote with their feet” or, more aptly, their mining power.
That is, we assume a given miner values balances on ledgers being mined by other miners
more than balances on ledgers that are not being mined by other miners. Miners then have
a direct preference for agreement or consensus. Whether consensus is achieved, however, is
an equilibrium outcome.

To capture the idea that balances are spendable, we consider transactions involving
negative balances, or spend transactions, as corresponding to some form of consumption
off the blockchain. A spend transaction, once added to the blockchain graph, persists in the
graph in perpetuity. We assume that the miner is compensated for this spend by the one-
time receipt of “goods” from an external party. To the extent settlement of goods is delayed
(as it is in practice with individuals typically waiting for at least six additional confirmed
blocks before settlement in the case of the Bitcoin protocol), the settlement transaction may
also involve a premium paid to the miner who endures the cost of the negative transaction
once it is mined before settlement occurs.

In this environment, we then evaluate different strategies that may generate consensus on
ledgers. We first show that Nakamoto’s proposed longest chain consensus protocol features
the same flaws in our model as found in earlier work: longest chain strategies fail to be
equilibrium strategies when mining power is concentrated and an individual miner has suf-
ficient (net) balances of unit of account on some chain that is not the longest chain. Miners
therefore find it profitable to engage in double-spending attacks, a result obtained in Biais
et al. (2019) and Budish (2025). In this sense, our more general model of shared record
keeping features the same incentive problems raised in the earlier literature.

Critically, our more general model allows us to identify the key features of the underlying
transaction data that cause incentive problems for Nakamoto’s proposed strategies. First,
miners may have incentives to remove “spend” transactions. Once a miner spends balances
in order to obtain physical goods or other services, they have incentives to work on forks
from the tree that omit this spend transaction. To the extent other miners are assumed to
follow the longest chain protocol, it is straightforward to develop conditions where so-called
double-spending or 51% attacks are profitable for a rational miner. The reason, as identified
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in both Biais et al. (2019) and Budish (2025), is that the costs of a double-spend attack do
not scale with the potential benefits. Second, miners may have incentives to work on ledgers
that are not the longest chain but involve large transactions that increase their balances in
the hopes that these ledgers become the longest chain.

We then use our model to show how modifications to the proposed strategies of miners
can resolve the problematic incentives that arise in these situations. To address the first
concern—removing spend transactions—a modified version of longest-chain consensus, which
features “checkpoints” is an equilibrium even when a single miner may have a large amount
of mining power and the chain contains arbitrarily large spend transactions.

The checkpoint rule, embedded in miners’ strategies, selects a single existing block in each
period as a function of the history of the blockchain each miner observes. Miners strategies
call on them to ignore any blockchain forks that begin behind the current checkpoint. These
checkpoints ensure that if any miner attempts to omit data or blocks behind the current
consensus checkpoint, then no miners will treat this new deviation chain as the correct
chain regardless of its length. In this way, checkpoints are a strategic solution to double-
spending attacks, the central problem identified in Budish (2025). This result suggests that
the concerns raised in previous work may be a feature of a particular candidate equilibrium
strategy and not a concern about the technology of blockchain itself.

An important implementation consideration of our checkpoint equilibrium is network
latency. Since the entire network of miners does not see new blocks at the same time it
is likely that accidental forks will occur.2 If information on the checkpoint is also latent,
miners may disagree on the checkpoint block, potentially causing a temporary fork due to
latency to become permanent. Such disagreement would undermine the usefulness of the
blockchain. Optimizing the checkpoint block—choosing the settlement lag—would require
comparing the cost of a settlement lag with the likelihood of a permanent fork.

A more subtle issue to resolve with checkpoint strategies are miners’ incentives to shift
consensus to their most preferred chain ahead of the checkpoint. Here, we construct an
equilibrium which relies on a form of mining-weighted approval voting. We term this strategy
the approval weighted chain rule. The approval weighted chain rule calls on miners to add
blocks to the chain where the total mining power (i.e., the sum of probabilities) of miners
who have balances on the chain is largest. Recall that the longest chain rule failed because

2In Bitcoin, for example, it takes about 11 seconds for all nodes to hear of a new block. Average new-
block arrival time on Bitcoin is designed to be 600 seconds. Solving a block is Poisson and so a second block
will arrive before all nodes are informed that a new block has already been solved about 1.8% of the time
(11 seconds/600 seconds ≈ 1.8%).
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miners with large mining power preferred to work on a shorter chain on which they have large
positive balances, because they expect to turn this into the longest chain with sufficiently
high probability. Under the approval weighted chain rule miners are called to work on the
shorter chain if it contains such balances for large miners. Neither small nor large miners
then have incentives to deviate from the equilibrium strategy.

However, key to obtaining this result is a technological restriction: until all forks ahead
of the checkpoint are resolved, miners can only add blocks to the blockchain that do not
contain any transaction data. Otherwise, miners can “bribe” other miners to mine their
preferred chain by including small positive transactions into the newly added block, which
increases the chain’s approval weights. On the equilibrium path, the approval weighted chain
consensus then generates a graph with a single path of data and thus perfect consensus while
disincentivizing deviations by miners with large mining power.

Contribution to the literature. We develop a dynamic, game-theoretic model of blockchain
consensus in which rational, self-interested miners (validators) have well-defined preferences
over the data recorded on the blockchain and strategically decide how to update it. Our
paper is therefore most closely related to papers on the economics of blockchain consensus
and security.

Biais et al. (2019) and Budish (2025) also present game-theoretic models of blockchain
environments, showing that blockchains are susceptible to double-spending attacks if mining
power is concentrated and transaction values are large. In their analyses, honest miners follow
the longest chain rule and therefore switch to an attacker’s fork once it becomes the longest
chain. The expected cost of a successful attack is given by the expected cost of creating a
fork and extending it to surpass the original chain—it is therefore fixed conditional on the
honest miners’ computing power. The expected benefit of an attack is increasing in the size
of the spend transaction. Budish (2025) argues that, since the honest miners’ computing
power is increasing in the cost of using the blockchain (by a free entry logic), mining rewards
must scale with transaction size on the blockchain.3, 4

3Biais et al. (2019) further highlight that consensus can be fragile: miners can coordinate on creating
forks if mining strategies exhibit strategic complementarities. With limited competition among miners, forks
can persist.

4Other papers take honest miners’ strategies as given. Gans and Halaburda (2023) generalize and
extend the analysis of the majority attack. They find that the cost of an attack may be lower when honest
miners’ endogenously response by adjusting their computer power. Saleh (2021) studies Proof-of-Stake
consensus protocols and finds that attacking the blockchain is not profitable if the market capitalization of
the blockchain-native coin is sufficiently large and the settlement lag sufficiently long. John et al. (2020)
study security properties of Proof-of-Work and Proof-of-Stake consensus protocols when blockchain capacity
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Our contribution is to demonstrate that incorporating a simple history-dependence in
the form of checkpoints into the longest chain rule can effectively prevent double-spending
attacks. The profitability of such attacks is therefore a feature of a particular consensus
protocol (or mining strategy) and not a concern about the technology of blockchain itself.
Our general model enables a deeper analysis of the incentive structures underlying different
consensus mechanisms. We also propose a new protocol and explore technological features
that interact with strategies to generate equilibrium consensus.

Garratt and van Oordt (2023) argue that a double-spending attack may not be profitable
if the hardware required is specialized and cannot be repurposed, raising the fixed cost of
the attack. Moroz et al. (2020) show that when the victim of a double-spending attack can
counterattack in the same way as the attacker, then this results in a variant of the ‘War
of Attrition’ game. The threat of a counterattack induces a subgame perfect equilibrium
of this game in which no attack occurs in the first place. Chiu and Koeppl (2022) argue
that more intensive miner competition (i.e., more widely distributed mining power) and long
settlement lags, which increase in transaction size, can help render double-spending attacks
unprofitable as the cost to create a competing, longer chain becomes excessive. We highlight
that neither large fixed costs, the ability to counterattack, nor extensive settlement lags are
necessary to achieve blockchain security.5

Our paper shares its objectives with Halaburda et al. (2022). They also develop a game-
theoretic model of blockchain, although with reduced form payoffs, emphasizing Knightian
uncertainty to capture the spirit of Byzantine Fault Tolerance (BFT) in the computer science
literature. More recently, Leshno et al. (2024) highlight the ‘community response’ to over-
ride nodes with a corrupted ledger and present a protocol which formalizes this feature. One
aspect of the protocol is that nodes finalize transactions once they are certain that the ledger
has not been corrupted, a feature which bears similarities with the checkpoint equilibrium

constraint are alleviated.
5Pagnotta (2022) studies equilibrium multiplicities that arise if blockchain security depends on the real

value of blockchain-native coins. Makarov and Schoar (2021) study the Bitcoin blockchain ecosystem. One of
their findings is that mining power is highly concentrated among a small number of mining pools. Cong et al.
(2021) show that the rise of centralized mining pools does not necessarily undermine decentralization, which,
as frequently argued, needs to be sufficiently high for blockchains to be secure. Auer et al. (2021), Amoussou-
Guenou et al. (2024), and Benhaim et al. (2023) study consensus on committee-based or permissioned
blockchains. Bakos and Halaburda (2021) compare the security properties of permissioned and permissionless
blockchains. Similar to Budish (2025), attacks on permissionless blockchains are profitable if the value of
an attack is large relative to block rewards. See, among others, Li (2023) for a study on the security of
blockchain scaling solutions. Kang (2023) studies a reputation-based mechanism to address double-spending
attacks. Merchants delay the delivery of consumption goods if the payment is done using a wallet which has
been found to have double-spent in the past.
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described in this paper.6 Our contribution relative to these papers lies in our framework,
which allows us to study how the specific data recorded on the blockchain, such as trans-
actions, impact incentives of rational nodes across different consensus protocols. We then
present protocols (or mining strategies) which prevent double-spending attacks, and explore
technological features that interact with strategies to generate equilibrium consensus.

2 A Model of Blockchain
In this section, we develop a model to analyze blockchain consensus. In this model, in each
period, miners add a block of data to an existing graph of blockchain data. A block includes
units of account on the blockchain ledger as well as, in principle, other data. This model
features no latency in the sense that each individual in the model perfectly observes each
addition to the blockchain.

Preliminaries. There are N ∈ N miners, each infinitely lived and with a rate of time
preference δ ∈ (0, 1). Time is discrete. In each period t, each miner i proposes a location to
add a block, bi,t, of data. A block consists of three components: hash data, mining rewards,
and data entries, e.g. transaction data (as in the Bitcoin blockchain) or computations to be
conducted (as in the Ethereum blockchain).7 The hash data is determined technologically
and and is not relevant for our model beyond the fact that it implies a chained data structure.
We let Rj,bi,t denote the mining rewards in block bi,t for miner j. We assume that mining
rewards have the property that Rj,bi,t = R̄ ∈ (0,∞) if i = j and Rj,bi,t = 0 for j ̸= i. This
implies that only miner i earns a reward if block bi,t is added to the blockchain. In addition,
we represent the data for each miner j in any block bi,t proposed by miner i by Yj,bi,t ∈ R. We
assume that the data in a given time period t are exogenous and identical across all miners’
blocks, and hence we write Yj,bi,t = Yj,bt . Miners’ blocks therefore only differ in terms of
block rewards.

A blockchain, in the language of graph theory, is an arborescence. It is a directed graph
in which from the genesis block b0 to any other block b there is exactly one directed path

6Other papers follow the approach typically taken in the computer science literature to study protocols
involving checkpoints, e.g. Buterin and Griffith (2017) and Neu et al. (2021). Karakostas and Kiayias (2021)
consider a consensus protocol with checkpoints set by an external party and discuss how to decentralize the
process on an external blockchain. Sankagiri et al. (2021) develop a protocol which incorporates checkpoints
into the longest chain rule.

7Technically, mining rewards are simply a transaction, but it is useful for us to separate them.
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from b0 to b. Let B(Gt) denote the set of all blocks in the graph Gt. Let (b′, b) denote the
edge from block b to block b′, leading away from the genesis block. Denote by E(Gt) the set
of all edges that link the blocks in graph Gt. Let Gt represent the set of all possible graphs
with t blocks and G =

⋃∞
t=0 Gt. Let Ht ∈ Ht =

⋃t
τ=0 Gτ denote the history of the graph at

time t, and Ht the set of all possible histories at time t.
Each miner’s action in period t is to choose a location to attempt to add block bi,t.

A location choice of miner i in period t is a mapping ai,t : Gt → B(Gt). Miners’ location
choices stochastically determine the state of the graph in the subsequent period. Specifically,
we assume that each miner’s block is added (in the location of choice chosen by miner i)
probabilistically with at most one miner adding a block in a given period. Let pi ∈ (0, 1)

denote the probability that miner i successfully adds a block to the existing graph with∑N
i=1 pi = 1. This probability represents the mining power of miner i and we treat it as

exogenous.
Given a graph Gt and the location choices of miners (ai,t)Ni=1, the graph in the subsequent

period is Gt+1 = Gt

⋃
(bi,t, (bi,t, ai,t)) with probability pi. In words, the graph Gt+1 is the

same as the graph Gt but includes a new node bi,t and a new edge from bi,t to ai,t.

Chains. Before turning to the structure of preferences and payoffs, it is useful to create
notation to describe the various databases that are represented in a graph, Gt. We interpret
each path through the graph, from the origin node to any other node, as a chain. Note that
each chain may represent a different database than any other chain. Furthermore, recall
that the blockchain protocol imposes that every block has a unique parent block (although
it may have more child blocks). Hence, the path backwards from any block to the genesis
block is unique.

For any graph Gt and block b ∈ B(Gt), define the chain C(b,Gt) as the unique path from
block b back to the genesis block b0. Let C(b,Gt) ⊆ B(Gt) denote the set which contains the
blocks on the chain from b to b0:

C(b,Gt) =
{
{b, bn, . . . , b1, b0} ∈ B(Gt)

∣∣∣ (b, bn), (bn, bn−1), ..., (b1, b0) ∈ E(Gt)
}

(1)

We say that block bn is on the chain C(b,Gt) if bn ∈ C(b,Gt). Furthermore, define #C(b,Gt)

as the number of blocks in the chain. We refer to this number as the length of the chain.
Finally, we refer to blocks that have no edges leading away from the genesis block as

terminal blocks, and define T (Gt) as the set of terminal blocks in graph Gt.
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Preferences. We now propose a specific functional form for the period payoff that has
two components: first, a flow payoff derived from the data contained on the blockchain; and
second, a flow payoff derived from consumption of real goods.

We assume that miners derive a linear flow utility from the weighted sum of their data
entries on the blockchain, given by

(1− δ)
∑

b∈B(Gt)

qi,b,t (Yi,b +Ri,b) . (2)

where qi,b,t denotes the weight of block b for miner i at time t. We link these weights to
miners’ actions and computing power: if a miner chooses a location in B(Gt), we say that
the miner works on the chain from the origin to that existing block. If more miners work
on the same chain, then the data on that chain have a larger weight. In particular, we
assume that blocks are weighted according to the other miners’ computational mining power
allocated to those blocks:

qi,b,t =

∑
{j ̸=i:b∈C(aj,t,Gt)} pj∑

{j ̸=i} pj
. (3)

Equation (3) captures the notion that data are more valuable if they are written in blocks on
which more miners agree. Miner i receives value for any data written in blocks that are on
the blockchain associated with some other miner’s location choice aj,t. To the extent there is
disagreement, miners obtain value from their data as long as some other miners apply their
mining power to these blocks. When there is full consensus and all miners choose the same
location, then all data entries in blocks on that chain receive their full value of 1.

It is natural to think of the data Y and R as representing units of account held on
the graph Gt. These transaction data could be positive or negative with the interpretation
that positive data represent payments received while negative data represent payments sent.
Going forward, we refer to these units of account as coin balances. Then Yi,b+Ri,b represents
miner i’s coin balances in block b. The miner’s flow utility from her coin balances in this
block increases as more miners recognize the block as valid.

Given this interpretation, the second component of miners’ period payoffs explicitly links
consumption to negative data entries, or spend transactions. We assume consumption goods
are fairly priced and that settlement occurs with a delay, reflecting existing blockchain norms.
For instance, Bitcoin recommends finalizing spend transactions after waiting for six addi-
tional confirmed blocks (i.e., six blocks appended on a single chain which achieves full con-
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sensus). For simplicity, we assume a one-block delay (on a single chain). Miners derive linear
flow utility from consumption. Fair pricing then requires that each unit of coin balances pur-
chases 1/δ units of consumption. Let the absolute value of spend transactions be denoted by
Y −
i,b = |Yi,b| · 1 {Yi,b < 0}. Consumption as well as the flow utility derived from consumption

at time t are then given by

∑
b∈B(Gt)

Y −
i,b

δ
· λt(b,Ht). (4)

where λt(b,Ht) is an indicator that takes the value of one if settlement takes place in time
period t. We provide the precise definitions of λt(b,Ht) in Sections 3 and 4 below.

Miner i’s flow utility at time t can then be represented by

ui(qi,t;Ht) =
∑

b∈B(Gt)

[
(1− δ)qi,b,t (Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

]
. (5)

where qi,t = (qi,b,t)b∈B(Gt)
. Note that in this formulation, preferences are a function of the

value of coin balances (given the current actions of miners) and the history of the graph.8

As an example, consider one miner m called ‘Satoshi.’ Suppose Satoshi has 1 unit of
account on the genesis block Rm,b0 = 1. Satoshi also has a spend transaction Ym,b1 = −1

in the second block b1, which is added to the blockchain at the end of period 1. Suppose
further that there is a single chain in the graph in every period. In period 2, Satoshi’s flow
utility over the graph is 0 because her balance aggregated over the two blocks is zero. Unless
future blocks contain more transactions for Satoshi, her utility over the graph (excluduing
consumption of real goods) will continue to be zero in all future periods. However, when a

8Our specification of preferences can be microfounded within a monetarist framework, following the
approach of Lagos and Wright (2005) and Rocheteau and Wright (2005). In this setting, money trades at a
premium. The reason is that money (or coin) balances represent past “work,” creating an option value tied
to exchanging goods for money in frictional goods markets. In our framework, this premium is reflected in
the flow utility derived from coin balances, and it is larger the more miners consider these balances as valid.
Meanwhile, the consumption flow utility reflects the utility derived from realized consumption purchases in
both frictional and frictionless goods markets using coin balances.

In frameworks such as Lagos-Wright, agents only value money if there is a strictly positive probability
of spending it in frictional markets; otherwise, they immediately exchange their balances for consumption
goods in frictionless markets. This is not true in our model. However, our specification indirectly captures
this behavior. For simplicity, we take the transaction process as given. In our model, miners then derive the
flow utility from holding coin balances, even if they never spend them with probability one. In other words,
miners receive the same lifetime payoff whether they never spend their balances or spend them entirely at
once. If miners did not derive utility simply from holding balances and instead chose their transactions
optimally, they should find it optimal to immediately spend them, as in the Lagos-Wright framework.
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third block is appended to block b1 at the end of period 2, satoshi’s spend transaction in the
second block vests. She then earns the consumption flow utility equal to 1/δ in period 3.
Aggregating and discounting these payoffs from the perspective of period 1 or of period 2,
her lifetime utility is 1. Of course, once Satoshi has derived the consumption flow utility in
period 3, her discounted lifetime utility is 0. She would then benefit from the construction of
an alternative path through the blockchain where her total balance on the consensus chain
is 1 instead of 0.

Strategies and Equilibrium. Since miners take transactions as given, they only choose
the location of their new block. We focus on public strategies, which only depend on the
publicly observed sequence of graphs. Formally, a public strategy for miner i, σi, is a sequence
of mappings from the set of all possible public histories into a set of pure actions,

σi = (σi,t)
∞
t=0, where σi,t : Ht → B(Gt). (6)

Our equilibrium concept is perfect public equilibrium, that is, subgame perfect equilibrium
in public strategies. We therefore insist that a strategy profile σ = (σi)

N
i=1 is an equilibrium

if and only if each miner’s strategy is a best response to other miners’ strategies for each
history Ht ∈ Ht at each date t ≥ 0.

Due to their distributed nature, blockchain databases occasionally generate conflicting
chains accidentally. (For example, it is well understood that with Bitcoin, two miners may
occasionally find a valid block at roughly the same time generating an accidental fork from
the perspective of other miners.) For this reason, we view the robustness of strategies that
are subgame perfect as an important feature of equilibrium analysis of blockchains.9

An advantage of studying public perfect equilibria with discounting in our environment
is that we may apply and use the one-shot deviation principle. The literature on Nakamoto
consensus has routinely studied complex, multi-period deviations and the incentives individ-
uals miners may have to pursue these (see Carlsten et al. (2016) and Eyal and Sirer (2018)
for leading examples). The one-shot deviation principle allows us to study these complex
strategies as one-shot deviations from particular subgames. But more powerfully, we need
not worry about more complex deviation strategies once we construct a strategy that is

9Our focus on public equilibria is natural given the assumptions we have made that mining locations are
public information. In practice, at least for short periods of time, miners may be able to hide their mining
activity. In such a case, one would want to also permit private actions and study equilibria with private
monitoring in our environment.
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immune to one-shot deviations from all histories.

3 Longest Chain Rule
In this section, we analyze Bitcoin’s proposed equilibrium strategy, the longest chain rule
(Nakamoto, 2008). The gist of the longest chain rule is that miners choose the block that
defines the longest chain as the predecessor for their potential block. This is a simple
coordination mechanism in that it depends only on the current graph Gt. To ease notation,
let

BLC(Gt) = argmax
b∈B(Gt)

#C(b,Gt) (7)

denote the set of (terminal) blocks in the graph Gt such that the chain to these blocks has
the largest number of blocks. We now describe the settlement of consumption goods and
miner strategies under the longest chain rule.

Settlement. We assume that merchants deliver consumption goods that correspond to
spend transactions contained in block b at time t if two conditions are met. First, at least
one block has been appended to block b. Second, block b is contained in the unique longest
chain for the first time. More formally, we write

λt(b,Ht) =

 1 if t = inf
{
τ ≥ 0 : ∃ b′ ̸= b s.t. b ∈ C(b′, Gt), b

′ ∈ BLC(Gt), |BLC(Gt)| = 1
}
,

0 otherwise.

(8)

Let Λt(b,Ht) =
∏t

s=0(1− λs(b,Hs)) denote an indicator function that takes the value of 1 if
a spend transaction has not vested yet, and 0 otherwise.

Strategies. We now formalize the notion that the longest chain rule calls for miners to
extend the longest chain. If BLC(Gt) is a singleton, miners are called choose the only block
in this set as predecessor.

If the graph features multiple longest chains so that BLC(Gt) is not a singleton, the
necessary tie-breaking rule for the longest chain rule to be a candidate equilibrium strategy
is intuitive. By the coin value equation (3), miner i’s location decision does not influence
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her own static payoffs but only the static payoff of other miners. However, starting from a
graph with multiple longest chains and only positive transactions (and block rewards), if the
miner has strictly higher coin balances on one of the longest chains, than by mining in that
location she strictly increases the likelihood that this chain becomes the single longest chain
and thus the consensus chain in next period. She then earns the flow utility associated with
her balances in perpetuity.

A similar logic applies to unvested spend transactions. Once a block is added to one
of the longest chains and consensus is achieved, the spend transactions on that chain vest
immediately and generate a utility of 1/δ > 1 per unit of spending. Miners therefore earn a
net benefit when spend transactions vest.

Hence, the only tie-breaking rule that is immune to one-shot deviations is the rule that
prescribes miners choose the terminal block on their most preferred longest chain, which
contains the largest sum of positive transactions, block rewards, and the net benefit from
unvested spend transactions. We summarize this observation in the following Lemma:

Lemma 1. If the longest chain rule is a (perfect public) equilibrium, then for any graph Gt

such that BLC(Gt) is not a singleton, the longest chain rule must satisfy

σLC
i,t (Ht) = b∗i,t ≡ argmax

b∈BLC(Gt)

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b,Ht)

)
. (9)

The proof is in Appendix A.1. With this lemma in hand, we now proceed by obtaining
conditions such that the longest chain rule is a (perfect public) equilibrium. We therefore
examine conditions under which no profitable one-shot deviations exist from any possible
graph of data. Developing these conditions will help to better understand the situations
when deviations like double-spend attacks may arise.

Equilibrium. It is useful to define a set of blocks for which one of two things is true. First,
a block is a terminal block on a fork which is one block shorter than the longest chain. Or
second, a block is the parent block of the terminal block of a longest chain. More formally,
the set is defined as:

B−1(Gt) = {b′ ∈ B(Gt) : #C(b′, Gt) = max
b∈B(Gt)

#C(b,Gt)− 1}. (10)

Under the tie-breaking rule implied by (9), the only relevant one-shot deviations are
those to some block b ∈ B−1(Gt). For any other deviation, if the miner successfully adds her
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block and then reverts to the candidate equilibrium strategy, she immediately abandons her
block which has not become part of a longest chain. Since no other miner is working on the
fork either, she thus forgoes the opportunity to have earned the rewards and transactions
associated with mining that block to a longest chain.

To compare incentives to append a new block to the end of the longest chain or to some
block in B−1(Gt), consider a thought experiment where miner i adds block bi,t to the graph
for sure in period t.

If she adds her block to her preferred longest chain, b∗i,t, then that chain becomes the
single longest chain and thus the consensus chain in the subsequent period. Consensus is
achieved from time t + 1 onwards. The miner earns the balances in block bi,t as well as all
her balances on preferred longest chain in perpetuity, starting in period t+ 1. Furthermore,
she derives the consumption flow utility Y −

i,b/δ due to unvested spend transactions contained
in all blocks b which lie on the chain running to b∗i,t at time t + 1. Miner i also derives the
consumption flow utility Y −

i,bt
/δ once any spend transaction in block bi,t vests at time t+ 2.

Thus, miner i enjoys the following continuation utility from time t+1 onwards based on the
data present on the blockchain at the end of time t (after miner i has added block bi,t):

U i
t+1(bi,t, b

∗
i,t;Ht) = Yi,bt + R̄ + δ ·

Y −
i,bt

δ
+

∑
b′∈C(b∗i,t,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
. (11)

Suppose instead she adds her block to a chain which is one block shorter. This deviation
extends a lack of consensus into period t+ 1 as the number of longest chains in that period
increases by one. Of course, since all miners including miner i will then follow the longest
chain rule from time t + 1 onwards and only one miner will successfully append a block at
time t+ 1, consensus will be achieved from time t+ 2 onwards.

At time t+1, miner i derives flow utility from the value of balances on each longest chain
on which at least one miner j ̸= i is working. This value is given by

F i
t+1

(
bi,t, b̂;Ht

)
=

∑
{j ̸=i: b∗j,t+1=bi,t}

pj
1− pi

·

Yi,bt + R̄ +
∑

b′∈C(b̂,Gt)

(Yi,b′ +Ri,b′)

 (12)

+
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

·
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′).

Recall that the value of miner i’s balances is proportional to the computing power of
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(other) miners working on each chain. When other miners work to extend miner i’s preferred
longest chain, the block she mined in period t as well as all other transactions and block
rewards along that chain have value given by the first line in (12). When other miners work
on other chains, transactions in those chains—which necessarily exclude the block miner i

added in period t—have value given by the second line in (12).
As discussed above, the miners achieve consensus in period t+ 2. Miner i’s expectation

over the continuation utility derived from time t + 2 onwards based on data present in the
blockchain at the end of period t is given by

Et

[
U i
t+2

(
bi,t, b̂;Ht

)]
=

pi +
∑

{j ̸=i: b∗j,t+1=bi,t}

pj


Yi,bt + R̄ +

Y −
i,bt

δ
+
∑

b′∈C(b̂,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+

∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj ·
∑

b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
(13)

With probability
{
pi +

∑
{j ̸=i: b∗j,t+1=bi,t} pj

}
, miner i’s preferred chain is the consensus

chain. The miner then enjoys the value of rewards and transactions in the blocks on this
chain as well as the value of newly vested spend transactions, reflected in the first line of (13).
Instead, each other chain to b ∈ BLC(Gt) becomes the new consensus chain with probability∑

{j ̸=i: b∗j,t+1=b} pj yielding similar payoffs, captured by the second line of (13).
We are now ready to state our first main result. Proposition 1 shows that miners are

incentivized to mine the longest chain only for a set of restrictions on transactions and mining
power.

Proposition 1 (Longest Chain Rule is a Perfect Public Equilibrium). The longest
chain rule is a perfect public equilibrium if for every history Ht, for every block b̂ ∈ B−1(Gt),
and for every miner i:

U i
t+1

(
bi,t, b

∗
i,t;Ht

)
≥ (1− δ) · F i

t+1

(
bi,t, b̂;Ht

)
+ δ · Et

[
U i
t+2

(
bi,t, b̂;Ht

)]
(14)

The proof is in Appendix A.2. Miner i only finds it profitable to follow the longest chain
rule if the benefit from doing so—turning the preferred longest chain into the consensus
chain immediately and vesting the new transactions and block rewards for sure—outweighs
the benefit from deviating. That is, it outweighs the benefit associated with creating a
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new preferred longest chain which yields some flow utility and becomes the consensus chain
in the subsequent period with some probability. Note that, since there is consensus both
after following the longest chain rule and after a one-shot deviation once a block has been
appended at the end of time t+ 1, all data in blocks added from time t+ 1 onwards do not
affect incentives at time t.

It is useful to study a simpler case to help understand the condition in (14). Consider
some graph Gt such that there is one longest chain with terminal block bl2 and one fork,
which is one block shorter than the longest chain, with terminal block bf . Figure 1 depicts
the blockchain in this scenario.

br bl1 bl2

bf

Figure 1: An illustration of the condition in (14).

Suppose miner i is mining some block bi,t such that, should miner i append it to bf , all
other miners find it optimal to work on the previously longest chain: b∗j,t+1 = bl2 for all j ̸= i.
Then, miner i does not face a profitable one-shot-deviation from the longest chain rule if

Yi,bt + R̄ + δ ·
Y −
i,bt

δ
(15)

≥ δpi ·

 ∑
b′∈{bf , bt}

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ

)
−

 ∑
b′∈{bl1 , bl2}

(
Yi,b′ +Ri,b′

)
+

Y −
i,bl2

δ


If miner i appends block bi,t to the only longest chain ending at bl2 , then the longest chain
remains the consensus chain. The value of balances on the consensus chain are 1 for all time
periods going forward, and the miner earns the transactions and block rewards in bi,t from
time t + 1 onwards. If there is a spend transaction in block bl2 , it vests at time t + 1 and
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miner i derives the corresponding flow consumption utility. Similarly, if there is a spend
transaction in block bi,t, it vests at time t+ 2.

If miner i appends block bi,t to bf , then period t+1 features two longest chains. Since no
other miner is working on the now second longest chain, the transactions and block rewards
in bi,t have a zero value to miner i at time t+ 1. With probability pi, the fork becomes the
consensus chain in the subsequent period. In that case, the miner earns the transactions and
block rewards contained in bi,t. She also earns the difference in balances between the fork
and the previously longest chain, which is then abandoned. Spend transactions in block bf

and bi,t vest at times t + 2 and t + 3, respectively, whereas a spend transaction in block bl2

never vests. With probability (1−pi), the initially longest chain becomes the consensus chain
again. The miner obtains the same payoff going forward as under the longest chain rule, with
one important difference: the block bi,t is orphaned. As a consequence, the transactions and
block rewards in bi,t have zero value to miner i going forward, and the spend transactions
never vest.

We proceed by explaining the three distinct manners in which the condition in (14) fails.

Negative transaction data and double-spending attacks. We now illustrate that
the longest chain rule is not robust to negative transaction data and is therefore vulnerable
to double-spending attacks. Our argument proceeds in two steps. First, we show that
the condition in (14) fails if a miner has a large, vested spend transaction on the longest
chain and a competing fork exists that is only one block shorter. Since (14) provides a
sufficient condition for the longest chain rule to be a perfect public equilibrium, its failure
is a necessary condition for a profitable double-spending attack. Otherwise, the attacker
never finds it profitable to extend the fork they created during the attack beyond the longest
chain. We then construct a double-spending attack using a two-period strategy. In the first
period, the attacker tries to create a fork and, if successful, tries to extend it in the second
period. We then identify the conditions under which this more complex strategy is a strictly
profitable deviation, i.e., under which a double-spending attack is profitable.

Consider Figure 2. This is the same blockchain depicted in the previous figure, now
containing a spend transaction for miner i in block bl1 . Suppose that all blocks bl1 , bl2 and
bf have been appended by miner i and thus contain block rewards R̄ for her. Assume that
block bf was appended after block bl2 . Hence, the spend transaction in bl1 has vested and
miner i has derived the associated consumption flow utility. For simplicity, further suppose
that none of these blocks contain any data for any other miner who all continue working on
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br bl1 bl2

bf

Yi,bl1
< 0

Figure 2: An illustration of incentives to deviate from the longest chain strategy.

the previously longest chain should miner i successfully extend the fork. Equation (15) then
simplifies to

R̄ ≥ piδ · |Yi,bl1
|. (16)

In this example, miner i prefers to deviate from the longest chain rule and extend the
fork if the spend transaction is sufficiently large relative to the level of block rewards, given
her mining power pi. This is especially true if the longest chain also contains vested spend
transactions or the fork contains balances for other miners, who may then also work on the
fork in the subsequent period and help miner i establish it as consensus chain. In other
words, forking may be profitable even if the inequality above holds. Importantly, the longest
chain rule fails in this case because miners may seek to remove transaction data from the
consensus chain by working on a shorter fork.

We now describe the two-period strategy that amounts to a double-spending attack.
Recall that block bl2 was appended before the fork bf was created in the example above.
Now consider the time period t− 1, i.e., the period before bf was added and the blockchain
contains one single chain (br—bl2). Suppose miner i is mining block bf . Then, consider the
following two-period strategy for miner i:

σ′
i,t−1(Ht−1) = br and σ′

i,t(Ht) =

 bf if bf ∈ B(Gt),

b∗i,t otherwise.
(17)

Under this strategy, miner i works on block br at time t − 1 and thus attempts to create a
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fork. If successful, she continues working on the fork at time t. Miner i reverts to following
the longest chain rule at time t if she is unsuccessful at time t− 1. Miner i also follows the
longest chain rule from time t + 1 onwards. Denote this strategy profile by σ′. Note that
miner i’s strategy induces the blockchain of Figure 2 if she is successful in appending her
block bf at time t− 1.

We now provide an example in which this strategy constitutes a strictly profitable devia-
tion from the longest chain rule. In this example, suppose that all transactions for all miners
in all time periods are zero other than miner i’s spend transaction in block bl1 . Suppose
further that miner i has solved blocks bl1 and bl2 (but no other blocks on the chain running
to br) and that all other miners continue working on bl2 at time t+ 1 if miner i successfully
creates and extends the fork at times t− 1 and t.

Proposition 2 (Profitable double-spending attack). Suppose Yj,b = 0 for all miners
j ∈ {1, 2, ..., N} and all blocks b except for Yi,bl1

< 0. The strategy profile σ′ constitutes a
strictly profitable deviation from the longest chain rule if

(1 + piδ) · R̄ < p2i δ
2 · |Yi,bl1

|. (18)

The proof is in Appendix A.3. To form an intuition, consider the thought experiment
where miner i adds a block at time t − 1 for sure. She now trades off the opportunity
cost of an attack against the expected benefits from a successful attack. The benefit is the
discounted absolute value of the spend transaction in block bl1 which the attack would undo
at time t+1. Her probability of success is given by p2i , i.e., the probability of both extending
the fork and turning into the unique longest chain. The expected cost are the block rewards
in block bf—which she would earn with probability 1 if she extended the longest chain at
time t − 1—and in the subsequent block, which she appends with probability pi at time t

and would earn with probability 1 on the longest chain. Note that the inequality in (18)
implies that the equality in (16) fails, i.e., that is profitable to extend the fork which was
created as part of the attack.

Importantly, double-spending attacks may be profitable in practice even if (18) is not
satisfied. In our example above, deviating becomes more profitable if other miners also work
on the fork and if miner i does not have block rewards on the longest chain. Furthermore,
if creating a fork is profitable in the first place, it may well be optimal to continue working
on the fork even if miner i is unsuccessful in extending the fork at time t. This is especially
true since she holds strictly positive balances in the form of block rewards on the fork.
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Our findings align with Budish (2025), who shows that blockchains become susceptible
to double-spending attacks under the longest chain rule unless transactions are sufficiently
small relative to block rewards. In the language of Budish (2025), the block rewards on
the LHS of (18) are the flow benefit of following the longest chain rule. They describe the
opportunity cost of a double spending attack. The RHS of (18) captures miner i’s expected
stock benefit from attacking the blockchain by attempting to omit a negative transaction.
Proposition 2 suggests that double-spending attacks become profitable if the absolute value
of spend transactions is large. Since the size of transactions in the real world is endogenous
to blockchain security, this result calls the usability of blockchain technology into question.
More precisely, under the longest chain rule, either transactions need to be small, or the
transfer to miners in the form of block rewards—and thus the cost of using a blockchain—
need to scale with transactions. Otherwise, the blockchain becomes susceptible to double-
spending attacks.

Positive transaction data and miner heterogeneity. We now explain a second, dis-
tinct reason why miners may find it optimal to deviate from the longest chain rule. Suppose
that transaction data are positive: Yi,b ≥ 0. To visualize the constraints that arise from (15),
consider the graph displayed in Figure 3 which features Yi,b = 0 and thus only contains block
rewards. The graph exhibits a fork where a parent block br has two subsequent edges, one
leading to block bl1 and one leading to block bf1 . Since BLC(Gt) = {bl2}, the longest chain
strategy calls for all miners to choose location bl2 . Suppose now that miner 1 has earned the
mining rewards in block bf1 but miners 2 and 3 have the mining rewards on blocks bl1 and
bl2 , respectively.

br bl1 bl2

bf1

R2,bl1
> 0 R3,bl2

> 0

R1,bf1
> 0

Figure 3: An illustration of incentives to deviate from the longest chain strategy.
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Consider the net benefit to miner 1 of deviating from longest chain and choosing block
bf1 . Given the mining rewards illustrated in Figure 3, the weight of miners who would like
to see fork bf1 extended is simply p1. Hence, the condition in (15) requires R̄ ≥ δp12R̄ or
p1 ≤ 1/(2δ). In other words, should forks appear and miner 1 have too much weight (say if
δ → 1 and p1 > 0.5), then she can likely direct consensus to her most preferred chain. And,
when her most preferred chain does not coincide with the longest chain, she has incentives
to deviate from the longest chain.

More generally, we argue that Proposition 1 likely imposes stringent limits on the dis-
tribution of mining power and these limits are likely to be violated (or provide miners with
incentives to acquire mining power such that they are violated). Indeed, the condition in (15)
imposes an upper bound on pi for miner i should she be the only miner with larger balances
on a fork to some b̂ ∈ B−1(Gt) than on the longest chain. Of course, this upper bound may
not suffice should other miners have positive transaction data on the fork, suggesting that
the condition in (15) is likely to fail in general. Thus, Proposition 1 reveals that even when
a blockchain only features mining rewards, the longest chain rule may not be robust as an
equilibrium (in the perfect public sense) to general distributions of mining power. This is
particularly true if we also consider positive transaction data. Importantly, mining power in
the Bitcoin network is highly concentrated in practice (Makarov and Schoar, 2021).

Interestingly, and in contrast to the case of negative transaction data where miners may
find it optimal to create forks to remove transaction data, the longest chain rule fails because
miners want to add transaction data to the consensus chain. In Figure 3 above, miner 1’s
balances are not contained in the longest chain and this is precisely the reason why she
might find it profitable to deviate from the longest chain rule and extend their preferred
fork instead. However, it is not profitable to create a fork if transaction data are (weakly)
positive:

Lemma 2. Suppose #C(b,Gt) = #C(b′, Gt) for every b, b′ ∈ T (Gt) and Yi,bt ≥ 0. Then the
condition in (14) is satisfied for miner i.

The proof is in Appendix A.4. The lemma says that if only longest chains exist (and thus
no fork which is one block short), and the transaction data for miner i are weakly positive,
then she has no strictly profitable deviation from the longest chain rule. Instead, she prefers
to follow the longest chain rule, ensuring that the balances on her preferred longest chain
as well as her new payments received and block rewards become part of consensus. This
contrasts with the case of negative transaction data and double-spending attacks, where
miners may find it optimal to create forks to remove transaction data.
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Negative transaction data and saving on consensus. We now explain the third dis-
tinct reason why miners may find it optimal to deviate from the longest chain rule. Suppose
that miner i is mining block bt which contains a spend transaction for her, Yi,bt < 0. Miner
i may now face a profitable deviation to create a fork by working on the parent block of the
terminal block of one of the longest chains.

The reason is the delay with which transaction goods are delivered. The spend transaction
is associated with a flow disutility once it is included in the blockchain—and thus before the
miner receives the corresponding goods. This disutility is larger the more other miners work
on the chain that includes the spend transaction. If miner i creates a fork and few other
miners work on it, then the flow disutility is reduced. If miner i also holds a large amount of
mining power, she has a good chance of turning this newly created fork into the consensus
chain in the following time period. She then earns the full transaction benefit Y −

i,bt
/δ but

has reduced the associated cost when the transaction is first included in the blockchain. In
sum, miners may want to create forks if they have a lot of mining power and initially other
miners will not work on the newly created fork.

To illustrate, suppose there is a single chain and miner i is mining some block bi,t, which
does not contain any data for any miner other than the spend transaction for miner i. The
terminal block of the longest chain does contain data for all other miners, and hence they
continue working on this chain at time t + 1 even after miner i has successfully created a
fork of equal length at time t. Suppose further that miner i has no data in any other block.
Equation (15) then simplifies to

R̄ ≥ δpi ·
(
Yi,bt + R̄ +

|Yi,bt |
δ

)
. (19)

Miner i trades off earning the block reward for sure (as well as deriving zero net utility from
the spend transaction) against earning the block rewards and a strictly positive net utility
from the spend transaction with probability pi in the following period. Rearranging, we find
that this deviation is not profitable if (19) is satisfied. Reversely, if the inequality in (19)
fails, the deviation does become profitable in this example.

In practice, the deviation may not profitable even if the inequality in (19) fails. If all other
miners work on miner i’s fork, then the fork becomes the consensus chain with probability 1
in the following time period. Since miner i cannot avoid the flow disutility when including
the transaction on the blockchain, she is better off working on her preferred longest chain in
the first place. More generally, the deviation becomes less profitable the more other miners
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work on the fork, as the immediate cost of the spend transaction increases. Furthermore, if
miner i has balances in the terminal block of her preferred longest chain, this also reduced
the profitability of this deviation.10 The following lemma, which we prove in Appendix A.5,
formalizes this discussion:

Lemma 3. Suppose #C(b,Gt) = #C(b′, Gt) for every b, b′ ∈ T (Gt) and Yi,bt < 0. Then the
condition in (14) is satisfied for miner i if (19) is satisfied.

Intuitively, the equality in (19) is a sufficient condition such that this deviation is not
profitable. As an example, if pi = 0.5 and δ = 0.99, then (19) becomes R̄ ≥ |Yi,bt|/101. Given
the block rewards of 3.125 Bitcoins (as of January 2025, ignoring transaction fees), creating a
fork is not profitable for all spend transactions below 300 Bitcoins in this numerical example.

Note that if the benefit of delaying consensus is low (δ → 1), this deviation becomes
unprofitable. Indeed, if the discount factor is sufficiently large, then creating this short-lived
disagreement is no longer profitable as miner i values the present relatively less.

Interestingly, relative to the previous motives to deviate from the longest chain rule, this
third type of profitable deviation arises because miners disagree on how to add new data to
the blockchain. In particular, miners disagree on how to include spend transactions before
they have vested.

Given these results, it is natural to explore strategies other than the longest chain rule.
Section 4 extends the longest chain rule to include checkpoints, which renders it robust to
double-spending attacks and thus addresses the first type of deviation. Section 5 presents a
modification of the longest chain rule with checkpoints to address the other two types.

4 Checkpoint Strategies
We now show that a simple modification of the longest chain rule is not susceptible to double-
spending attacks. Our proposed resolution to miners’ incentives to omit data from the chain
is to introduce checkpoints, a form of history dependence, into the candidate equilibrium
strategies. The basic idea is that for every graph, agents determine a reference block—the
checkpoint—and restrict attention to all chains containing this block. All other chains are
ignored regardless of their length.

10If the consumption goods are unfairly priced in the sense that miner i derives a higher marginal flow
utility than one for each unit spent, then risking that the spend transaction never vests also becomes less
appealing to miner i, decreasing the profitability of such a deviation.
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One way to use checkpoints to rule out double-spend behavior is to simply impose that
the last block added is the new checkpoint. In essence, this proposal rules out all possible
forks in the blockchain. If no forks are permitted, then it is impossible for any one agent
to omit data from the blockchain. We find this resolution to the double spend problem
implausible for real-world implementations. In reality, some forks are non-malicious and
occur due to latency—within the unit of time agents observe updates to the blockchain, it
is possible to observe multiple blocks being added in the same period.

We therefore proceed by assuming such strategies are infeasible and looking for checkpoint
rules that admit the possibility of forks. More formally, for any history Ht, let denote
bCP (Ht) the checkpoint which selects a specific block on the current graph, Gt. We assume
the following:

Assumption 1. bCP (Ht) ̸∈ T (Gt) for all histories Ht.

Assumption 1 states that checkpoint rules may not select a terminal block in the graph
for any history. Such a restriction ensures that forks of at least length one are always feasible.

Checkpoint Settlement. We now explain settlement with checkpoints. We continue
assuming that consumption goods are fairly priced. Under the checkpoint strategies we
suggest below, blocks become checkpoints and thus part of consensus one period after they
have been appended to the blockchain. The price of consumption goods therefore remains at
1/δ. Settlement of spend transactions contained in block b takes place at time t if this is the
first time period that block b lies on a chain to the checkpoint. This includes the possibility
that the block b itself is the checkpoint. More formally, we redefine

λt(b,Ht) =

 1 if t = inf
{
τ ≥ 0 : b ∈ C(bCP (Hτ ), Gτ )

}
,

0 otherwise.
(20)

We again define Λt(b,Ht) to indicate whether the spend transactions contained in block b

have yet to vest at time t.

Checkpoint Strategies. To specify a candidate equilibrium strategy with checkpoints, it
is helpful to introduce two pieces of notation. First, let J(b′, Gt) ⊆ Gt denote the subgraph
associated with some root block b′ ∈ B(Gt). This subgraph contains the block b′, all its child
blocks, the child blocks’ child blocks, and so on. It also contains all edges connecting these
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blocks. Let J (b′, Gt) denote the set of blocks on the subgraph.11

As an example, consider Figure 4. The blocks are labeled according to whether they are
on the longest chain (bl1—bl4) or on one of two forks (bf1—bf2) and (bk1). Consider then the
subgraph J(bl2 , Gt). It contains the blocks (bl2—bl4) and bk1 as well as the edges (bl3 , bl2),
(bl4 , bl3) and (bk1 , bl2). All other blocks and edges in the figure are not part of the subgraph.

br bl1 bl2 bl3 bl4

bf1 bf2

bk1

Figure 4: An illustration of subgraphs and checkpoints.

Second, let M(b′, Gt) denote the parent block of block b′. To illustrate, consider again
Figure 4. The parent block of bl4 is then given by M(bl4 , Gt) = bl3 .

We now define checkpoint blocks as follows. In any period, we consider the subgraph
with the checkpoint block from the previous period as the common root, J(bCP (Ht−1), Gt).
Next, we find the set of terminal blocks of the longest chains on this subgraph,

BCP
(
bCP (Ht−1), Gt

)
= argmax

b∈J (bCP (Ht−1),Gt)

#C(b,Gt). (21)

11Formally, consider the set J (b′, Gt) ⊆ B(Gt) satisfying

J (b′, Gt) = {b ∈ B(Gt) : #C(b,Gt) ≥ #C(b′, Gt) and b′ ∈ C(b,Gt)}.

In the language of graph theory (Bondy and Murty, 1976), we say that the set of blocks J (b′, Gt) induces
the subgraph J(b′, Gt) = G[J (b′, Gt)] in Gt. Note that J(b′, Gt) = Gt if only if b′ is the genesis block b0.
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If this set is a singleton, we choose the new checkpoint to be the parent block of the terminal
block on the longest chain:

bCP (Ht) = M
(
BCP

(
bCP (Ht−1), Gt

)
, Gt

)
. (22)

If there are multiple longest chains ahead of the checkpoint, then the checkpoint randomly
updates to the parent of a terminal block of one of these longest chains. More formally, if the
set BCP

(
bCP (Ht−1), Gt

)
is not a singleton, we say that bCP (Ht) = M

(
b,Gt

)
with probability

πb ∈ [0, 1] for every b ∈ BCP
(
bCP (Ht−1), Gt

)
and insist that

∑
b∈BCP (bCP (Ht−1),Gt)

πb = 1.12

Given this new checkpoint, the set of terminal blocks of the longest chains on the new
subgraph is then given by BCP

(
bCP (Ht), Gt

)
.

Note that it is not difficult to randomly select blocks in blockchain environments. Recall
that each block contains hash data, which come in the form of fixed-size values. One method
of randomization is to choose the checkpoint candidate block with the lowest (or highest)
hash.13

To illustrate the checkpoint selection, consider once again Figure 4. Suppose that up to
br there had been no forks in the chain so the parent of br is the initial checkpoint. Then,
Table 1 illustrates a possible sequence of added blocks and the resultant checkpoints:

Period t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7
Block Added bl1 bf1 bl2 bk1 bl3 bf2 bl4
Checkpoint br br bl1 bl2 bl2 bl2 bl3

Table 1: A Sequence of Blocks and Checkpoints.

Table 1 highlights that the checkpoint updates whenever there is a single longest chain
following the checkpoint. This, for example, occurs when block bl2 is appended to block
bl1 , which then becomes the new checkpoint. The checkpoint does not update when bf1 is
appended to the checkpoint br which already has one child block in bl1 .

12Our formulation includes the possibility that the checkpoint does not update, bCP (Ht) = bCP (Ht−1),
if all longest chains ahead of the checkpoint consist of only one block.

13We do not need to specify the probabilities with which checkpoints are selected. On the Ethereum
blockchain, a subset of validators is called to attest to new blocks. The blocks with the largest stake-
weighted attestations become finalized, which, in the language of our paper, corresponds to the checkpoint
updating such that these blocks are now ‘behind the checkpoint.’ The probability of selecting a particular
block as the new checkpoint is then a function of the data contained in different blocks of the subgraph
following the current checkpoint and the miners’ probability of proposing the next block, (p1, p2, ..., pN ). Of
course, on a Proof-of-Stake blockchain, these probabilities themselves can be a function of coin balances.
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Since the checkpoint always updates when possible, the subgraph with the new checkpoint
as common root only contains longest chains. This is illustrated in Figure 5. Suppose that
br is the previous checkpoint. The subgraph ahead of the checkpoint features three longest
chains (br—bl2), (br—bk2), and (br—bn1), respectively. The checkpoint then updates to either
bl1 as the parent block of bl2 , or to bk1 as parent of both bk2 and bn1 . While miners may disagree
on their preferred longest chain if the checkpoint updates to bk1 and miners are called to work
on either bk2 or bn1 , the figure highlights that only longest chains remain once the checkpoint
updates.

br bl1 bl2

bk1 bk2

bn1

Figure 5: An illustration of checkpoints.

Given the checkpoint selection, the checkpoint rule satisfies

σCP
i,t (Ht) = b∗i,t ≡ argmax

b∈BCP (bCP (Ht),Gt)

(
Yi,b +Ri,b +

Y −
i,b

δ

)
, (23)

where we have abused notation by redefining b∗i,t. The strategy calls miners to work on
their preferred longest chain ahead of the checkpoint, which has the highest sum of positive
transactions, block rewards, and unvested spend transactions. Notice that this checkpoint
rule corresponds closely to the longest chain rule of equation (9), but is limited to the
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subgraph following the new checkpoint bCP (Ht). Hence, miners only consider blocks in
BCP

(
bCP (Ht), Gt

)
.

Checkpoint Equilibrium. The checkpoint strategy has one key feature with regards to
double-spending, which we describe in the following proposition:

Proposition 3 (No Double-Spending under the Checkpoint Rule). For any history
Ht and for any miner i, there exists no (weakly) profitable one-shot deviations from the
checkpoint rule to any block b /∈ J (bCP (Ht), Gt).

The proposition implies that it is never profitable to append new blocks to any block
behind the checkpoint—neither to remove transactions in order to double-spend, nor to add
transactions. The proof is in Appendix B.1.

Intuitively, miners ignore all blocks which lie on chains that do not include the checkpoint
block. Thus, a newly mined block is immediately abandoned if it is appended to the parent of
the checkpoint block. The same is true for a block appended to any chain which branches off
behind the checkpoint. In the illustration of double-spending attacks of Figure 2, any blocks
appended to br or bf are ignored by all miners once block bl1 has become the checkpoint. As
a consequence, spend transactions in block bl1 cannot be removed after this block has become
the checkpoint block and the corresponding consumption goods have been delivered. Since
the first spend only occurs once blocks with spend transactions are behind the checkpoint,
double-spending cannot occur under checkpoints strategies.

Furthermore, it is costly to append a block behind the checkpoint. Any positive transac-
tion data and block rewards contained in the new block are then lost, and any spend trans-
actions never vest. It follows that deviations to blocks behind the checkpoint are strictly
unprofitable.

With this result in hand, we are now ready to characterize conditions such that the check-
point rule is indeed a perfect public equilibrium. We proceed in analogoulsy to Proposition
1 for the longest chain rule, and so again consider a thought experiment in which miner i

appends block bi,t for sure. Given our checkpoint selection rule, only longest chains remain
ahead of the checkpoint. The continuation utility from following the checkpoint rule is then
given by

U i
t+1

(
bi,t, b

∗
i,t;Ht

)
= Yi,bt + R̄ + δ ·

Y −
i,bt

δ
+

(
Yi,b∗i,t

+Ri,b∗i,t
+

Y −
i,b∗i,t

δ

)
. (24)
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By following the proposed strategy, the utility derived from time t+1 onwards based on
data present on the blockchain at the end of time t is given by the balances in the preferred
block ahead of the checkpoint (and the corresponding consumption flow utility derived at
time t + 1) plus the balances in the new block (and the corresponding consumption flow
utility derived at time t+ 2).

Suppose next that miner i deviates from the checkpoint rule and instead works on the
checkpoint itself. Analogous to (12), the total flow value derived from the balances on the
new longest chain as well as on all previous longest chains—all ahead of the checkpoint—at
time t+ 1 is given by:

F i
t+1

(
bi,t, b

CP (Ht);Ht

)
=

∑
{j ̸=i: b∗j,t+1=bi,t}

pj
1− pi

·
(
Yi,bt + R̄

)
(25)

+
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

· (Yi,b +Ri,b) .

As before, the flow value is proportional to the computing power of miners working on the
respective chains.

Analogous to (13), miner i’s expectation over the continuation utility derived from time
t + 2 onwards based on data present in the blockchain at the end of period t (after miner i

has appended block bi,t) is given by

Et

[
U i
t+2

(
bi,t, b

CP (Ht);Ht

)]
=

 ∑
{j ̸=i: b∗j,t+1=bi,t}

pj + pi

 ·

(
Yi,bt + R̄ +

Y −
i,bt

δ

)
(26)

+
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj ·

(
Yi,b +Ri,b +

Y −
i,b

δ

)
.

As before, miner i’s new chain becomes the consensus chain from time t + 2 onwards
with probability

{∑
{j ̸=i: b∗j,t+1=bi,t} pj + pi

}
. The miner then derives the corresponding flow

utility in perpetuity, and the the spend transactions vest. Every other chain to some
b ∈ BCP (bCP (Ht), Gt) becomes the consensus chain with probability

∑
{j ̸=i: b∗j,t+1=b} pj.

We are now ready to state our next main result.

Proposition 4 (Checkpoint Rule is a Perfect Public Equilibrium). The checkpoint
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rule is a perfect public equilibrium if for every history Ht and for every miner i:

U i
t+1

(
bi,t, b

∗
i,t;Ht

)
≥ (1− δ) · F i

t+1

(
bi,t, b

CP (Ht);Ht

)
+ δ · Et

[
U i
t+2

(
bi,t, b

CP (Ht);Ht

)]
(27)

This inequality is satisfied if Yi,bt ≥ 0 . It is also satisfied if R̄ ≥ (1−δ)pi
1−δpi

· |Yi,bt| .

The proof is in Appendix B.2. Equation (27) is the equivalent to the condition for the
longest chain rule in (14), now focusing on the subgraph following the checkpoint (rather
than the full graph). To understand the result, note that it is never profitable to append
a block behind the checkpoint by Proposition 3. Since the checkpoint rule calls miners to
work on their preferred longest chain ahead of the checkpoint, the only possibly profitable
deviation is to the checkpoint itself. By Lemma 2, if miner i is mining a block with a positive
transaction, she prefers to work on her preferred longest chain. However, if the block contains
a spend transaction, miner i may face a profitable deviation to the checkpoint to reduce to
cost of her spend transaction. Lemma 3 presents a sufficient (but not necessary) condition
such that this type of deviation is not profitable. We thus find that the checkpoint rule with
a one-block checkpoint lag can achieve consensus for very general transaction data.

Latent checkpoints and the risk of permanent forks. Our model abstracts from
network latency. In reality, some forks are non-malicious and arise naturally because miners
do not observe all blocks simultaneously. This is why we ruled out terminal blocks as
checkpoints. Our checkpoint selection process designates parent blocks of terminal blocks as
new checkpoint. One consequence of this selection process is that only longest chains remain
ahead of the checkpoint, yielding mild conditions on transaction data to achieve consensus.

However, with more severe network latency, a one-block checkpoint lag induces the risk
of permanent forks. Miners reject blocks appended behind the checkpoint, and if latency
causes disagreement over the checkpoint itself, they will continue working on separate forks
indefinitely. This induces a trade-off between checkpoint lags and the risk of permanent
forks, and it may well be optimal in practice to increase the checkpoint lag.

Consider therefore a k-block checkpoint lag, with k ≥ 2. In perfect analogy to the result
of Proposition 1 and the discussion around positive transaction data and miner heterogeneity
in Section 3, miners may now find it profitable to deviate from the longest chain rule ahead
of the checkpoint by working on shorter forks.

To illustrate, suppose k = 2. The checkpoint then only updates to the grandparent
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of terminal blocks (rather than the parent). Reconsider Figure 3 and suppose that the
checkpoint is given by br. Miner 1 may find it profitable to work on block bf if her computing
power is sufficiently large. Importantly, since all miners continue to reject blocks appended
behind the checkpoint, double-spending attacks continue to be unprofitable regardless of the
checkpoint lag.

In summary, modifying the longest chain rule to incorporate checkpoints—which we
observe in practice as with the Ethereum’s proof-of-stake protocol—achieves consensus for
all blocks behind the checkpoint. If merchants delay delivering consumption goods until
the block containing the relevant transaction has been finalized by the checkpoint, then
double-spending cannot occur.

While the literature has identified the threat of double-spending attacks as key obstacle to
blockchain technology (Budish, 2025), it turns out to be more difficult to achieve consensus
ahead of the checkpoint. First, miners may induce temporary disagreement to save on the
cost of spend transactions. Second, in the more general case of larger checkpoint lags, miners
might seek to add data contained in shorter forks to the blockchain.

Importantly, a common theme for both deviations from the checkpoint rule is that miner
i works on her preferred chain in the hope of other miners switching to this chain the future.
In the following section, we modify the checkpoint rule and outline technological require-
ments necessary for achieving consensus ahead of the checkpoint. Key to these equilibrium
strategies is the need to resolve a form of tacit collusion so that miners have no hope of
persuading other miners to switch chains.

5 Approval Weight Strategies
We now develop an equilibrium strategy we call the approval weighted chain rule. The
approval weighted chain rule yields the same outcomes as the longest chain rule (with check-
points) along the equilibrium path without forks. However, whenever forks arise, it provides
better incentives to miners with high degrees of mining power for arbitrary transaction data
in any previously solved blocks—at least under a non-trivial restriction on transaction data
in the newly added blocks. In other words, we show that the approval weighted chain rule
remains an equilibrium even when mining power is concentrated and miners differ in their
preference over which chain they would like to become consensus chain.

The idea behind the approval weighted chain rule is to require miners to coordinate their
mining effort on the chains that deliver (any) value to the group of miners with the most

31



mining power. We show that off the equilibrium path, this coordination device induces
miners to follow the proposed equilibrium strategy even when they have a large degree of
mining power.

We define the approval weighted chain rule in steps. First we determine the common part
of all chains that include a terminal block in any graph. Next we divide every chain into
this common part and an idiosyncratic part. Finally we calculate the approval weight of the
idiosyncratic part of each chain as the sum of mining power of miners with positive balances
on this idiosyncratic part of the chain. We iterate on this procedure removing terminal
blocks with the lowest approval weight until a terminal block remains. Miners are then
called to work on this terminal block. If multiple terminal blocks have the same approval
weights, then miners are called to work on the longest chain among the chains running to
these terminal blocks.

We proceed by developing a set operator that refines any set of terminal blocks to only
those with the highest approval weight recursively. By Proposition 3, we limit our attention
to the subgraph following the checkpoint after every history, J(bCP (Ht), Gt). To build the
operator, we consider first an arbitrary subset of terminal blocks on this subgraph, S ⊆
T
(
J(bCP (Ht), Gt)

)
⊆ T (Gt). The common blocks corresponding to the set of terminal blocks

S are those which lie on every chain running to a block in the set: C∗(S, Gt) =
⋂

b∈S C(b,Gt).
By construction, the set C∗(S, Gt) is non-empty and contains at least the set of blocks on
the chain to the checkpoint, C(bCP (Ht), Gt). The approval weights of each block b ∈ S are
constructed as follows:

P (b,S, Gt) =
N∑
i=1

pi · 1

 ∑
b′∈C(b,Gt)\C∗(S,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ

)
> 0

 , (28)

Intuitively, the approval weights can be viewed as a score for the idiosyncratic part of
each chain leading to a terminal block on the subgraph following the checkpoint. This score
adds up the mining power of those miners which have any data in the blocks on the chain.
It is intuitive that miners with positive transaction data and block rewards have an interest
in this chain and benefit if it becomes the consensus chain. The same is true for miners with
unvested spend transactions, which enjoy a consumption flow utility of 1/δ > 1 as soon as
the chain becomes the consensus chain, the checkpoint updates and consumption goods are
delivered.

To illustrate the score function, consider Figure 6. Suppose that the checkpoint is given
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br bl1 bl2 bl3 bl4

bf1 bf2

bk1

R2,bl1
> 0 R2,bl2

> 0 R3,bl3
> 0 R3,bl4

> 0

R1,bf1
> 0 R1,bf2

> 0

R1,bk1
> 0

Figure 6: An illustration of approval weights.

by br. The blocks are again labeled according to whether they are on the longest chain
(bl1—bl4) or on one of two forks (bf1—bf2) and (bk1). Suppose for simplicity that the block
rewards are the only balances contained in each block. For example, then, only miner 2 has
a positive coin balance on block bl1 . Note that only miners 2 and 3 have positive balances on
the longest chain, only miners 1 and 2 have positive coin balances on the chain to bk1 , and
only miner 1 has positive coin balances on the chain to bf2 . The approval weights associated
with the respective chains are then given by

P (bk1 , T (J(br, Gt)) , Gt) = p1 + p2,

P (bl4 , T (J(br, Gt)) , Gt) = p2 + p3, (29)

P (bf2 , T (J(br, Gt)) , Gt) = p1.

We now define a set operator, T : S → S. The operator selects those blocks whose chains
have the highest approval weight:

T (S) = {b ∈ S |P (b,S, Gt) ≥ max
b′∈S

P (b′,S, Gt)}. (30)

33



To illustrate the effect of the set operator, consider again Figure 6. Suppose now that
p1 > p2 > p3. Applying the set operator to the set of terminal blocks in this subgraph then
yields block bk1 , as it has the highest approval weight.

br bl1 bl2 bl3 bl4

bf1 bf2

bk1

R2,bl1
> 0 R1,bl2

> 0 R1,bl3
> 0 R2,bl4

> 0

R1,bf1
> 0 R1,bf2

> 0

R1,bk1
> 0

Figure 7: Another illustration of approval weights.

However, Figure 7 presents a different graph which illustrates that applying the set
operator once may not suffice to yield a single block. Again suppose that block rewards are
the only balances on each block. The approval weights associated with the chains to the
terminal blocks are given by

P (bk1 , T (J(br, Gt)) , Gt) = p1 + p2,

P (bl4 , T (J(br, Gt)) , Gt) = p1 + p2, (31)

P (bf2 , T (J(br, Gt)) , Gt) = p1.

Applying the set operator once yields {bl4 , bk1}. Having applied the set operator once, the
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approval weights of the remaining terminal blocks are given by

P (bl4 , T (T (J(br, Gt))) , Gt) = p1 + p2, (32)

P (bk1 , T (T (J(br, Gt))) , Gt) = p2.

Thus, applying the set operator a second time to the set of remaining terminal blocks yields
only bl4 . The reason is that the set of common blocks changes after the first iteration.
Initially, the common blocks are the blocks on the chain to the checkpoint br. After block bf1

has been removed, the common blocks for chains running to the remaining terminal blocks
bl4 and bk1 are the blocks on the chain to bl2 . Hence block bk1 is deleted on the second
iteration.

For this reason, we define checkpoint blocks as follows. In any period, we consider
the subgraph with the checkpoint block from the previous period as the common root,
J(bCP (Ht−1), Gt). Next, we find the set of terminal blocks on this subgraph with the highest
approval weight by iteratively applying the set operator:

A
(
Ht

)
= lim

k→∞
T k
(
T
(
J
(
bCP (Ht−1), Gt

)))
. (33)

For simplicity, we focus on histories such that A
(
Ht

)
is a singleton.14 We choose the new

checkpoint to be the parent block of this terminal block:

bCP (Ht) = M
(
A
(
Ht

)
, Gt

)
(34)

To illustrate the checkpoint selection with approval weights, consider Figure 8. Suppose
that up to br there had been no forks in the chain so that the parent of br is the initial
checkpoint. Suppose further, again purely for simplicity, that block rewards are the only
transactions contained in the blocks. Table 2 again describes a possible sequence of added

Period t+ 1 t+ 2 t+ 3 t+ 4 t+ 5 t+ 6 t+ 7
Block Added bl1 bf1 bl2 bk1 bl3 bf2 bl4
Checkpoint br br bl1 bl2 bl2 bl2 bl2

Table 2: A Sequence of Blocks and Checkpoints.
14We stress that this is without loss of generality. If the set is not a singleton, we can use the hash of the

blocks appended to the checkpoint as tie-breaker, which yields a unique block.
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br bl1 bl2 bl3 bl4

bf1 bf2

bk1

R2,bl1
> 0 R4,bl2

> 0 R3,bl3
> 0 R3,bl4

> 0

R3,bf1
> 0 R1,bf2

> 0

R2,bk1
> 0

Figure 8: An illustration of checkpoint selection with approval weights.

blocks and the resultant checkpoints, this time assuming that p1 > p2 > p3 > p4. At time
t+1, block bl1 is added to the single chain and its parent block br becomes the new checkpoint.
At time t+2, the block bf1 creates a fork. The checkpoint only updates to bl1 in the following
period when bl2 is appended to bl1 and that chain has the highest approval weights. On the
contrary, the checkpoint does not update when bl4 has been appended to bl3 . The reason
is that the block bk1 has higher approval weights. This is the key difference relative to the
longest chain rule with checkpoints. Importantly, notice that the fork (bf1—bf2) branches
off behind the checkpoint bl2 . Since we focus on the subgraph following the checkpoint, this
fork is ignored at time t+ 7 and in all future periods regardless of its approval weights.

Given checkpoint selection with approval weights, the approval weighted chain rule sat-
isfies

σAW
i,t (Ht) = A

(
Ht

)
. (35)

In words, the approval weighted chain rule calls miners to append to the block with the
highest approval weight ahead of the new checkpoint.15 This is in contrast to the checkpoint

15As for the checkpoint selection, if the set A(Ht) was not a singleton, the strategy would be adjusted
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strategy of the previous section in (23), in which miners were called to work on their preferred
longest chain ahead of the checkpoint.

Finally, consider the following restriction on transaction data in the block which miners
seek to add in the current time period:

Assumption 2. For any history Ht, if |T
(
J(bCP (Ht), Gt)

)
| ≥ 2, then Yj,bt = 0 for all

j ∈ {1, 2, ..., N}. Otherwise, transactions are unrestricted.

Assumption 2 states that, whenever there is a fork ahead of the checkpoint, then the
newly added block only contains block rewards but no transaction data. This restriction is
important in achieving consensus and permanence under the approval weighted chain rule,
and we discuss it in detail at the end of this section.

We now argue that the approval weighted chain rule is an equilibrium strategy for any
transaction data on the blockchain and for any distribution of mining power under the
restriction of Assumption 2:

Proposition 5. Under Assumption 2, the approval weighted chain rule is a perfect public
equilibrium.

The proof is in Appendix C. The approval weighted chain rule has two important prop-
erties that disincentivize miners from deviating from the equilibrium strategy. First, the
mining power of miner i is already included in the approval weight of any chain which miner
i might like to select as the consensus chain. Consequently deviating to such a location
cannot change the approval weight of the chain. Second, miner i has no incentive to deviate
to any chain where her mining power is not already included in the approval weight. As a
result of these two features, there is no self-interested deviation where miner i can mine a new
block which induces a change in the equilibrium behavior of all other miners in the following
period. This ensures that the approval weighted chain rule is an indeed equilibrium.

To illustrate why the approval weighted chain rule is an equilibrium, reconsider the
fork which contains a spend transaction for the successful miner and induces short-lived
disagreement, as described in the previous section. Miners may find it profitable to create
such a fork if they have a lot of mining power and initially other mines will not work on
the newly created fork. However, under the approval weight rule, one of two things is true:
either all miners ignore this newly created fork in perpetuity since it has lower approval

as follows. Miners are called to work—among the chains with the highest approval weights—on the chain
containing the block with the lowest hash among the blocks appended to the checkpoint. We focus on the
set of histories such that A(Ht) is a singleton purely for expositional simplicity.
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weights; or all miners work on the new fork if it has higher approval weights. Miner i then
either has no hope of turning the fork into the consensus chain, or the new fork immediately
becomes the consensus chain and miner i fully bears the disutility of the spend transaction.
In either case, it is then (weakly) profitable to follow the equilibrium strategies.

Notice that in equilibrium, since miners have no incentives to deviate from the proposed
strategy, there would be no forks (other than by accident). As a result, the approval weighted
chain resembles the longest chain since all miners mine a single long chain. Any differences
between the approval weighted chain rule and the longest chain rule appear only off the
equilibrium path and these differences are important in sustaining equilibrium behavior.

Empty blocks and the trade-off between consensus and liveness. We now argue
why the restriction in Assumption 2 is necessary for the approval weighted chain rule to be
an equilibrium. Recall that we have taken transactions as given and assumed that all miners
mine the same block, modulo block rewards. In reality, miners can choose which transactions
to include in their block and can even submit transactions themselves.

br bl1 bl2

bf1

R2,bl1
> 0 R3,bl2

> 0

R1,bf1
> 0

Figure 9: An illustration of the need for empty blocks.

With this in mind, consider Figure 9 and suppose p1 > p2+ p3. Miner 1 has solved block
bf1 , whereas miners 2 and 3 have solved blocks bl1 and bl2 , respectively. The chain to bf1 has
the highest approval weights. Suppose miner 3 is mining a block bt with a transaction that
satisfies Y1,bt ̸= 0. That is, she is attempting to add a block which contains a transaction
for miner 1, either positive or negative. The approval weighted chain rule calls for her
to append her block to block bf1 . However, by appending her block bl2 , she increases the
approval weights of that chain by p1. She thus induces a switch in the behavior of all miners
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following the approval weighted chain rule in the subsequent period, including miner 1. In a
sense, miner 3 can “bribe” miner 1 and thus all other miners to join her preferred chain by
either including some existing transaction from the pool of transactions, or by submitting
and including a small receive transaction for miner 1 herself. This in turn allows her to
capture the utility associated with her blocks rewards in bl2 .

For this reason, one “empty block” in case of a fork ahead of the checkpoint helps re-
establish consensus. Interestingly, for the decentralized system described in this paper to
maintain and update the transaction ledger in a manner that achieves consensus, it must
not include any new transactions for a brief period of time whenever there is disagreement.
That is, for the decentralized system to function properly, it needs to not function for a short
period of time.

Importantly, the concept of an empty block can be interpreted as a deviation from the
principle of “liveness,” a property that requires the ledger to update continuously. Liveness
is often considered a constraint in the design of consensus protocols (see, e.g., Leshno et al.
(2024)). Our findings suggest the existence of a trade-off between consensus for the system
as a whole on the one hand, and liveness for a short period of time on the other hand.

Checkpoint lags and the number of empty blocks. To illustrate why the approval
weight rule remains an equilibrium even for longer checkpoint lags, consider a scenario where
the checkpoint updates to the grandparent of terminal blocks (rather than the parent). In
the example of Figure 3 with the checkpoint given by br, miner i may find it profitable
to work on the one-block short fork bf if her computing power is sufficiently large. Under
the checkpoint rule, the motivation for this deviation is to increase the length of the fork,
inducing other miners to switch to the fork and turning it into the consensus chain.

However, under the approval weight rule and the restriction of Assumption 2, one of two
things is true. Either the fork already has the highest approval weight, in which case all
miners are called to work on it anyway, or it has lower approval weights, leaving miner i

with no way to increase it. The reason is that all new blocks are empty whenever there is
a fork ahead of the checkpoint. In either case, miner i has no incentive to deviate from the
proposed equilibrium strategy.

Importantly, since miners solve one block per period, a longer checkpoint lag extends the
time required to eliminate all forks ahead of the checkpoint, even when miners adhere to the
approval weight rule. This, in turn, raises the number of empty blocks required to achieve
consensus. If a fork ahead of the checkpoint exists and miners have the chance to add one
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non-empty block, then they may have incentives to deviate from the approval weight rule
and “bribe” other miners to switch to their preferred chain by increasing its approval weights.
The need for empty blocks therefore introduces a second trade-off between checkpoint lags
and the duration of violating liveness.

6 Conclusion
In this paper, we demonstrate that incorporating a simple history-dependence in the form of
checkpoints into a blockchain protocol can effectively prevent double-spending attacks. This
is because miners collectively agree to disregard forks that attempt to reverse previously
confirmed transactions. As a result, once a transaction is part of consensus, the corresponding
balances cannot be spent a second time. Effectively, we have shown that the norm with
Bitcoin of waiting at least six blocks (about one hour) before delivering non-blockchain
goods ought to be linked explicitly to the consensus protocol, as is done on the Ethereum
network.

Remarkably, achieving consensus ‘ahead of the checkpoint’ presents a greater challenge.
To address this, we propose strategies that guide miners to prioritize forks containing bal-
ances of the group with the highest mining power over forks of greater length.

Implementing a checkpoint equilibrium raises two interesting issues. The first is how
to publicly track the checkpoint. Part of the attractiveness of the longest chain rule in
Bitcoin, see equation (7), is that it depends only on the current graph Gt and nothing
from the history. This simplifies implementation since code need only download the current
blockchain and calculate the longest chain. Our checkpoint strategy in equation (23) would
require monitoring the blockchain for several periods. However, given a blockchain can
record arbitrary data, it is interesting to consider how the current blockchain graph could
also contain the checkpoint.

The second implementation consideration of our checkpoint equilibrium is network la-
tency. Since the entire network of miners does not see new blocks at the same time it is
possible, in fact likely, that forks will occur. In Bitcoin, for example, it takes about 11
seconds for all nodes to hear of a new block. Average new-block arrival time on Bitcoin is
designed to be 600 seconds. Solving a block is Poisson and so a second block will arrive
before all nodes are informed that a new block has already been solved about 1.8% of the
time (11 seconds/600 seconds ≈ 1.8%). With a longest-chain rule, these forks are relatively
innocuous as one of the forks will (randomly with subsequent blocks) emerge as longest. In
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our checkpoint equilibrium, the same will happen as long as the checkpoint information is
not latent. Effectively, this means the checkpoint must be far enough back along the chain
from new blocks. If the checkpoint block is too close it is possible miners would disagree
about the checkpoint block causing the fork from latency to become permanent. Such dis-
agreement would undermine the usefulness of the blockchain. Optimizing the checkpoint
block—choosing the settlement lag—would require comparing the cost of a settlement lag
with the likelihood of a permanent fork.
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A Proofs: Longest Chain Rule

A.1 Proof of Lemma 1
Suppose that the strategy profile σ is such that all miners follow the longest chain rule as in
equation (9) from time t onwards. That is, σi,τ (Hτ ) = b∗i,τ for all i, after every history Hτ ,
and for all τ ≥ t. Suppose that BLC(Gt) is not a singleton at time t. Since all miners follow
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the longest chain rule and only one miner appends a block at time t, there will be a single
longest chain at time t + 1. All miners then append all their new blocks to this consensus
chain going forward. Note that blocks on consensus chains have a value of 1 for every miner.

Miner i’s expected payoff from following the longest chain rule as in equation (9) is given
by:

Vi,t (σ;Ht) =
∑

b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(36)

+
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·
∞∑
τ=0

δτ (1− δ)

Yi,bt +
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′)



+
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

δ ·
Y −
i,bt

δ
+

∑
b′∈C(b,Gt)

Y −
i,b′

δ
· Λt(b

′, Ht)



+ pi · δ ·
∞∑
τ=0

δτ (1− δ)

Yi,bt + R̄ +
∑

b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′)



+ pi · δ ·

δ ·
Y −
i,bt

δ
+

∑
b′∈C(b∗i,t,Gt)

(
Y −
i,b′

δ
· Λt(b

′, Ht)

)

+ δ2 · Et

∞∑
τ=0

δτ (1− δ)

 τ∑
υ=0

∑
b∈B(Gt+υ+1)/B(Gt+υ)

Yi,b +Ri,b + δ ·
Y −
i,b

δ


The first term is the current flow utility derived from the value of miner i’s cumulative

balances, plus the consumption flow utility due to spend transactions vesting at time t.
The second and fourth terms taken together are the expected discounted sum of future flow
utilities derived from current balances and newly added balances at the end of time t on the
consensus chain. Miner i selects the longest chain running to b∗i,t as the consensus chain at
time t and earns transactions and block rewards from time t + 1 onwards with probability
pi. The probability that the longest chain running to some b ∈ B(Gt) is chosen by some
other miner j ̸= i given by

∑
{j ̸=i: b∗j,t=b} pj for each such block. The third and fifth terms

capture the expected consumption flow utility which miner i derives if the blocks containing
the corresponding spend transactions become part of consensus. The last term captures the
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expected discounted sum of flow utilities due to transactions and block rewards in future
blocks, which are all added from time t+ 2 onwards to the consensus chain.

The expression for the expected payoff simplifies to

Vi,t (σ;Ht) =
∑

b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(37)

+
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

Yi,bt + δ ·
Y −
i,bt

δ
+

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)

+ pi · δ ·

Yi,bt + R̄ + δ ·
Y −
i,bt

δ
+

∑
b′∈C(b∗i,t,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+ δ2 · Et

∞∑
τ=0

δτ

[
Yi,bt+τ+1 +Ri,bt+τ+1 + δ ·

Y −
i,bt+τ+1

δ

]

Now consider an arbitrary deviation to b ∈ BLC(Gt), b ̸= b∗i,t, by miner i, for this
time period only. Denote this new profile by σ′. As one chain becomes the single longest
chain under this profile σ′, it remains true that consensus is achieved after the next block
has been appended. Recall that future transactions and block rewards are taken as given.
Furthermore, the current value of balances in existing blocks is a function of other miners’
strategies but not of miner i’s own strategy. Hence, the only difference in payoffs from this
deviation is in the second term as miner i selects a different longest chain to become the
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consensus chain if she is successful in appending the next block:

Vi,t (σ
′;Ht) =

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(38)

+
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

Yi,bt + δ ·
Y −
i,bt

δ
+

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)

+ pi · δ ·

Yi,bt + R̄ + δ ·
Y −
i,bt

δ
+

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+ δ2 · Et

∞∑
τ=0

δτ

[
Yi,bt+τ+1 +Ri,bt+τ+1 + δ ·

Y −
i,bt+τ+1

δ

]

The difference in following the suggested tie-breaker and deviation payoff is

pi · δ ·

 ∑
b′∈C(b∗i,t,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
−

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
(39)

Note that by definition of b∗i,t, the above difference is (weakly) positive. Therefore, there is
no strictly profitable one-shot deviation.

Conversely, should a candidate equilibrium strategy specify a different tie-breaking rule,
then a one-shot deviation applying the rule specified in Equation (9) immediately yields a
strictly profitable deviation.
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A.2 Proof of Proposition 1
Rewrite miner i’s expected payoff from following the longest chain rule as:

Vi,t (σ;Ht) =
∑

b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(40)

+
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

Yi,bt + δ ·
Y −
i,bt

δ
+

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)

+ pi · δ ·

Yi,bt + R̄ + δ ·
Y −
i,bt

δ
+

∑
b′∈C(b∗i,t,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+ δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

Now consider a one-shot deviation by miner i to some b̂ ∈ B−1(Gt) before reverting to
the longest chain rule. Denote this new profile by σ′. If miner i is successful in appending
the next block, then the number of longest chains at time t+1 increases by one. Consensus
is then stalled until period t+ 2, at which point one of the longest chains including the new
one becomes the consensus chain. If miner i is not successful in appending the next block,
then consensus is achieved at time t+ 1 as under the longest chain rule.
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Miner i’s expected payoff from the one-shot deviation is given by

Vi,t (σ
′;Ht) =

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(41)

+
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

Yi,bt + δ ·
Y −
i,bt

δ
+

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+

∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ pi · δ · (1− δ) ·
∑

{j ̸=i: b∗j,t+1=bi,t}

pj
1− pi

·

Yi,bt + R̄ +
∑

b′∈C(b̂,Gt)

(Yi,b′ +Ri,b′)


+ pi · δ · (1− δ) ·

∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

∑
b′∈C(b,Gt)

(Yi,b′ +Ri,b′)

+ p2i · δ2 ·

(
Et

[
Yi,bt+1 + R̄ + δ ·

Y −
i,bt+1

δ

]
+ Yi,bt + R̄ +

Y −
i,bt

δ

+
∑

b′∈C(b̂,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

))

+ pi ·
∑

{j ̸=i: b∗j,t+1=bi,t}

pj · δ2 ·

(
Et

[
Yi,bt+1 + δ ·

Y −
i,bt+1

δ

]
+ Yi,bt + R̄ +

Y −
i,b′

δ

+
∑

b′∈C(b̂,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,bt

δ
· Λt(b

′, Ht)

))

+ pi ·
∑

b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj · δ2 ·

Et

[
Yi,bt+1 + δ ·

Y −
i,bt+1

δ

]
+

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

The first term is the unchanged current flow utility derived from the value of miner i’s
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cumulative balances. The second and third terms taken together are the expected discounted
sum of future flow utilities derived from current balances and newly added balances at time
t+1 on the time-t longest chains—should another miner be successful at time t and one of the
longest chains becomes the consensus chain at time t+1—multiplied by their corresponding
probabilities with which they will become the consensus chain. The expressions also contain
the consumption flow utility derived from unvested spend transactions.

Miner i is successful in appending block bi,t to block b̂ with probability pi. The fourth
term is the expected discounted flow utility derived from the balances on this chain at time
t + 1, given the decision of miners j ̸= i to also mine on this chain at time t + 1 and their
respective computing powers. The fifth term is the corresponding discounted flow utility on
the other longest chains.

The sixth term is the discounted life-time utility derived from the balances (including
consumption utility derived from unvested spend transactions) on the fork from t+2 onwards
if it becomes the consensus chain and miner i was successful at appending blocks in both time
periods t and t+1. This event occurs probability p2i . The seventh term is the corresponding
discounted life-time utility if miner i was successful at appending blocks at time t and another
miner who was working on the fork at time t+1 was successful at appending a block, which
has probability pi ·

∑
{j ̸=i: b∗j,t+1=bi,t} pj. The eight term is the corresponding discounted life-

time utility if another miner who was working on a previous longest chain rather than the fork
at time t+1 was successful at appending a block, which has probability pi ·

∑
{j ̸=i: b∗j,t+1=b} pj

for each block b ∈ BLC(Gt).
The final term captures the expected discounted sum of flow utilities due to transactions

and block rewards in future blocks, which are all appended to the consensus chain.
Recall that miners take transactions Yi,b as given and note that EtRi,bt+τ+1 = piR̄ for all

τ ≥ 0. Further note that ∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t=b}

pj = 1− pi.

Then taking differences in expected payoffs and simplifying shows that Vi,t(σ;Ht) ≥
Vi,t(σ

′;Ht) if and only if the expression in (14) is satisfied.
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A.3 Proof of Proposition 2
Since Yj,b = 0 for all miners j and all blocks b (with the notable exception of Yi,bl1

< 0) and
Ri,bl1

= Ri,bl2
= R̄, the expression for the expected payoff in (40) simplifies to

Vi,t−1 (σ;Ht−1) = (1− δ)(Yi,bl1
+ 2R̄) (42)

+ (1− pi) · δ · (Yi,bl1
+ 2R̄)

+ pi · δ · (Yi,bl1
+ 2R̄ + R̄)

+ δ2 · Et

(
Ri,bt+1

)
+ δ3 · Et

∞∑
τ=0

δτ
(
Ri,bt+τ+2

)
Note that Et

(
Ri,bt+1+s

)
= piR̄ for all s ≥ 0. To ease notation, define D ≡ Yi,bl1

+ 2R̄.
Plugging in and simplifying, we have

Vi,t−1 (σ;Ht−1) = D + δ · piR̄

1− δ
≡ V (43)

The payoff from following the longest chain rule is therefore given by miner i’s current
balances D plus the expected present value of future block rewards. The deviation payoff is
given by

Vi,t−1 (σ
′;Ht−1) = (1− δ)D (44)

+ (1− pi) · δ · V + pi · δ · (1− δ)D

+ pi · (1− pi) · δ2 · V + p2i · δ2 · (1− δ)D

+ p2i · (1− pi) · δ3 · V + p3i · δ3 ·
[
3R̄ + (V −D)

]
The first term on the RHS is the flow utility from balances D at time t−1. With probability
(1−pi), some other miner j ̸= i appends the new block and extends the longest chain. Miner
i then reverts to following the longest chain rule and achieves a life-time payoff of V from
time t onwards. This is captured by the second term on the RHS. With probability pi, miner
i is successful and creates the fork at time t + 1. Since all other miners continue working
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on the longest chain, miner i’s discounted flow utility from balances D at time t is given by
δ(1− δ)D. This is the third term on the RHS.

The fourth term on the RHS captures that, conditional on having created the fork at
time t − 1, with probability (1 − pi) some other miner j ̸= i appends the new block and
extends the longest chain. Miner i then reverts to following the longest chain rule. The
block rewards in bf are lost and miner i achieves a life-time payoff of V from time t + 1

onwards. The fifth term is the analogous discounted flow utility at time t+ 1 if miner i has
successfully extended the fork to be of equal length (recall that all miners continue working
on the previous longest chain).

The sixth term is analogous to the second and fourth term above. The final term is
the expected, discounted life-time payoff conditional on succeeding with the double-spending
attack, which occurs with probability p3i , i.e., the probability that miner i creates and extends
the fork at times t − 1 and t as well as turns it into the only longest chain at time t + 1.
The life-time payoff is then given by the three block rewards earned on the fork as well as
the expected present value of future block rewards. Importantly, the payoff does not contain
the balances D on the previous longest chain, which are no longer part of consensus.

Algebraic manipulation reveals that

Vi,t−1 (σ;Ht−1)− Vi,t−1 (σ
′;Ht−1) = piδ ·

[
p2i δ

2 · Yi,bl1
+ (1 + piδ) · R̄

]
(45)

The expression is negative if the inequality in (18) is satisfied. The strategy profile σ′

therefore constitutes a profitable deviation, and the claim follows.
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A.4 Proof of Lemma 2
If Yi,bt ≥ 0, the condition in (14) becomes

Yi,bt + R̄ +
∑

b′∈C(b∗i,t,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
(46)

≥ (1− δ) ·
∑

{j ̸=i: b∗j,t+1=bi,t}

pj
1− pi

·

Yi,bt + R̄ +
∑

b′∈C(b̂,Gt)

(Yi,b′ +Ri,b′)


+ (1− δ) ·

∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

·
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′)

+ δ ·

pi +
∑

{j ̸=i: b∗j,t+1=bi,t}

pj

 ·

Yi,bt + R̄ +
∑

b′∈C(b̂,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+ δ ·

∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj ·
∑

b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)

Since there are only longest chains as #C(b,Gt) = #C(b′, Gt) for every b, b′ ∈ T (Gt), and
by the definition of b∗i,t, we have∑

b′∈C(b̂,Gt)

(Yi,b′ +Ri,b′) ≤ Yi,bt + R̄ +
∑

b′∈C(b̂,Gt)

(Yi,b′ +Ri,b′) (47)

≤ Yi,bt + R̄ +
∑

b′∈C(b̂,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)

≤ Yi,bt + R̄ +
∑

b′∈C(b∗i,t,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)

for every b̂ ∈ B−1(Gt). Plugging in, we find that the LHS of (46) is an upper bound to the
RHS of (46). The claim follows.
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A.5 Proof of Lemma 3
If Yi,bt < 0, the condition in (14) becomes

R̄ +
∑

b′∈C(b∗i,t,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
(48)

≥ (1− δ) ·
∑

{j ̸=i: b∗j,t+1=bi,t}

pj
1− pi

·

Yi,bt + R̄ +
∑

b′∈C(b̂,Gt)

(Yi,b′ +Ri,b′)


+ (1− δ) ·

∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

·
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′)

+ δ ·

pi +
∑

{j ̸=i: b∗j,t+1=bi,t}

pj

 ·

Yi,bt + R̄ +
Y −
i,bt

δ
+
∑

b′∈C(b̂,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)
+ δ ·

∑
b∈BLC(Gt)

∑
{j ̸=i: b∗j,t+1=b}

pj ·
∑

b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ
· Λt(b

′, Ht)

)

We now use the bounds derived in the proof of Lemma 2. Since there are only longest chains
as #C(b,Gt) = #C(b′, Gt) for every b, b′ ∈ T (Gt), and by the definition of b∗i,t, we obtain
the following sufficient condition for (48) to hold:

R̄ ≥ (1− δ) ·
∑

{j ̸=i: b∗j,t+1=bi,t}

pj
1− pi

·
(
Yi,bt + R̄

)
(49)

+ δ ·

pi +
∑

{j ̸=i: b∗j,t+1=bi,t}

pj

 ·

(
Yi,bt + R̄ +

Y −
i,bt

δ

)

The condition is satisfied if
∑

{j ̸=i: b∗j,t+1=bi,t} pj = 1− pi. Since the RHS of (49) is linear in all
terms, it is either maximized or minimized at

∑
{j ̸=i: b∗j,t+1=bi,t} pj = 0. If it is minimized, then

the condition is always satisfied. Suppose the RHS is maximized at
∑

{j ̸=i: b∗j,t+1=bi,t} pj = 0.
Plugging in and rearranging, the sufficient condition for (48) to hold becomes (19) as stated
in the lemma. The claim follows.
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B Proofs: Checkpoint Rule

B.1 Proof of Proposition 3
The payoff of following the candidate equilibrium strategy is given by

Vi,t (σ;Ht) =
∑

b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(50)

+
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ

)

+ pi · δ ·

(
Yi,bt + R̄ + δ ·

Y −
i,bt

δ
+

∑
b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ

)

+ δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

Equation (50) is equivalent to equation (40), now incorporating checkpoints. The first
term on the RHS is the flow utility due to balances at time t, plus the consumption utility
due to vesting spend transactions. The second and third terms taken together are the
expected discounted sum of future flow utilities derived from current balances and newly
added balances at time t + 1 on the consensus chain, plus the consumption utility from
vesting spend transactions. Miner i selects the longest chain running to b∗i,t as the consensus
chain at time t with probability pi. The probability that the longest chain running to some
b ∈ BCP

(
bCP (Ht), Gt

)
is chosen by some other miner j ̸= i given by

∑
{j ̸=i: b∗j,t=b} pj for

each such block. The fourth and fifth term capture the expected discounted sum of flow
utilities due to transactions and block rewards in future blocks as well as the corresponding
consumption flow utilities, which are all added from time t + 1 onwards to the consensus
chain.

We now consider a deviation to some block b /∈ J (bCP (Ht), Gt). Note that this implies
that bt does not lie on any chain to any block on the subgraph following the checkpoint if
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miner i appends it. Since all other miners play checkpoint strategies in all time periods, and
since miner i herself reverts to playing checkpoint strategies from the next time period, no
miner is working on the chain containing block bt at time t + 1 and any other future time
period. Hence, we have qi,bt,τ = 0 and λτ (bt, Gτ ) = 0 for all τ ≥ t+ 1.

Denoting the strategy profile for this deviation by σ′, we have

Vi,t (σ
′;Ht) =

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(51)

+
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ

)

+ (1− pi) · δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ pi · δ · (1− δ) ·
∑

b∈BCP (Ht,Gt)

∑
{j ̸=i: b∗j,t=b}

pj
1− pi

∑
b′∈C(b,Gt)

(Yi,b′ +Ri,b′)

+ pi · δ ·
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

(
Et

(
Yi,bt+1 + δ ·

Y −
i,bt+1

δ

)
+
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ

)

+ p2i · δ2 ·

(
Et

[
Yi,bt+1 + R̄ + δ ·

Y −
i,bt+1

δ

]
+

∑
b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

The first, second and final term on the RHS of (51) are unchanged relative to the strategy
profile σ. The third term captures the following. Some miner j ̸= i is selected with proba-
bility (1− pi). Consensus is then achieved, the checkpoint updates. Since all miners revert
to checkpoint strategies, consensus remains and miner i derives flow utility from positive
transactions and block rewards in block bt+1 from time t+ 2 onwards.

With probability pi, no block is added to the one of the longest chains on the subgraph.
Hence, the checkpoint does not update. All miners, including miner i, then work on their
preferred longest chain on the subgraph. The fourth term captures the time t+1 flow utility
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due to balances in blocks on the longest chains, given the other miners’ location choices.
The fifth and sixth term are the expected discounted life-time flow utilities associated with
the longest chains on the subgraph, multiplied by their respective probabilities of becoming
the consensus chains. In addition, they contain the life-time flow utility due to positive
transactions and block rewards in block bt+1.

Note that for every b ∈ BCP
(
bCP (Ht), Gt

)
we have

∑
b′∈C(b,Gt)

(Yi,b′ +Ri,b′) ≤
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ
(52)

≤
∑

b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ

where the first inequality follows since we only add (weakly) positive objects, and the second
inequality follows by definition. This in turn implies that∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t=b}

pj
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) (53)

≤
∑

b∈BCP (Ht,Gt)

∑
{j ̸=i: b∗j,t=b}

pj

 ∑
b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ



≤ (1− pi)

 ∑
b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ


Using these inequalities, and collecting the expected transactions and block rewards for

block bt+1, it follows that
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Vi,t (σ
′;Ht) ≤

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(54)

+
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ

)

+ pi · δ · (1− δ) ·

 ∑
b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ



+ pi · δ · (1− pi) · δ ·

 ∑
b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ



+ p2i · δ2 ·

 ∑
b′∈C(b∗i,t,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗i,t

δ


+ δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

Then, taking differences, we have

Vi,t (σ;Ht)− Vi,t (σ
′;Ht) ≥ pi · δ ·

(
Yi,bt + R̄ + δ ·

Y −
i,bt

δ

)
> 0 (55)

From here it follows that any one-shot deviation from the checkpoint strategy to a block
behind the checkpoint is strictly not profitable.
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B.2 Proof of Proposition 4
The payoff from following the candidate equilibrium strategy is given by (50). By Proposition
(3), and since only chains with one block ahead of the checkpoint remain, we only need to
consider deviations from the candidate equilibrium strategy to the checkpoint block itself.
Denoting the strategy profile for this deviation to the checkpoint by σ′, the corresponding
payoff reads

Vi,t (σ
′;Ht) =

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(56)

+
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ

)

+ (1− pi) · δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ pi · δ · (1− δ) ·
∑

b∈BCP (bCP (Ht),Gt+1)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

∑
b′∈C(b,Gt+1)

(Yi,b′ +Ri,b′)

+ pi · δ2 ·
∑

b∈BCP (bCP (Ht),Gt+1)

∑
{j: b∗j,t+1=b}

pj ·

(
Et

[
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt

δ

]
+
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

where Gt+1 = Gt

⋃(
bi,t,

(
bi,t, b

CP (Ht)
))

is the graph at time t+1 should miner i be successful
in appending block bi,t to the checkpoint block bCP (Ht) at time t. The first three terms as
well as the final term on the RHS are unchanged relative to the payoff under the candidate
equilibrium strategy. The fourth term captures the discounted flow utility at time t + 1

given other miners’ location choices if miner i is successful in appending block bi,t to the
checkpoint, which occurs with probability pi. The fifth term captures the expected utility
due to the balances on one of the longest chains—i.e., the longest chains at time t + 1 plus
the one added by miner i by creating a fork—becoming the consensus chain from time t+ 2

onwards.

58



The expression simplifies to

Vi,t (σ
′;Ht) =

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(57)

+
∑

b∈BCP (bCP (Ht),Gt)

∑
{j ̸=i: b∗j,t=b}

pj · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+
∑

b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ

)

+ δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ pi · δ · (1− δ) ·
∑

b∈BCP (bCP (Ht),Gt+1)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

· (Yi,b +Ri,b)

+ pi · δ2 ·
∑

b∈BCP (bCP (Ht),Gt+1)

∑
{j: b∗j,t+1=b}

pj ·

 ∑
b′∈C(b,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b

δ


+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

Comparing the expressions in (50) and (57), we have Vi,t (σ;Ht) ≥ Vi,t (σ
′;Ht) if and only if

Yi,bt + R̄ + δ ·
Y −
i,bt

δ
+

(
Yi,b∗i,t

+Ri,b∗i,t
+

Y −
i,b∗i,t

δ

)
(58)

≥ (1− δ) ·
∑

b∈BCP (bCP (Ht),Gt+1)

∑
{j ̸=i: b∗j,t+1=b}

pj
1− pi

· (Yi,b +Ri,b)

+ δ ·
∑

b∈BCP (bCP (Ht),Gt+1)

∑
{j: b∗j,t+1=b}

pj ·

(
Yi,b +Ri,b +

Y −
i,b

δ

)

Rearranging terms, and noting that b∗i,t+1 = bi,t, the condition in (27) follows. The claim
then follows by the proof of Lemmas 2 and 3.
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C Proof of Proposition 5: Approval Weights
First, define b∗t to be the only element in the set A(Ht). The payoff of following the candidate
equilibrium strategy is then given by

Vi,t (σ;Ht) =
∑

b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(59)

+ (1− pi) · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+

∑
b′∈C(b∗t ,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗t

δ

)

+ pi · δ ·

(
Yi,bt + R̄ + δ ·

Y −
i,bt

δ
+

∑
b′∈C(b∗t ,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗t

δ

)

+ δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

The expression above captures that consensus is achieved and the checkpoint updates in the
subsequent period with probability one on the equilibrium path. By definition, the approval
weights are weakly increasing when adding a block that only contains block rewards. Further
note that the length of the chain to which a block is added is, trivially, strictly increasing.
Hence, the checkpoint will update to b∗t at time t+ 1 on the equilibrium path.

We now consider three possible one-shot deviations from the equilibrium strategy. First,
consider a one-shot deviation to some b /∈ J

(
bCP (Ht), Gt

)
. Such a deviation is strictly

unprofitable by the proof of Proposition 3, replacing the set BCP
(
bCP (Ht), Gt

)
by A(Ht).

Second, consider a deviation to some b /∈ A(Ht), b ∈ J
(
bCP (Ht), Gt

)
. Let the history in

the subsequent period, should miner i be successful in appending block bi,t to b, be denoted
by H ′

t+1. Suppose that bi,t /∈ A(H ′
t+1). Since all miners including miner i play equilibrium

strategies at time t + 1, the chain leading to bi,t is abandoned at time t + 1—just like the
chain to any block appended to any b /∈ J

(
bCP (Ht), Gt

)
. Thus, we can again call to the

proof of Proposition 3 to show that such a deviation is strictly unprofitable.
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Third, consider a deviation to some b /∈ A(Ht), b ∈ J
(
bCP (Ht), Gt

)
but now suppose that

bi,t ∈ A(H ′
t+1). Since bi,t ∈ A(H ′

t+1), and since A(H ′
t+1) is a singleton, all miners including

miner i work on block bi,t at time t + 1 and consensus is achieved. Note that there are two
scenarios in which b /∈ A(Ht) and bi,t ∈ A(H ′

t+1), which we discuss in turn.
In the first scenario, there is no fork ahead of the checkpoint bCP (Ht) and the checkpoint

itself is the only block b /∈ A(Ht), b ∈ J
(
bCP (Ht), Gt

)
. Consider therefore a deviation to

the checkpoint block bCP (Ht). Denote the strategy profile for such a deviation by σ′. The
deviation payoff reads

Vi,t (σ
′;Ht) =

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(60)

+ (1− pi) · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+

∑
b′∈C(b∗t ,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗t

δ

)

+ pi · δ ·

(
Yi,bt + R̄ + δ ·

Y −
i,bt

δ
+

∑
b′∈C(bCP (Ht),Gt)

(Yi,b′ +Ri,b′) +
Y −
i,bCP (Ht)

δ

)

+ δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

The only difference between (59) and (60) is that under the deviation profile σ′ the current
terminal block b∗t is abandoned should miner i be successful in appending block bi,t to the
checkpoint bCP (Ht). It is straightforward to see that Vi,t (σ;Ht) ≥ Vi,t (σ

′;Ht), with the
inequality strict unless Yi,b∗t

= Ri,b∗t
= 0.

In the second scenario, there is a fork ahead of the checkpoint bCP (Ht) at time t and
hence by Assumption 2 we have Yj,bt = 0 for all miners j = {1, 2, ..., N} but Ri,bi,t = R̄ for
miner i. It then must be true that miner i has no data on the chain leading to b ahead of the

checkpoint:
∑

b′∈C(b,Gt)\C(bCP (Ht),Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ

)
= 0. Otherwise, their probability pi

would have already been included in the approval weight of block b by (28), and hence both
blocks bi,t and b would have the same approval weights, a contradiction to b /∈ A(Ht) and
bi,t ∈ A(H ′

t+1).
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Denote the strategy profile for such a deviation by σ′′. The deviation payoff then reads

Vi,t (σ
′′;Ht) =

∑
b∈B(Gt)

(
(1− δ)qi,b,t(Yi,b +Ri,b) +

Y −
i,b

δ
· λt(b,Ht)

)
(61)

+ (1− pi) · δ ·

(
Yi,bt + δ ·

Y −
i,bt

δ
+

∑
b′∈C(b∗t ,Gt)

(Yi,b′ +Ri,b′) +
Y −
i,b∗t

δ

)

+ pi · δ ·

(
Yi,bt + R̄ + δ ·

Y −
i,bt

δ
+

∑
b′∈C(b,Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ

))

+ δ2 · Et

(
Yi,bt+1 +Ri,bt+1 + δ ·

Y −
i,bt+1

δ

)

+ δ3 · Et

∞∑
τ=0

δτ

(
Yi,bt+τ+2 +Ri,bt+τ+2 + δ ·

Y −
i,bt+τ+2

δ

)

Since
∑

b′∈C(b,Gt)\C(bCP (Ht),Gt)

(
Yi,b′ +Ri,b′ +

Y −
i,b′

δ

)
= 0, we have Vi,t (σ;Ht) ≥ Vi,t (σ

′′;Ht),

with the inequality strict unless Yi,b∗t
= Ri,b∗t

= 0.
It then follows that there exists no strictly profitable one-shot deviation from the equi-

librium strategy, and the claim follows.
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